

ABSTRACT

Conrad Czejdo: Classifying and Generating Repetitive Elements in the Genome Using Deep Learning
 (Under the direction of Leonard McMillan)

Repetitive elements are sequence patterns in the genome which are duplicated in large

quantity. They serve important functions both in genomic preservation and evolution, leading to

the need for their fast and accurate classification. The current gold standard for repeat

identification can be achieved by establishing correspondences between a well-annotated library

of repetitive elements and a given query sequence. However, annotation quality is highly

variable across species. Therefore, for genomes whose repeats are poorly annotated, de novo

methods must be used. A common approach of de novo methods is to first check the sequence

for protein domain conservation. The presence and order of these protein domains are used as

features for an expert-crafted rule-based system or an optimized machine learning classifier.

Although de novo approaches have achieved modest success, two problems remain. Firstly, they

require lengthy consensus sequences which take time to assemble, and may not be representative

of the true diversity of repetitive elements in the sample. Secondly, these approaches are heavily

reliant on hand-picking a comprehensive set of protein domains, which may need to be

constantly adjusted as new repetitive elements are discovered.

In this thesis I show that deep learning models are competitive with pattern matching

based approaches at the level of a shotgun sequencing strand for de novo classification of repeat

elements. I also explore ways of embedding sequences using deep learning models. Finally, I

made these tools available through a web-based interface.

CHAPTER 1: INTRODUCTION 3
1.1 Introduction to Genomic Science 4
1.2 Overview of Repetitive Elements 5
1.3 Thesis Statement 7
1.4 Organization 7

CHAPTER 2: BACKGROUND 9
2.1 Introduction 9
2.2 Deep Learning Background 10
2.3 Current Repeat Element Classification 13

CHAPTER 3: CLASSIFIER EXPERIMENTAL SETUP 15
3.1 Introduction 15
3.2 Dataset 15
3.3 Classifiers 17

CHAPTER 4: CLASSIFICATION RESULTS 22
4.1 Introduction 22
4.2 Classification Results 22
4.3 Embedding Using Triplet Loss 29
4.4 Conclusion and Discussion 34

CHAPTER 5: GENERATING REPEATS 35
5.1 Introduction 35
5.2 Auto Encoders 35
5.3 Generative Adversarial Networks 36
5.4 Generation of Transposable Elements 38
5.5 Conclusion and Discussion 40

CHAPTER 6: WEB TOOLS AND CONCLUSION 42

REFERENCES 43

CHAPTER 1: INTRODUCTION

The genome is composed of sequences of nucleotides which encode information for

organism development and function. Initial research on the genome was focused on

protein-coding genes, while the rest of DNA was left out as ‘junk’ DNA. Research in recent

years has shown that these pieces of DNA, which include repetitive sequences, play a far more

important role in the genome than what was initially believed (Rodriguez-Terrones and

Torres-Padilla, 2018). For example, highly repeated mobile nucleotide sequences called

Transposable Elements (TEs) not only make up a significant fraction of eukaryotic genomes, but

are also an important source of genomic diversity (Schrader and Schmitz, 2018). Telomeres,

another type of repetitive nucleotide sequence, have also found extensive interest in the scientific

community due to their implications in aging (Hornsby, 2007). The variety of functions of

repetitive elements and their dynamic nature make them worthy subjects of study.

Collecting genomic data for repetitive sequences has become far easier due to advances

in high-throughput sequencing technologies. These technologies fragment an entire sample

genome and collect enormous amounts of small reads (50 - 150 nucleotides long) which are

distributed across the genome. Unfortunately, in the case of repetitive elements the two most

common strategies of processing these reads - alignment and assembly - both have troubles

resolving ambiguities introduced by repetitive short sequences (Treangen and Salzberg, 2011).

Furthermore, reference genomes upon which the repetitive elements are aligned too are often not

well assembled in areas rich with repeats.

The storage and analysis of large amounts of data has likewise become more feasible due

to lower cost computer components which are capable of storing more and processing faster than

ever before. A recent surge in the use of GPUs has also greatly sped up a variety of

computational tasks, even in genomics. Although research in the field is still somewhat nascent,

the use of GPUs for large genomics data problems has shown significant speed ups for a few

highly parallelizable tasks in the field (Goswami et. al 2018).

A major use of GPUs in modern applications is deep learning. Pipelines for loading and

classifying large batches of data in parallel have been well established in common deep learning

packages such as PyTorch (Paszke et al. 2017). These developments open up a clear path for

rapid classification of genomic data.

This chapter will be organized beginning with a brief introduction to genome science,

followed by an overview of the classifications of repetitive elements, paying particular attention

to TEs.

1.1 Introduction to Genomic Science
The basic functional unit of a genomic sequence is the nucleotide. Each nucleotide is

either a guanine (G), adenine (A), thymine (T), or cytosine (C) . A genomic sequence has a

complementary strand whose sequence is defined by switching A’s with T’s and C’s with G’s.

Eukaryotic organisms further bind this double stranded DNA into a discrete set of structures

called chromosomes. The primary method that DNA can affect its host organism is by coding for

proteins. These coding regions are first transcribed into RNA and then translated into a protein.

The parts of the genome which code for proteins and can be inherited as functional units are

called genes. The observable result of the gene on the organism is the phenotype. Gene

expression can also be affected by enhancer (increases gene activity) and insulator (decreases

gene activity) regions present surrounding the gene.

Mobile TEs can exert control over gene expression by inserting within regions that code

for proteins, or regions that affect protein coding regions. These insertion events are often

characterized by a small piece of repeated sequence called a tandem site duplication (Zhang et al.

2013) . TE insertions can also occur within other TEs, and base substitutions which render the

TE immobile are not uncommon (Jammilloux et al. 2016). Since large scale mutagenic activity

of TEs would most likely be highly deleterious to the organism, multiple countermeasures have

evolved to reduce TE activity (Schrader and Schmitz 2018). Structurally, DNA can pack tighter,

reducing the ability of transcription units to reach the element (Cui et al. 2013). TE transcripts

are also targeted for cleavage by cellular machinery, suppressing the ability of TEs to replicate.

Even with these countermeasures, TEs continue to be a dominant force in adaptive evolution.

