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Abstract 

 

Due to budget and personnel constraints, Connecticut is unable to collect data for E. coli 

concentration for every site every day. The Bayesian maximum entropy (BME) framework for 

geostatistical estimation integrates general knowledge about the space/time random field and 

site-specific knowledge. We developed a method to optimize the global offset function, 

comparing Euclidean and river distance metrics. By shrinking the kernel, we saw that as the 

variance decreases for the river distance approach, the spatial range holds steady. For covariance 

modeling, we found that river distance could estimate concentrations at a longer spatial range 

than could be accounted for by the tortuosity. We found areas of high concentration in the north 

central portion of the state and low concentrations in the east. We calculated the number of 

impaired river miles and we estimate that about 34% of river reaches under study had a greater 

than 50% chance of being impaired. 

 

Introduction 

 

The fecal-oral route is a common mode of transmission for pathogens and in 2011-2012, 

there were 90 outbreaks of recreational water-associated diseases in the US resulting in at least 

1,788 cases (Hlavsa et al., 2015). Common fecal-oral diseases include Hepatitis A, Norovirus 

gastroenteritis, and Salmonellosis (Zuckerman et al. 1996; CDC, 2015; Gantoi et al., 2009). 

People become infected by drinking contaminated water or by submersion and entrance through 

the mucous membranes (CDC, 2016). The latter mode of transmission is especially important in 

recreational swimming and boating waters. 

Several different methods exist for measuring water fecal contamination including 

measuring for fecal coliforms, Escherichia coli (E. coli), and Enterococci concentrations (EPA, 

2000). These bacteria, while oftentimes not pathogenic themselves, are important indicators to 

identify other pathogens in water (Money et al., 2009(a)). The US Environmental Protection 

Agency (EPA) recommends measuring for E. coli concentration for fresh water fecal 

contamination (EPA, 2012). By measuring E. coli, we can get a general sense about how 

polluted the water is from human or animal waste. The EPA sets standards for E. coli 

concentration in recreational waters such as rivers and lakes through the Clean Water Act 

(CWA) of 1986 and the Beaches Environmental Assessment and Coastal Waters (BEACH) Act 

of 2000 (EPA, 2012). These standards are updated periodically and the most recent revisions 

came in 2012. The current standards for E. coli concentration (colony forming units per 100mL) 

in recreational fresh waters are a 30-day geometric mean of 126 cfu/100mL or a 30-day standard 

threshold value of 410 cfu/100mL. The standard threshold value should not be exceeded by more 

than 10% of samples taken during the time period (EPA, 2012). The EPA uses 30-day metrics 

because water quality is highly variable and susceptible to weather events (EPA, 2012). 

While the EPA provides the above recommendations, water quality regulations are set by 

individual states. The Connecticut Department of Public Health (CTDPH) sets standards for 

recreational swimming closures based on E. coli concentrations similar to the EPA, but not 

exactly. Connecticut uses the 30-day geometric mean of 126 cfu/100mL or less, but it also has a 

daily sample threshold value of 235 cfu/100mL. If the single day value is exceeded, the 

regulations call for a resampling and investigation into the source of pollution (CTDPH and 

CTDEEP, 2016). 
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The state of Connecticut performs surface water monitoring of key indicator bacteria, 

including E. coli, to test for contamination that can lead to illness. However, due to budget and 

personnel constraints, it is impossible to collect data for all river miles every day, let alone each 

site every day. The state could use geostatistical estimation techniques to determine the 

approximate levels of E. coli for unmeasured river miles in order to identify impaired waterways 

and protect public health. Traditional geostatistical estimation techniques consider only 

knowledge of autocorrelation of the phenomenon in space and use Euclidean distance metrics. 

