
 
 

ABSTRACT  
 

Conrad Czejdo: Classifying and Generating Repetitive Elements in the Genome Using Deep Learning  
 (Under the direction of Leonard McMillan)  

 
Repetitive elements are sequence patterns in the genome which are duplicated in large 

quantity. They serve important functions both in genomic preservation and evolution, leading to 

the need for their fast and accurate classification. The current gold standard for repeat 

identification can be achieved by establishing correspondences between a well-annotated library 

of repetitive elements and a given query sequence. However, annotation quality is highly 

variable across species. Therefore, for genomes whose repeats are poorly annotated, de novo 

methods must be used. A common approach of de novo methods is to first check the sequence 

for protein domain conservation. The presence and order of these protein domains are used as 

features for an expert-crafted rule-based system or an optimized machine learning classifier. 

Although de novo approaches have achieved modest success, two problems remain. Firstly, they 

require lengthy consensus sequences which take time to assemble, and may not be representative 

of the true diversity of repetitive elements in the sample. Secondly, these approaches are heavily 

reliant on hand-picking a comprehensive set of protein domains, which may need to be 

constantly adjusted as new repetitive elements are discovered. 

In this thesis I show that deep learning models are competitive with pattern matching 

based approaches at the level of a shotgun sequencing strand for de novo classification of repeat 

elements. I also explore ways of embedding sequences using deep learning models. Finally, I 

made these tools available through a web-based interface. 
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CHAPTER 1: INTRODUCTION 

The genome is composed of sequences of nucleotides which encode information for 

organism development and function. Initial research on the genome was focused on 

protein-coding genes, while the rest of DNA was left out as ‘junk’ DNA. Research in recent 

years has shown that these pieces of DNA, which include repetitive sequences, play a far more 

important role in the genome than what was initially believed (Rodriguez-Terrones and 

Torres-Padilla, 2018). For example, highly repeated mobile nucleotide sequences called 

Transposable Elements (TEs) not only make up a significant fraction of eukaryotic genomes, but 

are also an important source of genomic diversity (Schrader and Schmitz, 2018). Telomeres, 

another type of repetitive nucleotide sequence, have also found extensive interest in the scientific 

community due to their implications in aging (Hornsby, 2007). The variety of functions of 

repetitive elements and their dynamic nature make them worthy subjects of study. 

Collecting genomic data for repetitive sequences has become far easier due to advances 

in high-throughput sequencing technologies. These technologies fragment an entire sample 

genome and collect enormous amounts of small reads (50 - 150 nucleotides long) which are 

distributed across the genome. Unfortunately, in the case of repetitive elements the two most 

common strategies of processing these reads - alignment and assembly - both have troubles 

resolving ambiguities introduced by repetitive short sequences (Treangen and Salzberg, 2011). 

Furthermore, reference genomes upon which the repetitive elements are aligned too are often not 

well assembled in areas rich with repeats. 



The storage and analysis of large amounts of data has likewise become more feasible due 

to lower cost computer components which are capable of storing more and processing faster than 

ever before. A recent surge in the use of GPUs has also greatly sped up a variety of 

computational tasks, even in genomics. Although research in the field is still somewhat nascent, 

the use of GPUs for large genomics data problems has shown significant speed ups for a few 

highly parallelizable tasks in the field (Goswami et. al 2018). 

A major use of GPUs in modern applications is deep learning. Pipelines for loading and 

classifying large batches of data in parallel have been well established in common deep learning 

packages such as PyTorch (Paszke et al. 2017). These developments open up a clear path for 

rapid classification of genomic data.  

This chapter will be organized beginning with a brief introduction to genome science, 

followed by an overview of the classifications of repetitive elements, paying particular attention 

to TEs. 

1.1 Introduction to Genomic Science 
The basic functional unit of a genomic sequence is the nucleotide. Each nucleotide is 

either a guanine (G), adenine (A), thymine (T), or cytosine (C) .  A genomic sequence has a 

complementary strand whose sequence is defined by switching A’s with T’s and C’s with G’s. 

Eukaryotic organisms further bind this double stranded DNA into a discrete set of structures 

called chromosomes. The primary method that DNA can affect its host organism is by coding for 

proteins. These coding regions are first transcribed into RNA and then translated into a protein. 

The parts of the genome which code for proteins and can be inherited as functional units are 

called genes. The observable result of the gene on the organism is the phenotype. Gene 



expression can also be affected by enhancer (increases gene activity) and insulator (decreases 

gene activity) regions present surrounding the gene.  

Mobile TEs can exert control over gene expression by inserting within regions that code 

for proteins, or regions that affect protein coding regions. These insertion events are often 

characterized by a small piece of repeated sequence called a tandem site duplication (Zhang et al. 

2013) . TE insertions can also occur within other TEs, and base substitutions which render the 

TE immobile are not uncommon (Jammilloux et al. 2016). Since large scale mutagenic activity 

of TEs would most likely be highly deleterious to the organism, multiple countermeasures have 

evolved to reduce TE activity (Schrader and Schmitz 2018). Structurally, DNA can pack tighter, 

reducing the ability of transcription units to reach the element (Cui et al. 2013). TE transcripts 

are also targeted for cleavage by cellular machinery, suppressing the ability of TEs to replicate. 

Even with these countermeasures, TEs continue to be a dominant force in adaptive evolution. 

Especially during periods of physiological stress, when these countermeasures weaken, the 

release of TEs can result in the necessary phenotypic variation for the survival of a population 

(Rodriguez-Terrones and Torres-Padilla 2018). 

