
LEARNING ON GRAPHS:
SUPERVISED AND UNSUPERVISED METHODS

Scott Emmons

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Bachelor of Science with Honors in the
Department of Mathematics.

Chapel Hill
2019

Approved by:

Shankar Bhamidi

Jason Metcalfe

Peter J. Mucha

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210594868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


©2019
Scott Emmons

ALL RIGHTS RESERVED

ii



ABSTRACT

SCOTT EMMONS
Learning on Graphs: Supervised and Unsupervised Methods

(Under the direction of Dr. Peter J. Mucha)

We study two methods for learning from network graph data. First, we present a novel method

for the unsupervised learning problem of community detection. The proposed method is, to the best

of our knowledge, the first enabling users to “zoom in” and “zoom out” on communities with varying

levels of focus on network metadata. Second, we review Decagon, a system proposed by Zitnik et

al. (2018) for the supervised learning task of link prediction. On a biomedical benchmark dataset,

Decagon achieves state-of-the-art prediction accuracy. This work adds to the network scientist’s

machine learning toolkit, illustrating its power in a biomedical domain with significant public health

impact.
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To all my friends over the past four years who have patiently listened to me explain, “Take a piece of

paper. Draw a circle on the page for each account on Facebook, and connect the circles with lines if

they are Facebook friends. That’s a graph.”
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CHAPTER 1

INTRODUCTION

In its most basic form, a graph, also called a network, is comprised of things and connections

between those things. Formally, we call the things “nodes” or “vertices,” and we call the connections

between them “edges.” Mathematically, we represent a graph G = (V, E) by a set of vertices V and

a set of pairwise edges E = (v1, v2) with v1, v2 ∈ V .

Networks model many real-world systems. The students in a high school form a friendship

network. The proteins in cells form interaction networks. The roadways in a country form a

transportation network.

For different kinds of systems, we can extend the mathematical model above. We might

model airline flights with a directed network so that an edge (v1, v2) ∈ E encodes an asymmetric

relationship, a flight departing from v1 and traveling to v2, and we might assign a scalar value to the

edge for the distance traveled, forming a weighted network. Our networks could be multimodal, with

different types of edges, such as roadways, train routes, and flights, connecting different types of

nodes, such as towns and cities, in the network. And the nodes and edges in our network could be

temporal, appearing and disappearing over time.

Many types of network analyses exist, ranging from modeling dynamics on networks – how

might disease spread in a social network? – to understanding networks robustness – how many

electricity lines must fail before the city is without power? In this work, we focus on two machine

learning tasks in networks, community detection and link prediction.

From our everyday experience, we intuit that networks have groups of community structure.

In our friendship network, for example, we have groups of friends from our hometown, groups of

friends from school, and groups of friends from work. Community detection is an unsupervised

learning task that seeks automatically to detect these sorts of latent clusters in a graph, and it has



widespread application. For example, neuroscientists have applied community detection methods to

study the functionality of the human brain, and social scientists have applied community detection

methods to study the spread of information on social networks.

In chapter 2, we present a novel method for community detection in the presence of node

metadata. Our algorithm allows users explicitly to specify the relative weight of node metadata, such

as grade or sex in a high school social network, to guide the community detection process. Whereas

previous methods for community detection with metadata assume that the user only cares about the

node metadata insofar as it statistically correlates with edge formation on the graph, our method

allows users to choose how much to overfit the network partition to the metadata, to “zoom in” and

“zoom out” on partitions with varying levels of metadata focus.

Our everyday experience also gives us intuition about link prediction. If we have ever had

Amazon recommend us a product to buy, Netflix recommend us a movie to watch, or Facebook

recommend us someone to add as a “friend,” we have been the subject of a link prediction algorithm.

Any time that we want to know missing or future edges in a graph, we are interested in the supervised

learning problem of link prediction.

In chapter 3, we review Decagon, a state-of-the-art link prediction algorithm (Zitnik et al., 2018).

Decagon’s development is grounded in its application to a multimodal polypharmacy network of

drugs and proteins. An edge between two drugs in the network represents a polypharmacy side

effect, a side effect from taking two drugs concurrently that is not the cause of either drug alone. As

drug-related problems cost the United States $177 billion a year (Ernst and Grizzle, 2001) and 47

million Americans are under polypharmacy treatment (Kantor et al., 2015), Decagon demonstrates

how learning algorithms for graph data can have significant public health impact.

After studying a particular community detection algorithm and link prediction method up close,

we conclude in chapter 4 by stepping back and commenting in general on the role of supervised and

unsupervised learning methods in directions for future research.
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CHAPTER 2

AN UNSUPERVISED LEARNING METHOD FOR
COMMUNITY DETECTION*

2.1 Background

As network science has found application in a variety of real-world systems, ranging from the biolog-

ical to the technological, so too has community detection in networks received widespread attention

(Porter et al., 2009; Fortunato, 2010; Fortunato and Hric, 2016; Shai et al., 2017). Traditionally,

community detection methods have focused solely on the topology of the network, optimizing an

objective function defined on the network structure that captures a particular notion of community,

such as intra-community edge density and inter-community edge sparsity. Many approaches, ranging

from the statistical to the information theoretical, have been used for community detection, and

tradeoffs between these approaches include describing extant links versus predicting missing links

(Ghasemian et al., 2018).

More recent community detection work utilizes node metadata such as the grade and gender

of students in a high school social network. As the No Free Lunch theorem states, community

detection algorithms must make tradeoffs (Peel et al., 2017), and node metadata can be used to

guide community detection. For example, Newman and Clauset demonstrated that their stochastic

block model approach can choose either to partition a middle school and high school social network

into communities by grade or into communities by race, depending on the metadata of interest

(2016). Similarly, Hric et al. (2016) developed an attributed SBM from a multilayer perspective,

with the attribute layer modeling relational information between attributes. Stanley et al. (2018a)

considered a different graphical model relating connections and attributes, with assumptions on the

*The content of this chapter is currently under review for publication in Physical Review E.



attribute distributions, to develop a stochastic block model with multiple continuous attributes. The

I-louvain method (Combe et al., 2015) extends the well-known Louvain algorithm (Blondel et al.,

2008) for modularity maximization by including attributes in their “intertia-based modularity.” Yang

et al. proposed CESNA (2013) and He et al. proposed CNMMA (2018) to identify communities by

learning a latent space that generates links and attributes. Peel et al. (2017) established a statistical

test to determine if attributes correlate with community structure, and they developed an SBM with

flexibility in how strongly to couple attributes and community labels in the corresponding stochastic

block model inference. In related work, Stanley et al. (2018b) propose a test statistic based on label

propagation for the alignment of node attributes with connectivity patterns.

