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Abstract 

PRMT3 is a type I arginine methyltransferase that catalyzes mono- and asymmetric dimethylation of 

arginine residues of various proteins. The protein has demonstrated through in vitro studies 

functionality in the maturation of ribosomes, a possible role in lipogenesis, and has several implications 

in various diseases. The purpose of this project was to develop and characterize a chemical probe that 

potently and selectively inhibits PRMT3 for further use in cellular and animal studies. SGC707, formerly 

known as UNC3108, is the first chemical probe of PRMT3 and was developed via structure based 

optimization. This potent allosteric inhibitor has been thoroughly characterized in a number of 

biochemical, biophysical, and cellular assays. The methods highlighted in this thesis describe synthesis of 

this chemical probe and characterization of this probe by an isothermal titration calorimetry assay. In 

addition to its high potency (IC50 = 31 ± 2 nM, KD = 53 ± 2 nM), SGC707 is selective for PRMT3 over >250 

protein targets. It engages PRMT3 and potently inhibits its methyltransferase activity in cells. Initial 

pharmacokinetic studies also demonstrated that SGC707 is bioavailable and suitable for animal studies. 

Therefore, SGC707 is an excellent tool to further study the role of PRMT3 in health and disease. 

 

Introduction 

Among a variety of epigenetic writers, histone methyltransferases are a class of proteins that are 

targeted to methylate amine rich amino acid residues, primarily lysine and arginine. Protein arginine 

methyltransferases (PRMTs) catalyze arginine methylation and there are currently nine human PRMTs 

that have been identified to date1,2.  PRMTs are further classified based on the reactions the protein 

catalyzes. Type I PRMTs (PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, and PRMT8) catalyze arginine 

monomethylation and asymmetric dimethylation while PRMT5, a type II PRMT, catalyzes arginine 

monomethylation and symmetric demethylation3,4. PRMT7 is unique as a type III PRMT based on strict 

functionality to only monomethylate arginine residues5. With the exception of PRMT4, PRMTs primarily 

methylate glycine and arginine rich (GAR) motifs in their substrates6,7. This protein class plays a critical 

role in the epigenetic based biological processes, including gene expression, transcriptional regulation, 

signal transduction, protein and RNA subcellular localization, RNA splicing and DNA damage repair3,4,8.  

Since its discovery in 1998, PRMT3 has been shown to catalyze asymmetric dimethylation of GAR motifs 

in the 40S ribosomal protein S2 (rpS2), resulting in the stabilization of rpS2 and proper maturation of the 

80S ribosome9,10. Recent studies have demonstrated an increase in expression and co-localization to 

LXRα in the nucleus of cells treated with palmitic acid, leading to regulation of hepatic lipogenesis11. 

PRMT3 methylates the recombinant mammalian nuclear poly(A)-binding protein (PABPN1) with 

potential implications in oculopharyngeal muscular dystrophy, caused by the polyalanine expansion of 

this protein12,13,14. Elevated levels of PRMT3 expression have been shown in myocardial tissues from 

patients with atherosclerosis, describing a potential association of PRMT3 in related diseases15. In 

addition, PRMT3 has been shown to methylate histone peptide (H4 1-24) in vitro16. Histone H4R3 is 

believed to serve as a modification site associated with increased transcription of a number of genes, 

including those under control of estrogen and androgen receptors17,18. Lastly, the interaction of PRMT3 

with the tumor suppressor DAL 1/4.1B suggests a potential role of PRMT3 in tumor growth and possible 

epigenetic regulation of gene expression19. A key piece missing in the current literature is the ability of 

PRMT3 to methylate histones in vivo. 



The development of a well-characterized chemical probes with high potency and selectivity for robust 

on-target activities for a protein of interest is valuable to elucidate biological function of proteins and to 

test therapeutic hypotheses20. In recent publications, an initial inhibitor of PRMT3 (1-

(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea, Compound 1 in Figure 1) was characterized 

with IC₅₀ value of 2.5 μM, highlighting a mechanism to inhibit the protein allosterically21,22. While this 

was a major discovery, the level of potency and a discernable level of activity within cells was not 

sufficient enough for classification as a chemical probe. The purposes of our research was to develop a 

more potent, selective, and, most importantly, cell-active chemical probe. Through continued 

optimization of the left-hand side and right-hand side of this compound, the discovery of a chemical 

probe (SGC707) with an IC₅₀ value of 31 ± 2 nM by scintillation proximity assay (SPA) and 66 nM by LC-

MS detection assay at balanced conditions. 