1.2 Overview of Repetitive Elements 
There is still ongoing debate about the best way of classifying repeat elements, and 

especially TEs. Due to the highly mutagenic nature of TEs, convergent structural features are 

known to cause confusion regarding a classification.  Furthermore, there are some TE types 

which are not well classified by current hierarchies (B. Piegu et al. 2015). Nevertheless, the 

results of biologist classifications can be found in large well-annotated datasets of TEs - the most 

popular being RepBase (Kojima et al. 2018, Bao et al. 2015).  



 

 

 

Figure 1.1: Repbase proposal for the classification and content of eukaryotic TEs. 
Proposal is based on DNA and protein domain features. TEs are divided into types, then orders. 
Figure taken from B. Piegu et al. (2015). 

 



To stay consistent with previous literature on classification (Abrusan et al. 2005, Nakano 

et al. 2017, Nakano et al. 2018) I will classify TEs using the RepBase hierarchy as shown in 

figure 1.1. Repbase also annotates simple repeats (which includes satellites) and multicopy genes 

(which include tRNA, sRNA, and snRNA) . Statistics about the dataset are presented in Chapter 

3, figure 3.1. 

The largest division of TEs is between type I (retrotransposons) and type II (DNA 

transposons). This difference is primarily based on the how these two TEs move themselves 

across the genome.  Type I TEs move through a “copy-and-paste” mechanism with an RNA 

intermediate while type II TEs transpose through a “cut-and-paste” mechanism with a DNA 

intermediate. Further TE classification is largely based on structural features related to protein 

domains and terminal repeats (long or inverted). 

1.3 Thesis Statement 
Short read classification is a competitive way of deriving the distribution of repetitive 

elements de novo in the genome. It is also possible to quickly ‘find’ sequences from real 

genomes which match a certain structure, like a repetitive element of interest, by learning an 

embedding for repetitive elements. 

1.4 Organization 
The organization of this thesis as follows: 

 
Chapter 2: Presents a background to the deep learning techniques used in the thesis and 

an overview of repetitive element classifiers. 

 



Chapter 3: Presents the dataset and background to the specific classifiers used to classify 

transposable elements. 

Chapter 4:  Presents comparative results of classifying repetitive elements with various 

deep learning models versus sequence-based approaches.  

Chapter 5: Presents work on unsupervised methods applied to generate reads from 

transposable elements. 

Chapter 6:  Conclusion of the thesis, discussion of future work, and a quick overview of 

the web-based application which enables researchers to utilize the classification and generator 

models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2: BACKGROUND 

2.1 Introduction 
 

In the past decade, deep learning has emerged as the workhorse of solving big data 

problems (I. Goodfellow et al. 2016). This status was quickly achieved through state of the art 

performance in the fields of image recognition, object detection, and natural language 

processing. For each of these problems, specially designed deep learning networks were 

constructed to most efficiently capture the intricacies of each set of data. For example, recurrent 

neural networks (RNN) are the primary tool used in text analysis while the sliding window 

approach of the convolutional neural network (CNN)  has shown to be superior in image based 

problems. This modularity, as the availability of a rich set of flexible libraries to quickly 

implement deep learning models, has inspired a new wave of research in artificial intelligence.  

The aim of this chapter is to present an overview of deep learning methods that will be 

used to analyze genomic data throughout this thesis. These include classical approaches like 

RNNs and CNNs, but also feature ways of learning metric space representations (triplet based 

deep learning), and unsupervised learning techniques. 

` The end of this section also includes an overview of current work in repeat element 

classification. This includes blast, or pattern-matching, based approaches as well as strategies 

developed to train de novo classifiers. 



 

2.2 Deep Learning Background 
 

The neural network is a machine learning method that is capable of learning complex, 

nonlinear functions in a hierarchical manner using gradient-descent optimization. The functional 

unit of the neural network is a neuron, which has a single output for a set number of inputs k. 

Each input to a neuron, inputk,  is multiplied by a weight, weightk, whose value is trained using 

gradient descent based optimization. Then, a sum is taken over all k weighted inputs, inputk * 

weightk. This is essentially a dot product between two vectors (one being the input and the other 

being the neuron weights). A nonlinear function (like sigmoid) is finally applied to this output 

value. The computation in a neuron on a set of inputs is illustrated in figure 2.1. A common 

nonlinearity used in current neural networks is the  rectified nonlinearity (ReLU). The ReLU 

activation function clips the output of the neuron to be above 0, increasing sparsity and 

improving generalizability of the model. A problem with the ReLU activation function is that 

gradient information is lost for outputs less than 0. This problem can be alleviated with a ‘leaky’ 

variant of ReLU which sets outputs less than 0 to the output times a small constant. Common 

activation functions are shown in figure 2.2. 

Multiple neurons with different sets of weights can be used on the same input, resulting 

in a ‘layer’ of neurons. Multiple layers can then be stacked (using the output of one layer’s 

neurons as the input to another layer’s neurons) to compose a neural network. Deep stacking of 

layers is the source of the term ‘deep learning’.  



The input to a neural network layer is usually in the form of a batch of multiple samples. 

Figure 2.3 shows how running a batched input through a neural network layer can be efficiently 

represented as a matrix-matrix multiplication. 

 

   

Figure 2.1: Visualization of neuron vector-vector multiplication based on weight 
parameters [w1, w2, w3] and input [in1, in2, in3]. 

 

 

Figure 2.2: Plots of common neural network activation functions. The input is z and the 
activation function is Φ. 

 
 
 
 
 



 

 Figure 2.3: Visualization of the forward pass of a 3-sample batch through a 3-neuron 
layer as a matrix-matrix multiplication. Colors correspond to annotations in figure 2.1.  