Prior work, such as the method of Newman and Clauset, assumes that one only cares about the

node metadata insofar as that metadata explains network formation (2016). For example, a social

science researcher who cares about gender groups in a high school social network has no way to

communicate to the algorithm of Newman and Clauset that she has a special interest in the gender

metadata; the algorithm will use the gender metadata insofar as it explains network formation, and

otherwise the algorithm will ignore it. A key motivation for our work is that a network analyst

might be specially interested in how a particular metadata type describes existing network structure

regardless of its role in generating that structure. With our method, the above researcher can specify

exactly how much more she weights communities describing gender to communities describing

network structure.

Ghasemian et al. (2018) characterize this tradeoff between a statistical model of network

formation, given by the algorithm of Newman and Clauset (2016), and an information-theoretic

description of observed structure, given by the map equation (Rosvall and Bergstrom, 2008), as

a tradeoff between under- and overfitting in community detection. From the point of view of this

framework, our method’s contribution is enabling users to choose how much to overfit the metadata

in describing the observed network structure.

Most closely related to our approach is the content map equation proposed by Smith et al.

(2016). The content map equation, as we later describe in more detail, adds an additional term to the

map equation (Rosvall and Bergstrom, 2008) that introduces entropy based on the metadata. This

modification to the map equation encourages intra-module homogeneity of node metadata values.
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Our work extends the content map equation, categorizing the different sources of entropy in

the map equation into the “inter-module codebook,” “intra-module codebooks,” and “metadata

codebooks.” Within this framework, we introduce a tuning parameter to the metadata codebooks that

allows explicit specification of the relative importance of particular metadata types. Similar to how

focusing knobs are an essential feature of a microscope, adding a tuning parameter to the content

map equation is essential to its function, allowing one to “zoom in” and “zoom out” on communities

with varying levels of focus on the metadata.

2.2 Methodology

The map equation frames the problem of community detection as minimizing the description length

of a random walk on the network (Rosvall and Bergstrom, 2008). In developing a code to compress

the description of the random walk, the map equation necessitates that each codeword corresponds to

an identifiable entity in the graph. It designates codewords for hard partitions of nodes into modules,

codewords for individual nodes, and codewords for a special “exit” keyword for each module. As the

codeword for a given node needs only to be unique within that node’s module, the module names and

node names function like geographic city names and street names. The output of the map equation is

a sort of “map,” optimized for data compression, that captures patterns in the data.

The map equation’s entropy arises from two different types of codebooks. The “inter-module

codebook,” consisting of module names, describes movement between modules. The “intra-module

codebooks,” consisting of node names and special “exit” codewords, describe movement within

modules. The sum of the entropies of these codebooks, weighted by their relative frequencies, gives

the per-step average number of bits needed to describe an infinite random walk on the network for a

given partition M of the nodes into m modules:

L(M) = qyH(Q) +

m∑
i=1

pi�H(P i).

Here, H(Q) is the entropy of the inter-module codebook, used with relative frequency qy, and

H(P i) is the entropy of the intra-module codebook for module i, used with relative frequency pi�.

5



The traditional map equation is concerned solely with topology; only the path of the random

walker must be encoded. To extend the map equation to networks annotated with metadata, we

additionally require that the value of the metadata at each step of the random walk be encoded. The

game of the encoder is to encode at which node a random walker is at each step of the random walk.

Like in the traditional map equation, the encoder must report whenever the random walker changes

modules. Additionally, the encoder must report the value of the metadata at each step of the random

walk. We require that the metadata values be encoded uniquely within each module, a requirement

that, as we will later see, favors network partitions in which module labels align with metadata labels.

To model network dynamics, we consider a random surfer on the network. With probability

1 − τ , the surfer behaves like a random walker, choosing to walk along an outgoing edge of its

current node with probability proportional to the outgoing edge weights. With probability τ , the

surfer teleports to an arbitrarily chosen node selected uniformly at random in the network. Although

unnecessary in undirected networks, teleportation guarantees desirable properties of the random walk

in directed networks such as not becoming stuck at a node with no outgoing edges. Considering this

surf in the limit of an infinite number of steps, we arrive at a steady state distribution pα for every

node α in the network. For notational convenience, we normalize the outgoing edge weights of every

node α so that
∑

β wαβ = 1. We let U denote a finite, discrete set of all metadata labels and assume

that each node α is tagged with exactly one uα ∈ U .

The content map equation models entropy generated by the random surfer’s movements between

modules and within modules identically to the traditional map equation. Between modules, we

encode whenever the random surfer exits one module and enters another module. The chance at any

given step that the surfer exits module i is

qiy = τ
n− ni
n− 1

∑
α∈i

pα + (1− τ)
∑
α∈i

∑
β/∈i

pαwαβ,

where ni is the number of nodes in community i. We denote the total chance at any given step that

the random surfer exits a module as

qy =
m∑
i=1

qiy.

6



By Shannon’s source coding theorem, the minimum entropy to encode the transitions between

modules, the encoding we call the “inter-module codebook,” is

H(Q) = −
m∑
i=1

qiy
qy

log(
qiy
qy

).

The random surfer’s movement within modules is another source of entropy in the map equation.

Within each module, we encode the name of each node α that the random surfer visits with steady-

state frequency pα, and we use a special “exit” keyword occurring with frequency qiy to encode

when the random surfer exits the module. Together, these terms give the intra-module entropy for

module i weight

pi� = qiy +
∑
α∈i

pα.

By Shannon’s source coding theorem, the minimum entropy to encode the transitions within a

module, an encoding we call an “intra-module codebook,” is

H(P i) = −qiy
pi�

log

(
qiy
pi�

)
−
∑
α∈i

pα
pi�

log

(
pα
pi�

)
.