The role of this thesis is to highlight a small portion of this project that includes chemical synthesis of 

SGC707 and the development of the Isothermal Titration Calorimetry (ITC) assay to test the 

thermodynamic properties of the probe’s interactions with PRMT3. Further validation of the chemical 

probe’s activity was verified through assays performed at SGC in Toronto, and these findings will also be 

summarized. SGC707 is the result of years of work and this thesis captures the period of time during the 

final approval of this chemical probe.  

 

Methods 

Chemical Synthesis- 

Chemistry General Procedures.  Analytical thin-layer chromatography (TLC) was performed employing 
EMD Milipore 210-270 µm 60-F254 silica gel plates. The plates were visualized by exposure to UV light. 
Flash column chromatography was performed on a Teledyne ISCO CombiFlash Rf+ system equipped with 
a variable wavelength UV detector and a fraction collector using RediSep Rf normal phase silica columns. 
HRMS analysis was conducted on an Agilent Technologies G1969A high-resolution API-TOF mass 
spectrometer attached to an Agilent Technologies 1200 HPLC system. Samples were ionized by 
electrospray ionization (ESI) in positive mode. Nuclear Magnetic Resonance (NMR) spectra were 
acquired on a Bruker DRX-600 spectrometer. Chemical shifts are reported in parts per million (ppm, δ) 
scale relative to solvent residual peak (chloroform-d, 1H: 7.26 ppm; 13C: 77.16 ppm; methanol-d4, 1H: 
3.31 ppm; 13C: 49.0 ppm). 1H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d 
= doublet, t = triplet, q = quartet, p = pentet, m = multiplet, app = apparent), coupling constant, and 
integration.  

     

Ethyl (isoquinolin-6-ylcarbamoyl)glycinate. To a stirring solution of 6-aminoisoquinoline (300 mg, 2.08 
mmol, 1 eq.) in dichloromethane (100 mL) was added ethyl isocyanatoacetate (0.35 mL, 3.12 mmol, 1.5 
eq.) and the resulting mixture was stirred overnight at room temperature. The progress of the reaction 
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was monitored by TLC. After removal of volatiles, the crude mixture was purified by flash column 
chromatography (gradient from 100% dichloromethane to 10% methanol in dichloromethane) to yield 
desired ethylester (460 mg, 81% yield) as pale yellow solid. 1H NMR (600 MHz, Chloroform-d) δ 8.94 (s, 
1H), 8.31 (d, J = 5.8 Hz, 1H), 8.07 (s, 1H), 7.91 (s, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 5.8 Hz, 1H), 7.29 
(d, J = 8.8 Hz, 1H), 6.13 (t, J = 5.6 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 4.13 (d, J = 5.5 Hz, 2H), 1.31 (t, J = 7.1 
Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 172.23, 155.37, 151.47, 142.91, 140.84, 137.05, 128.60, 125.06, 
121.06, 120.34, 112.60, 62.07, 42.21, 14.30. HRMS (m/z) for C14H16N3O3

+ [M + H]+ calculated 274.1186 
found 274.1185. 

 

1-(isoquinolin-6-yl)-3-(2-oxo-2-(pyrrolidin-1-yl)ethyl)urea (SGC707). To a stirring solution of ethylester 
(200 mg, 0.731 mmol, 1 eq.) in THF/H2O (10 mL/5 mL) was added LiOH (anhydrous, 35.0 mg, 2.0 eq.) and 
the resulting mixture was stirred overnight at room temperature. The disappearance of starting material 
was monitored by TLC. Crude mixture was then concentrated under reduced pressure and residue was 
re-suspended in dioxane (10 mL), followed by addition of thionyl chloride (0.50 mL, 6.89 mmol, 9.4 eq.) 
and heated to 80 °C for 30 minutes. Resulting crude mixture was again concentrated under reduced 
pressure and re-dissolved in dioxane (10 mL) followed by addition of pyrrolidine (0.30 mL, 3.65 mmol, 
5.0 eq.) and allowed to stir at room temperature overnight. The progress of the reaction was again 
monitored by TLC. The crude product was then purified by flash column chromatography (gradient from 
100% dichloromethane to 10% methanol in dichloromethane) to yield SGC707 (189 mg, 87% overall 
yield after 3 steps) as pale yellow solid. 1H NMR (600 MHz, Methanol-d4) δ 9.03 (s, 1H), 8.29 (d, J = 5.9 
Hz, 1H), 8.10 (d, J = 2.1 Hz, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.65 (d, J = 6.0 Hz, 1H), 7.59 (dd, J = 8.9, 2.0 Hz, 
1H), 4.06 (s, 2H), 3.53 (t, J = 6.8 Hz, 2H), 3.48 (t, J = 6.9 Hz, 2H), 2.03 (app p, J = 6.8 Hz, 2H), 1.91 (app p, J 
= 6.9 Hz, 2H).13C NMR (151 MHz, Methanol-d4) δ 169.64, 157.55, 152.18, 143.67, 142.90, 138.81, 129.87, 
126.23, 122.27, 121.72, 112.41, 47.19, 46.72, 43.22, 26.94, 25.09. HRMS (m/z) for C16H19N4O2