 

Experimentally, deeper networks have shown increased performance while retaining 

good generalizability (I. Goodfellow et al. 2016). Each layer also increases computational cost, 

so using very deep networks only became practical with the advent of GPU implementations of 

neural networks. 

There is little restriction to how neural networks can be built, as long as all the operations 

are differentiable so that the parameters can be updated through back-propagation. Initially this 

led to extensive research into various activation functions, but newer developments tend to focus 

in how each layer ‘wires’ up to the next. For example, convolutional and recurrent networks 

were developed to exploit underlying input organization by enforcing a spatially aware way of 

processing inputs.  

The enormous capacity of deep networks tends to need regularization to achieve good 

generalization. Beyond the classic early-stopping (which tracks validation and training set 

curves, and stops training when the validation curve becomes worse), models can also be 

regularized by dropout, which shuts off a fixed percent of nodes from providing outputs in each 



layer during training (Hinton et al. 2014). This forces nodes to learn parameters which can be 

applied in a multitude of different scenarios. Another proposal is batch normalization, which 

ensures each node does not have massive updates by making its output normally distributed with 

respect to each batch. The addition of batch normalization significantly improves learning rates 

and model generalizability, and has now become a standard drop-in layer for modern 

convolutional networks (Ioffe and Szegedy 2015). 

2.3 Current Repeat Element Classification 
 

Many tools have been designed for the problem of repetitive sequence classification. The 

most well-known of these is RepeatMasker (Smit et al. 2015), which utilizes a reference library 

and comparison algorithm to a detect repeats in a query sequence. The two main reference 

libraries used by RepeatMasker are Repbase (Bao et al. 2015) and Dfam  (Hubley et al. 2015), 

both of which mutually share a large number of consensus repeat sequences and are being 

actively updated. The major difference between the two reference libraries is that Dfam includes 

profile HMMs which are compared to the query sequence using HMMER 3.1 (Eddy 1995). The 

repbase library of repeat elements are compared using blast-based approaches like RMBlast. The 

HMM approach has shown to slightly increase coverage versus using consensus sequences and 

rmblast (53.88% versus 49.82%) while retaining comparable accuracy, but at a significant cost to 

runtime (595h vs 59h) (Wheeler 2012). Since Repbase is the library of choice for most literature 

examples of repeat classification and the profile HMMs of Dfam take up significantly more time, 

I opt to use Repbase for comparative analysis throughout this thesis.  



A problem with RepeatMasker is that it can have trouble classifying novel repeats not 

found in its library. De novo methods were made to discover and classify novel repeats based on 

structural characteristics which are derived from clues experts use to classify repeats. Once a 

consensus dataset of repeats has been derived from the sample, the next step for most of these 

methods is to check for protein domain conservation and indicative components like long 

terminal repeats and terminal inverted repeats. As shown in figure 1.1, the presence and ordering 

of these components are defining characteristics of labeling repetitive elements. Once these 

features have been derived from the sequence, an expert-crafted rule-based system or an 

optimized machine learning classifier can be used to finally classify the repeat (Hoede et al. 

2014). Previous deep learning approaches in the area have utilized k-mer counts as features 

rather than learning from the raw sequence (Nakano et al. 2017, Nakano et al 2018). Current de 

novo approaches rely heavily on accurate consensus sequences, which may be difficult to 

construct due to the nature of repetitive elements. For example, it is common for young TEs to 

insert within older TEs, which requires the accurate assertion of TE boundaries before the TE is 

classified (Joly-Lopez and Bureau 2018). Finally, these approaches are heavily reliant on 

hand-picking a comprehensive set of protein domains, which may need to be constantly adjusted 

as new repetitive elements are discovered or classification hierarchies are changed. 

 
 



CHAPTER 3: CLASSIFIER EXPERIMENTAL SETUP 

3.1 Introduction 

This chapter introduces how I split the Repbase dataset to train and compare repeat 

element classifiers for fixed size kmer lengths. I review previous solutions to the classification 

problem as well as presenting new ones based on deep learning.  

3.2 Dataset 
The Repbase repeat database is a curated list of repeat element consensus sequences 

whose classes were discussed in Chapter 1. Classification is done based on the Repbase 

hierarchy from figure 1.1, and additionally delineating LINE (R2, RTE, Jockey, L1, I) and SINE 

(tRNA, 7SL, 5S) elements. Three datasets were constructed from Repbase, which are called 

Update, Drosophila, and Aradiposis. The Update dataset consists of a train set from the RepBase 

20.01 release and a test set from the current RepBase 24.01 release. The Aradiposis and 

Drosophila datasets were constructed by leaving out repeats from the specified genus. The class 

and element length distribution of each dataset are given in figure 3.1. Since the RepBase 24.01 

is far larger than the training sets, it can be used as an approximation of each training set. 



 

 

 

Figure 3.1: Class distributions and element length distributions for RepBase 24.01 and the 
datasets (aradiposis, drosophila and drosophila) derived from it. The total size for the train 
training and testing splits for each dataset were as follows: aradiposis (40925/466), drosophila 
(39413/2026), update (32112/9332). 

These datasets were chosen to keep consistency with previous work (Hoede et al. 2014, 

Nakano et al. 2018). An epoch of training was defined as sampling one kmer of a given length 



from each consensus sequence in the training data set. Testing was conducted based on a 10 

fixed, randomly chosen, kmers from each consensus in the test set.  

3.3 Classifiers 
 

The following section defines the deep learning classifier architectures that will be used 

in the experiments. An additional comparison will be made to RepeatMasker (RM) with default 

sequence comparison parameters (skipping bacterial insertion sequences checks, not masking 

RNA genes, and turning off tandem repeat finder) and use the training data sequences as a 

library to classify the repeats in the test data. Since the results of RM are subsequence detections 

of repeat element classes, classification of a sequence is based on the longest found match.  