The content map equation additionally models the entropy of the node metadata values at each

step of the random surf. Within each module i, we assign a codeword to each metadata value u ∈ U

that occurs with frequency

riu =
∑
α∈i,
uα=u

pα,

and we let the total metadata weight of module i be

ri� =
∑
u∈U

riu =
∑
α∈i

pα.

By Shannon’s source coding theorem, the minimum entropy to encode the metadata values within

module i, in that module’s “metadata codebook,” is

H(Ri) = −
∑
u∈W

riu
ri�

log

(
riu
ri�

)
.

7



By encoding the metadata values separately within each module, we reward partitions whose module

labels align with the metadata values. Under this encoding method, if all nodes in a module have the

same metadata value, the module name in the inter-module codebook alone thereby fully specifies

the metadata value at each within-module movement step, and the metadata codebook contributes

zero additional entropy for this module.

Summing the entropies of the inter-module codebook, the intra-module codebooks, and the

metadata codebooks, weighted by their frequency of use, the corresponding content map equation

for a given partition M becomes

L(M) = qyH(Q) +

m∑
i=1

pi�H(P i) + η

m∑
i=1

ri�H(Ri) (2.1)

where we introduce the parameter η to control the relative weight of the metadata entropy. By

increasing η, we increasingly favor communities of nodes with shared metadata values. The special

case η = 1 is identical to the method proposed by Smith et al. (2016). When each module contains

only a single distinct metadata label, or when η = 0, the corresponding map equation reduces to the

traditional map equation.

As one way to interpret η, consider sending our message encoding the random surf over two

different discrete channels, one containing the information of the traditional map equation and the

other containing the metadata information. If we suppose that there are different costs to access

the two channels, we can interpret η as the relative cost to access the discrete channel of metadata

information. In this interpretation, η is an ad hoc, relative penalty; we are not deriving η from the

dynamics of the random surf. By itself, the metadata channel does not contain useful information

because the metadata codewords are module-dependent. For all finite values of η, however, the

entropy of the traditional map equation contributes to our objective function, and we can assume that

the receiver has access to the module information.

One can imagine other ways to extend the map equation with metadata. As one example, instead

of requiring that the encoder report the metadata value at each step of the random walk, one might

only require the encoder to report when the metadata value changes. Rather than penalizing entropy

in the metadata composition of a module, as our framework does, such a formulation would penalize

the entropy of neighboring nodes that have different metadata values. As another example, instead

8



of partitioning the nodes of the network, one might instead partition the edges of the network. An

analogous coding game could be played with attributed edges to identify hierarchical and overlapping

community structure; for example, see the edge partitioning methods of Ahn et al. (2010) and Kim

and Jeong (2011). We leave the study of alternative extensions of the map equation with metadata to

future work.

Throughout this work, we compare the similarity of partitions with the scikit-learn implementa-

tion of adjusted mutual information (AMI) (Pedregosa et al., 2011) by using the following measure

proposed by Vinh et al. (2010):

AMI =
I(X,Y )− E{I(X,Y )}

max{H(X), H(Y )} − E{I(X,Y )}
.

We use AMI because it adjusts the observed mutual information, I(X,Y ), between partitions X

and Y by that expected at random under a hypergeometric model, E{I(X,Y )}. Normalizing by the

expectation-adjusted maximum of the partitions’ individual entropies, H(X) and H(Y ), the AMI

has an expected value of 0 when partitions are random and a maximum value of 1.

Our extended content map equation has been incorporated into the map equation optimization

software package Infomap v1.0 (Edler and Rosvall, 2019), which we use for all of our experiments.

Because teleportation can blur a network’s modular structure (Lambiotte and Rosvall, 2012), we

avoid teleportation by modelling all of our networks as undirected and setting the teleportation

probability τ = 0.

2.3 Synthetic Graph Results

To analyze how varying η impacts the content map equation’s ability to detect communities, we

construct synthetic graphs according to a two-block planted-partition stochastic block model (SBM)

with N = 200 nodes evenly divided into 2 communities, where an edge connecting two nodes in

the same community exists with probability pin, and an edge connecting two nodes in different

communities exists with probability pout. We additionally annotate each node with one of two discrete

attribute labels based on the “noise” parameter. Each node with probability 1− noise is assigned

an attribute label equating to its community assignment and with probability noise is assigned the

9



Figure 2.1: Detectability experiments on a planted-partition stochastic block model with N = 200
nodes evenly divided into two communities. Each node’s attribute label corresponds with its
planted partition community with probability noise, and ∆ measures the assortativity of the planted
partition. We see that focusing on the metadata by increasing η enables the algorithm to overcome
the detectability limit when the metadata has strong signal, but increasing η ceilings the algorithm’s
performance when the metadata is noisy.

opposite attribute label. With noise of 0, the communities and attributes correspond perfectly, and

with noise of 0.5, the attributes are totally random. Figure 2.1 shows results for different η exploring

the AMI between the planted partition and that identified by the content map equation, where each

data point is the average of 100 trials with edge density ρ = (pin + pout)/2 = 0.2. We show a

maximum value of η = 1 because it is the same as the results for higher values of η.

For the corresponding unannotated SBM, it has been shown in the limit as N →∞ that the two-

block planted-partition structure becomes undetectable for ∆ = pin− pout below the threshold given

by N∆∗ =
√

4Nρ(1− ρ). (For more detail, see (Decelle et al., 2011; Nadakuditi and Newman,

2012) and the discussion including non-sparse and multilayer networks in (Taylor et al., 2016).)