Space-only methods ignore the information garnered from other values near in time. Bayesian 

maximum entropy (BME) of modern space/time geostatistics provides the opportunity to 

incorporate knowledge of autocorrelation of the phenomenon in time as well as space (Jat and 

Serre, 2016). A further advantage of BME techniques is the ability to create estimations along 

the river network in addition to Euclidean distances (Money et al., 2009(b)). Several studies have 

used river network distance instead of Euclidean distance measures to successfully estimate E. 

coli (Money et al., 2009(a)) as well as other water quality measures (Jat and Serre, 2016; Money 

et al., 2009(b); Money et al., 2011). However, no study to our knowledge has examined 

optimization of the global offset function in terms of Euclidean and river distance covariance 

models or the effects of river tortuosity in the estimation of E. coli. Furthermore, we explore the 

effects of these different metrics on estimation mapping and impairment designation. Optimal 

selection of these BME parameters is essential to producing an appropriate, accurate estimation 

at any given space/time location. Different parameters can produce drastically different 

estimation maps and it is important to understand these differences to produce the best possible 

estimation. 

 

Research Questions 

 

 How do we select an optimal global offset function using both Euclidean and river 

distance metrics? Do river distances capture more spatial autocorrelation in E. coli concentration 

distribution versus Euclidean distances? What percentage of river miles are impaired in 

Connecticut and what are the effects of Euclidean versus river distance approaches on 

impairment designation? 

 

Materials and Methods 

 

Study Area and E. coli Concentration Data 

 

The area under study includes the entire state of Connecticut. Connecticut contains three 

primary watersheds, all of which empty into the Long Island Sound. They are, west to east, the 

Housatonic River, the Connecticut River, and the Thames River. 

 E. coli measurement data using the membrane filtration method was obtained from the 

United States Geological Survey’s (USGS) National Water Information System (NWIS) (USGS, 

2016). We collected data for all surface waters (lakes, rivers, streams, estuaries, etc.) over the 

period from 2006 to 2016. The dataset included measurements for 42 unique station locations 

dispersed throughout the state, as illustrated in Figure 1. 
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Figure 1. Study area 

 

Measurements in the dataset from the NWIS come in four different forms. The first form 

is a true measure that is within the bounds of detection. The second form comes with an “E” in 

front indicating an estimated value. The third form has a less than sign (“<”) preceding the value, 

which means the measurement was below the detection limit. The fourth form has a greater than 

sign (“>”) preceding the value, which means the measurement was above the maximum 

detection limit. The estimate and above detection soft data were hardened by removing the “E” 

or the “>” to set estimated values as true values. Measurements below the detection limit were 

divided by 2 and accepted as hard data points. The entire study period included 2,468 data 

points. Of these, 3 measurements were estimates, 45 were above the detection limit, and 6 were 

below the detection limit. These measurements are taken at irregular intervals at various stations 

across the state resulting in asynchronized sampling data. For the remainder of the analysis, we 

will use the individual data points with no aggregation despite regulations based on 30-day 

intervals. The reason for this is because no stations consistently have the necessary 

measurements to calculate these averages. Most stations have measurements at most twice a 

month, with many stations at a lower frequency. Therefore, any monthly aggregation would not 

improve the data. In evaluating standards attainment, we will use the daily standard provided by 

the Connecticut Department of Public Health as a conservative indicator of impaired waterways. 
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Furthermore, stations that are consistently above this threshold over the study period would be 

areas of concern for chronic fecal contamination. 

 

River Network Construction 

 

 A polyline shapefile of major rivers was obtained from the Connecticut Department of 

Energy and Environmental Protection (DEEP) (DEEP, 2016). We selected only the watersheds 

for which E. coli measurements were taken during the study period. The rivers included from 

west to east were the Norwalk, Saugatuck, Housatonic, Quinnipiac, Connecticut, Niantic, and 

Thames. We converted the line file to a series of points describing the network and built the 

BMEGUI river network file by selecting each river reach and copying the latitude and longitude 

locations of the points to a new file. This final river network file contains a set of points 

representing each river reach separated by NaN values with an outlet point designated at the end. 

Since BMEGUI cannot handle multiple, independent river networks, we artificially combined all 

the river networks in Connecticut into a single network with a single outlet by connecting the 

outlets of each individual river network together. 

 

Bayesian Maximum Entropy (BME) Estimation Framework 

 

The method of analysis in this study is rooted in the BME framework commonly used in 

modern geostatistical analyses. We use the framework to estimate E. coli concentrations at 

positions in space and time for which there are no measured values. The estimations are made in 

the context of a space/time random field (S/TRF) denoted as 𝑋(𝑝), where 𝑝 = (𝑠, 𝑡) represents a 

particular position in space/time. The random variable vector 𝒙(𝑝) represents the complete set of 

possible values for 𝑋(𝑝) at every position. Therefore the S/TRF, 𝒙𝑚𝑎𝑝, consists of a vector of 

random variable realizations of 𝑋(𝑝) (Akita et al., 2007). 