Some preprocessing was also done before feeding the dataset into each classifier. For 

sequence based models reliant on base pair (a, t, c, g) input, a one-hot representation is used and 

add an embedding layer directly before each of the networks. Some k-mer lengths were longer 

than some consensus sequences, so these were padded these with a one-hot representation of ‘n’ . 

Feature input was uniformly scaled to fit inputs between 0 and 1.0. A description of each of the 

deep learning models is as follows:  

 

DNN w/ K-mer Features (DNN): This model is a classic deep neural network with 

multiple layers which follows the work of repeat classification in (Nakano et al. 2017). Nakano 

proposed a deep learning classifier based on k-mer subsequence counts of size 2, 3, and 4 

resulting in a feature vector of 336 k-mer counts. The classifier has 1 layer with 200 nodes, 

ReLU activation, dropout of 0.5, and a sigmoid output.  



A problem with vanilla neural networks is that they do not utilize a beneficial prior over 

the space they learn. This is especially apparent when learning from images, where translational 

invariance fails to be learned quickly. The first example of neural network modularity was a 

response to this failure - the convolutional neural networks (CNNs) (Y. Lecun et al. 1998). 

CNNs utilize a sliding window approach where local neural network functions feed their output 

to neural networks with larger context at a higher level in the hierarchy, forcing the network into 

learning a function with translational invariance (an example of an infinitely strong prior). This 

greatly speeds up training time on image-based problems and massively reduces the number of 

parameters because each layer has extensive parameter sharing between kernels. Figure 3.2 

visualizes how a CNN layer processes a 2d input. One can imagine a CNN as a single neuron 

with fixed context around itself being applied to every point in the image where its weight 

kernels fit.  

 

 Figure 3.2: Visualization of forward pass for a convolutional layer with a single kernel, 
where a normal convolutional layer would include many kernels. Though named a 
‘convolutional’ neural network, the operation used is actually cross-correlation. Colors 
correspond to annotations in figure 2.1.  

 



Layer types which supplement convolutional layers have also developed, including 

‘pooling’ layers which forego complex weight matrices in favor of a simple addition or maxing 

operation across inputs - helping to quickly reduce the size of the output features and increase 

context (A. Krizhevsky et al. 2012). Another type of layer is the residual layer, which helps 

gradients flow to the beginning of the network by adding the output of previous layers to those 

further in front (K. He 2015). Residual layers have allowed for unprecedented depth in deep 

networks , but at a certain point the accuracy tends not to improve by substantial margins over 

having a handful of layers (around 20-30). 

Residual Network (CNN): The reliable training, fast runtime, and ease of 

interpretability of convolutional neural networks has seen the architecture become widely used 

for bioinformatics applications.  Our architecture is motivated by the residual convolutional 

network used to train the DNA Generative Adversarial Networks in Killoran et. al. (2017) and 

Gupta et. al (2018). Figure 3.3 shows the architecture in detail. I found that for classification 

tasks it was important to add batch normalization before the activation functions in the residual 

blocks to stabilize training.  

 
Figure 3.3. Residual Network Architecture used in this work. LeakyReLU was used after the 
Embedding layer. The embedding converts each one hot vector into a 100 dimensional vector to 
be used by the residual part of the network. Each res block consists of 2 convolutional layers 
with kernels of size 5 and 100 channels. The output of each ResBlock is multiplied by 0.3 and 
added to the input of that ResBlock. The second to last linear layer has an output of 16 and Tanh 
activation to encourage learning a 16 dimensional embedding of the input sequence. 



 

Recurrent neural networks (RNNs) also solve the problem of redundant local calculations 

by applying a ‘sliding window’ between a processed output from the last time step and the 

unprocessed input to the current timestep (Sherstinky 2018). The neural network structure which 

processes an individual timestep is commonly referred to as a cell. Figure 3.4 demonstrates how 

an RNN processes a sequence.  

 

 Figure 3.4: Visualization of forward pass for a simple recurrent layer with 3 neurons. 
Note that RNN cell flavors, like the LSTM or GRU, usually have more complicated function 
structures than the single vector-matrix multiplication and activation function shown here. Each 
color corresponds to annotations in figure 2.1.  

 
RNNs have consistently shown to achieve state of the art results in natural language 

processing tasks, as well as other problems that can be modeled as a time-series. Unfortunately, 

RNNs have shown to take longer to train than CNNs for long sequences, take a longer time than 

CNNs to evaluate inputs, and have problems during training due to exploding and vanishing 

gradients. Several RNN cells have been proposed to aid these problems. The LSTM (Long Short 

Term Memory) aids the flow of information across the series by implementing forget gates and 



self-loops. GRUs (Gated Recurrent Network) are another formulation which accomplishes the 

same task in a slightly different way, but achieves comparable results to the LSTM on most 

tasks. Further solutions to the exploding gradient problem include clipping the gradients at some 

constant, ensuring that extremely large gradients (which would cause inf or nan outputs) become 

tractable for the network to update its parameters on. 

BiLSTM (RNN): Bi-directional LSTMs are a common choice for sequence analysis, 

especially in natural language processing. In this work I use a 2-layered, bidirectional LSTM 

with 128 nodes and a dropout of 0.5. The hidden states from the final layer are then average 

pooled across the sequence and run through a classifier with an intermediate layer of another 128 

nodes and LeakyReLU activation. The final classification is done by a sigmoid output. 

