
Introduction 

As pharmaceutical care continues to advance in the area of oncology, scientists 

have turned to nanoparticle delivery systems to improve upon existing anticancer 

agents. Exact definitions vary, but one commonly used definition from the National 

Nanotechnology Initiative defines nanotechnology as “science, engineering, and 

technology” on the order of 1 to 100 nanometers in any dimension1. The last two 

decades have witnessed enormous growth in the development of nanoparticle 

anticancer agents. In 1995, the FDA approved pegylated liposomal doxorubicin (PLD, 

Doxil ®) for the treatment of platinum-refractory ovarian cancer. Since that time, there 

has been extensive research into the use of liposomal agents for the treatment of 

various malignancies. The hope has been, and continues to be, that these agents can be 

used to target cytotoxic chemotherapy to malignant cells while minimizing exposure to 

healthy cells. Unfortunately, only two other nanoparticle agent, Abraxane® and 

Marqibo®, have come to market in the 20 years since the FDA approved Doxil ®. Other 

agents that have been studied as liposomal formulations but are not currently FDA 

approved include belotecan, irinotecan, lurtotecan, cisplatin, oxaliplatin, paclitaxel, and 

vinorelbine2.  

Nanoparticles, and liposomes in particular, are a favored method of drug 

delivery because they provide the ability to control the timing and location of a drug’s 

release3. An additional benefit of liposomal agents is reduced clearance compared to 

small molecule agents, providing more sustained drug concentrations and less frequent 

dosing4. It has been observed for some liposomal agents that concentrations in tumor 

tissue are 10 to 50 times that observed in circulation5. This finding is attributed to the 

enhanced permeation and retention (EPR) effect. Tumors secrete growth factors like 

VEGF that promote angiogenesis and help sustain the rapid growth of malignant cells. 

These new blood vessels are irregular and dilated with wide fenestrations, the epithelial 

cells are poorly aligned, and many vessels lack an underlying basement membrane or 

smooth muscle layer6. The extravasation of liposomes out of circulation is assisted by an 

imbalance between vasodilators (e.g. nitric oxide, bradykinin, prostaglandins) and 

vasoconstrictors (angiotensin II) in tumor tissue. In addition, tumor tissue has slow 

venous return and poor lymphatic drainage, leading to prolonged retention of 

liposomes and accumulation of the drug in tumor7.   

Small molecule drugs are not subject to the EPR effect and are rapidly cleared by 

the liver or kidney. Liposomes, due to their relatively larger size, are clearly by the 

immune cells of the mononuclear phagocyte system (MPS). The MPS comprises the 

circulating blood monocytes as well as resident tissue macrophages 8. The exact 

interaction between the MPS and liposomes is still not completely understood, as it 

involves a complex bidirectional interplay: the MPS cells in the body determine 



biodistribution and clearance of the liposome, and the antineoplastic agent 

encapsulated within the liposome can have a cytotoxic effect on the MPS9-12. Because 

liposomes are cleared from circulation by the MPS, they primarily accumulate in tissues 

with dense populations of these cells, notably the liver and spleen13.  

While liposomes and other nanoparticle agents have the advantages discussed 

above, they have not been more widely developed as commercial agents due to issues 

of pharmacokinetic (PK) and pharmacodynamics (PD) variability. Multiple studies have 

compared liposomal agents to their small molecule equivalent and confirmed that 

liposomes have significantly greater PK and PD variability14-17. The exact causes are still 

unclear, but there does appear to be a correlation between PK/PD variability and 

patient specific factors such as age, body composition, and clearance rate of the 

drug2,17.  

This PK/PD variability may help explain why some cancers respond to liposomal 

agents while other do not. PLD provides an excellent case study here. The FDA approved 

Doxil ® on the basis of a Phase 3 study showing a survival benefit compared to standard 

of care in platinum refractory ovarian cancer18. However, these benefits have not 

extended to other gynecologic cancers. A Phase 2 study designed to evaluate the 

antitumor activity in patients with persistent or recurrent endometrial carcinoma found 

limited activity and subsequent studies have not provided sufficient rationale to pursue 

this research further19.  

The expansion of liposomal anticancer agents to improve on current standard of 

care would be greatly simplified by a relatively rapid, affordable, and accurate marker to 

explain PK/PD variability and predict efficacy in specific patient populations. One 

potential candidate is the F4/80 marker for tumor associated macrophages (TAMs). 

TAMs are specific MPS cells that migrate to and exert their function within the tumor 

tissue. They are mediators of inflammation and are associated with poor prognosis20. 