 

𝒙𝑚𝑎𝑝 = (𝑥1, … , 𝑥𝑣), 𝒑𝑚𝑎𝑝 = (𝑝1, … , 𝑝𝑣)[1] 
 

Where 𝒙𝑚𝑎𝑝 is a collection of all possible realizations and 𝒑𝑚𝑎𝑝 represents all possible 

locations in space/time. From here, we can develop a probability density function (PDF) 

(Equation 2) for the S/TRF by assigning probabilities to each corresponding realization (Akita et 

al., 2007). 

 

𝑓(𝒙𝑚𝑎𝑝, 𝒑𝑚𝑎𝑝)𝑑𝑥𝑚𝑎𝑝
     [2] 

 

Using this BME framework, we produce a stochastic estimation of E. coli concentration 

at every space/time position in Connecticut over the study period 2006 to 2016. We start by 

developing general knowledge constraints G. The general knowledge consists of global features 

we can extract such as the mean trend through all the data or the covariance model that 

characterizes the space/time relationship between any two points based on their space/time 

distance. From the general knowledge, we can derive a prior PDF characterizing the set of 

possible values for the S/TRF of study (Equation 2). Then we can incorporate our site-specific 

knowledge estimates of known E. coli concentrations S to create a modified posterior PDF. This 

process yields an updated, informed PDF based on knowledge blending, G U S, of our general 

and site-specific knowledge (Akita et al., 2007). Finally, we use the posterior PDF to estimate 
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the E. coli concentration at every location 𝑝 in Connecticut for the study period 2006 to 2016. 

Finally, we can produce maps and time-series graphs of the concentrations to determine areas of 

high and low concentration. We refer the reader to Christakos et al. (2002) for further 

information on the BME framework and a detailed outline of its numerical implementation. 

 

Euclidean Approach versus River Approach 

 

 A fundamental part of this study is the determination of the differences between 

Euclidean and river network approaches in concentration estimation. Euclidean distance 

approaches use straight line, “as the crow flies” distances. It assumes no barriers and that 

features that are closer to one another in space are more similar than those farther away (positive 

autocorrelation). River distance approaches are constricted to a specified river network. 

Estimation parameters use the river network as a barrier and features are only considered similar 

if they fall near one another along the network. 

 In terms of estimation, parallel river reaches can show the stark contrast between the 

different techniques. Two river reaches that run near to one another but are not part of the same 

watershed will influence one another and produce similar estimations using Euclidean distance, 

while the river distance approach would produce different estimates since they are separated by 

the network. In this example, the river network approach may produce a better estimate, 

particularly if the phenomenon is constricted to the river network (e.g. salmon mercury 

concentrations); however, if the phenomenon exhibits a Euclidean distribution (e.g. a point 

source isotropic diffusion of pollution between two parallel reaches) the two estimation 

techniques may be similar. The difference between Euclidean and river distances most directly 

affects the spatial range parameter. River distance approaches tend to have longer spatial ranges, 

which would appear to be an advantage, however we must consider the effects of tortuosity. Is 

the river distance spatial range actually creating better predictions over longer distances or are 

the twists and turns adding distance in the river approach and simply inflating the spatial range 

metric without improving the estimation? To determine the tortuosity of rivers in Connecticut, 

we measured both the Euclidean and river distance of every river reach in the dataset. We 

calculated average tortuosity by dividing the sum of the river distances by the sum of the 

Euclidean distances. To evaluate the effects of tortuosity on the estimation model, we compared 

three different scenarios for the spatial range in the covariance model using river distances: equal 

to the Euclidean model, equal to the Euclidean model multiplied by the tortuosity, and equal to 

the appropriate range based on the river distance model. In theory, the river distance model using 

the Euclidean range multiplied by the tortuosity should yield the same range as the appropriate 

spatial range and produce the closest estimation maps to the purely Euclidean model. If the 

appropriate spatial range for the river distance model is longer than the Euclidean multiplied by 

the tortuosity, then it would suggest that the river distance model is performing better in terms of 

defining autocorrelation in E. coli concentration. 