Especially during periods of physiological stress, when these countermeasures weaken, the

release of TEs can result in the necessary phenotypic variation for the survival of a population

(Rodriguez-Terrones and Torres-Padilla 2018).

1.2 Overview of Repetitive Elements
There is still ongoing debate about the best way of classifying repeat elements, and

especially TEs. Due to the highly mutagenic nature of TEs, convergent structural features are

known to cause confusion regarding a classification. Furthermore, there are some TE types

which are not well classified by current hierarchies (B. Piegu et al. 2015). Nevertheless, the

results of biologist classifications can be found in large well-annotated datasets of TEs - the most

popular being RepBase (Kojima et al. 2018, Bao et al. 2015).

Figure 1.1: Repbase proposal for the classification and content of eukaryotic TEs.
Proposal is based on DNA and protein domain features. TEs are divided into types, then orders.
Figure taken from B. Piegu et al. (2015).

To stay consistent with previous literature on classification (Abrusan et al. 2005, Nakano

et al. 2017, Nakano et al. 2018) I will classify TEs using the RepBase hierarchy as shown in

figure 1.1. Repbase also annotates simple repeats (which includes satellites) and multicopy genes

(which include tRNA, sRNA, and snRNA) . Statistics about the dataset are presented in Chapter

3, figure 3.1.

The largest division of TEs is between type I (retrotransposons) and type II (DNA

transposons). This difference is primarily based on the how these two TEs move themselves

across the genome. Type I TEs move through a “copy-and-paste” mechanism with an RNA

intermediate while type II TEs transpose through a “cut-and-paste” mechanism with a DNA

intermediate. Further TE classification is largely based on structural features related to protein

domains and terminal repeats (long or inverted).

1.3 Thesis Statement
Short read classification is a competitive way of deriving the distribution of repetitive

elements de novo in the genome. It is also possible to quickly ‘find’ sequences from real

genomes which match a certain structure, like a repetitive element of interest, by learning an

embedding for repetitive elements.

1.4 Organization
The organization of this thesis as follows:

Chapter 2: Presents a background to the deep learning techniques used in the thesis and

an overview of repetitive element classifiers.

Chapter 3: Presents the dataset and background to the specific classifiers used to classify

transposable elements.

Chapter 4: Presents comparative results of classifying repetitive elements with various

deep learning models versus sequence-based approaches.

Chapter 5: Presents work on unsupervised methods applied to generate reads from

transposable elements.

Chapter 6: Conclusion of the thesis, discussion of future work, and a quick overview of

the web-based application which enables researchers to utilize the classification and generator

models.

CHAPTER 2: BACKGROUND

2.1 Introduction

In the past decade, deep learning has emerged as the workhorse of solving big data

problems (I. Goodfellow et al. 2016). This status was quickly achieved through state of the art

performance in the fields of image recognition, object detection, and natural language

processing. For each of these problems, specially designed deep learning networks were

constructed to most efficiently capture the intricacies of each set of data. For example, recurrent

neural networks (RNN) are the primary tool used in text analysis while the sliding window

approach of the convolutional neural network (CNN) has shown to be superior in image based

problems. This modularity, as the availability of a rich set of flexible libraries to quickly

implement deep learning models, has inspired a new wave of research in artificial intelligence.

The aim of this chapter is to present an overview of deep learning methods that will be

used to analyze genomic data throughout this thesis. These include classical approaches like

RNNs and CNNs, but also feature ways of learning metric space representations (triplet based

deep learning), and unsupervised learning techniques.

` The end of this section also includes an overview of current work in repeat element

classification. This includes blast, or pattern-matching, based approaches as well as strategies

developed to train de novo classifiers.

2.2 Deep Learning Background

The neural network is a machine learning method that is capable of learning complex,

nonlinear functions in a hierarchical manner using gradient-descent optimization. The functional

unit of the neural network is a neuron, which has a single output for a set number of inputs k.

Each input to a neuron, inputk, is multiplied by a weight, weightk, whose value is trained using

gradient descent based optimization. Then, a sum is taken over all k weighted inputs, inputk *

weightk. This is essentially a dot product between two vectors (one being the input and the other

being the neuron weights). A nonlinear function (like sigmoid) is finally applied to this output

value. The computation in a neuron on a set of inputs is illustrated in figure 2.1. A common

nonlinearity used in current neural networks is the rectified nonlinearity (ReLU). The ReLU

activation function clips the output of the neuron to be above 0, increasing sparsity and

improving generalizability of the model. A problem with the ReLU activation function is that

gradient information is lost for outputs less than 0. This problem can be alleviated with a ‘leaky’

variant of ReLU which sets outputs less than 0 to the output times a small constant. Common

activation functions are shown in figure 2.2.

Multiple neurons with different sets of weights can be used on the same input, resulting

in a ‘layer’ of neurons. Multiple layers can then be stacked (using the output of one layer’s

neurons as the input to another layer’s neurons) to compose a neural network. Deep stacking of

layers is the source of the term ‘deep learning’.

The input to a neural network layer is usually in the form of a batch of multiple samples.

Figure 2.3 shows how running a batched input through a neural network layer can be efficiently

represented as a matrix-matrix multiplication.

Figure 2.1: Visualization of neuron vector-vector multiplication based on weight
parameters [w1, w2, w3] and input [in1, in2, in3].

Figure 2.2: Plots of common neural network activation functions. The input is z and the
activation function is Φ.

 Figure 2.3: Visualization of the forward pass of a 3-sample batch through a 3-neuron
layer as a matrix-matrix multiplication. Colors correspond to annotations in figure 2.1.

Experimentally, deeper networks have shown increased performance while retaining

good generalizability (I. Goodfellow et al. 2016). Each layer also increases computational cost,

so using very deep networks only became practical with the advent of GPU implementations of

neural networks.

There is little restriction to how neural networks can be built, as long as all the operations

are differentiable so that the parameters can be updated through back-propagation. Initially this

led to extensive research into various activation functions, but newer developments tend to focus

in how each layer ‘wires’ up to the next. For example, convolutional and recurrent networks

were developed to exploit underlying input organization by enforcing a spatially aware way of

processing inputs.