+ [M + H]+ 

calculated 299.1503 found 299.1500. 1H NMR and 13C NMR spectra are located in the Appendix section. 

Protein Purification- 

A DNA plasmid with the PRMT3 DNA insert cloned into the T7 promoter region of the commercial 

pET28a-LIC Vector was obtained from SGC of Toronto. The DNA plasmid was transformed into DH5-

alpha cells and the cultures were plated under kanamycin resistance (50 μg/mL). Several colonies were 

selected and grown in 2 mL LB cultures with 50 μg/mL. The resultant cell cultures were lysed and the 

DNA plasmid was purified via the QIAprep Spin Miniprep Kit. The plasmid was sequenced and verified to 

have an accurately in frame DNA insert.  

The purified PRMT3-pET28a plasmid was transformed into BL21-V2R-pRARE-2 cells. One colony was 

inoculated into 50 mL of LB supplemented with 50 μg/mL kanamycin and 30 μg/mL chloramphenicol and 

incubated with shaking overnight at 37°C. The culture was then inoculated into 4 L of LB supplemented 

with 50 μg/mL kanamycin and 30 μg/mL chloramphenicol and grown to an OD₆₀₀ of about 1. Protein 
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expression was induced by the addition of 0.5 mM isopropyl-1-thio-D-galactopyranoside (IPTG) with 

shaking for 16 hours at 15°C. Cells were then harvested by centrifugation and the pellets were flash 

frozen at -80°C. The cells were then thawed and re-suspended in binding buffer (10 mM Tris, 500 mM 

NaCl, 5 mM imidazole, 5% glycerol, pH 7.5) with protease inhibitors (1 mM benzamidine HCl , 1 mM 

phneylmethanesulphonylfluoride (PMSF)). The thawed cells were lysed via sonication in the presence of 

protease inhibitors at a frequency of 8.5 for three cycles of 10 seconds on and 10 seconds off using a 

Misonix Sonicator 3000. Once the cell lysate was clarified by centrifugation, the supernatant was loaded 

onto a Ni-NTA Superflow column (Qiagen, CAT# 30450) pre-equilibrated with binding buffer. The column 

was washed with 60 CV of wash buffer (10 mM Tris, 100 mM NaCl, 30 mM imidazole, 5% glycerol, pH 

7.5) and the protein was eluted with elution buffer (10 mM Tris, 100 mM NaCl, 250 mM imidazole, 5% 

glycerol, 1 mM EDTA, 1 mM DTT, pH 7.5). Eluted protein fractions were directly loaded onto a size 

exclusion column (Bio-Rad Enrich SEC 650 10 x 300 mm column (780-1650)) and eluted in a modified 

elution buffer (10 mM Tris, 100 mM NaCl, 5% glycerol, 1 mM EDTA, 1 mM DTT, pH 7.5). Accurate protein 

mass (~60 kDa) and purity was verified via SDS-PAGE analysis and Western blot analysis.  

ITC Experiments- 

All ITC measurements were performed at 25 °C using an AutoITC200 microcalorimeter (MicroCal/GE 

Healthcare). The calorimeter cell (volume 200 µL) was loaded with PRMT3 protein in the full salt dialysis 

buffer (100 mM NaCl, 10 mM Tris, 5% glycerol, 1 mM EDTA, 1 mM DTT) at a concentration of 100 µM. 

The syringe was loaded with SGC707 (dissolved in the same buffer) at a concentration of 1 mM. A typical 

injection protocol included a single 0.2 µL first injection followed by twenty-six 5.0 µL injections of the 

compound into the calorimeter cell. The spacing between injections was kept at 180 s and the reference 

power at 8 µcal/sec. A control experiment was performed by titrating SGC707 into buffer under identical 

settings to determine the heat signals that arose from compound dilution; these were subtracted from 

the heat signals of protein–compound interaction. The data were analyzed using Origin for ITC, ver. 7.0, 

software supplied by the manufacturer; and fitted well to a one-site binding model. 