 

Optimal Global Offset Function 

 

 One major purpose of this study is to evaluate the effects of using Euclidean distance 

versus river distance metrics in constructing uninformed and informed global offset functions 

and determining a method for optimization. The global offset is a function that defines a surface 

through the data using a space/time exponential kernel. Removing this offset creates residuals 
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that aid in defining an appropriate covariance model (Akita et al., 2007; Jat and Serre, 2016). 

However, the size of this kernel is subject to modeler’s choice. An uninformed global offset 

function has a large space/time kernel and calculates a global average through the data. When 

removed from the data, an uninformed global offset will return the exact variation that was 

originally present in the data because the residuals are all calculated with respect to the same 

value. In contrast, an informed global offset function has a small space/time kernel and closely 

follows the variation in the data. Yet, while it reduces variability in the data, we also lose all the 

information provided by autocorrelation. To characterize this trade-off and determine the 

appropriate offset function, we tested different offsets and evaluated the variance against the 

spatial and temporal ranges in the subsequent covariance model using the automatic modeler in 

BMEGUI. Furthermore, we evaluated the differences using Euclidean versus river distance 

metrics. Beginning with the uninformed global offset incorporating all data in space and time 

(i.e. calculating a global average), we proceeded to shrink the space/time kernel in a step-wise 

fashion until we reached an informed offset that compared points against themselves. We plotted 

the spatial and temporal ranges against the variance at each step and optimized the model by 

selecting the kernel that produced simultaneously a low variance and high range. 

 

BMEGUI Tool 

 

 The primary tool of analysis is the software BMEGUI 3.0.1 (Jat and Serre, 2014). 

BMEGUI is a python 2.5-based software that incorporates the BMElib package as well as 

MATLAB Compiler Runtime (MCR). The software includes a progression of 7 screens. The first 

screen is workspace, data, and river network selection. BMEGUI is capable of reading .txt and 

.csv formats. The second screen allows the user to select particular variable fields including data 

location and measurement values. It also includes an option for datatype, in which the user can 

incorporate soft data values. The third screen is an exploratory analysis of the histogram, which 

provides the four statistical moments and the option to log-transform the data. The fourth screen 

is a continuation of the exploratory analysis. It provides time-series graphs for each station and 

maps for each time stamp. In this stage, the user may also choose whether to aggregate the data 

by a specified time interval, in which case BMEGUI will average all values for a particular 

station within the aggregation time period to a single value. The fifth screen provides the option 

to set and remove the global offset function from the data. The user can choose to set smoothing 

ranges both spatially and temporally. The sixth screen is covariance modeling. BMEGUI 

automatically calculates a selection of experimental spatial and temporal covariance values based 

on ten equal intervals, but the user can select particular lags and tolerances in order to make 

covariance modeling easier. Then users can choose an automatic fit or set their own parameters 

for sill, model, and range for both the spatial and temporal dimensions. Furthermore, BMEGUI 

can handle nested covariance models, which may not be space/time separable. In the last screen, 

BMEGUI can map estimation and error values at a specific point in time or show time-series 

estimation and errors for a particular station. Maps can be exported as CSV point files or ASCII 

raster files. The advantages of using BMEGUI are its accessibility and efficiency. It is very easy 

to try different global offset and covariance modeling parameters in order to achieve the best fit. 

In this study, estimation files created in BMEGUI were exported to ArcGIS 10.4 for final map 

production (ESRI, Redlands, CA). 

 

 



Cordes 8 

 

Comparison with Space-Only Euclidean Estimation 

 

 In the absence of temporal autocorrelation knowledge, BME estimation can be reduced to 

space-only estimation (Christakos and Li, 1998). In the BME framework, this means that 𝑡 −
𝑡′ = 0 and the temporal component of the covariance model becomes 1, leaving just the spatial 

component. To understand the benefits of incorporating temporal information, we conducted 

space-only estimation at a single point in time using Euclidean measures and compared the 

estimation map to the map created with the space/time model. 