The enormous capacity of deep networks tends to need regularization to achieve good

generalization. Beyond the classic early-stopping (which tracks validation and training set

curves, and stops training when the validation curve becomes worse), models can also be

regularized by dropout, which shuts off a fixed percent of nodes from providing outputs in each

layer during training (Hinton et al. 2014). This forces nodes to learn parameters which can be

applied in a multitude of different scenarios. Another proposal is batch normalization, which

ensures each node does not have massive updates by making its output normally distributed with

respect to each batch. The addition of batch normalization significantly improves learning rates

and model generalizability, and has now become a standard drop-in layer for modern

convolutional networks (Ioffe and Szegedy 2015).

2.3 Current Repeat Element Classification

Many tools have been designed for the problem of repetitive sequence classification. The

most well-known of these is RepeatMasker (Smit et al. 2015), which utilizes a reference library

and comparison algorithm to a detect repeats in a query sequence. The two main reference

libraries used by RepeatMasker are Repbase (Bao et al. 2015) and Dfam (Hubley et al. 2015),

both of which mutually share a large number of consensus repeat sequences and are being

actively updated. The major difference between the two reference libraries is that Dfam includes

profile HMMs which are compared to the query sequence using HMMER 3.1 (Eddy 1995). The

repbase library of repeat elements are compared using blast-based approaches like RMBlast. The

HMM approach has shown to slightly increase coverage versus using consensus sequences and

rmblast (53.88% versus 49.82%) while retaining comparable accuracy, but at a significant cost to

runtime (595h vs 59h) (Wheeler 2012). Since Repbase is the library of choice for most literature

examples of repeat classification and the profile HMMs of Dfam take up significantly more time,

I opt to use Repbase for comparative analysis throughout this thesis.

A problem with RepeatMasker is that it can have trouble classifying novel repeats not

found in its library. De novo methods were made to discover and classify novel repeats based on

structural characteristics which are derived from clues experts use to classify repeats. Once a

consensus dataset of repeats has been derived from the sample, the next step for most of these

methods is to check for protein domain conservation and indicative components like long

terminal repeats and terminal inverted repeats. As shown in figure 1.1, the presence and ordering

of these components are defining characteristics of labeling repetitive elements. Once these

features have been derived from the sequence, an expert-crafted rule-based system or an

optimized machine learning classifier can be used to finally classify the repeat (Hoede et al.

2014). Previous deep learning approaches in the area have utilized k-mer counts as features

rather than learning from the raw sequence (Nakano et al. 2017, Nakano et al 2018). Current de

novo approaches rely heavily on accurate consensus sequences, which may be difficult to

construct due to the nature of repetitive elements. For example, it is common for young TEs to

insert within older TEs, which requires the accurate assertion of TE boundaries before the TE is

classified (Joly-Lopez and Bureau 2018). Finally, these approaches are heavily reliant on

hand-picking a comprehensive set of protein domains, which may need to be constantly adjusted

as new repetitive elements are discovered or classification hierarchies are changed.

CHAPTER 3: CLASSIFIER EXPERIMENTAL SETUP

3.1 Introduction

This chapter introduces how I split the Repbase dataset to train and compare repeat

element classifiers for fixed size kmer lengths. I review previous solutions to the classification

problem as well as presenting new ones based on deep learning.

3.2 Dataset
The Repbase repeat database is a curated list of repeat element consensus sequences

whose classes were discussed in Chapter 1. Classification is done based on the Repbase

hierarchy from figure 1.1, and additionally delineating LINE (R2, RTE, Jockey, L1, I) and SINE

(tRNA, 7SL, 5S) elements. Three datasets were constructed from Repbase, which are called

Update, Drosophila, and Aradiposis. The Update dataset consists of a train set from the RepBase

20.01 release and a test set from the current RepBase 24.01 release. The Aradiposis and

Drosophila datasets were constructed by leaving out repeats from the specified genus. The class

and element length distribution of each dataset are given in figure 3.1. Since the RepBase 24.01

is far larger than the training sets, it can be used as an approximation of each training set.

Figure 3.1: Class distributions and element length distributions for RepBase 24.01 and the
datasets (aradiposis, drosophila and drosophila) derived from it. The total size for the train
training and testing splits for each dataset were as follows: aradiposis (40925/466), drosophila
(39413/2026), update (32112/9332).

These datasets were chosen to keep consistency with previous work (Hoede et al. 2014,

Nakano et al. 2018). An epoch of training was defined as sampling one kmer of a given length

from each consensus sequence in the training data set. Testing was conducted based on a 10

fixed, randomly chosen, kmers from each consensus in the test set.

3.3 Classifiers

The following section defines the deep learning classifier architectures that will be used

in the experiments. An additional comparison will be made to RepeatMasker (RM) with default

sequence comparison parameters (skipping bacterial insertion sequences checks, not masking

RNA genes, and turning off tandem repeat finder) and use the training data sequences as a

library to classify the repeats in the test data. Since the results of RM are subsequence detections

of repeat element classes, classification of a sequence is based on the longest found match.

Some preprocessing was also done before feeding the dataset into each classifier. For

sequence based models reliant on base pair (a, t, c, g) input, a one-hot representation is used and

add an embedding layer directly before each of the networks. Some k-mer lengths were longer

than some consensus sequences, so these were padded these with a one-hot representation of ‘n’ .

Feature input was uniformly scaled to fit inputs between 0 and 1.0. A description of each of the

deep learning models is as follows:

DNN w/ K-mer Features (DNN): This model is a classic deep neural network with

multiple layers which follows the work of repeat classification in (Nakano et al. 2017). Nakano

proposed a deep learning classifier based on k-mer subsequence counts of size 2, 3, and 4

resulting in a feature vector of 336 k-mer counts. The classifier has 1 layer with 200 nodes,

ReLU activation, dropout of 0.5, and a sigmoid output.

A problem with vanilla neural networks is that they do not utilize a beneficial prior over

the space they learn. This is especially apparent when learning from images, where translational

invariance fails to be learned quickly. The first example of neural network modularity was a

response to this failure - the convolutional neural networks (CNNs) (Y. Lecun et al. 1998).

