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Abstract 

Human Immunodeficiency Virus (HIV) activates macrophages and microglia cells in the central 

nervous system (CNS) and triggers the secretion of neurotoxins, causing neuronal damage. 

Therapeutic approaches to restore cognitive function by suppressing macrophage and microglial 

activation have not been successful, partially due to limited knowledge of cellular mechanisms 

that control toxin secretion. In this investigation, we study the pathway to HIV-induced 

neurotoxin release, focusing on how calcium influx and phosphorylation of the HIV co-receptor 

CXCR4 lead to macrophage activation, including alteration of the actin cytoskeleton resulting in 

the formation of ruffles and podosomes. We found that Nerve Growth Factor (NGF) increases 

CXCR4 phosphorylation, increases calcium signaling, and reverses the HIV-induced increase in 

podosome formation. To further elucidate the pathway that mediates this effect, we challenged 

macrophages with specific inhibitors for CXCR4 and CCR5 receptors, as well as for PI3K and 

Pyk2. To investigate the source of calcium leading to macrophage activation, we inhibited the 

P2X7 receptor, CRAC channels, TrpC channels, and IP3 receptor channels. Our data indicated 

that calcium entry through the P2X7 receptor contributed to podosome formation while the IP3 

receptor channel favored expression of the less toxic ruffled phenotype,  Pyk2 signaling and 

calcium entry through the TrpC channel were necessary for both ruffling and podosomes. 

Because podosome expression is correlated with toxin secretion from macrophages, determining 

the pathway to morphological modifications enables a better overall understanding of 

macrophage activation. This knowledge can lead to better regulation of macrophages and control 

of inflammation in the CNS.  
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Introduction 

 Human Immunodeficiency Virus (HIV) infection causes neurodegeneration in the central 

nervous system (CNS), resulting in HIV associated dementia and other cognitive deficits1. As 

patients survive into older age with the help of highly active antiretroviral therapies (HAART), 

neuronal damage is expected to progress and accelerate2. Available therapeutics are unable to 

cross the blood-brain barrier (BBB), allowing the CNS to become a protected reservoir of HIV2. 

HIV infects cells by binding to the receptor CD4 and a chemokine co-receptor, CCR5 or 

CXCR4. Binding results in fusion of the cell’s membrane with that of HIV, allowing the virus 

entry into the cell3. Since there is little evidence of HIV crossing the blood brain barrier on its 

own during early infection, the process is dependent on infection of circulating monocytes. 

These cells cross the BBB, differentiate into macrophages and microglia, and introduce HIV into 

the CNS2. Once the infection is established in the CNS, the presence of HIV or HIV surface 

proteins can activate macrophages and microglia through the HIV co-receptor independent of 

infection2. Once the cells are activated by HIV, they release unknown neurotoxins, which are the 

main cause of HIV-related damage to the CNS4. 

Macrophages are dynamic cells that release a variety of signaling molecules and growth 

factors depending on external cues. HIV activates macrophages to release neurotoxins by 

interacting with the chemokine receptor CXCR43. Though HIV stimulates the chemokine 

receptor, macrophages also express the neurotrophin receptors p75NTR and TrkA, which regulate 

HIV-induced neurotoxin release5. In neurons, TrkA binds Nerve Growth Factor (NGF) with high 

affinity and p75 binds NGF with low affinity. The p75 receptor can also bind the immature 

proNGF6. The mature and pro-form of NGF have opposite effects on neurons; NGF typically 

leads to cell survival and differentiation while proNGF results in cell degeneration and 
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apoptosis6. The opposing effect of proNGF and NGF also applies to macrophage neurotoxin 

release in response to HIV. NGF stimulation results in decreased neurotoxicity while proNGF 

exacerbates neurotoxin release7. The changes in neurotoxin release are paralleled by changes in 

macrophage morphological phenotype. 