 
Each deep network based classifier is trained to minimize the cross entropy between 

output and real class labels. The adam optimizer is used with default parameters, namely with 

betas  = (0.9,0.999) and epsilon = 10-8 . A learning rate of 0.1 was used. Every model was trained 

for 100 epochs and the learning rate was cut in half at 50 epochs. The batch size used is 256. All 

LeakyReLU activations had a negative slope of 0.1. 

 

 



CHAPTER 4: CLASSIFICATION RESULTS 

4.1 Introduction 
In this chapter I analyze the performance of each deep learning model with respect to 

speed, accuracy, and robustness to different kmer length scales. I also perform an analysis of 

kmers which may cause confusion at the read level. Then, I map the output of an intermediate 

layer to a low dimensional embedding space and attempt to learn a more useful embedding using 

a triplet loss.  

4.2 Classification Results 
 

This section presents the results of repeat element classification. The results indicate that 

deep learning methods are far faster and have greater generalizability to new repeat elements 

than sequence comparison methods, especially as hierarchy. I also show that K-mer count 

features have competitive testing accuracy with learning from a raw sequence string, although 

the count-based model suffers from a significantly worse fit on the training data.  

The first test measures the classification accuracy across the three datasets. Figure 4.1 

and Figure 4.3 show the results of running repeatmasker on each of the datasets. Although 

repeatmasker was able to very accurately classify sequence for which it found matches, it was 

unable to find matches for a large portion of the sequences, resulting in overall lower 

classification accuracy versus machine learning model based methods presented in Figure 4.2 

and Figure 4.5. In general, deep learning methods and repeatmasker were competitive at lower 



levels in the hierarchy, but deep learning models performed significantly better at higher levels. 

Repeatmasker did particularly well when the distribution of the testing dataset diverged from the 

distribution of the training data. This difference is especially apparent for the Aradiposis dataset, 

where there are far more Gypsy elements than Copia elements in the training dataset, but the 

other way around for the test data set. This is indicative of confusing sequences being mislabeled 

as the class which is present in higher number in the training dataset. The costs and benefits of 

such a model bias should be examined on a species specific basis. For example, in the 

Drosophila dataset, this bias helped many more repeat elements be correctly classified by deep 

learning based methods. The update dataset seemed to be particularly difficult for both methods, 

resulting in the worst false positive rate for repeatmasker and the lowest classification accuracies 

for the deep learning models. We also compare precision, recall, and f1 scores for the 

repeatmasker and deep learning models in figures 4.3 and 4.5. 

Between deep learning models, the difference in classification is less pronounced, but 

overall the sequence based deep learning models (RNN and CNN) outperformed the DNN with 

kmer-count based features. The difference between the RNN and CNN models is less 

pronounced, and in most cases negligible.  

 Aradiposis Drosophila Update 

Sequences 
Masked (%) 

56.7 21.5 32.6 

 1 2 3 1 2 3 1 2 3 

Masked Acc. 0.96 0.97 0.98 0.96 0.98 0.99 0.93 0.97 0.98 

Total Acc. 0.54 0.55 0.56 0.21 0.21 0.21 0.30 0.32 0.32 

 
Figure 4.1. Results of running repeatmasker with default parameters on each dataset, including 
top 1 accuracy at each level of the defined RepBase repeat element hierarchy. 



 
 

 Aradiposis Drosophila Update 

 1 2 3 1 2 3 1 2 3 

DNN 0.46 0.73 0.85 0.38 0.64 0.76 0.31 0.56 0.68 

RNN   0.50   0.75   0.83 0.34 0.64 0.75 0.34 0.60 0.72 

CNN 0.51 0.74 0.82 0.40 0.69 0.78 0.34 0.60 0.71 

 
Figure 4.2: Testing accuracies of deep learning based methods on select repeat element 
datasets. 
 

 

Figure 4.3: RepeatMasker Precision, Recall and f1 Score for Aradiposis, Drosophila, and 
Update datasets. 
 



 
 

 RM DNN RNN CNN 

Speed (s) 350 ± 20 2.6 ± 0.1 0.67 ± 0.03  0.52 ± 0.02 

 
Figure 4.4: Speed in seconds of running each classifier over 10,000 150-mers from the Repbase 
24.01 dataset for 10 runs. Preprocessing, such as one-hot encoding and kmer counting, were 
included in the total times to simulate realistic usage. 
 

 
Figure 4.5: CNN Precision, Recall and f1 Score for Aradiposis, Drosophila, and Update 
datasets. 
 

The third test is a set of timed runs for each of the methods on 10,000 150-mers shown in 

figure 4.4 . Repeatmasker takes almost 3 orders of magnitude more time to run on the set of 



k-mers than the deep learning models which require minimal preprocessing. The DNN model is 

slower mostly due to the time it takes to count k-mers. This time could likely be reduced with a 

more efficient implementation, but even so is far faster than sequence comparison methods. 

The third test examines differences between k-mer counts as features versus sequence 

input as we vary k-mer length. We selected lengths of 25, 50, and 150 as next generation 

sequencing technologies usually fragment the genome into reads of these lengths. The length of 

1000 was included to show how much improvement could be expected in classification accuracy 

from  very large read lengths and more accurate assembly of repetitive elements. Figure 4.6 

shows that, as expected, having larger input sequences significantly improves model accuracy. 

Surprisingly, k-mer count features seem to be competitive with sequence input for testing on 

sequences derived from new species (Arabidopsis and Drosophila). When the sequences between 

the train and test datasets share greater similarity, as is seen in the Update dataset, models based 

on sequence based input show significantly better performance over kmer-count features. This is 

likely due to longer range k-mer features being available to use for the sequence based model, 

while the k-mer count model is reliant on very local signal. 