CNNs utilize a sliding window approach where local neural network functions feed their output

to neural networks with larger context at a higher level in the hierarchy, forcing the network into

learning a function with translational invariance (an example of an infinitely strong prior). This

greatly speeds up training time on image-based problems and massively reduces the number of

parameters because each layer has extensive parameter sharing between kernels. Figure 3.2

visualizes how a CNN layer processes a 2d input. One can imagine a CNN as a single neuron

with fixed context around itself being applied to every point in the image where its weight

kernels fit.

 Figure 3.2: Visualization of forward pass for a convolutional layer with a single kernel,
where a normal convolutional layer would include many kernels. Though named a
‘convolutional’ neural network, the operation used is actually cross-correlation. Colors
correspond to annotations in figure 2.1.

Layer types which supplement convolutional layers have also developed, including

‘pooling’ layers which forego complex weight matrices in favor of a simple addition or maxing

operation across inputs - helping to quickly reduce the size of the output features and increase

context (A. Krizhevsky et al. 2012). Another type of layer is the residual layer, which helps

gradients flow to the beginning of the network by adding the output of previous layers to those

further in front (K. He 2015). Residual layers have allowed for unprecedented depth in deep

networks , but at a certain point the accuracy tends not to improve by substantial margins over

having a handful of layers (around 20-30).

Residual Network (CNN): The reliable training, fast runtime, and ease of

interpretability of convolutional neural networks has seen the architecture become widely used

for bioinformatics applications. Our architecture is motivated by the residual convolutional

network used to train the DNA Generative Adversarial Networks in Killoran et. al. (2017) and

Gupta et. al (2018). Figure 3.3 shows the architecture in detail. I found that for classification

tasks it was important to add batch normalization before the activation functions in the residual

blocks to stabilize training.

Figure 3.3. Residual Network Architecture used in this work. LeakyReLU was used after the
Embedding layer. The embedding converts each one hot vector into a 100 dimensional vector to
be used by the residual part of the network. Each res block consists of 2 convolutional layers
with kernels of size 5 and 100 channels. The output of each ResBlock is multiplied by 0.3 and
added to the input of that ResBlock. The second to last linear layer has an output of 16 and Tanh
activation to encourage learning a 16 dimensional embedding of the input sequence.

Recurrent neural networks (RNNs) also solve the problem of redundant local calculations

by applying a ‘sliding window’ between a processed output from the last time step and the

unprocessed input to the current timestep (Sherstinky 2018). The neural network structure which

processes an individual timestep is commonly referred to as a cell. Figure 3.4 demonstrates how

an RNN processes a sequence.

 Figure 3.4: Visualization of forward pass for a simple recurrent layer with 3 neurons.
Note that RNN cell flavors, like the LSTM or GRU, usually have more complicated function
structures than the single vector-matrix multiplication and activation function shown here. Each
color corresponds to annotations in figure 2.1.

RNNs have consistently shown to achieve state of the art results in natural language

processing tasks, as well as other problems that can be modeled as a time-series. Unfortunately,

RNNs have shown to take longer to train than CNNs for long sequences, take a longer time than

CNNs to evaluate inputs, and have problems during training due to exploding and vanishing

gradients. Several RNN cells have been proposed to aid these problems. The LSTM (Long Short

Term Memory) aids the flow of information across the series by implementing forget gates and

self-loops. GRUs (Gated Recurrent Network) are another formulation which accomplishes the

same task in a slightly different way, but achieves comparable results to the LSTM on most

tasks. Further solutions to the exploding gradient problem include clipping the gradients at some

constant, ensuring that extremely large gradients (which would cause inf or nan outputs) become

tractable for the network to update its parameters on.

BiLSTM (RNN): Bi-directional LSTMs are a common choice for sequence analysis,

especially in natural language processing. In this work I use a 2-layered, bidirectional LSTM

with 128 nodes and a dropout of 0.5. The hidden states from the final layer are then average

pooled across the sequence and run through a classifier with an intermediate layer of another 128

nodes and LeakyReLU activation. The final classification is done by a sigmoid output.

Each deep network based classifier is trained to minimize the cross entropy between

output and real class labels. The adam optimizer is used with default parameters, namely with

betas = (0.9,0.999) and epsilon = 10-8 . A learning rate of 0.1 was used. Every model was trained

for 100 epochs and the learning rate was cut in half at 50 epochs. The batch size used is 256. All

LeakyReLU activations had a negative slope of 0.1.

CHAPTER 4: CLASSIFICATION RESULTS

4.1 Introduction
In this chapter I analyze the performance of each deep learning model with respect to

speed, accuracy, and robustness to different kmer length scales. I also perform an analysis of

kmers which may cause confusion at the read level. Then, I map the output of an intermediate

layer to a low dimensional embedding space and attempt to learn a more useful embedding using

a triplet loss.

4.2 Classification Results

This section presents the results of repeat element classification. The results indicate that

deep learning methods are far faster and have greater generalizability to new repeat elements

than sequence comparison methods, especially as hierarchy. I also show that K-mer count

features have competitive testing accuracy with learning from a raw sequence string, although

the count-based model suffers from a significantly worse fit on the training data.

The first test measures the classification accuracy across the three datasets. Figure 4.1

and Figure 4.3 show the results of running repeatmasker on each of the datasets. Although

repeatmasker was able to very accurately classify sequence for which it found matches, it was

unable to find matches for a large portion of the sequences, resulting in overall lower

classification accuracy versus machine learning model based methods presented in Figure 4.2

and Figure 4.5. In general, deep learning methods and repeatmasker were competitive at lower

levels in the hierarchy, but deep learning models performed significantly better at higher levels.

Repeatmasker did particularly well when the distribution of the testing dataset diverged from the

distribution of the training data. This difference is especially apparent for the Aradiposis dataset,

where there are far more Gypsy elements than Copia elements in the training dataset, but the

other way around for the test data set. This is indicative of confusing sequences being mislabeled

as the class which is present in higher number in the training dataset. The costs and benefits of

such a model bias should be examined on a species specific basis. For example, in the

Drosophila dataset, this bias helped many more repeat elements be correctly classified by deep

learning based methods. The update dataset seemed to be particularly difficult for both methods,

resulting in the worst false positive rate for repeatmasker and the lowest classification accuracies

for the deep learning models. We also compare precision, recall, and f1 scores for the

repeatmasker and deep learning models in figures 4.3 and 4.5.