Additional Methods- 

Other in vitro, in vivo, and animal based studies in addition to the synthesis of an inactive control were 

conducted to further demonstrate the capabilities of SGC707. Based on limited involvement in these 

procedures, these methods are more adequately described in the recently approved publication in by 

Kaniskan et al. in Angewandte Chemie23. 

 

Results 

Utilizing the previously published molecule as a template, the first chemical probe of PRMT3 was a 

product of left hand side and right hand side moiety modification. The urea bridge remained the central 

portion of the molecule, effectively binding at the E422 and R396 amino acid residues. The first major 

modification was achieved by switching from a benzothiadiazole left hand moiety to an isoquinoline. 

The isoquinoline group was proven to form a hydrogen bond with the T466 residue of the allosteric 

cavity with a higher affinity. With the left hand side and the urea group in place, much of the continued 

modification focused on optimizing the right hand side of the molecule. The pyrrolidine amide is thought 

to most effectively bind in alpha helix side of the cavity and effectively constrains the ability of the alpha 



helix to form a catalytically competent state. The alpha-helix is a dynamic secondary element that is 

conserved in class I PRMTs, thus it is thought the direct or water mediated interactions with the K392 

residue near this structure increased its potency and contribute to the compound’s activity. The crystal 

structure of the PRMT3-SGC707 confirmed the compound’s activity in the PRMT3 allosteric site. The 

structural changes to the molecule are exhibited in Figure 1 and the interaction within the allosteric site 

is depicted in Figure 2. 

 

Figure 1. The structure-based optimization of the novel allosteric inhibitor of PRMT3 from previous 

publication in Structure21. From compound 1 to SGC707, a near 100 fold increase in potency was 

observed with conservation of the urea group and modification of both left hand and right sides of the 

compound. Inactive control, XY1, is also depicted, with the replacement of the isoquinoline group with a 

napthyl group. 

 

Figure 2: SGC707 interacting with the allosteric binding site of PRMT3. Key sites of hydrogen binding are 

exhibited via T466 and the isoquinoline group, E422 and the nitrogen atoms of the urea group, and R396 

and the carbonyl of the urea group. The right handed side consisting of an amide bound pyrrolidine 

preferentially filled the binding site via hydrophobic interaction. Interaction of SGC707 and the allosteric 

site forces the α-helix out of conformation, leading to an inactivated PRMT3 protein.  

 



To further test the importance of particular moieties in SGC707, several inactive controls were 

proposed. Initially, methyl groups were to be added to the nitrogen atoms of the urea group. Due to 

extensive issues synthesizing and purifying these compounds, removal of the isoquinoline group in favor 

of a naphthyl group was pursued, yielding compound XY1 (Figure 1). XY1 was completely inactive against 

PRMT3 at concentrations as high as 100 μM, confirming the importance of the key hydrogen bond with 

T466. 

Binding of SGC707 was confirmed by isothermal calorimetry (ITC) with a KD value of 53 ± 2 nM (n = 3) 

(Figure 3) and surface plasmon resonance (SPR) with a KD value of 85 ± 1 nM (n = 3) (kon of 1.17 ± 0.05 x 

105 M-1 s-1 and koff of 0.99 ± 0.03 x 10-2 s-1) (Figure 4). SGC707 also exhibited a long residence time, 

demonstrating great improvement over compound 1 (kon = 5.1 ± 0.57 x 104 M-1 s-1 and koff = 0.76 ± 0.09 

s-1)21. SGC707 was also selective for PRMT3 over 31 protein-, DNA-, RNA-methyltrasferases (Figure 5) 

and a broad range of non-epigenetic targets including >250 kinases, G protein coupled receptors 

(GPCRs), ion channels, and transporters. It showed modest inhibition at 10,000 nM for only 6 (5HT2B 

69%, BRSK1 56%, DLK1 60%, MSK2 55%, PKG2 58%, and PRKX 61%) out of >250 targets. In mechanism of 

action studies, SGC707 suggested activity at the allosteric site by displaying a non-competitive inhibition 

pattern with respect to both the cofactor S-(5’-adnosyl)-L-methionine (SAM) and peptide substrate 

(Figure 6). 