Previous studies have associated macrophage cytoskeletal morphology, specifically the 

presence of ruffles or podosomes, with the cells’ toxicity level and acute calcium spiking 

activity. Ruffled macrophages are less toxic and have more calcium spikes, while those with 

podosomes produce more neurotoxins and have fewer calcium spikes7. Podosomes have been 

linked to increased tissue invasion and secretion of matrix metalloproteases8, which unpublished 

studies suggest may have neurotoxic activity. Therefore, we focused on the presence of 

podosomes in our studies on macrophage morphology, aiming to determine the pathway by 

which macrophages are activated to produce podosomes. The proposed model for podosome 

formation was that macrophage activation by HIV leads to CXCR4 phosphorylation, increased 

calcium levels and activation of Pyk2. 

 In this investigation we continued previous studies on the pathway by which 

macrophages are activated by investigating the interactions between CXCR4 and neurotrophin 

receptors and identifying the source of the calcium associated with podosome formation. 
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Methods 

Primary cultures of human macrophages1 

Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation on 

Ficoll-Paque Plus. PBMCs were washed and plated on low-adhesion tissue culture plates 

(Fisher) in DMEM with 10% FBS and 20 µg/mL gentamicin. Monocytes adhered over a period 

of 3-5 days. Cells were then washed and cultured for 7 days in the same medium containing 

15ng/mL GM-CSF (Sigma Inc.) to fully differentiate monocytes into monocyte-derived-

macrophages (MDMs). After differentiation, the macrophages were grown in standard DMEM + 

                                                           
1 Macrophages were cultured by my mentor. 

Figure 1. Proposed mechanism for the control of macrophage activation by HIV and 

neurotrophins. HIV and mature neurophins have opposite effects on the ability of 

macrophages to exhibit a neurotoxic podosome-containing phenotype. HIV was hypothesized 

to stimulate and phosphorylate CXCR4, with subsequent calcium entry activation of Pyk2 

and podosome formation.  In a different but related pathway, NGF triggers TrkA 

autophosphorylation, activation of PI3K, and increased ruffling. Extracellular calcium  may 

enter through CRAC channels, Trp channels, or activation of the P2X7 receptor by ATP. IP3 

receptors may mediate calcium release from the endoplasmic reticulum (ER). Macrophages 

activated by HIV release neurotoxins, and the podosome-bearing phenotype correlates with 

greater toxicity than the ruffled phenotype. 
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10% FBS + gentamicin. Cells were subcultured at a density of 10,000-40,000 cells/cm2 as 

needed. After reaching the desired density, cells were fixed for staining and imaging. 

Western blotting2 

Human monocyte-derived macrophages were stimulated with HIV, SDF, or NGF for 0, 5, 10, 

and 30 minutes. Cells were removed from 100mM dishes, treated with lysis buffer (1X RIPA 

buffer (Millipore 20-188), 1:100 PMSF, 1:1000 protease inhibitor cocktail) and sonicated. 

Protein concentration was measured used Bradford reagent (Bio-Rad 500-0209). Protein lysates 

were resolved by SDS on TGX gels (Bio-Rad 456-1034) and transferred to a nitrocellulose 

membrane (Bio-Rad 162-0234). The membranes were blocked in 2% milk for one hour at room 

temperature followed by overnight incubation of primary antibodies at 4°C. Membranes were 

then washed in TBS + 1% Tween and incubated in secondary antibody for one hour at room 

temperature. The membranes were washed again and imaged using a chemiluminescent substrate 

(Thermo Scientific cat# 34080) and film (Kodak 178 8207) or Image Quant LS 4000 technology. 

The primary antibody was pCXCR4 (ABCAM AB74012) at 1:500 dilution. Secondary Antibody 

was 1:4000 Goat anti-Rabbit HRP (Millipore AP132P). 

Phalloidin staining of human macrophages 

Cells were challenged under one of the eleven conditions listed in Table 1, and fixed with 2% 

paraformaldehyde. They were stained for one hour at room temperature with the filamentous 

actin (F-actin) stain Rhodamine Phalloidin (Cytoskeleton PHDR1), and diluted 1:100 in PBS. 

Cells were washed in PBS placed on slides with Fluoromount G (Southern Biotech 0100-01). 