Between deep learning models, the difference in classification is less pronounced, but

overall the sequence based deep learning models (RNN and CNN) outperformed the DNN with

kmer-count based features. The difference between the RNN and CNN models is less

pronounced, and in most cases negligible.

 Aradiposis Drosophila Update

Sequences
Masked (%)

56.7 21.5 32.6

 1 2 3 1 2 3 1 2 3

Masked Acc. 0.96 0.97 0.98 0.96 0.98 0.99 0.93 0.97 0.98

Total Acc. 0.54 0.55 0.56 0.21 0.21 0.21 0.30 0.32 0.32

Figure 4.1. Results of running repeatmasker with default parameters on each dataset, including
top 1 accuracy at each level of the defined RepBase repeat element hierarchy.

 Aradiposis Drosophila Update

 1 2 3 1 2 3 1 2 3

DNN 0.46 0.73 0.85 0.38 0.64 0.76 0.31 0.56 0.68

RNN 0.50 0.75 0.83 0.34 0.64 0.75 0.34 0.60 0.72

CNN 0.51 0.74 0.82 0.40 0.69 0.78 0.34 0.60 0.71

Figure 4.2: Testing accuracies of deep learning based methods on select repeat element
datasets.

Figure 4.3: RepeatMasker Precision, Recall and f1 Score for Aradiposis, Drosophila, and
Update datasets.

 RM DNN RNN CNN

Speed (s) 350 ± 20 2.6 ± 0.1 0.67 ± 0.03 0.52 ± 0.02

Figure 4.4: Speed in seconds of running each classifier over 10,000 150-mers from the Repbase
24.01 dataset for 10 runs. Preprocessing, such as one-hot encoding and kmer counting, were
included in the total times to simulate realistic usage.

Figure 4.5: CNN Precision, Recall and f1 Score for Aradiposis, Drosophila, and Update
datasets.

The third test is a set of timed runs for each of the methods on 10,000 150-mers shown in

figure 4.4 . Repeatmasker takes almost 3 orders of magnitude more time to run on the set of

k-mers than the deep learning models which require minimal preprocessing. The DNN model is

slower mostly due to the time it takes to count k-mers. This time could likely be reduced with a

more efficient implementation, but even so is far faster than sequence comparison methods.

The third test examines differences between k-mer counts as features versus sequence

input as we vary k-mer length. We selected lengths of 25, 50, and 150 as next generation

sequencing technologies usually fragment the genome into reads of these lengths. The length of

1000 was included to show how much improvement could be expected in classification accuracy

from very large read lengths and more accurate assembly of repetitive elements. Figure 4.6

shows that, as expected, having larger input sequences significantly improves model accuracy.

Surprisingly, k-mer count features seem to be competitive with sequence input for testing on

sequences derived from new species (Arabidopsis and Drosophila). When the sequences between

the train and test datasets share greater similarity, as is seen in the Update dataset, models based

on sequence based input show significantly better performance over kmer-count features. This is

likely due to longer range k-mer features being available to use for the sequence based model,

while the k-mer count model is reliant on very local signal.

To better understand how robust a trained CNN classifier is to picking different

subsequences from the same repeat element, we move the classifier across a sequence and map

its outputs. As seen in figure 4.7, some parts of the sequence are highly confusing, especially at

the leaf nodes of the hierarchy. The edge of the sequence also introduces confusion since there is

less sequence information. Likely areas of confusion include similar protein coding domains and

simple repeats. Confusion is less likely to occur near areas which are conducive to accurate

classification, such as the boundary between two protein coding domains which indicates an

element-specific ordering of protein domains.

Length 25 50 150 1000

Update

CNN 0.35 / 0.25 0.45 / 0.28 0.62 / 0.34 0.82 / 0.56

DNN 0.30 / 0.24 0.33 / 0.26 0.41 / 0.31 0.59 / 0.48

Aradiposis

CNN 0.30 / 0.31 0.33 / 0.40 0.60 / 0.51 0.79 / 0.69

DNN 0.30 / 0.30 0.31 / 0.38 0.37 / 0.46 0.56 / 0.67

Drosophila

CNN 0.29 / 0.39 0.33 / 0.37 0.61 / 0.40 0.83 / 0.62

DNN 0.28 / 0.39 0.31 / 0.38 0.36 / 0.38 0.50 / 0.56

Figure 4.6: (Training accuracy / Test accuracy) for models trained on update, aradiposis, and
drosophila datasets when repeat elements are fragmented at varying kmer lengths. Each
train/test accuracy is given at the lowest level in the RepBase hierarchy.

To visualize what sequences are tricking the trained CNN model at a global scale, I

present a log normalized confusion matrix in figure 4.8. As expected, the model is predicting a

large amount of sequences as gypsy, since it is the class with the largest presence in the training

set. The largest misclassification occurs between sequences belonging to Gypsy and Copia - both

long terminal repeats sequences with a large number of subsequence k-mers that share high

sequence similarity.

Figure 4.7: Example of classifying unseen Copia element using CNN classification model as a
sliding window across the sequence. Included are classifications at 3 different RepBase
hierarchy levels.

Figure 4.8: Log normalized confusion matrices of model on Update dataset.

4.3 Embedding Using Triplet Loss

The features learned by a neural network in classification tasks are optimized for

accuracy, but may be less meaningful for tasks such as querying the closest sample. This leads to

the concept of using neural networks to learn embeddings for metric spaces. The most

straightforward framework for metric space learning is the siamese network, in which pairs of

samples are run through two copies of the same network (Koch 2015). The networks are

punished for embedding pairs of inputs close to each other if they are from different classes or

for embedding pairs of inputs far from each other if they are from the same class. Unfortunately,

siamese networks can have stability problems with training reasonable embeddings in some

scenarios (Hoffer and Ailon 2015). Triplet networks alleviated some of the training problems

siamese network faced and significantly improved accuracy on face verification datasets. The

triplet network takes a triplet of three samples, an anchor a, a positive sample p (which is meant

to be similar to the anchor) and a negative sample (which is meant to be different). The same

network is run for all three samples and the loss is calculated by the following triplet loss:

 max (d (a, p) d (a,) α, 0)L = − n +

Where is a distance margin, and d is a distance function (normally an L2 loss).α

Figure 4.9: Visualization of triplet network structure with L2 based distance loss. Anchor,
positive sample, and negative sample are given by a,p, and n. The same network f is applied to
each of a, p, n. The margin is given by .α

I further explore the information captured by the trained CNN model by visualizing the

output of an internal layer and applying standard dimensionality reduction techniques - namely

t-SNE and PCA. I also attempt to improve the interpretability of the embedding by training a

CNN model to reduce the distance between sequence pairs of different classes via a triplet loss.