Communities are only detectable when ∆ > ∆∗ because otherwise the community structure is too

weak relative to the background noise of the generative model. For the parameters of our experiment,

∆∗
.
= 0.063. The detectability of partitions, however, is distinct from resolution selection, i.e.,

determining the size of partitions. Experimentally, we find that Infomap, partitioning solely by

network structure with η = 0, transitions from returning a single-community partition at ∆ = 0.20

to returning the planted two-community partition at ∆ = 0.28. For the remainder of the discussion,

we refer to the ∆ = [0.22, 0.30] region as the “selection threshold”.
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In the presence of metadata signal below the selection threshold, we find as expected that in-

creasing η increases AMI. Although the communities are undetectable from the network connectivity

alone, the metadata provides additional information. Moreover, as the metadata becomes more

aligned with the communities, it provides a greater boost to the algoirthm’s performance. For

example, as Fig. 2.1 illustrates, reducing the noise from 0.25 to 0.05 increases the average AMI at

η = 1 from around 0.2 to around 0.7

Our experiments show both that increasing η can benefit AMI when the community structure

has relatively low community assortativity, i.e., when ∆ is small, and that increasing η can hurt

AMI when the communities have relatively high assortativity, i.e., when ∆ is large. When ∆ is

small, increasing η allows the algorithm to detect the signal present in the metadata, which is greater

than that present in the network structure. But when ∆ is large, increasing η too much causes the

algorithm to overfit the metadata and miss the communities present in the network structure. This

effect can be seen in Fig. 2.1 at noise 0.25, where below the selection threshold high values of η

achieve average AMI of 0.2 compared to average AMI of 0 for low values of η, while above the

selection threshold high values of η have average AMI capped at 0.7 while low values of η achieve

average AMI approaching the perfect score, 1.

Perhaps surprisingly, increasing η increases AMI below the selection threshold even when the

metadata is totally random, i.e., when noise = 0.5. In this case, increasing η acts as an effective

resolution parameter. By encouraging partitions with homogeneous metadata values, increasing

η makes the algorithm prefer a partition containing several smaller communities over the larger,

single-community partition. As a result, increasing η below the selection threshold moves the

algorithm away from the single-community partition, which has an AMI of 0, to a partition of several

communities with positive AMI.

2.4 Real-World Graph Results

2.4.1 Lazega Lawyers Networks of Law Firm Relationships

The Lazega lawyers networks consist of 71 lawyers at a corporate lawfirm in the American Northeast

(Lazega, 2001). Surveys were conducted to form the basis of three networks connecting the same

actors: the coworking network, based on a survey question asking each lawyer with whom in the

11



Figure 2.2: The Lazega lawyers friendship network partitioned with the metadata attribute gender
at (a) η = 0.0, (b) η = 0.1, and (c) η = 0.3. Color encodes the partition while shape encodes the
metadata.

firm the lawyer has worked; the advice network, based on a survey question asking each lawyer to

whom in the firm the lawyer has gone for professional advice; and the social network, based on a

survey question asking each lawyer with whom in the firm the lawyer socializes outside of work. As

node metadata, we additionally use information that each lawyer reported about the lawyer’s status

(partner or associate), gender (man or woman), office (Boston, Hartford, or Providence), practice

(litigation or corporate), and law school (Harvard / Yale, University of Connecticut, or other).

Figure 2.2 illustrates how increasing η affects the returned network partition. The figure shows

communities in the friendship network using the metadata attribute gender. Node shapes encode

metadata values while node colors encode the algorithm’s partition. At η = 0, the algorithm

optimizes for the traditional map equation, returning a partition based solely on network topology.

With increasing η, the algorithm returns modules more aligned with the metadata. For example,

moving from η = 0 to η = 0.1, the man in a module of one man and two women merges into a

larger module with many more men, and the two women form a new module with four other women.

At η = 0.3, the modules are either all-male or all-female, and the metadata codebooks contribute

zero additional entropy to the content map equation. Note, however, that even as the algorithm

increasingly takes the metadata into consideration with increasing η, the algorithm still respects the

topology of the network because the random walker proceeds independently of node metadata values.

Figure 2.3 shows the sum of the entropies of each codebook type, weighted by frequency of

use but not relatively weighted by η, for partitions of the Lazega lawyers networks at varying η

12



Figure 2.3: Sums of various types of entropy when partitioning the Lazega lawyers (a) coworking,
(b) advice, and (c) friendship networks. The sums are weighted by frequency of codebook use but
not weighted by η.

for the different metadata types. “Inter-module entropy” measures the first term of Equation 2.1,

“intra-module entropy” measures the second term of Equation 2.1, and “metadata entropy” measures

the third term of Equation 2.1, unweighted by η. In all the plots, barring a few exceptions due to

Infomap’s stochasticity, metadata entropy is at its maximum when η = 0 and decreases until the

metadata entropy becomes 0 for sufficiently large η.

As Fig. 2.3 illustrates, once the relative weight of the metadata codebook is sufficiently large, an

optimal partition’s metadata codebook will necessarily have zero entropy. Optimizing the content

map equation in the limit as η → ∞ becomes a constrained optimization of the traditional map

equation. A candidate optimal partition must have only one metadata attribute per module, and

the optimal partition is the partition from this constrained region of partition space optimizing the

traditional map equation.

The Lazega lawyers networks, which share the same set of attributed nodes but have different

edge types, allow us empirically to study how different edge formation processes influence metadata

community detection. In Fig. 2.3b and Fig. 2.3c, the gender panel shows how different connectivity

patterns among the same set of attributed nodes can lead to qualitatively different behavior with

increasing η. In the Fig. 2.3b advice network, increasing η results in a sharp transition from the

topological partition at η = 0 to the partition with zero metadata entropy that is optimal as η →∞;

the algorithm finds no intermediate partitions. In the Fig. 2.3c friendship network, on the other hand,

the transition is more gradual. As the algorithm transitions from η = 0 to the limit as η → ∞, it

returns multiple intermediate partitions such as the one shown in Fig. 2.2b.
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Figure 2.4: The Lazega lawyers advice network partitioned with the metadata attribute status at (a)
η = 0 and (b) η = 0.5. Color encodes the partition while shape encodes the metadata.

Each panel of Fig. 2.3 summarizes the entropies of an entire set of partitions that can be studied

in more depth. For example, consider Fig. 2.4, which shows partitioning the Lazega lawyers advice

network with metadata about each lawyer’s status in the firm, either partner or associate. Partitioning

only on network topology in Fig. 2.4a at η = 0, the algorithm returns a partition with only module.

But in Fig. 2.4b at η = 0.5, we see the best partition of the network that puts partners and associates

into separate modules. While there is one module of partners, there are four modules of associates.

In other words, when we constrain the map equation to modules of all partners and all associates, the

best description of the flow of advice in the network has one module of partners and four modules of

associates.