TAMs regulate tumor growth, angiogenesis, invasion and metastasis through the release 

of cytokines, chemokines, enzymes, and growth factors21. Zamboni et al illustrated that 

the number of MPS cells associated with different tumor cell types correlated with 

distribution of a liposomal anticancer agent to tumor tissue, release of the agent within 

the tumor tissue, and tumor response to the agent22.  

The F4/80 marker is highly specific for MPS cells and survives tissue fixation and 

embedding, allowing the opportunity to visualize and quantify MPS cells in tissue 

samples8. The exact processing and staining methodology has been previously 

described23. MPS cells stain at varying levels of intensity, which can be quantified using 

the H Score calculation of Budwit-Novotny24. Cells are scored as stain: not present (0), 

weak but detectable (1+), distinct (2+), or strong (3+). 



Figure 1: Comparison of a melanoma (A375) and ovarian (SKOV-3) cancer cell line in 

terms of number of MPS cells, distribution of a liposomal cancer agent in an 

encapsulated (S-CKD602) and released (CKD-602) form, and tumor response.   

(Adapted from: Zamboni, 2011) 
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Figure 2: F4/80 staining in tumor tissue, illustrating how the various grades of staining 

appear before and after computer algorithm analysis.  
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The following formula is then used to obtain an overall H Score, ranging from 0 to 400, 

for a tissue region or an entire tissue. 

 

𝐻 − 𝑠𝑐𝑜𝑟𝑒 =
(#𝑜𝑓𝑐𝑒𝑙𝑙𝑠𝑔𝑟𝑎𝑑𝑒 3) × 4 + (#𝑜𝑓𝑐𝑒𝑙𝑙𝑠𝑔𝑟𝑎𝑑𝑒 2) × 3 + (#𝑜𝑓𝑐𝑒𝑙𝑙𝑠𝑔𝑟𝑎𝑑𝑒 1) × 2

𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑒𝑙𝑙𝑠
×  100 

 

The goal of this honors project was to compare the pharmacokinetics and efficacy of 

PLD to small molecule doxorubicin in two xenograft mouse models, one endometrial 

(i.e. HEC1A) and one ovarian (i.e. SKOV-3), with differing TAM densities as measured by 

H Score analysis. PLD concentrations were measured separately for drug still within the 

liposomal carrier (i.e. encapsulated) and drug released from the liposomal carrier (i.e. 

released). It is important to note that encapsulated drug is pharmacologically inactive 

and possesses the PK properties of the carrier molecule, while released drug is active 

and possesses the PK properties of the small molecule agent14.  

 

Methods 

 

HEC1A and SKOV3 cells were obtained from the American Type Culture Collection 

(Rockville, MD) and expanded in culture by the Tissue Culture Facility at the University 

of North Carolina.  

 

Female CB17 SCID mice aged 8 to 12 weeks were purchased from Taconic Labs (Albany, 

NY) and were allowed to acclimate for 1 week at the UNC Lineberger Cancer Center 

prior to initiation of the study. The mice in the endometrial arm were injected with 

1,000,000 HEC1A xenograft cells in 25 uL volume into the uterine horn. The mice in the 

ovarian arm were injected with 200,000 SKOV3 xenograft cells in 5 uL volume into the 

ovarian bursa.  

 

Animal weights were obtained daily for 2 weeks, then biweekly for the remainder of the 

study. Tumor dimensions were measured by palpation biweekly for the duration of the 

study. Animals were sacrificed if tumors measured 2.0 cm in any direction or the animal 

lost 20% from maximum body weight achieved.  

 

PLD was purchased from FormuMax Scientific (Palo Alto, CA) and nonliposomal 

doxorubicin (NL-doxo) was purchased from Sigma Aldrich (St. Louis, MO). Dosing details 

for each phase of the study are provided in Table 1. In the PK portion of the study, drug 

was injected IV x 1 via a tail vein. In the efficacy portion of the study, drug was injected 

IV via a tail vein weekly for up to 6 doses or until the animal met criteria for harvest.  