 

 

                                                           
2 Addition of drugs to the human macrophages was done by my mentor. 



Zhuravleva 7 
 

Challenge 

condition 

Applied 

concentration 

Challenge 

time 

Function 

Ctrl (aCSF) --- --- Mimics conditions in CNS 

Xestospongin-C 1 µM 2 hr IP3 receptor antagonist; prevents 

release of Ca2+ from ER 

A438079 4 µM 2 hr P2X7 receptor antagonist; inhibits 

extracellular calcium entry 

LY294002 10 µM 2 hr PI 3-Kinase inhibitor 

Pyr 3 1 µM 20 min TRP Channel 3 antagonist; inhibits 

TRPC3-mediated Ca2+ influx 

ATP 1 mM 2 hr P2X7 receptor agonist; increases 

extracellular calcium entry 

AMD3100 0.02 - 0.13 µM 2 hr CXCR4 inhibitor 

Maraviroc 6.4 nM 2 hr CCR5 inhibitor 

Gadolinium 10 µM 2 hr CRAC Channel inhibitor 

YM58483 100 nM 2 hr CRAC Channel antagonist 

PF431396 11 nM 2 hr Pyk2 inhibitor 

 

  

Macrophage Calcium Imaging 

Macrophages were incubated in serum-free Dulbecco’s Modified Eagle Medium (DMEM) and 

loaded with the calcium indicator, Fluo-4 NW (Molecular Probes, Inc., Eugene, OR) at 1:4 

dilution for 20 minutes. The macrophages were then treated with one of the drugs listed above 

and incubated for another 10 minutes. Time lapse digital images were captured automatically by 

the Metamorph System every 6 seconds for 20 minutes in the continued presence of the drug. 

The first three images taken served as the baseline measurement of fluorescence at the beginning 

of each experiment.  The increase in fluorescence intensity within each cell was then measured 

relative to the baseline measurements to correct for cell to cell differences in dye loading and 

intrinsic fluorescence. The differences in intensity between successive 6 sec measurements were 

determined to assess calcium spiking over time. Incremental increases greater than 2.3 standard 

Table 1. List of challenge conditions for macrophages stained with phalloidin. All 

dilutions from drug stocks were made in aCSF. 
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deviations from the basal calcium followed immediately by recovery were counted as spikes 

(>20 fluorescence units; p < 0.01).  

Data Analysis and Statistics 

Western blots were analyzed using average intensities of bands, as measured by Metamorph 

Software after imaging. Phalloidin stained macrophage images were scored visually; each 

macrophage in the image was classified as podosome-bearing, ruffled, or having no 

specializations. Two-tailed, unpaired t-tests were calculated in Excel from a minimum of three 

replicates for statistical comparisons. P values < 0.05 were considered significant. 

Results 

Western blotting showed that NGF induces phosphorylation of CXCR4 similarly to its 

natural ligand SDF-1. The time course for CXCR4 phosphorylation is illustrated in Figure 2.  

When stimulated by SDF, CXCR4 phosphorylation peaked at about 5 minutes and remained 

elevated for 30 min (Figure 2A). After stimulation with NGF, CXCR4 phosphorylation peaked at 

about 10 minutes. There was no indication that HIV promoted CXCR4 phosphorylation (Figure 

2A). CXCR4 phosphorylation was regulated by TrkA. Blocking TrkA with the specific inhibitor 

GW 441756 and stimulating the cells with NGF alone or NGF+HIV decreased CXCR4 

phosphorylation relative to NGF or NGF+HIV, respectively (Figure 2B).  
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Phalloidin staining revealed that macrophages exist in several phenotypes that correlate 

well with toxicity. The less toxic, ruffled macrophages exhibit a less rounded shape and have 

highly-stained actin-rich areas on the edges (Figure 3A). More toxic macrophages have 

podosomes, which can be diffuse (Figure 3B), clustered (Figure 3C), or in a “belt” formation 

(Figure 3D). Many macrophages also exhibit no distinctinve specializations (Figure 3E). 