Perhaps the partners of the firm, who have presumably been around the longest, have spent

enough time together that each partner trusts the other partners for professional advice, whereas

the associates of the firm have not yet developed trust with all the other associates. Or perhaps the

partners of the firm are the most knowledgeable about the firm’s operations and form a core module

of nodes in the advice network with the associate modules at the periphery. Whatever the cause of

the difference between the number of partner and associate modules, the difference is a structure in

the network that motivates follow-up study and can only be seen by partitioning with node metadata.
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2.4.2 Add Health Network of High School Friendship

The high school friendship network used here results from the US National Longitudinal Study of

Adolescent Health and was provided by the Add Health project of the Carolina Population Center.

Each of the 795 nodes of the graph is a student in an American middle school (7-8th grade, 12-14

years of age) and corresponding high school (9-12th grade, 14-18 years of age). Edges between

nodes represent friendships determined by survey. As metadata for each node, we use the student

survey data of grade (range 7-12), race (“white only”, “black only”, “any Hispanic”, “Asian only,” or

“mixed / other”), school code (middle or high school), and sex (male or female).

The presence of various metadata types allows us to highlight a key feature of the algorithm, that

it allows tuning η to see how the network partitions under a particular metadata type of interest. In

prior work on community detection with metadata, the method of Newman and Clauset (2016) was

applied to the network three times, separately using grade, race, and sex, in each case partitioning

the network into two communities. Using grade metadata, the algorithm splits the network into

clear middle school and high school groups. Similarly, the algorithm divides the network into a

predominantly white and a predominantly black group when it uses race metadata. However, when

asked to use sex metadata, the algorithm of Newman and Clauset ignores the sex metadata because it

does not have a strong enough correlation with the network structure. As Newman and Clauset note,

for someone interested only in the metadata to the extent that it correlates with network structure, it

is advantageous for the algorithm to disregard metadata that does not correlate.

But suppose that a priori a network analyst knows she cares about a particular metadata type.

In our example, a social science researcher might be interested in how the high school friendship

network organizes by sex, however strong or weak the sex partition might be. Using the algorithm of

Newman and Clauset, there is no way for such a researcher to convey to the algorithm this preference

for the sex metadata type. A key feature of our metadata map equation is the ability, using η, to

specify the relative weights of a given metadata type compared to the network topology in assigning

communities.

Figure 2.5 demonstrates how our algorithm can specify a relative weighting for various metadata

types. When η = 0, all of the partitions follow only the network topology. In that case, our results,

consistent with those of the algorithm of Newman and Clauset, show that the metadata attributes
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Figure 2.5: Pairwise AMIs of High School Social Network partitions at (a) η = 0 and (b) η = 0.5.
For example, “grade” is the partition given by each node’s grade, and “c grade” is the algorithm’s
returned partition when partitioning with the grade metadadta.

of grade, school code, and race have the highest mutual information with the topological partition,

with respective AMI values of 0.34, 0.16, and 0.18, while the metadata attribute of sex has the least

mutual information with the topological partition, with an AMI of 0.01. When we increase η to

η = 0.5, we see using each of the metadata values (grade, race, school code, sex) that the algorithm

finds partitions of the network that, compared to the community detection done with only the network

topology at η = 0, has increased AMI with the metadata.

Importantly, the partitioning of the high school network with a relative metadata channel weight

of η = 0.5 does not simply ignore the network structure. Consistent with the results of Newman

and Clauset, we see that grade is the metadata value for which we can achieve the highest AMI

between the algorithm’s partition and the node metadata, with an AMI of 0.51, and we find that our

algorithm’s partition using sex has the least correspondence with the node metadata, an AMI of 0.16.

Figure 2.6 illustrates the role of η and the metadata in the community detection process. Each

point on the graph of Fig. 2.6 is an AMI calculation. “Grade”, “race,” “scode” (school code), and

“sex” are the partitions of the network given by the respective metadata labels, and “c grade,” “c race,”

“c scode,” and “c sex” are partitions returned by the algorithm given the corresponding metadata

type as input and the value of η indicated by the x-axis. The lines of Fig. 2.6 show how the AMIs of

pairs of these partitions change with η. Pairs of partitions determined solely by metadata are constant
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Figure 2.6: Pairwise AMIs of high school social network partitions. For example, “grade” is the
partition given by each node’s grade, and “c grade” is the algorithm’s returned partition when
partitioning with the grade metadata for a given value of η.

with respect to η because the metadata of each node is fixed. Pairs of community detection partitions

considering different metadata begin with an AMI close to 1; when η = 0, the only difference in the

returned partitions is due to stochasticity in optimization of the objective function. As η increases,

the algorithm returns partitions more aligned with the attribute under consideration, so the pairwise

AMIs of these partitions decrease.

One can suppose that the optimal partition at η = 0 is a point in the space of all possible partitions

of the graph. In this interpretation, increasing η for a given metadata type causes the optimal partition

to shift in partition space toward partitions more aligned with the particular metadata type. As the

optimal partitions for different metadata types undergo such shifts, they diverge in partition space,

and as Fig. 2.6 illustrates, their pairwise AMI decreases.

Fig. 2.7 shows another way to understand η. One can consider increasing η as paying a topologi-

cal entropy price (the sum of the inter-module codebook and intra-module codebook entropies, which

is equal to the traditional map equation) for increased AMI with the metadata. The varying shapes of
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Figure 2.7: Topological entropy and AMI tradeoff when partitioning with metadata in the high
school social network. Topological entropy, equal to the traditional map equation, is the sum of
the inter-module codebook and intra-module codebook entropies. The AMI is between the node
metadata and the algorithm’s returned partition.

the curves in Fig. 2.7 show how the price of this tradeoff at a given value of η depends on how node

metadata values relate to the network structure. For example, consider the curves corresponding

to the school code and sex metadata. For school code metadata, the optimal partition at η = 0 is

already relatively close to meeting the constraint required as η →∞ that each module have just one

metadata attribute. One cannot trade topological entropy for much increase in AMI with the metadata

because increasing η does not much change the returned partition. For sex metadata, however, the

optimal partition at η = 0 is relatively far from having just one metadata attribute per module. By

increasing η, one can pay topological entropy for increased AMI with the metadata as the returned

partition shifts toward obeying the constraint imposed as η →∞.