To better understand how robust a trained CNN classifier is to picking different 

subsequences from the same repeat element, we move the classifier across a sequence and map 

its outputs.  As seen in figure 4.7, some parts of the sequence are highly confusing, especially at 

the leaf nodes of the hierarchy.  The edge of the sequence also introduces confusion since there is 

less sequence information. Likely areas of confusion include similar protein coding domains and 

simple repeats. Confusion is less likely to occur near areas which are conducive to accurate 



classification, such as the boundary between two protein coding domains which indicates an 

element-specific ordering of protein domains. 

Length 25 50 150 1000 

Update 

CNN 0.35 / 0.25 0.45 / 0.28 0.62 / 0.34 0.82 / 0.56 

DNN  0.30 / 0.24  0.33 / 0.26 0.41 / 0.31 0.59 / 0.48 

Aradiposis 

CNN 0.30 / 0.31 0.33 / 0.40 0.60 / 0.51 0.79 / 0.69 

DNN  0.30 / 0.30 0.31 / 0.38  0.37 / 0.46  0.56 / 0.67 

Drosophila 

CNN 0.29 / 0.39  0.33 / 0.37  0.61 / 0.40 0.83 / 0.62 

DNN  0.28 / 0.39 0.31 / 0.38  0.36 / 0.38 0.50 / 0.56 

Figure 4.6: (Training accuracy / Test accuracy) for models trained on update, aradiposis, and 
drosophila datasets when repeat elements are fragmented at varying kmer lengths. Each 
train/test accuracy is given at the lowest level in the RepBase hierarchy. 
 

To visualize what sequences are tricking the trained CNN model at a global scale, I 

present a log normalized confusion matrix in figure 4.8. As expected, the model is predicting a 

large amount of sequences as gypsy, since it is the class with the largest presence in the training 

set. The largest misclassification occurs between sequences belonging to Gypsy and Copia - both 

long terminal repeats sequences with a large number of subsequence k-mers that share high 

sequence similarity.  

 

 



 

 

 
Figure 4.7: Example of classifying unseen Copia element using CNN classification model as a 
sliding window across the sequence. Included are classifications at 3 different RepBase 
hierarchy levels.  



 

 
Figure 4.8: Log normalized confusion matrices of model on Update dataset.  

4.3 Embedding Using Triplet Loss 
 

The features learned by a neural network in classification tasks are optimized for 

accuracy, but may be less meaningful for tasks such as querying the closest sample. This leads to 

the concept of using neural networks to learn embeddings for metric spaces. The most 



straightforward framework for metric space learning is the siamese network, in which pairs of 

samples are run through two copies of the same network (Koch 2015). The networks are 

punished for embedding pairs of inputs close to each other if they are from different classes or 

for embedding pairs of inputs far from each other if they are from the same class. Unfortunately, 

siamese networks can have stability problems with training reasonable embeddings in some 

scenarios (Hoffer and Ailon 2015). Triplet networks alleviated some of the training problems 

siamese network faced and significantly improved accuracy on face verification datasets. The 

triplet network takes a triplet of three samples, an anchor a, a positive sample p (which is meant 

to be similar to the anchor) and a negative sample (which is meant to be different). The same 

network is run for all three samples and the loss is calculated by the following triplet loss: 

 max (d (a, p) d (a, ) α, 0)L =   −  n +    

Where  is a distance margin, and d is a distance function (normally an L2 loss).α   

 

Figure 4.9: Visualization of triplet network structure with L2 based distance loss. Anchor, 
positive sample, and negative sample are given by a,p, and n. The same network f is applied to 
each of a, p, n. The margin is given by .α   
 

I further explore the information captured by the trained CNN model by visualizing the 

output of an internal layer and applying standard dimensionality reduction techniques - namely 



t-SNE and PCA. I also attempt to improve the interpretability of the embedding by training a 

CNN model to reduce the distance between sequence pairs of different classes via a triplet loss.  

CNN: This model is the same architecture as the previous CNN model and uses weights 

from the second to last layer, resulting in an embedding size of 16. 

Triplet: I train a new model with the same architecture as the previous CNN model to 

optimize an L2 based triplet loss function enforcing a margin of 0.01. 

Training parameters were the same as for the classification task. The triplet loss for the 

embedding from the CNN intermediate layer versus the triplet trained CNN model embedding 

are shown in figure 4.10. The new learned embeddings better abide by the triplet loss metric. To 

test the utility of the new embeddings, 100,000 kmers were embedded from the training sets of 

the Aradiposis, Drosophila, and Update datasets. A kd tree is used to quickly query the nearest 

neighbor in embedding space. Each testing sequence is then embedded and classified based on 

the nearest embedded neighbor from the training set. 

 Aradiposis Drosophila Update 

CNN 0.0029 0.0025 0.0022 

Triplet 0.000035 0.000032 0.000030 

 Figure 4.10. Triplet Loss with a margin of 0.01 from training set. 
 

Although the new embeddings are better aligned with the triplet loss, they fare 

significantly worse in classifying new repetitive elements, as seen in figure 4.10.  To examine 

this difference in more detail I visualize the embeddings of the CNN output and triplet loss in 

figure 4.13.  

 



 

 

 Aradiposis Drosophila Update 

 1 2 3 1 2 3 1 2 3 

CNN 0.49 0.68 0.79 0.27 0.56 0.71 0.24 0.54 0.63 

Triplet 0.34 0.61 0.73 0.21 0.49 0.64 0.22 0.50 0.62 

Figure 4.11. Accuracy of 1 nearest neighbors to 100,000 kmer training dataset. 
 