CTRL HIV NGF+HIV proNGF+HIV NGF+HIV+ NGF NGF+

0.0

0.5

1.0

1.5

2.0

*
p= 0.03 vs HIV

*

p= 0.004 vs
NGF+HIV

p
C

X
C

R
4

GW 441756 GW 441756

*

*
p= 0.04 vs NGF

p<0.001 vs CTRL

A 

Figure 2. NGF stimulation induces phosphorylation of CXCR4 in a TrkA-dependent 

fashion. A) Phosphorylation of CXCR4 by SDF-1 peaked at 5 min and persisted to 30 min. 

NGF induced CXCR4 phosphorylation, which peaked at 10 min. HIV produced no significant 

changes in phosphorylation. B) The specific inhibitor for TrkA, GW 441756 decreased the 

phosphorylation of CXCR4 in the presence of NGF or NGF+HIV relative to NGF alone or 

NGF+HIV, respectively. Values are mean ± sem, n = 3-9 trials. 

A 

 

B 
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Blockade of CXCR4 with AMD3100 or CCR5 with Maraviroc, failed to affect podosome 

presence on macrophages, suggesting that other signaling pathways were crucial to the 

phenotypic differentiation of these cells (Figure 4A). Blocking CCR5 decreased ruffling (Figure 

4B), indicating that the receptor acts in the pathway toward ruffle formation. A greater 

proportion of cells expressed podosomes in the presence of HIV. Blocking CXCR4 and 

challenging the macrophages with HIV increased the expression of ruffles relative to HIV 

(Figure 4C), with a corresponding decrease in the expression of podosomes. 

 

 

 

 

B 

C 

D E 

A 

 

B 

 

C 

 

D 

 

E 

 

Figure 3. Macrophages stained with F-actin-binding phalloidin reveal multiple 

morphologies.  Macrophages were stained with F-actin-binding phalloidin for 1 hr. A)  A 

representative ruffled macrophage.  B) A macrophage with “diffuse” podosomes.  C) A 

macrophage with “clustered” podosomes.  D) A macrophage with a “belt” of podosomes.  E) 

Macrophage with no distinct morphology.  Scale bars indicate 50 µm. 



Zhuravleva 11 
 

        
C tr l AM D 3 1 0 0 M a r a v ir o c

0 .0

0 .5

1 .0

1 .5
C h e m o k in e  R e c e p to r s

P
o

d
o

s
o

m
e

s
/T

o
ta

l 
C

e
ll

s

 
C tr l AM D 3 1 0 0 M a r a v ir o c

0 .0

0 .5

1 .0

1 .5
C h e m o k in e  R e c e p to r s

R
u

ff
le

s
/T

o
ta

l 
C

e
ll

s

*

 

 

 

 

 

 

To investigate whether signaling targets downstream of the chemokine and neurotrophin 

receptors were necessary for podosome formation, PI3K and Pyk2 were blocked by LY294002 

and PF431396, respectively. Blocking the TrkA effector, PI3K, did not affect ruffling, but it 

significantly decreased podosome expression (Figure 5). Inhibiting Pyk2, which is thought to 

mediate CXCR4 effects, greatly decreased the presence of both podosomes and ruffles on the 

cells (Figure 5). 
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Figure 4. Macrophage podosome expression is unaffected by blocking chemokine 

receptors.    A) Blocking the CXCR4 receptor with the specific inhibitor AMD3100 and the 

CCR5 receptor with the specific inhibitor Maraviroc did not affect podosome formation.  B) 

Blocking CXCR4 had no effect on macrophage ruffling, but blocking CCR5 decreased the 

proportion of ruffled macrophages (p=0.04). Values are normalized to control.  C) HIV 

increased podosome expression, and blocking CXCR4 with AMD 3100 increased expression 

of ruffles in macrophages stimulated by HIV. Values are mean ± sem, n = 20-35 cells, 3-5 

cultures. 

C 
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Since Pyk2 is involved in the pathway to podosome formation and requires calcium for  

activation, further investigations related macrophage morphology to calcium channels in order to 

determine the source of calcium that leads to podosomes. Phalloidin staining revealed that 

blocking calcium entry through the P2X7 channel with the specific inhibitor A438079 increased 

podosome expression and decreased ruffling (Figure 6A, 6B), though stimulating the 

macrophages with the agonist ATP only decreased ruffles (Figure 6B). Inhibiting the TrpC3 

channel with Pyr3 greatly decreased the presence of podosomes and ruffles (Figure 6A, 6B). 