18



2.5 Summary

We introduced a tuning parameter to the content map equation that explicitly specifies the importance

of metadata relative to edge connectivity in assigning communities. We demonstrated on synthetic

graphs how focusing on the metadata can overcome the detectability limit when the metadata is

well-aligned with the topological community structure and also how focusing on the metadata can

put a ceiling on the performance when the metadata is misaligned with the topological community

structure. On real-world graphs, we demonstrated how a practitioner might tune the content map

equation to “zoom in” and “zoom out” on communities with varying levels of metadata focus.

Our method probes the relationship between community structure and metadata. While we

gave the algorithm only one type of metadata attribute at a time, future work might simultaneously

incorporate metadata attributes of differing type and relative weighting. It might also be interesting

to study how various metadata types relate to various network processes as, for example, different

metadata types might relate to the spread of different kinds of information.
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CHAPTER 3

A SUPERVISED LEARNING METHOD FOR LINK
PREDICTION

3.1 Background

There are many applications of supervised learning on graphs which arise when we have training

data and would like to make a prediction on test data. One application is predicting node or link

metadata. For example, given a network of student interaction in an online classroom, we might

want to predict which students need additional tutoring. Another application is predicting subgraph

properties. For example, Dai et al. (2016) use molecular graphs to predict which materials in the

Harvard Clean Energy Project (Hachmann et al., 2011) have the most solar cell energy efficiently.

Here, we focus on the problem of link prediction: given a graph, can we predict which edges

are missing or most likely to form in the future? We ground our analysis in a review of Decagon, a

state-of-the-art method for link prediction in multimodal graphs with varying node and edge types

(Zitnik et al., 2018).

Decagon’s development was motivated by polypharmacy side effect prediction. Each year in

the United States, 47 million Americans undergo polypharmacy, the simultaneous prescription of at

least two drugs (Kantor et al., 2015). Perscribing two drugs at once can cause adverse polypharmacy

side effects, side effects that are due to the drug combination and not attributable to either individual

drug. Unknown polypharmacy side effects are pervasive because the space of all possible drug

combinations is enormous; there are simply too many combinations to test them all. To guide the

discovery and prevention of polypharmacy side effects, we would like to predict side effect links in a

drug-drug interaction network.



Hypothesizing that drugs’ molecular basis — the interaction between proteins and the proteins

that drugs target — influences polypharmacy side effects, Zitnik et al. develop Decagon after

constructing a multimodal graph of drugs and proteins. First, they synthesize information about

protein-protein interaction from the work of Menche et al. (2015), Chatr-Aryamontri et al. (2014),

Szklarczyk et al. (2016a), and Rolland et al. (2014), collecting 19,085 proteins with 715,612

protein-protein interactions. All of the interactions were experimentally documented in humans and

include various types such as metabolic, enzyme relationships and signaling relationships. Second,

they pull information about drugs targeting proteins from the database STITCH (Search Tool for

InTeractions of CHemicals) to obtain 18,596 drug-protein edges (Szklarczyk et al., 2016b). Finally,

they mine the SIDER (Side Effect Resource), OFFSIDES, and TWOSIDES databases for 4,651,131

drug-drug interactions of 964 unqiue side effect types (Kuhn et al., 2015; Tatonetti et al., 2012).

Although Decagon is a general-purpose link prediction algorithm, Zitnik et al. develop Decagon

for particular application to this polypharmacy network because predicting polypharmacy side effects

would help reduce the $177 billion that the U.S. spends annually on drug-related problems (Ernst

and Grizzle, 2001). Decagon falls into the related family of graph representation learning algorithms,

which first learn vector space embeddings for a graph before applying traditional machine learning

methods (Hamilton et al., 2017b). Previous graph representation learning methods include Laplacian

eigenmaps (Belkin and Niyogi, 2002), graph factorization (Ahmed et al., 2013), GraRep (Cao et al.,

2015), and HOPE (Ou et al., 2016), which learn node embeddings as a matrix factorization of

pairwise node similarities under some scoring function, as well as DeepWalk (Perozzi et al., 2014)

and node2vec (Grover and Leskovec, 2016), which learn node embeddings reflecting the structure of

a (biased) random walk on the network.

With a graph convolutional encoder like the graph convolutional networks of (Defferrard et al.,

2016; Kipf and Welling, 2017) and with a tensor factorization decoder as in (Papalexakis et al., 2017),

Decagon achieves state-of-the-art performance predicting missing links in the drug polypharmacy

network. In the following sections, we detail Decagon’s methodology and performance.
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3.2 Methodology

Decagon is an end-to-end link prediction method. As input, Decagon takes a multimodal graph

G = (V, E) consisting of edges (vi, r, vj) from node vi to node vj with edge type r. As output,

Decagon produces pijr = p((vi, r, vj) ∈ E), the probability that an edge of type r exists between vi

and vj , for all pairs of nodes and all types of edges.

To process the graph, Decagon proceeds in two stages. First, Decagon uses a graph convolutional

encoder to produce embeddings zi ∈ Rd, d ∈ R for every node in the graph. Then, Decagon uses

tensor factorization to decode the embeddings into pairwise probabilities for each edge type r. The

system is trained end-to-end so that all parameters of the encoder and decoder are optimized for

prediction accuracy.

3.2.1 Decagon’s Graph Convolutional Encoder

Deep learning methods such as convolutional neural networks have achieved state-of-the-art perfor-

mance across a wide variety of prediction tasks. With graph-structured data, the trick is defining a

suitable neural network architecture. How do we “convolve” over a graph?

Decagon employs a neighborhood-aggregation encoder as used by Hamilton et al. (2017a).

The neighborhood-aggregation encoder uses the existing graph structure G for its neural network

architecture. Beginning with initial node embeddings h(0)
i for each node in the graph, which can

contain input node features or else be a one-hot node indicator, Decagon iteratively calculates new

node embeddings from the neighboring embedding of each node. Each iteration of the algorithm

allows information to travel one step in the graph. By incorporating information from each node’s

k-hop neighborhood at iteration k, the neural network begins locally and convolves over increasingly

global node neighborhoods.