CNN: This model is the same architecture as the previous CNN model and uses weights

from the second to last layer, resulting in an embedding size of 16.

Triplet: I train a new model with the same architecture as the previous CNN model to

optimize an L2 based triplet loss function enforcing a margin of 0.01.

Training parameters were the same as for the classification task. The triplet loss for the

embedding from the CNN intermediate layer versus the triplet trained CNN model embedding

are shown in figure 4.10. The new learned embeddings better abide by the triplet loss metric. To

test the utility of the new embeddings, 100,000 kmers were embedded from the training sets of

the Aradiposis, Drosophila, and Update datasets. A kd tree is used to quickly query the nearest

neighbor in embedding space. Each testing sequence is then embedded and classified based on

the nearest embedded neighbor from the training set.

 Aradiposis Drosophila Update

CNN 0.0029 0.0025 0.0022

Triplet 0.000035 0.000032 0.000030

 Figure 4.10. Triplet Loss with a margin of 0.01 from training set.

Although the new embeddings are better aligned with the triplet loss, they fare

significantly worse in classifying new repetitive elements, as seen in figure 4.10. To examine

this difference in more detail I visualize the embeddings of the CNN output and triplet loss in

figure 4.13.

 Aradiposis Drosophila Update

 1 2 3 1 2 3 1 2 3

CNN 0.49 0.68 0.79 0.27 0.56 0.71 0.24 0.54 0.63

Triplet 0.34 0.61 0.73 0.21 0.49 0.64 0.22 0.50 0.62

Figure 4.11. Accuracy of 1 nearest neighbors to 100,000 kmer training dataset.

There seems to be overall good separation of groups with many elements in both

embeddings. For classes with fewer elements, t-SNE better brings out clusters than PCA. For

example, the SINE elements in the t-SNE plots are clearly separated while they are scattered

across other classes in the PCA embedding. The PCA embeddings for the raw CNN outputs are

seen to be a less tightly grouped than the same embeddings trained on a triplet loss, but there is

better separation of the hAT and Mariner elements than with the triplet loss embeddings. The

t-SNE embedding shows little structural difference between the Triplet based and raw CNN

embeddings.

Embeddings can be used for interpolating between sequences. For example, in figure

4.12 we interpolate between two gypsy sequences.

Figure 4.12. Linear, nearest neighbor interpolation between two Gypsy sequences using raw CNN
embeddings. In parentheses beside each element class is the distance to the query in embedding space.

Figure 4.13. 100,000 PCA Aradiposis Dataset Training Kmers. T-SNE plots subsample 2000 kmers to
reduce computation time. Top 2 rows belong to PCA embeddings and bottom 2 rows belong to t-SNE
embeddings. The first and third rows belong to raw CNN embeddings while the second and fourth rows
belong to embeddings trained on a triplet loss.

4.4 Conclusion and Discussion
In this chapter I conducted a comparative analysis of new and previously developed deep

learning models with the sequence comparison based method repeatmasker. For classification of

short sequences at the base of the RepBase hierarchy I find that repeatmasker achieves good

testing accuracy with a low false positive rate. Higher up the RepBase hierarchy, or with longer

sequence size, deep learning models can achieve more robust classification results which better

warrant the approach. I experiment with sequence based and k-mer count input features and find

that although kmer-count input features achieve competitive testing accuracy with sequence

based models for shorter k-mer sizes, they fit the training data significantly worse for larger

k-mer sizes and as such may have worse viability for classifying repeats with low divergence to

the testing set. Then, I analyze embedding sequences based on the outputs of an intermediate

layer of the deep learning model versus an embedding trained on the triplet loss. I compare the

embeddings using visualization and nearest neighbor classification loss. I find that both

embeddings show good classification boundaries, but that using a triplet loss consistently

decreases nearest neighbor classification accuracy.

The classifier results presented were also fine-tuned by increasing the number of layers

and neurons per layer. Unfortunately, these changes did not result in significantly different

classification results, indicating the need for either changing the input (for example, providing

the context of all reads in a sample to the network), or applying an innovative network

architecture (like a neural turing machine) which can better model TE sequences.

CHAPTER 5: GENERATING REPEATS

5.1 Introduction

Previously I used supervised techniques to train classifiers on labeled dna sequences.

Unsupervised techniques are a way of learning distinctive features of a dataset without needing

these labels. Unsupervised deep learning presents an interesting way of learning likely TE

mutations and variations, which may enable discovery of novel TEs. In this section I present a

background to unsupervised deep learning techniques, like the autoencoder and Generative

Adversarial Network, and discuss work using them to learn a class-specific embedding of repeat

sequences.

5.2 Auto Encoders
When the learning problem can be defined as supervised, or when a large set of classified

training data exists for the problem, metric learning by the triplet network is a good, stable

technique for learning embeddings. Learning useful embeddings without these data labels

requires unsupervised techniques. A classical unsupervised network is the auto-encoder, which

learns a compressed encoding vector by simultaneously training an encoding and generating

network to replicate samples in a dataset, as shown in figure 2.8 (Goodfellow et al 2016). The

replication loss varies based on the type of data, but in the case of images it is usually mean

squared error (mse). A problem with autoencoders is that using a straightforward loss functions

like mse makes the generation network prefer blurry samples to reduce the average error over all

samples. To alleviate this problem, it would be necessary to learn a network which learns a loss

function which penalizes unrealistic images. This motivated the development of generative

adversarial networks (GANs) (Goodfellow 2014).

Another use for autoencoders is anomaly detection. Large differences between a

reconstruction and input sample can be used to detect areas of interest, for example, a tumor in a

brain scan (Schlegl et al. 2019).