Table 1: Dosing of PLD and NL-doxorubicin by study phase 

Phase PLD diluted in PLD diluted to NL-doxo 
diluted in 

NL-doxo 
diluted to 

PK D5W 1.2 mg/mL NS 1.2 mg/mL 

Efficacy 
6 mg/kg 

D5W 1.2 mg/mL NS 1.2 mg/mL 

Efficacy 
3 mg/kg 

D5W 0.6 mg/mL NS 0.6 mg/mL 

 

In the PK and initial efficacy studies, mice were treated with PLD and NL-doxorubicin at 

6 mg/kg. Mice in the initial efficacy study did not tolerate multiple doses, so a follow up 

efficacy study was conducted comparing PLD and NL-doxorubicin at 3 mg/kg. In addition 

to the PLD and NL-doxorubicin arms for both mice bearing HEC1A and SKOV3 

xenografts, the efficacy studies included a “control” arm consisting of tumor bearing 

mice who received no treatment.  

 

PK samples were obtained prior to drug injection and at 5 min, 30 min, 1 hr, 3 hr, 6 hr, 

24 hr, 48 hr, 72 hr, and 96 hr post injection. Blood samples were placed on ice and 

processed the same day using a solid phase separation method described previously to 

isolate encapsulated and released drug fractions25. Tissues were snap frozen after 

collection and stored at -80°C until further processing. They were then homogenized 

with pH 7.4 PBS buffer at a 1:3 ratio of tissue:PBS and drug in tissue was isolated and 

measured using protein precipitation. Released doxorubicin in plasma, encapsulated 

PLD in plasma, and sum total doxorubicin in tissues were all measured using a high 

performance liquid chromatography assay25. Areas under the curve (AUCs) for overall 

drug exposure were calculated using Phoenix Version 6.2 (Pharsight Corp) with a linear 

up, log down rule.  

 

Results 

 

PLD concentrations as measured in plasma, liver, and spleen were not significantly 

different between the mice bearing HEC1A and SKOV3 xenografts. AUC analysis showed 

that SKOV3 PLD exposures were 70%, 86%, 102%, and 143% of the HEC1A exposures for 

released drug in plasma, encapsulated drug in plasma, sum total drug in liver, and sum 

total drug in spleen, respectively. This compared to an SKOV3 PLD AUC in tumor tissue 

that was 263% of HEC1A AUC. PK data for plasma and tumor are plotted with respect to 

time in Figure 3 and Figure 4. At 3 hours, concentrations in SKOV3 tumor tissue 

averaged 11.2 times that in HEC1A tumor tissue. This differential gradually narrowed 

over time, but was still observed as far out as the 48 hour time point.  



Figure 3: Concentration vs. Time in plasma from 0 to 96 hours after administration of 

PLD at 6 mg/kg x 1 dose in female SCID mice bearing SKOV3 and HEC1A xenografts. 

Enc: Encapsulated PLD fraction. Rel: Released PLD fraction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Concentration vs. Time in tumor from 0 to 96 hours after administration of 

PLD at 6 mg/kg x 1 dose in female SCID mice bearing SKOV3 and HEC1A xenografts. 

Tot: Sum total doxorubicin 
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Similar trends were observed in the mice treated with NL-doxorubicin; however, the 

ratio of drug measured in tumor relative to plasma was not as great. SKOV3 NL-

doxorubicin exposures were 47% of HEC1A exposures for plasma and 116% for tumor. 

NL-doxorubicin accumulation in tumor, then, was 2.4 fold greater in SKOV3 than in 

HEC1A, while PLD accumulation in tumor was 3.8 fold greater in SKOV3 than in HEC1A.  

 

In the initial efficacy study at 6 mg/kg, median survival for HEC1A PLD vs. NL-doxorubicin 

vs. control was 13 days, 9 days and 27 days. Median survival for SKOV3 PLD vs. NL-

doxorubicin vs. control was 11 days, 9 days and 37 days. While PLD mice did survive, on 

average, longer than NL-doxorubicin mice, the control mice outperformed both 

treatments regardless of whether the mice were in the ovarian or endometrial group. In 

both the PLD and NL-doxorubicin groups, around ½ of the mice were harvested between 

the 1st and 2nd dose of treatment. By the time mice were scheduled to received their 3rd 

dose of treatment, less than 10% of mice remained in any of the treatment groups. On 

the basis of this limited data, it was not possible to properly compare survival between 

groups. The results of the initial efficacy study are presented in Figure 5.  

 

Figure 5: Survival data in mice carrying either SKOV3 ovarian or HEC1A endometrial 

xenografts who received pegylated liposomal doxorubicin (PLD) at 6 mg/kg, 

nonliposomal doxorubicin (doxo) at 6 mg/kg, or no treatment. 

 
 

 

 

 



Figure 6: Survival data in mice carrying either SKOV3 ovarian or HEC1A endometrial 

xenografts who received pegylated liposomal doxorubicin (PLD) at 3 mg/kg, 

nonliposomal doxorubicin (doxo) at 3 mg/kg, or no treatment. 