 

River Reach Impairment Status 

 

 In order to understand whether river reaches may be in violation of the Connecticut state 

water quality standards and in the interest of protecting public health, it is important to know 

which river reaches may be classified as unsuitable for recreation (impaired). Based on the 

Connecticut single day sample threshold, the more conservative regulation at 235 cfu/100mL, we 

dichotomized the Euclidean distance and river distance estimation maps at that level. Then we 

associate a probability with this threshold. River reaches above the threshold have a greater than 

50% chance of being impaired, while river reaches below the threshold have a less than 50% 

chance of being impaired. Using this dichotomy, we calculate the number of river miles 

classified with a high probability of being impaired using both Euclidean and river distance 

measures. 

 

Results 

 

In an exploratory analysis of the data, the raw histogram of individually measured values 

exhibits a highly positive skew (Figure 2). To correct for this skew, we applied a natural log 

transformation of the data, which provides a more normal distribution and improves the 

skewness measure (Figure 3). 

 

Figure 2. Raw E. coli concentration data 
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Figure 3. Log-transformed E. coli concentration data 

 

The mean average value of the raw data was 361 cfu/100mL, well above the single day 

standard of 235 cfu/100mL. Of 2,468 measurements, 744 were above this standard and 

exceeding the value for safe recreation, representing 30% of all measurements. Initial analysis of 

the log-transformed moments yields a mean of 4.60 log-cfu/100mL, a standard deviation of 1.68 

log-cfu/100mL, and a range of [-3, 10]. These values are summarized in Table 1. A raw spatial 

mean trend indicated areas of high concentration in the central part of Connecticut along the 

Quinnipiac and Connecticut Rivers (Figure 4). The river network had a tortuosity of 1.31. 

 
Table 1. Statistical moments: raw vs. log-transformed 

Moment Raw Data Log Data 

Mean 361 4.60 

Standard Deviation 1015 1.68 

Skewness 13.5 -0.37 

Kurtosis 271 1.47 
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Figure 3. Raw Mean Trend 

 

Global Offset Optimization 

 

 Global offset analysis began with a 1.5 decimal degree and 4,000-day kernel, 

encompassing the entire dataset. In a step-wise fashion, we dropped the kernel size until it 

reached 0.01 decimal degrees and 1 day, comparing points only to themselves (Table 2). 

 
Table 2. Step-wise shrinking of the global offset kernel 

Step Spatial Radius (deg.) Temporal Radius (Days) 

1 1.5 4000 

2 1 2000 

3 0.75 1000 

4 0.5 500 

5 0.2 100 

6 0.12 25 

7 0.1 12 

8 0.05 5 

9 0.01 1 

 

The trade-off between an uninformative, global offset and an informative, local offset can 

be seen in charts that plot the sill (variance) against the spatial and temporal ranges. Stratified by 
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Euclidean and river distances, Figure 4 shows the trend for the spatial component and Figure 5 

shows the trend for the temporal component. 

 

 Figure 4. Euclidean: Orange, River: Blue 

 Figure 5. Euclidean: Orange, River: Blue 

 

As the kernel moves from global to local, the sill and the range both decrease. This 

relationship is expected because as we decrease the variability in estimation by using a more 

informative global offset, the range over which we can make strong estimates should also 

decrease. To optimize the model, we choose the smoothing range at which we balance this trade-

off, the point of minimum sill and maximum range, which is usually found near the inflection 

point. In our case, the best smoothing range is the combination of 0.1 decimal degrees and 12 

days to produce a balanced global offset. 
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Covariance Functions for E. coli Concentrations 

 

 The covariance model represents the general relationship in space/time between any two 

positions in the S/TRF of interest. Experimental covariances are calculated at experimental lags 

in space only (𝑟 = ||𝑠 − 𝑠′||) and in time only (𝜏 = ||𝑡 − 𝑡′||). Then an additive covariance 

model is created and may be nested with different behaviors at increasing lags. A general form of 

the exponential equation is presented in Equation 3. 