There seems to be overall good separation of groups with many elements in both 

embeddings. For classes with fewer elements, t-SNE better brings out clusters than PCA. For 

example, the SINE elements in the t-SNE plots are clearly separated while they are scattered 

across other classes in the PCA embedding. The PCA embeddings for the raw CNN outputs are 

seen to be a less tightly grouped than the same embeddings trained on a triplet loss, but there is 

better separation of the hAT and Mariner elements than with the triplet loss embeddings. The 

t-SNE embedding shows little structural difference between the Triplet based and raw CNN 

embeddings.  

Embeddings can be used for interpolating between sequences. For example, in figure 

4.12 we interpolate between two gypsy sequences.  

 

Figure 4.12. Linear, nearest neighbor interpolation between two Gypsy sequences using raw CNN 
embeddings. In parentheses beside each element class is the distance to the query in embedding space. 
 
 



 

 

 

 
 
 

 
Figure 4.13. 100,000 PCA Aradiposis Dataset Training Kmers. T-SNE plots subsample 2000 kmers to 
reduce computation time.  Top 2 rows belong to PCA embeddings and bottom 2 rows belong to t-SNE 
embeddings. The first and third rows belong to raw CNN embeddings while the second and fourth rows 
belong to embeddings trained on a triplet loss. 



4.4 Conclusion and Discussion  
In this chapter I conducted a comparative analysis of new and previously developed deep 

learning models with the sequence comparison based method repeatmasker. For classification of 

short sequences at the base of the RepBase hierarchy I find that repeatmasker achieves good 

testing accuracy with a low false positive rate. Higher up the RepBase hierarchy, or with longer 

sequence size, deep learning models can achieve more robust classification results which better 

warrant the approach. I experiment with sequence based and k-mer count input features and find 

that although kmer-count input features achieve competitive testing accuracy with sequence 

based models for shorter k-mer sizes, they fit the training data significantly worse for larger 

k-mer sizes and as such may have worse viability for classifying repeats with low divergence to 

the testing set. Then, I analyze embedding sequences based on the outputs of an intermediate 

layer of the deep learning model versus an embedding trained on the triplet loss. I compare the 

embeddings using visualization and nearest neighbor classification loss. I find that both 

embeddings show good classification boundaries, but that using a triplet loss consistently 

decreases nearest neighbor classification accuracy. 

The classifier results presented were also fine-tuned by increasing the number of layers 

and neurons per layer. Unfortunately, these changes did not result in significantly different 

classification results, indicating the need for either changing the input (for example, providing 

the context of all reads in a sample to the network), or applying an innovative network 

architecture (like a neural turing machine) which can better model TE sequences.  

 

 



CHAPTER 5: GENERATING REPEATS 

5.1 Introduction 

Previously I used supervised techniques to train classifiers on labeled dna sequences. 

Unsupervised techniques are a way of learning distinctive features of a dataset without needing 

these labels. Unsupervised deep learning presents an interesting way of learning likely TE 

mutations and variations, which may enable discovery of novel TEs. In this section I present a 

background to unsupervised deep learning techniques, like the autoencoder and Generative 

Adversarial Network,  and discuss work using them to learn a class-specific embedding of repeat 

sequences. 

5.2 Auto Encoders 
When the learning problem can be defined as supervised, or when a large set of classified 

training data exists for the problem, metric learning by the triplet network is a good, stable 

technique for learning embeddings. Learning useful embeddings without these data labels 

requires unsupervised techniques. A classical unsupervised network is the auto-encoder, which 

learns a compressed encoding vector by simultaneously training an encoding and generating 

network to replicate samples in a dataset, as shown in figure 2.8 (Goodfellow et al 2016). The 

replication loss varies based on the type of data, but in the case of images it is usually mean 

squared error (mse). A problem with autoencoders is that using a straightforward loss functions 

like mse makes the generation network prefer blurry samples to reduce the average error over all 

samples. To alleviate this problem, it would be necessary to learn a network which learns a loss 



function which penalizes unrealistic images. This motivated the development of generative 

adversarial networks (GANs) (Goodfellow 2014).  

Another use for autoencoders is anomaly detection. Large differences between a 

reconstruction and input sample can be used to detect areas of interest, for example, a tumor in a 

brain scan (Schlegl et al. 2019). 

5.3 Generative Adversarial Networks 
 

GANs are a modern take on unsupervised learning which learn to model a distribution by 

defining a competition between two neural networks (Goodfellow 2014). One network is labeled 

as the generator while the other is labeled as the discriminator. The generator’s goal is to fool the 

discriminator into being unable to distinguish between the set of real data and generated data, 

whilst the discriminator’s goal is to ensure generated samples are rejected and real samples are 

kept. The input to the generator is a sample from a normal distribution, meaning the generator is 

learning a function for mapping the samples of a probability distribution to realistic data 

samples. The input to the discriminator is either the generator’s output or real examples and the 

output of the discriminator is the probability that the input is real or not. The GAN architecture is 

shown in figure 5.1.  



 

Figure 5.1: Comparison of generative adversarial network (GAN) and auto encoder (AE) 
architectures. The encoder, generator, and discriminator networks are labeled with e,g,and d 
respectively. The latent variable, or encoding of the sample, is given by z. Note that in the GAN, 
the latent z variable is generated by sampling a normal distribution.  
 

Originally, Jensen-Shannon divergence was used to define the loss between the real and 

generated data distributions. Unfortunately, Jensen-Shannon divergence is prone to cases of 

gradient collapse which can ruin training and result in the generator only outputting noise. The 

Wasserstein GAN redefined the distribution distance function to an approximation of the earth 

mover distance (the minimum amount of effort needed to move one distribution into another), 

allowing for greater resilience to training problems ( Arjovsky et al. 2017, Gulrajani et al. 2017). 