For each node, Decagon maintains a hidden state hki at iteration k that is updated as

h
(k+1)
i = φ

∑
r

∑
j∈N ir

cijr W
(k)
r h

(k)
j + cirh

(k)
i

 . (3.1)
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The weight matrix W
(k)
r is a learned parameter that conveys specific information for each edge

type that is shared globally at iteration k. The normalization constants cijr = 1/

√
|N i

r ||N
j
r | and

cir = 1/|N i
r |, where N i

r = {vj : (vi, r, vj) ∈ E}, are defined to be symmetric. After K total

iterations, the final hidden states are assigned to be the node embeddings: zi = h
(K)
i .

3.2.2 Decagon’s Tensor Factorization Decoder

After the encoder produces a node embedding zi for each node, the decoder uses the embeddings to

predict the probability pijr = p((vi, r, vj) ∈ E) of missing edges. The decoder combines parameters

learned about the graph structure for all edge types, such as the node embeddings zi, with specific

parameters learned for each edge type r, leveraging general graph structure to determine a likelihood

for particular edge types.

For each potential edge (vi, r, vj), the decoder computes a likelihood score

g(vi, r, vj) =


zTi DrRDrzi, when vi, vj are drugs

zTi Mrzi, when vi, vj are proteins
(3.2)

which is passed through a sigmoid function to compute the final probability

pijr = σ(g(vi, r, vj)). (3.3)

When vi and vj are both drugs, the decoder combines R ∈ Rd×d, a shared parameter across all

side effect types, with Dr ∈ Rd×d, a diagonal matrix controlling the importance of each embedding

dimension for a specific side effect type r. This formulation is a rank-d DEDIDCOM tensor

decomposition (Papalexakis et al., 2017), but it varies from prior work by jointly training the node

embeddings and tensor factorizaion.

When vi and vj are both proteins, the decoder takes a bilinear form, and Mr ∈ Rd×d is a

trainable parameter modelling a specific drug-drug interaction of type r.
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3.2.3 Decagon’s Training Procedure

For its objective function, Decagon uses the cross-entropy loss

Jr(i, j) = − log(pijr )− En∼Pr(j) log(1− pinr ). (3.4)

This loss maximizes the likelihood of observed edges and a random sampling of observed non-edges.

The random sampling of non-edges solves the issue of data imbalance in a sparse graph, and the

negative sampling distribution Pr follows that of Mikolov et al. (2013). Summing Jr(i, j) over all

pairs of nodes and all edge types, Decagon’s overall loss is

J =
∑

(vi,r,vj)∈E

Jr(i, j). (3.5)

To optimize all model parameters for prediction accuracy, Decagon trains end-to-end, backpropagat-

ing the gradient of its loss through all parameters of the encoder and decoder.

Zitnik et al. train Decagon using a number of standard techniques for learning regularization

and efficient computation. These techniques, such as mini-batching, dropout, and early stopping, as

well the training parameters, such as the learning rate and number of epochs, are detailed in (Zitnik

et al., 2018).

3.3 Results

Now that we have given an overview of Decagon, we show its performance on the polypharmacy

network as measured by Zitnik et al. (2018) in comparison to four other link prediction methods:

• RESCAL tensor decomposition (Nickel et al., 2011), which decomposes the drug-drug

adjacency matrix Xr for each side effect type r into Xr = ATrA
T . A side effect between

drugs i and j of type r is predicted using aiTraj .

• DEDICOM tensor decomposition (Papalexakis et al., 2017), which decomposes the drug-

drug adjacency matrix Xr for each side effect type r into Xr = AUrTUrA
T . A side effect

between drugs i and j of type r is predicted using aiUrTUraj .
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Approach AUROC AUPRC AP@50
Decagon 0.872 0.832 0.803
RESCAL tensor decomposition 0.693 0.613 0.476
DEDICOM tensor decomposition 0.705 0.637 0.567
DeepWalk neural embeddings 0.761 0.737 0.658
Concatenated drug features 0.793 0.764 0.712

Table 3.1: Average AUROC, AUPRC, and AP@50 for predicting the 964 different polyharmacy side
effects. Reprinted from (Zitnik et al., 2018) under the Creative Commons Attribution BY-NC 4.0
License.

• DeepWalk (Perozzi et al., 2014; Zong et al., 2017), which creates node embeddings by

using the probability that two nodes co-occur on a random walk of the graph. To predict

polypharmacy side effects, the embeddings of drug pairs are concatenated and passed to

logistic regression classifiers, one for each side effect type.

• Concatenated drug features, which conducts principal component analysis (PCA) on the

drug-protein interaction matrix and the individual drug side effect data. The PCA representa-

tions for a pair of drugs are concatenated and fed into a gradient boosting trees classifier that

outputs polypharmacy side effects.

To determine the parameters for each method, Zitnik et al. employ grid search with a validation

set. For Decagon, they find K = 2 iterations to be most effective, using a dimension of 64 hididen

units in the first layer and 32 hidden units in the second layer, and they set the dropout rate to 0.1

with a mini-batch size of 512. Zitnik et al. measure each method’s performance with the area under

the receiver-operating characteristic (AUROC), area under the precision-recall curve (AUPRC), and

average precision at 50 (AP@50).

As Table 3.1 demonstrates, Decagon performs the best across all evaluation metrics. Decagon

achieves as much as a 0.179 gain in average AUROC compared to alternative methods, and it has a

0.079 gain in average AUROC over the next best method. These results are consistent with those

of (Hamilton et al., 2017a,b; Kipf and Welling, 2017) who find that end-to-end models achieve

state-of-the-art performance. By comparing Decagon, which uses a graph convolutional encoder and

a tensor decomposition decoder, against the tensor decomposition methods, we can see how much

Decagon’s graph convolutional encoder adds to its overall performance.
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Best performing side effects AUPRC Worst performing side effects AUPRC
Mumps 0.964 Bleeding 0.679
Carbuncle 0.949 Increased body temp. 0.680
Coccydynia 0.943 Emesis 0.693
Tympanic membrane perfor. 0.941 Renal disorder 0.694
Dyshidrosis 0.938 Leucopenia 0.695
Spondylosis 0.929 Diarrhea 0.705
Schizoaffective disorder 0.919 Icterus 0.707
Breast dysplasia 0.918 Nausea 0.711
Ganglion 0.909 Itch 0.712
Uterine polyp 0.908 Anaemia 0.712

Table 3.2: Highest and lowest Decagon prediction accuracies. Reprinted from (Zitnik et al., 2018)
under the Creative Commons Attribution BY-NC 4.0 License.

k Polypharmacy effect r Drug i Drug j Evidence
1 Sarcoma Pyrimethamine Aliskiren (Stage et al., 2015)
4 Breast disorder Tolcapone Pyrimethamine (Bicker et al., 2017)
6 Renal tubular acidosis Omeprazole Amoxicillin (Russo et al., 2016)
8 Muscle inflammation Atorvastatin Amlodipine (Banakh et al., 2017)
9 Breast inflammation Aliskiren Tioconazole (Parving et al., 2012)

Table 3.3: Literature evidence for 5 of Decagon’s top 10 predictions. Reprinted from (Zitnik et al.,
2018) under the Creative Commons Attribution BY-NC 4.0 License.