 

𝑐𝑥(𝑟, 𝜏) = 𝑐1𝑒
−3𝑟

𝑎𝑟
⁄ 𝑒

−3𝑡
𝑎𝑡

⁄          [3] 
 

Where 𝑐1is the sill, 𝑟 and 𝑡 are the spatial and temporal lags respectively, and 𝑎𝑟 and 𝑎𝑡 

are the spatial and temporal ranges respectively. BMEGUI produces experimental covariance 

values by selecting pairs of points (𝑝, 𝑝′) for which 𝑟 and 𝑡 are known, 𝑐𝑥(𝑝, 𝑝′) = 𝑐𝑥(𝑟 =
||𝑠 − 𝑠′||, 𝜏 = ||𝑡 − 𝑡′||). Using these experimental values, we can fit a specific covariance 

model to our E. coli concentration. 

For simplicity of comparison, all models presented in this study follow Equation 3 with 

one component each for space and time. Furthermore, since the only difference between models 

was the use of Euclidean or river distances, the sill and temporal components are the same for all 

models. The sill (𝑐1) was equal to 1.7577 and the temporal range (𝑎𝑡) was equal to 350 days 

(Figure 6). The pure Euclidean covariance model (Figure 7) had a spatial range (𝑎𝑟) of 0.275 

decimal degrees. For comparison, we plotted the exact same model with the Euclidean spatial 

range on the experimental covariances using river distances (Figure 8). 

 

Figure 6. Temporal Covariance 

Figure 7. Euclidean Covariance 
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Figure 8. River Distance with Euclidean Spatial Range 

 

 Using the tortuosity calculated for all the river reaches, we created a covariance model 

based on the theoretical autocorrelation that would be seen assuming that both Euclidean and 

river distance models are equal. The spatial range for the tortuosity model was 0.36 decimal 

degrees (Figure 9). Finally, we created a covariance model based on the best fit for the river 

distance experimental covariances. The spatial range for the river distance model was 0.425 

decimal degrees (Figure 10). By dividing the river distance spatial range by the Euclidean spatial 

range, we obtain an R value of 1.55, which is greater than the tortuosity of 1.31. Furthermore, the 

spatial range for the river distance model is 18% more than that of the tortuosity. 

 

Figure 9. River Distance with Tortuosity Spatial Range 

Figure 10. River Distance with Appropriate Spatial Range 
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Estimation Maps 

 

 Our exploration date for mapping in this study is August 25, 2009. We selected this date 

because it had 7 measurements for E. coli concentration, the most of any date in the study period. 

In addition, for illustration purposes, all maps show an inset of north central Connecticut to 

highlight the estimation differences between parallel river reaches of two different watersheds, 

the Connecticut and the Thames. Figure 11 shows the estimation results from the purely 

Euclidean model using the covariance model depicted in Figure 7. 

 

Figure 11. Euclidean Estimation 

 

This map represents the default estimation technique in most studies. On this particular 

date, the estimation identifies high E. coli concentrations north of Hartford and low 

concentrations to the south along the Connecticut River watershed. The Thames River watershed 

appears to have relatively low concentrations. Figure 12 shows results from the river distance 

model with artificially selected, tortuosity-adjusted range. 
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Figure 12. Tortuosity Estimation 

 

The tortuosity estimation shows major differences from the Euclidean estimation. The 

river distance estimation shows a more nuanced and intuitive spatial pattern by limiting 

influences on the concentration in the Thames River watershed from the Connecticut River 

watershed. River reaches in the center of the figure that are near in space but parts of different 

watersheds show different concentrations in the river distance estimations; these same reaches 

show similar concentrations in the Euclidean distance estimation. The low values in the 

Connecticut River watershed appear to be influencing values in the Thames River watershed and 

may be producing artificially low values in the Euclidean distance estimation. Furthermore, we 

can see within-watershed differences in the Thames River in the eastern part of Figure 12 where 

parallel river reaches have little influence on one another, but their effects average out at the 

point where the reaches converge. 

The river distance estimation using the appropriate spatial range is depicted in Figure 13. 