Recent work has explored the use of GANs for biological sequence data. Killoran et al. 

pretrained a generator to output realistic sequences before traversing the latent space to ‘design’ 

dna sequences with specific properties (Killoran et al. 2017) . This approach, however, requires a 

differentiable discriminator, which is not commonly available for most publicly available 

sequence analyzers. Gupta and Zhou proposed a feedback GAN architecture which progressively 

shifts the generated sequence distribution by replacing a fraction of the ‘real’ data with the 

highest scoring generated data (Gupta and Zhou 2018).  

 



5.4 Generation of Transposable Elements 
 

Embeddings can be useful for interpolating between two sequences by looking at the 

nearest embedded neighbors. The quality of the interpolation is highly dependent on how many 

sequences are embedded, and may result in duplication (as seen in Figure 4.12) if a sequence is 

close to multiple interpolation points. To construct smooth interpolations, generative models 

must be used. One method to generate repeats is to use an autoencoder which minimizes the 

reconstruction loss between a real sequence and a generated output sequence. The most common 

generator network architecture that has been used with sequences up to 150 base pairs (Killoran 

et al. 2017, Gupta and Zhou 2018) is shown in Figure 5.1, which is similar to the classifier 

trained in the previous section. 

 

Figure 5.1. Residual network decoder/generator used in this work. The initial linear layer takes 
as input a 128 dimensional embedding of a DNA sequence and outputs a length 150 vector (the 
length of the DNA sequence to be generated). The residual blocks are defined as in figure 3.3. 
Note that the initial linear layer embedding size is varied, since accurate reconstruction from a 
size 16 embedding was troublesome. 
 

I tested this generator along with the RNN and CNN architectures from the classification 

task, simply changing the final softmax layer to the desired embedding size. The RNN was 

surprisingly easier and faster to train, so I decided to continue to use it as an encoding network. I 



found that training an autoencoder on repetitive elements without learning to memorize the input 

required a few model tweaks. First, I tested the following embedding sizes: [32, 64, 128]. 

Embedding sizes larger than 128 were not tested since the model could learn to memorize the 

input perfectly at an embedding size of 128 (>99% reconstruction accuracy on held out sequence 

classes). Embedding sizes smaller than 128 consistently had trouble training, so I opted to keep 

this embedding size and teach the network to denoise inputs by randomly changing [10,20,40] of 

the 150 input base pairs. The networks consistently trained to the maximum accuracy that could 

be achieved by copying the input and then stabilized. These problems echo those stated in 

Killoran et al (2017). Schegl et al (2019) showed an improvement to autoencoders by first 

training a GAN on the samples, freezing the GAN and then training an encoder network to learn 

a mapping from a real sample to a latent variable. I was able to successfully train the Wasserstein 

GAN from Killoran et al to output realistic sequences as can be seen in figure 3.16. 

Unfortunately, using the method of Schegl et al, the encoder network was not able to learn a 

reasonable mapping from sequences to the latent vector and had a base-pair reconstruction 

accuracy of only 40% for LTR sequences (which the GAN and encoder were trained on) and 

39% for non-LTR sequences (which were used as the test set).  

 

Figure 5.2. Example interpolation of two points in latent space by WGAN model trained on LTR 
Sequences. 
  
 



 
Figure 5.3. Similarity using Levenshtein edit distance metric between randomly generated SINE reads 
(blue) versus SINE reads generated by GAN (Orange) and real SINE reads. Similarity is taken between 
reads from a  randomly excluded SINE element versus reads from other SINE elements not chosen. 
  

5.5 Conclusion and Discussion  
 

In this section, I attempted to learn each repeat class’s distribution in an unsupervised 

manner using autoencoder and GANs. I was able to output a smoother interpolation between 

sequence queries generated by randomly selecting from a latent space, and showed that these 

sequences have a closer distribution to reads taken from real TEs (Figure 5.3) when compared to 

randomly generated reads. Unfortunately, I was unable to learn a class-specific mapping from 

sequences to latent vectors which could be used for class identification by reconstruction loss. 

Short reads may be problematic because of how many different possibilities are present 

between samples and within TEs (especially very long TEs). Better results may have be obtained 

by generating the entire sequence of the transposable element, as longer sequences may have a 

more consistent context across TE samples which can be more easily learned by a deep learning 



model. This type of generative model would have to generate much larger sequences, which may 

require the use of unique neural network architectures which have not yet been well researched. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6: WEB TOOLS AND CONCLUSION 

As a complement to this work, I also developed a web application for utilizing some of 

the models present in this thesis. I built the application in flask and React. Capabilities of the 

application include returning the classification of a sequence, showing the repeat distribution of a 

set of k-mers, and the class probability at each point in the k-mer by using the classifier as a 

sliding window. I also enable visualizations of the query k-mers in PCA space. Finally, the 

application enables users to see the output of the GAN model I trained on repeat elements, 

nearest neighbors of select embedded training sequences, and interpolation between sequences in 

latent space. 

In this work I utilized deep learning techniques to train a classifier on short read-like 

sequences from repeat elements. I showed that an initial classification of such sequences is 

possible to perform far more quickly using deep learning techniques, although with a loss in 

precision. Finally, I experimented with different ways of learning an embedding space for 

sequences, and showed that the intermediate layer output of the classifier worked well when used 

to classify nearest neighbors in the test set. In future work I will continue to work on 

unsupervised techniques to embed dna sequences, as well as improving classification for new 

sequencing technologies, such as pacbio long reads where reads can reach lengths of over 

multiple 1000s of base pairs.  
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