Blocking the CRAC calcium channel with resulted in a small decrease in the proportion of 

macrophages expressing podosomes and ruffles (Figure 6A, 6B). Inhibiting calcium entry from 

the endoplasmic reticulum by blocking the IP3 receptor channel with Xestospongin C also 

increased the proportion of macrophages with podosomes and decreased ruffling (Figure 6A, 

6B).  

Figure 5. Pyk2 inhibition reduces specializations in macrophage morphology. Phalloidin-

stained macrophages revealed that blocking PI3K with the specific inhibitor LY294002 

significantly increased the presence of podosomes (p = 0.03) but did not affect ruffling. Blocking 

Pyk2 with PF431396 significantly decreased the proportion of macrophages with podosomes (p 

< 0.001) and with ruffles (p = 0.0004). Values are mean ± sem, normalized to control, n= 20-54 

cells from triplicate runs. 
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Since calcium spiking is associated with macrophage morphology, calcium activity of 

macrophages was measured to assess whether the channels that affect morphology also affect 

calcium spiking. Macrophages exhibit basal calcium spiking activity in aCSF (Figure 7A), and 

the activity is decreased when the TrpC channels are blocked (Figure 7B). Blocking the CRAC 

channel with the specific inhibitor YM 58483 had a small effect on calcium spiking (Figure 7C). 

Blocking the IP3 receptor channel with Xestospongin C nearly abolished calcium spiking activity 

(Figure 7C), indicating that calcium spikes are dependent on ER calcium. Blocking the TrpC3 

channel with Pyr3 also greatly decreased calcium spiking (Figure 7C). Placing macrophages in 

calcium free medium completely blocked calcium spiking activity, revealing that extracellular 

calcium is necessary for macrophages to produce calcium spikes (Figure 7C). 

Figure 6. Calcium entry into 

macrophage cytosol affects podosome 

formation and ruffling. Macrophages 

were challenged with inhibitors and 

agonists for 2 hrs.  A) The proportion of 

macrophages with podosomes decreased 

when challenged with the TrpC 

antagonist Pyr3 (p = 0.0018). A larger 

proportion of macrophages expressed 

podosomes when the culture was 

challenged with Gadolinium, a CRAC 

channel inhibitor (p = 0.0041); A438079, 

the P2X7 inhibitor (p=4.47x10-6); and 

the IP3 receptor antagonist Xestospongin 

C (p = 1.1x10-5).  B) The proportion of 

ruffled macrophages decreased when 

cells were challenged with Gadolinium 

(p = 0.002);      A438079 (p=0.024), ATP          

(p = 0.0005), Pyr 3 (1.5x10-9), and 

Xestospongin C (p = 0.005). Values are 

mean ± sem, normalized to control, n = 

21-54 cells from 3-5 cultures. 

A 

B 
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Discussion 

 In this investigation we explored the effect of the neurotrophin NGF on phosphorylation 

of the HIV co-receptor CXCR4. Furthermore, we studied macrophage morphology, focusing on 

A 

C 

Figure 7. Macrophage calcium spiking is dependent on extracellular calcium, Trp 

channels, and IP3 Receptor channels. Macrophages exhibit calcium spiking activity. 

Incremental increases in calcium levels of macrophages show spiking activity over time, 

change in fluorescence ≥ 20 fluorescence units, p ≤ 0.01 compared to baseline calcium levels. 

A) Macrophages in aCSF have many more calcium spikes than (B) macrophages pre-treated 

with Pyr3, the Trp Channel inhibitor. Each colored line represents a single measured cell, 11 

cells displayed per condition from matched cultures. C) Blocking the IP3 receptor channel 

using Xestospongin C or the Trp Channel using Pyr3 nearly abolished calcium spiking. 