 
 

 

Accordingly, a follow up efficacy study was conducted at 3 mg/kg. These results are 

presented in Figure 6. In this study, median survival for HEC1A PLD vs. NL-doxorubicin 

vs. control was 14 days, 13 days and 13 days. Median survival for SKOV3 PLD vs. NL-

doxorubicin vs. control was 27 days, 23 days and 20 days. With the limited number of 

mice in each group, the potential trend toward improved survival in the SKOV3 mice 

treated with PLD did not reach statistical significance (p = 0.85).   

 

Discussion 

 

Our findings in this study present more than one paradox. The pharmacokinetic data 

suggests a link between MPS function, as measured by the H score, and drug 

distribution to xenograft tumor tissue. Mice carrying representative ovarian (SKOV3) 

and endometrial (HEC1A) xenografts were given a single dose of PLD or NL-doxorubicin 

at 6 mg/kg. Mice tolerated this treatment well up to 96 hours, and data up to this point 

suggests minimal differences in plasma drug concentrations when comparing the two 

xenografts either based on released or encapsulated drug. However, the mice with 

ovarian xenografts, which had more MPS cells as measured by H Score analysis, 

accumulated more PLD in tumor tissue, suggesting that the increased number of TAMs 



migrating to the tumor in SKOV3 mice was helping to deliver the liposomal agent. This 

same benefit was not seen with NL-doxorubicin. 

 

However, this pharmacokinetic link did not translate to an efficacy advantage at either 

the initial 6 mg/kg or the subsequent repeat study at 3 mg/kg. Tumor bearing control 

mice who received no treatment outperformed both treatment groups for both types of 

xenografts at 6 mg/kg weekly. Moreover, it was noted that the vast majority of mice did 

not tolerate more than 2 doses of drug, whether liposomal or small molecule, 

suggesting that acute anthracycline toxicity is playing more of a role here than the 

cancer progression. The mouse facility noted prior issues with anthracycline toxicity in 

SCID mice on projects for other researchers; however, this had not previously been 

observed on Zamboni lab projects as we use other mouse models for these types of 

studies.  

 

The lower dose of 3 mg/kg also produced disappointing efficacy results. At this dose, 

SKOV3 mice had improved survival relative to HEC1A mice no matter the treatment arm. 

Median survival was consistent with the anticipated trend: PLD > NL-doxorubicin > 

control. However, this trend was not statistically significant. One interesting trend to 

note when comparing the 6 mg/kg data to the 3 mg/kg data is the fact that survival 

times for the HEC1A mice remained the same while survival times for the SKOV3 mice 

improved notably with the dose reduction. One possible explanation is that the survival 

benefit of PLD is still being obscured to some degree by acute anthracycline toxicity. 

Less than 1/3 of SKOV3 mice tolerated all 6 doses of PLD, and no HEC1A mice made it 

this far. The data for NL-doxorubicin is similar. 

 

This study emphasizes several limitations associated with the use of orthotopic 

xenograft mouse models. While orthotopic models are considered more physiologically 

accurate than flank models, these models are generally not considered as 

physiologically accurate as genetically engineered models (GEMMs). Several authors 

have noted that orthotopic xenografts are not sufficient to fully replicate the complex 

and heterogeneous tumor environment26-28. Additionally, SCID mice are not considered 

ideal surrogates because they are immunocompromised and have issues with proper 

DNA repair, resulting in unacceptably high rates of chemotherapy toxicity29. These 

results are consistent with our own. Nevertheless, xenograft mouse models are 

considered a rapid, inexpensive, and versatile method to model the development and 

progression of cancer in humans.  

 



One potential step moving forward is to perform one additional efficacy analysis in mice 

treated at 1 mg/kg. This dose should be sufficiently low enough that toxicity should not 

confound the results, allowing any potential survival benefit from PLD to become more 

clear over the 6 week treatment period.  

 

In summary, this study illustrates a link between the MPS and the distribution of PLD in 

orthotopic xenograft mouse models. The pharmacokinetic advantage of PLD is 

associated with tumor cell lines that have higher MPS population and is most likely a 

function of MPS uptake and delivery of liposomal anticancer agents preferentially to the 

tumor tissue. Unfortunately, whether this pharmacokinetic advantage translates into a 

benefit in terms of efficacy is still unknown. Researchers employing SCID mice for 

efficacy studies should be especially cautious in dosing these animals with 

anthracyclines, as they are particularly prone to toxicity.  
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