5.3 Generative Adversarial Networks

GANs are a modern take on unsupervised learning which learn to model a distribution by

defining a competition between two neural networks (Goodfellow 2014). One network is labeled

as the generator while the other is labeled as the discriminator. The generator’s goal is to fool the

discriminator into being unable to distinguish between the set of real data and generated data,

whilst the discriminator’s goal is to ensure generated samples are rejected and real samples are

kept. The input to the generator is a sample from a normal distribution, meaning the generator is

learning a function for mapping the samples of a probability distribution to realistic data

samples. The input to the discriminator is either the generator’s output or real examples and the

output of the discriminator is the probability that the input is real or not. The GAN architecture is

shown in figure 5.1.

Figure 5.1: Comparison of generative adversarial network (GAN) and auto encoder (AE)
architectures. The encoder, generator, and discriminator networks are labeled with e,g,and d
respectively. The latent variable, or encoding of the sample, is given by z. Note that in the GAN,
the latent z variable is generated by sampling a normal distribution.

Originally, Jensen-Shannon divergence was used to define the loss between the real and

generated data distributions. Unfortunately, Jensen-Shannon divergence is prone to cases of

gradient collapse which can ruin training and result in the generator only outputting noise. The

Wasserstein GAN redefined the distribution distance function to an approximation of the earth

mover distance (the minimum amount of effort needed to move one distribution into another),

allowing for greater resilience to training problems (Arjovsky et al. 2017, Gulrajani et al. 2017).

Recent work has explored the use of GANs for biological sequence data. Killoran et al.

pretrained a generator to output realistic sequences before traversing the latent space to ‘design’

dna sequences with specific properties (Killoran et al. 2017) . This approach, however, requires a

differentiable discriminator, which is not commonly available for most publicly available

sequence analyzers. Gupta and Zhou proposed a feedback GAN architecture which progressively

shifts the generated sequence distribution by replacing a fraction of the ‘real’ data with the

highest scoring generated data (Gupta and Zhou 2018).

5.4 Generation of Transposable Elements

Embeddings can be useful for interpolating between two sequences by looking at the

nearest embedded neighbors. The quality of the interpolation is highly dependent on how many

sequences are embedded, and may result in duplication (as seen in Figure 4.12) if a sequence is

close to multiple interpolation points. To construct smooth interpolations, generative models

must be used. One method to generate repeats is to use an autoencoder which minimizes the

reconstruction loss between a real sequence and a generated output sequence. The most common

generator network architecture that has been used with sequences up to 150 base pairs (Killoran

et al. 2017, Gupta and Zhou 2018) is shown in Figure 5.1, which is similar to the classifier

trained in the previous section.

Figure 5.1. Residual network decoder/generator used in this work. The initial linear layer takes
as input a 128 dimensional embedding of a DNA sequence and outputs a length 150 vector (the
length of the DNA sequence to be generated). The residual blocks are defined as in figure 3.3.
Note that the initial linear layer embedding size is varied, since accurate reconstruction from a
size 16 embedding was troublesome.

I tested this generator along with the RNN and CNN architectures from the classification

task, simply changing the final softmax layer to the desired embedding size. The RNN was

surprisingly easier and faster to train, so I decided to continue to use it as an encoding network. I

found that training an autoencoder on repetitive elements without learning to memorize the input

required a few model tweaks. First, I tested the following embedding sizes: [32, 64, 128].

Embedding sizes larger than 128 were not tested since the model could learn to memorize the

input perfectly at an embedding size of 128 (>99% reconstruction accuracy on held out sequence

classes). Embedding sizes smaller than 128 consistently had trouble training, so I opted to keep

this embedding size and teach the network to denoise inputs by randomly changing [10,20,40] of

the 150 input base pairs. The networks consistently trained to the maximum accuracy that could

be achieved by copying the input and then stabilized. These problems echo those stated in

Killoran et al (2017). Schegl et al (2019) showed an improvement to autoencoders by first

training a GAN on the samples, freezing the GAN and then training an encoder network to learn

a mapping from a real sample to a latent variable. I was able to successfully train the Wasserstein

GAN from Killoran et al to output realistic sequences as can be seen in figure 3.16.

Unfortunately, using the method of Schegl et al, the encoder network was not able to learn a

reasonable mapping from sequences to the latent vector and had a base-pair reconstruction

accuracy of only 40% for LTR sequences (which the GAN and encoder were trained on) and

39% for non-LTR sequences (which were used as the test set).

Figure 5.2. Example interpolation of two points in latent space by WGAN model trained on LTR
Sequences.

Figure 5.3. Similarity using Levenshtein edit distance metric between randomly generated SINE reads
(blue) versus SINE reads generated by GAN (Orange) and real SINE reads. Similarity is taken between
reads from a randomly excluded SINE element versus reads from other SINE elements not chosen.

5.5 Conclusion and Discussion

In this section, I attempted to learn each repeat class’s distribution in an unsupervised

manner using autoencoder and GANs. I was able to output a smoother interpolation between

sequence queries generated by randomly selecting from a latent space, and showed that these

sequences have a closer distribution to reads taken from real TEs (Figure 5.3) when compared to

randomly generated reads. Unfortunately, I was unable to learn a class-specific mapping from

sequences to latent vectors which could be used for class identification by reconstruction loss.

Short reads may be problematic because of how many different possibilities are present

between samples and within TEs (especially very long TEs). Better results may have be obtained

by generating the entire sequence of the transposable element, as longer sequences may have a

more consistent context across TE samples which can be more easily learned by a deep learning

model. This type of generative model would have to generate much larger sequences, which may

require the use of unique neural network architectures which have not yet been well researched.

CHAPTER 6: WEB TOOLS AND CONCLUSION

As a complement to this work, I also developed a web application for utilizing some of

the models present in this thesis. I built the application in flask and React. Capabilities of the

application include returning the classification of a sequence, showing the repeat distribution of a

set of k-mers, and the class probability at each point in the k-mer by using the classifier as a

sliding window. I also enable visualizations of the query k-mers in PCA space. Finally, the

application enables users to see the output of the GAN model I trained on repeat elements,

nearest neighbors of select embedded training sequences, and interpolation between sequences in

latent space.