While the appropriate river distance estimation shows similar patterns to the tortuosity estimation 

and maintains the independence of parallel river reaches, it also shows some spatial patterns that 

appear to be closer to the Euclidean estimation. For example, in the northern part of the figure it 

produces estimation values in between those of Euclidean and river distance. 
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Figure 13. River Distance Estimation 

 

The space-only analysis used data points only from our exploration date, August 25, 

2009, to ensure a purely spatial estimation. Without information from other points near in time, 

the estimation is severely limited in its capabilities to capture nuances in the trend of E. coli 

concentrations (Figure 14). 
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Figure 13. Space-only Euclidean Estimation 

 

River Reach Impairment Status 

 

 The river reach impairment analysis resulted in 506 impaired river miles in the Euclidean 

estimation and 668 impaired river miles in the river distance estimation, accounting for 26% and 

34% of total river miles under study in Connecticut respectively. Based on the raw mean trend 

(Figure 3), we would expect that areas of consistently high concentrations of E. coli would be 

more likely to be impaired. That is, we expect major portions of north-central Connecticut to be 

impaired, as well as pockets in the southwest. In contrast, we expect unimpaired river reaches to 

occur in the eastern part of the state. The figures for Euclidean (Figure 14) and river distance 

(Figure 15) generally support this hypothesis. Furthermore, no river reaches had average 

concentration values from 2006 to 2016 above the Connecticut single day threshold for 

impairment. 
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Figure 14. Euclidean Distance Impairment 

Figure 15. River Distance Impairment 
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Discussion 

 

 E. coli measurements from the state of Connecticut over the past 10 years show that the 

average concentration is above the single day standard and almost a third of individual 

measurements themselves were above the standard, a sizeable proportion which may be cause for 

concern. The raw average values for the entire study period indicated high concentrations along 

the central and southwestern portions of the state including high population areas such as 

Hartford and Stamford. These areas may be of particular concern for consistently high E. coli 

concentrations versus the average for Connecticut. 

 Our global offset function analysis yielded stark differences between using Euclidean and 

river distance metrics in the spatial domain. The Euclidean distance metric produced the standard 

curve expected of a decreasing kernel size. A large kernel and uninformed global offset yielded a 

high sill and high spatial range. The small kernel and informed global offset yielded a low sill 

and low spatial range. The data points in between the two extremes produced an S-shaped curve 

that models the trade-off, which had a clear inflection point at a sill of 2.04 cfu/100mL2 and a 

spatial range of 0.38 decimal degrees. The river distance metric produced a very different curve. 

As the kernel size decreased, the sill also decreased, but the spatial range stayed relatively 

constant and even increased until dropping off at the smallest kernel size. This is a novel finding 

and shows the strength of using a river distance metric. The temporal component of the global 

offset function showed a linear decrease in both the sill and the temporal range for both 

Euclidean and river distance metrics. This pattern indicates that no kernel size is better than any 

other and that there is an unbiased trade-off between an uninformed and an informed offset 

function. 

 The covariance modeling corroborated the strength of using a river distance metric. 

Using the same global offset function for all covariance models, the river distance model 

produced a spatial range that was 18% beyond what was predicted by the tortuosity alone. This 

suggests that the river distance metric is truly capturing more spatial autocorrelation in the data 

than the Euclidean metric, lending more power to its estimation ability and indicating that E. coli 

concentrations may be constrained by the river network or influenced by phenomena along the 

network. The estimation maps for August 25, 2009 revealed major differences for the selected 

inset area northeast of Hartford. The Euclidean estimation, without the constraints of the river 

network, mixed concentration information across the Connecticut and Thames River watersheds 

and appears to have artificially depressed values in the Thames watershed that were parallel to 

the Connecticut watershed. In particular, the Skungamaug River reach in center of the inset 

changes from low concentrations in the Euclidean estimation to high concentrations in the river 

distance estimation. This river reach highlights the importance of using the appropriate method 

in order to direct surveillance and intervention efforts. Using the Euclidean estimation technique, 

as is usual, analysts would have missed the high concentrations in the Skungamaug River 

because of the protective effect of being close in location to Connecticut River watershed reaches 

that had low concentrations, despite having no physical influence on one another in the real 

world. 

 The advantages of space/time estimation over simple space-only estimation are clear. The 

space-only estimation is unable to use information about how E. coli remains in water over time 

and can only use the sparse data points available on August 25, 2009. Therefore, it produces a 
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very smooth trend that does not reveal the nuances in concentration across different river 

reaches. 