Macrophages in calcium free medium had no spiking activity. Values are mean ± sem, n = 21-

98 cells from 3-5 independent runs. 

 
 

B 
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conditions that support the formation of podosomes or ruffles to indicate more toxic and less 

toxic macrophages, respectively. We examined the effects of various pathway inhibitors and 

agonists on macrophage cytoskeletal morphology to elucidate the pathway by which the cells are 

activated to form podosomes and release neurotoxins. 

CXCR4 and CCR5 

We found that NGF induced phosphorylation of CXCR4, suggesting that CXCR4 

phosphorylation is protective because previous studies in the lab have shown that stimulating 

macrophages with NGF results in a less toxic macrophage phenotype7. This result is the opposite 

of previous studies, which suggested that CXCR4 activation was the first step in macrophage 

activation toward toxin release3. The previous studies used the HIV viral envelope, gp120, 

whereas we used intact virions, so the viral envelope may interact with CXCR4 differently than 

the intact virus. Data from previous research in the lab showed that HIV-induced podosome 

expression could be blocked by CXCR4 and p75 antagonists. Furthermore, phosphorylation of 

CXCR4 decreased when TrkA was blocked, supporting the idea that neurotrophin receptors 

interact with the HIV co-receptor to reduce HIV’s effect on macrophage activation.  

Pathway to Podosome Formation 

Pyk2 has been reported as a downstream target of HIV-chemokine receptor signaling that 

is necessary for podosome organization9, and calcium signaling through PI3K has been 

implicated in their formation8,10. To investigate whether Pyk2 and PI3K are involved in 

podosome formation, we blocked PI3K with the specific inhibitor LY294002 and Pyk2 with 

PF431396. PI3K inhibition decreased the presence of podosomes, suggesting a role in their 

formation. This was unexpected, as TrkA signaling with NGF activates PI3K but leads to less 

toxic macrophages and fewer podosomes. However, PI3K phosphorylates many proteins, so its 
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deactivation could have led to a podosome decrease through a pathway independent of TrkA. 

Consistent with previous studies, blocking Pyk2 decreased the formation of podosomes and 

ruffles, revealing that Pyk2 is necessary for these changes in actin structure.  

Calcium Sources 

Because Pyk2 requires calcium to become active, and Del Corno, et al. (2001) indicated 

that calcium influx was necessary for HIV activation of macrophages, we investigated possible 

sources of calcium. Although the non-specific cation CRAC channel was implicated in Del 

Corno’s investigations, we saw only a slight decrease in podosome formation when we blocked 

these channels with gadolinium. Gadolinium is a less specific CRAC antagonist than YM58483, 

which produced no significant change in the expression of ruffles or podosomes. This result 

indicated that calcium influx through the CRAC channel is not the main step in macrophage 

activation following HIV stimulation, opposing the conclusion reached by Del Corno, et al 2001. 

We therefore evaluated the contribution of other calcium channels thought to be active in 

macrophages:  P2X7, TrpC channels and the IP3 receptor channel.    

When we blocked extracellular calcium entering through the P2X7 receptor by inhibiting 

the receptor with A438079, the presence of podosomes increased and ruffling decreased. 

Stimulating the P2X7 receptor with its agonist ATP decreased ruffling and had no significant 

effect on podosomes. However, ATP may act at different receptors indicating that the response to 

ATP may be complex.  Due to the conflicting results, the role of the P2X7 receptor in 

macrophage activation remains unclear. 

Trp Channels and IP3 Receptor Channels 

To determine whether the calcium increase that leads to podosome formation comes from 

the endoplasmic reticulum or extracellular space, we blocked calcium channels present in the cell 
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membrane as well as the ER. Investigations on extracellular calcium entry targeted the non-

specific cation channel TrpC. Trp channels, often activated in response to calcium release by the 

ER, enable individual cells to sense changes in their environment, and may therefore be 

important actors in macrophage activation11. Smani, et al. found that actin modifications affect 

Trp channel activity, and vice versa12. When we inhibited the TrpC channel with the antagonist 

Pyr3, podosome formation and ruffling were almost abolished, indicating that macrophage 

activation leading to cytoskeletal ruffling or podosomes relies heavily on calcium entry through 

the TrpC channel. 