The specific polypharmacy side effects for which Decagon has the highest and lowest prediction

accuracy are listed in Table 3.2. Based on discussions with domain experts and some additional

statistical analysis, Zitnik et al. argue that Decagon is best able to leverage the multimodal graph

of drugs and proteins to predict side effects with a strong molecular basis. Decagon has the most

difficulty, they argue, with common side effects and side effects with a weak molecular basis.

Having trained Decagon, Zitnik et al. apply it to their entire dataset. For each of Decagon’s top

10 predictions, Zitnik et al. search the medical literature for evidence of the predicted side effect.

Remarkably, Zitnik et al. find experimental evidence in the literature for 5 of Decagon’s top 10

predictions. Table 3.3 lists these polypharmacy side effects and their experimental evidence in the

literature.

Overall, Decagon outperforms existing methods predicting polypharmacy side effects in the test

dataset, and Decagon is able to find new polypharmacy side effects that are experimentally validated

by the medical literature.
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3.4 Summary

Here, we reviewed Decagon, a link prediction algorithm for multimodal graphs (Zitnik et al., 2018).

Decagon takes a representation learning approach to link prediction, first using a graph convolutional

encoder to learn embeddings for each node and then using a tensor decomposition decoder to predict

missing edges between pairs of nodes. Some of Decagon’s parameters are global, allowing Decagon

to learn general structure across all different node and edge types in the graph, and some of Decagon’s

parameters are type-specific, enabling Decagon to fine-tune its predictions for individual edge types.

Decagon is trained end-to-end, learning all its parameters to minimize a final loss function that

optimizes for prediction accuracy.

Our review of Decagon was grounded in Zitnik et al.’s analysis of Decagon’s performance on a

polypharmacy dataset of drugs and proteins. Polypharmacy side effects are side effects from taking

a combination of drugs that are not solely caused by any one drug. On the test dataset, Decagon

achieves state-of-the-art results, outperforming all other methods by at least 0.079 average AUROC.

When applied to the entire dataset, Decagon finds new polpyharmacy side effects that have been

experimentally documented in the medical literature.

As polypharmacy affects 47 million Americans (Kantor et al., 2015) and drug-related compli-

cations cost the United States $177 billion each year (Ernst and Grizzle, 2001), Decagon has great

potential to improve public health. In the particular domain of polypharmacy, applying Decagon to

larger, more accurate datasets would facilitate better prediction of new polypharmacy side effects, and

Decagon could be applied at many stages of the pipeline from drug development to drug prescription

in order to prevent polypharmacy side effects. In general, Decagon’s success in the domain of

polypharmacy suggests that link prediction algorithms could have similar success in other domains.

There is still much theoretical work to be done, such as extending graph convolutional methods to

link prediction in temporal graphs, and the many opportunities to apply this work will only increase

as technology develops.
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CHAPTER 4

CONCLUSION

In this work, we studied supervised and unsupervised learning on graphs, focusing on two

methods. First, we presented a novel community detection algorithm by introducing a tuning

parameter to the content map equation. The unsupervised algorithm is the first that we know of

enabling users to “zoom in” and “zoom out” on partitions with varying levels of focus on network

metadata. Second, we reviewed Decagon, a state-of-the-art algorithm proposed by Zitnik et al. (2018)

for link prediction. We grounded our analysis of Decagon with its application to a polypharmacy

drug dataset, showing how Decagon is able to predict novel drug side effects with experimental

validation in the literature.

As we saw with the content map equation, unsupervised learning methods are highly versatile.

Requiring no ground-truth labels, they can look for latent structure in any graph. Unsupervised

learning methods often form the basis for exploratory data analysis, and they can uncover useful

patterns in a variety of datasets. For example, community detection has yielded correlations with

task performance in brain connectivity networks and been used to understand the flow of information

in scientific citation networks (Stevens et al., 2012; Rosvall and Bergstrom, 2008).

Evaluating community detection algorithms, however, is difficult because there is no way to

determine which behavior is “right.” By definition, unsupervised problems provide no ground-truth

labels with which to verify methods. Consequently, users of community detection algorithms must

take care in justifying the assumptions of their models and providing external validation of their

results.

As we saw with Decagon, supervised learning methods are becoming quite powerful. Given

enough training data, they can learn complex mappings from input data to target labels. The quality of



a supervised learning algorithm is simple to measure: test its accuracy on unseen data. By definition,

state-of-the-art prediction accuracy represents well-defined progress.

In many applications, however, we are unable to use supervised learning algorithms. There are

many datasets, such as the collection of all webpages on the Internet, for which we do not have

“ground truth” clustering labels. And in many other datasets, even if ground truth categories exist, it

is prohibitively expensive to obtain them because, for example, they require human evaluation.

Taken together, supervised and unsupervised learning methods are complementary tools. In

settings where we lack labels for supervised learning, we can leverage unsupervised learning to

generate additional labels. In settings where the quality of unsupervised learning is ill-defined, we

can evaluate unsupervised learning results against supervised labels. For example, Weng et al. (2014)

use the output of an unsupervised method, community detection, as input to a supervised method, a

classifier, to yield better performance than either method could obtain alone. For future work, we

speculate that there are fruitful opportunities to synthesize unsupervised and supervised learning

methods, such as using the output of a metadata community detection algorithm such as the content

map equation as input to a link prediction algorithm such as Decagon.
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