 

Figure 3: ITC experiments were performed using purified PRMT3 that was dialyzed overnight in 100 mM 

NaCl buffer, 10 mM Tris, 5% glycerol, 1 mM DTT, 1 mM at pH 7.5. ITC titrations were performed on a 

MicroCal Auto-iTC200 from Malvern at 25 °C by using a single 2 µL first injection followed by 25 of 5.0 



µL- injections of the compound into the calorimeter cell. Data were fitted with a one-binding site model 

using Origin7 software. Experiments were performed in triplicate with a KD value of 53 ± 2 nM. 

 

Figure 4: SPR studies were preformed and full methods are described in Kaniskan U, et al23. The KD value 

of 85 ± 1 nM, kon of 1.17 ± 0.05 x 10⁵ Mˉ¹ sˉ¹ and koff of 0.9953 ± 0.0292 x 10ˉ² sˉ¹ were calculated by 

averaging values obtained from three independent runs. 

 

Figure 5: Other epigenetic drug targets assessed, including 27 other protein methyltransferases, 3 DNA 

methyltransferases and on RNA methyltransferase. Level of protein activity was assessed at 1 (red), 5 

(green), and 20 (purple) μM of SGC707 and no inhibition was observed.  

 

Figure 6: Confirmation of the non-competitive pattern of inhibition for SGC707 with respect to SAM, an 

important cofactor of PRMT, and the peptide substrate, demonstrating the allosteric mode of inhibition. 



Similar patterns were observed by conserving either SAM or peptide at saturation level while varying the 

concentration of the other molecule. In each case, there was no significant variation of the IC₅₀.  

To demonstrate target engagement of SGC707 in cells, an InCELL Hunter Assay was used. The assay 

measures intracellular binding of SGC707 to the methyltransferase domain of PRMT3 in cell lines 

expressing the methyltransferase domain of PRMT3 tagged with a short fragment of β-galactosidase. 

SGC707 stabilized PRMT3 in both HEK293 and A549 cells with EC₅₀ values of 1.3 μM and 1.6 μM 

respectively (Figure 7A). Based on prior evidence of PRMT3 methylating histone peptides, SGC707 

inhibition of PRMT3 catalytic activity on H4R3 asymmetric dimethylation was assessed in cells. 

Methylation of both endogenous H4 and exogenously introduced GFP-tagged H4 was observed by 

overexpressing human Flag-tagged PRMT3. Overexpressed PRMT3 increased the endogenous 

H4R3me2a from the baseline levels and SGC707 was able to reduce this increase (Figure 7B & 7C) with 

an IC₅₀ of 225 nM. The exogenous H4R3 asymmetrical dimethylation was inhibited with an IC₅₀ of 91 nM 

(Figure 7B & 7D). Baseline levels of H4R3me2a were measured via the catalytically dead PRMT3 mutant 

(E335Q). SGC707 at 1 μM was almost as effective at reducing the H4R3me2a levels as the catalytically 

dead PRMT3 mutant E335Q at similar concentrations. Such evidence clearly indicates that SGC707 can 

engage PRMT3 while effectively inhibiting its catalytic activity in cells and that overexpressed PRMT3 can 

methylate histone H4 in cells. 

 



Figure 7: (A) SGC707 concentration-response curves with the PRMT3 InCELL Hunter Assays. HEK293 or 

A549 cell lines expressing the methyltransferase domain of PRMT3 fused to the enhanced ProLabel (ePL) 

β-galactosidase fragment were incubated for 6 hours at 37C with increasing concentrations of SGC707. 

The abundance of the ePL-PRMT3 fusion protein was measured by lysing the cells in the presence of 

chemiluminescent enzyme substrate and the complementary EA β-galactosidase enzyme fragment. RLU, 

relative light units. (B) Western blot analysis of H4R3me2a levels. HEK293 cells were co-transfected with 

FLAG tagged PRMT3 (WT) or its catalytically dead mutant E335Q (Mut) and treated with different 

concentrations of SGC707, as indicated. Total cell lysates were collected 24 h post inhibitor treatment 

and analysed for H4R3me2a levels. The total levels of exogenous and endogenous histone H4 and 

overexpressed PRMT3 were determined with anti-GFP, anti-H4 and anti-FLAG antibodies, respectively. 

(C) Quantitation of SGC707 effect on the endogenous H4R3me2a. (D) Quantitation of SGC707 effect on 

the exogenous H4R3me2a. The graphs represent non-linear fits of H4R3me2a signal intensities 

normalized to intensities of GFP or H4 for exogenous and endogenous H4, respectively and subtracted 

from the baseline signal from mutant PRMT3. The results are Mean ± SEM of three replicates. 