In this work I utilized deep learning techniques to train a classifier on short read-like

sequences from repeat elements. I showed that an initial classification of such sequences is

possible to perform far more quickly using deep learning techniques, although with a loss in

precision. Finally, I experimented with different ways of learning an embedding space for

sequences, and showed that the intermediate layer output of the classifier worked well when used

to classify nearest neighbors in the test set. In future work I will continue to work on

unsupervised techniques to embed dna sequences, as well as improving classification for new

sequencing technologies, such as pacbio long reads where reads can reach lengths of over

multiple 1000s of base pairs.

REFERENCES

G. Abrusan, N. Grundmann, L. DeMester, and W. Makalowski “TEclass - a tool for automated
classification of unknown eukaryotic transposable elements” Bioinformatics Applications Note
200: 25(10) : 1329-1330

M. Arjovsky, S. Chintala, and L. Bottou “Wasserstein GAN” Arxiv:1701.07875 2017

W. Bao, K.K. Kojima, and O. Kohany “Repbase Update, a database of repetitive elements in
eukaryotic genomes” Mob DNA, 2015;6:11

X. Cui, P. Jin, et al. “Control of Transposon activity by a histone H3K4 demethylase in rice. “
Proc Natl Acad Sci U S A. 2013;110(5):1953-8.

S. R. Eddy “Multiple Alignment Using Hidden Markov Model” Proc. Third Int. Conf. Intelligent
Systems for Molecular Biology 1995:114-120

A. Gupta and J. Zou “Feedback GAN (FBGAN) for DNA: A Novel Feedback-loop Architecture
for Optimizing Protein Functions” Arxiv:1804.01694 2018

S. Goswami, K. Lee, S. Shams and S. Park, "GPU-Accelerated Large-Scale Genome Assembly,"
2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver,
BC, 2018, pp. 814-824. doi: 10.1109/IPDPS.2018.00091

I. Gulrajani , F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville “Improved training of
Wasserstein GAN” Arxiv:1704.00028 2017

I. Goodfellow, Y. Bengio, and A. Courville “Deep Learning” MIT Press 2016

C. Hoede, S. Arnoux, M. Moisset, et al. “PASTEC: AN Automatic Transposable Element
Classification Tool.” PLOS One 2014

E. Hoffer and N. Ailon “Deep Metric Learning using Triplet Network” ICLR 2015

I. Goodfellow “Generative Adversarial Nets” NIPS 2014

P. J. Hornsby “Telomerase and the aging process” Experimental gerontology vol. 42,7 (2007):
575-81.

K. He, X. Zhang, S. Ren, and J. Sun “Deep Residual Learning for Image Recognition”
Arxiv:1512.03385 2015

G.E. Hinton, N.Srivastava, A.Krizhevsky, I. Sutskever, and R. R. Salakhutdinov “Dropout: A
simple Way to Prevent Neural Networks from Overfitting” JMLR, 2014 vol 15:1929−1958

R. Hubley, R.D. Finn, J. Clements, et al. “The Dfam database of repetitive DNA Families”
Nucleic Acids Res 2015; 44(D1): D81-9

S. Ioffe and C. Szegedy “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift” Arxiv:1502.03167 2015

V. Jamilloux, J. Daron, F. Choulet, and H. Quesneville “De Novo Annotation of Transposable
Elements: Tackling the Fat Genome Issue” IEEE vol 105, 3 (2016)

Z. Joly-Lopez and T. E. Bureau “Exaptation of Transposable element coding sequences”
Genetics and Development 2018; 49:34-42

K. K. Kojima “Human Transposable Elements in Repbase: Genomic Footprints from Fish to
Humans” Mobile DNA (2018); 9(2)

N. Killoran, L.J. Lee, A. Delong, D. Duvenaud and B. J. Frey “Generating and designing DNA
with deep generative models” 2017 arXiv:1712.06148v1

G. Koch, R. Zemel, R. Salakhutdinov “Siamese Neural Networks for One-shot Image
Recognition” 2015

G. Koch “Siamese Neural Networks for One-Shot Image Recognition” University of Toronto
Master’s Thesis 2015

A. Krizhevsky, I. Sutskever, and G. Hinton “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner “Gradient-Based Learning Approach to
Document Recognition” IEEE Proceedings 1998

F. K. Nakano, W.J. Pinto, G. L. Pappa, and R. Cerri “Top-down Strategies for Hierarchical
Classification of Transposable Elements with Neural Networks” IEEE 2017

F.K. Nakano, S. M. Mastelini, S. Barbon, and R. Cerri “Improving Hierarchical Classification of
Transposable Elements using Deep Neural Networks” IEEE 2018

B. Piegu, S. Bire, P. Arensburger, Y. Bigot “A Survey of Transposable Element Classification
Systems - A call for a fundamental update to meet the challenge of their diversity and
complexity” Molecular Phylogenetics and Evolution 2015: 86 :90-109

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L.
Antiga, and A. Lerer. “Automatic Differentiation in PyTorch” NIPS (2017)

D. Rodriguez-Terrones and M.E. Torres-Padilla “Nimble and Ready to Mingle: Transposon
Outbursts of Early Development” Trends in Genetics vol 34,10 (2018)

 L. Schrader and J. Schmitz “The impact of transposable elements in adaptive evolution”,
Molecular Ecology (2018): 1-13

T. Schlegl, P. Seebock, S. Waldstein, G. Langs, and U. Schmidt-Erfurth “f-AnoGAN: Fast
unsupervised anomaly detection with generative adversarial networks” Medical Image Analysis
2019

A. Sherstinsky “Fundamental of Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM) Network” Arxiv:1808.03314 2018

A. Smit, R. Hubley and P. Green. RepeatMasker Open-4.0. 2013-2015
<http://www.repeatmasker.org>

T.J. Treangen and S.L. Salzberg Repetitive DNA and next-generation sequencing: computational
challenges and solutions. Nat Rev Genet. 2011;13(1):36-46. doi:10.1038/nrg3117

T. J. Wheeler, J. Clements, S.R. Eddy, et al. “Dfam: a database of repetitive DNA based on
profile hidden Markov models.” Nucleic Acids Res. 2012;41(Database issue):D70-82.

J. Zhang, T. Zuo, and T. Peterson “Generation of Tandem Direct Duplications by Reversed-Ends
Transposition of Maize Ac Elements” PLOS Genetics (2013)

http://www.repeatmasker.org/