 The most relevant consideration for regulators is the designation of particular river 

reaches as impaired (unsuitable for recreation) or unimpaired (suitable for recreation). The 

method of estimation is crucial when determining potential legal implications and implementing 

advisories and warnings. Based on the average concentration of E. coli over the study period, no 

river reaches exceeded the Connecticut single day threshold for recreation. This finding is 

positive for Connecticut and suggests long-term safety of particular reaches is not a concern. 

Exploring the difference between Euclidean and river distance metrics on impaired status on a 

single date, August 25, 2009, we can see the importance of using the best possible model. The 

river distance metric identified 32% more impaired river miles versus the Euclidean metric. This 

is a substantial increase and shows how many river reaches may be missed simply with a 

Euclidean model. Several river reaches in the Thames watershed, including the Skungamaug 

River, were identified by the Euclidean metric as unimpaired, but became impaired with the river 

distance metric. Furthermore, with regard to impaired status, the river distance metric makes 

more intuitive sense than the Euclidean metric. There are several areas in the Euclidean distance 

estimation that contain striped river reaches of impaired and unimpaired status, which is highly 

unlikely. The river distance metric maintains the integrity of river reaches and limits the 

influence of parallel river reaches that could lead to striping. 

 This study has several limitations. The analysis is a rigorous qualitative interpretation 

instead of a quantitative analysis, which is more typical. We were unable to perform cross-

validation to determine quantitative differences between the Euclidean and river distance models. 

Instead, we compared the effectiveness of the models by exploring differences in parallel river 

reaches and the location and number of impaired river miles. A second limitation was the 

inability to calculate 30-day geometric means for E. coli concentrations as a standard; therefore, 

we were forced to use the single day threshold. However, considering that the single day 

threshold is higher than the 30-day geometric mean, our analyses may be conservative. Lastly, 

we do not present a formal analysis of the confidence of our estimates in the form of variance 

values at estimation points. Future work should take these internal variance measures into 

account. 

 Moving forward, studies should examine the land use/land cover classes associated with 

areas of high and low E. coli concentration to determine potential sources of E. coli. This work 

can identify features in the landscape that occur along the river network and may be influencing 

the concentrations (e.g. vegetative buffers). Furthermore, future work could depict the 

concentration patterns over time by creating animations. These animations can help highlight 

particular periods of high and low concentrations and would be useful for determining whether 

there is any seasonality in E. coli concentrations in Connecticut. 

 

Conclusion 

 

 Due to budget and personnel constraints, state governments, including Connecticut, are 

unable to collect water quality data for every river reach every day. States could use interpolation 

methods to evaluate river reaches they cannot measure to estimate concentrations and potential 

impairment. Different estimation techniques can result in different outcomes and it is important 

to understand these discrepancies in order to select the best model. Using the Bayesian maximum 

entropy framework, this study sought to characterize the differences between using Euclidean 
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and river distance metrics in the selection of an optimal global offset function, the creation of 

covariance models, the estimation of E. coli concentrations, and the designation of impaired river 

miles. We found that Euclidean distances in the global offset function followed the typical S-

shaped curve with a shrinking kernel. However, river distances produced higher spatial ranges at 

lower sills, a novel finding. The covariance modeling corroborated the power of the river 

distance metric by yielding a spatial range that was 18% longer than that predicted by the 

difference due to tortuosity alone. These two findings together suggest that river distance metrics 

are capturing more spatial autocorrelation in E. coli concentration data and that those E. coli 

concentrations may be constrained or influenced by the river network. An analysis of the 

estimation maps showed stark contrasts between Euclidean and river distance metrics. The 

Euclidean distance estimation experienced information “bleeding” from one watershed to 

another, whereas the river distance estimation was constrained to the river network and kept 

parallel river reaches separate. Emblematic of this difference was the Skungamaug River on 

August 25, 2009, which had low, unimpaired values using Euclidean distance, but high, impaired 

values using river distance. Average concentrations over the entire study period yielded no 

impaired river reaches; however, on August 25, 2009, the river distance metric identified 32% 

more impaired river miles versus the Euclidean distance metric and the river distance estimation 

limited impaired/unimpaired striping along particular river reaches. Our findings lend support to 

the use of river distance metrics in the space/time estimation of E. coli concentrations in rivers 

and we recommend that state agencies pursue river distances as a standard for estimating river 

reach impairment. 
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