In addition to serving as a source of extracellular calcium, Trp channels have also been 

implicated in coupling with ER calcium release channels12, such as IP3. In this context, the Trp 

channels may participate in refilling the ER in response to calcium depletion.  When we inhibited 

the IP3  receptor channel with its antagonist Xestospongin C, the proportion of macrophages with 

podosomes increased and the proportion with ruffles decreased. This suggests that calcium from 

the ER promotes ruffling and decreases podosome formation. The effect on podosomes is the 

reverse of the TrpC channel, which promotes their formation. These results indicate that there is 

an inverse relationship between IP3 and Trp channels, with the two receptors have opposing roles 

in the expression of podosomes on macrophages.   

Calcium Spiking Activity 

Macrophage morphology has been shown to correlate with calcium spiking. Higher rates 

of spiking have been associated with ruffled cells and less toxicity, and HIV suppresses spiking7. 

This raises the question if the spike activity represents the channels associated with 

morphological changes. Xestospongin C and Pyr3 robustly blocked spike activity, and removal 

of extracellular calcium completely eliminated spikes. Both Xestospongin C and Pyr3 reduced 
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the expression of ruffles as well, making the decrease in calcium spiking activity consistent with 

the finding that ruffled cells are associated with calcium spiking7. Since Xestospongin C blocks 

IP3 receptor channels and Pyr3 blocks TrpC channels, ER calcium and the refilling mechanism 

through Trp channels must play an essential role in macrophage calcium spiking activity. The 

results indicate that calcium spikes are likely caused by ER calcium entering the cytosol through 

IP3 receptor channels, and if the ER is unable to refill, either due to inactivity of the Trp channels 

or due to a lack of extracellular calcium, macrophage calcium spiking activity is heavily 

decreased. If macrophages were imaged as they were challenged with antagonists, we would 

expect to see initial calcium spiking with a progressive decrease when Trp channels are blocked, 

corresponding to release of calcium from the ER and then a rundown of calcium due to the 

inability of the ER calcium stores to refill. However, macrophages were treated with antagonists 

10 minutes prior to imaging in these experiments to insure that we had complete receptor 

blockade prior to imaging. Thus, we may have missed key early changes in the calcium spike 

frequency. 

Conclusion 

The data revealed that Pyk2 and TrpC channels are necessary for the development of 

cytoskeletal specializations associated with neurotoxic activity. Both extracellular calcium 

entering through the TrpC3 channels and ER calcium release through the IP3 receptor channels 

regulated the macrophage cytoskeleton via opposing effects on podosome expression. IP3R 

signaling appears to promote a less toxic ruffled phenotype whereas TrpC signaling may favor 

podosome formation in the context of HIV stimulation. The effects of Trp channel blockade may 

suppress cytosolic calcium signaling as well as ER refilling.  Activity of this channel may be 

dysregulated in HIV treated macrophages that have lower calcium spiking activity. Future 
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directions of this project will investigate whether HIV blocks the ability of NGF or other 

agonists to phosphorylate CXCR4, determine whether there is the predicted rundown of calcium 

spiking activity when macrophages are treated with the Trp channel inhibitor, and further 

elucidate the pathway to podosome formation and toxin secretion.  

Though blocking calcium channels and kinases in the pathway to macrophage activation 

is useful for determining which steps lead to the formation of ruffles and podosomes, more 

research is needed before the channels can be targeted for therapies to combat macrophage 

activation toward neurotoxin release. However, the effect of Xestospongin C on macrophage 

activation was a promising result, as calcium entering the cell from the ER could be a target for 

steering macrophages from becoming activated toward the toxic phenotype. In order for this 

approach to be effective at decreasing HIV-induced neurotoxicity, however, the drug would still 

need to cross the blood brain barrier and target macrophages and microglia in the CNS.  The 

current studies indicate that ligands targeted to the IP3 receptor may have utility in controlling 

how macrophages are activated toward toxic and non-toxic phenotypes. 
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