In vivo pharmacokinetic properties of SGC707 were also assessed (Figure 8). Intraperitoneal injection of 

SGC707 at 30 mg/kg yielded decent plasma exposure in CD-1 male mice over 6 hours with a peak plasma 

level of 38,000 nM. The plasma level of SGC707 at 6 hours post injection was 208 nM, more than 2-fold 

higher that its IC₅₀ value in the cellular assay. The dose was well tolerated by the test animals and 

suggest SGC707 is suitable for animal studies in addition to cell based assays. 

 

Figure 8: Plasma exposure of SGC707 in male CD1 mice. Plasma concentrations of SGC707 following a 

single 30 mg/kg IP injection over 6 h. The dashed black line indicates the cellular IC50 of SGC707. 

 

 



Discussion 

SGC707 is a first-in-class PRMT3 chemical probe which is a potent and cell-active allosteric inhibitor of 

PRMT3. Through several assays, it has been demonstrated to be remarkably selective for its PRMT3 

target over 31 other similarly functioning proteins in addition to a wide range of other proteins. Multiple 

cell-based assays have demonstrated SGC707’s ability to potently inhibit PRMT3 methyltransferase 

activity. This is the first ever report suggesting H4 as a target for PRMT3 in cells. There is need for further 

studies to confirm if endogenous PRMT3 plays a major role in H4R3 asymmetric dimethylation. In 

addition, it has yet to be determined if this methylation occurs in the cytoplasm shortly after H4 

translation and loading onto the chaperone complexes. The bioavailability and suitability for animal 

studies allows SGC707 to become a valuable tool for elucidating this potentially significant interactions. 

Epigenetic drug discovery is merely in its infancy, with only a few agents approved by the FDA currently 

and several others in clinical development. HDAC inhibitors are currently on the market, with the most 

recent, belinostat, being approved just last year for the treatment of relapsed or refractory peripheral T-

cell lymphoma24. DNA methyltransferase inhibitors, such as azacitadine and decitabine, have been 

approved for the treatment of myelodysplastic syndromes25,26. With continued research, it has been 

demonstrated that these targets are only a small subset of the entire epigenome, leaving much left to 

be warranted and discovered. The success of these agents have led to the growing interest in chemical 

regulation of chromatin mediated signaling21.  

Through research within the Jian Jin Laboratory alone, SGC707 became the third chemical probe 

discovered to potently inhibit protein methyltransferases. UNC1999 potently inhibits EZH2 and EZH1 

which catalyze the methylation of histone H3 Lysine 27. The overexpression of EZH2 and the 

hypertrimethylation of H3K27 have been implicated in a number of cancers, thus UNC1999 serves as a 

valuable tool to investigate the role of EZH2 and EZH1 in health and disease27. Similarly, UNC0642 was 

found to be a potent selective inhibitor of the lysine methyltransferases G9a and GLP, which catalyze 

mono- and dimethylation of H3 lysine 9 in addition to other non-histone proteins28. All three agents 

exhibited high cellular potency with limited cell toxicity, excellent selectivity and pharmacokinetic 

properties suitable for animal-based studies. The use of SGC707, in addition to UNC1999 and UNC0642, 

in further animal studies will not only further elucidate the utility of these agents as potential 

treatments, but may also uncover many mysteries of the epigenome in the process. 

PRMT3 has many proposed roles in the human cells, as outlined in the introduction of this thesis. The in 

vivo studies have demonstrated a clear role of SGC707 to impact PRMT3 activity at the H4R3 site. In 

addition to more work to fully understand the role of PRMT3-H4R3 interaction, other sites of interest 

should also be considered. These include PRMT3 mediated rpS2 methylation and 80S ribosome 

maturation, PABPN1 methylation in oculopharyngeal muscular dystrophy, and inhibited 

methyltransferase activity via interaction with tumor suppressor DAL-1/4.1B. To further expand upon 

these potential implications of PRMT3, the development of future in vivo studies and animal studies 

could be greatly aided via the use of SGC707. Through collaboration of the multi-faceted resources of 

other laboratories around the world, it is hoped this chemical probe could aid in a great number of 

discoveries associated with PRMT3 in coming years. 

In conclusion, SGC707 is the first in class allosteric inhibitor of PRMT3 and poses great potential in the 

facilitation of further epigenetic research in the protein’s role in health and disease.  
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1H NMR spectrum of SGC707 

 



 

13C NMR spectrum of SGC707 


