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Abstract 

Many students face difficulty when writing documents due to various reasons such as language 

barriers, content misunderstanding, or lack of formal writing education. They are often too shy or 

busy to visit a writing center or speak with a professor during office hours. Technology also falls 

short in this arena. Asynchronous collaboration systems require students to self-report when they 

are struggling and many students tend to under-report difficulty. Synchronous collaboration 

systems eliminate the need for self-reporting, but require teachers to constantly monitor their 

students. By combining synchronous and asynchronous collaboration paradigms, this project is 

able to create a mixed-focus collaborative writing system in which students and teachers engage 

in collaboration only when triggered by an automatically or manually generated event that 

indicates the student is facing difficulty. This mixed-focus system was created by combining two 

existing architectures: 1) the EclipseHelper difficulty architecture for inferring programming 

difficulty, and 2) the Google Docs collaborative writing environment. The new, combined 

architecture allows teachers to intervene and offer remote assistance to their students when they 

are automatically notified that a student is facing difficulty. A user study was conducted to 

evaluate this new architecture. Students used the system to complete a two-page paper given in a 

class they were taking, and data were recorded during the writing and help-giving process. Using 

both qualitative and quantitative analysis, the data were evaluated. Overall, students found the 

help-giving model easy to use and appreciated the feedback they received. However, difficulty 

was predicted infrequently, likely as a result of inherent differences between writing and 

programming. Future work will involve further analysis of the data in order to improve the 

difficulty prediction algorithm.  
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Introduction 

Many students face difficulty when writing documents. This is an issue faced by students 

of all ages, from middle-school students who are just beginning to learn about how to write an 

essay to graduate students writing lengthy research papers. Resources that help facilitate writing 

feedback often lack general-purpose remote real-time assistance capabilities, and this thesis aims 

to fill that gap. By combining existing collaboration paradigms and difficulty assistance 

architectures, this project creates a new architecture that allows teachers to intervene and offer 

remote assistance to their students when they are automatically notified that a student is facing 

difficulty. This paper discusses the development of this new architecture, a field-study created to 

evaluate the architecture, and an analysis of the results of the field-study. 

Related Work 

Benefits of Collaboration While Writing 

Writing is crucial to education and it has been shown that writing improves 

understanding and critical thinking skills [1]. Giving and receiving feedback is important not 

only in helping students improve their writing skills, but also in helping them to develop skills 

related to personal judgment and responsibility [2]. Thus, it is important that students learn how 

to write well, and that they are able to receive instructor and peer feedback during the writing 

process. 

However, while peer feedback is certainly helpful, students often feel more secure when 

they receive feedback from a teacher [2]. Gielen et al. noted that teacher feedback is more 

complex than peer feedback and, while their study revealed that students who receive teacher 

rather than peer feedback do not necessarily perform better, students do interpret comments from 

a teacher as being more reliable [5, 6].  
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A system that allows students to receive regular feedback from both teachers and peers 

would then be ideal. It has been shown that these feedback systems lead to learning benefits. 

For example, Hanjani found that EFL (English as a Foreign Language) students benefit from 

collaborative revision [7]. Collaboration as a writing tool can also extend beyond just the 

revision process to collaborative content creation. Pair writing has been shown to improve 

accuracy [8] and future writing [9]. Collaborative learning systems that allow a tutor to provide 

real-time feedback to a student have also led to an increase in knowledge retention [10].  

Existing Solutions and the Need for a Mixed-Focus Architecture.  

A number of resources already exist for students who need help with their writing. There 

are several automatic natural language processing tools that focus on helping students correct 

their grammar and spelling errors [10, 11, 12]. Some of these tools are very sophisticated, and 

can be particularly helpful to ESL (English as a Second Language) students who might 

disproportionately struggle with syntactical errors. Several other tools can auto-grade 

assignments for content errors, although their capacity can be limited [13, 14]. 

 When these tools fail, students can take initiative and seek help from an instructor. 

However, students are often too shy or too busy to do this. In high school or middle school, 

parents and teachers often have to reach out to students who are falling behind. Students may be 

overlooked or not receive the academic attention they need, especially if class sizes are large. At 

the college level, struggling students are expected to visit the writing center or speak with a 

professor during office hours. This extra step can be intimidating and time-consuming, especially 

for new students who are unfamiliar with campus resources, shy students who are nervous to 

approach a professor to ask for help, or students who are busy with other work and do not have 

time in their schedule for an in-person visit. Another problem with many of these resources is 
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that teachers and professors often refer students to help only after they do poorly on an 

assignment. It would be more beneficial for students to have access to help before receiving a 

bad grade so that they do not run the risk of falling behind.  

For students who cannot seek in-person help, there exist asynchronous collaboration 

systems [15, 16], which provide mechanisms for students to receive feedback from a remotely 

located instructor. However, these systems do not allow for immediate feedback. In addition, 

requiring students to initialize asynchronous collaboration and self-report difficulty can 

potentially lead to both over-reporting and under-reporting of difficulties. Johannesen and Eide 

found that active students benefit more from computer supported learning environments than 

passive students, since passive students will tend to under-report difficulties [17]. Because 

passive students would also intuitively be less likely to attend office hours or go to a writing 

center for help, it is even more important for learning technology to target their needs. Several 

studies have shown that similar issues arise in cooperative programming environments; 

developers are less likely to ask each other for help when they are working in different locations 

[18], new programmers are often late to ask for help [19], and programmers of all levels reach 

out to teammates only as a last resort after exhausting other forms of help [20].  

To enable real-time assistance and minimize the self-reporting issue, there exist several 

writing environments that allow for synchronous collaboration [21, 22]. In these environments, 

multiple peers or instructors can work together on one document to engage in collaborative 

writing and revision. However, for a teacher to be able to help a student in a moment of need, the 

teacher has to be watching the collaborative document in order to see that the student is 

struggling. This is time-consuming and not scalable even for small classroom environments. 
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In order to remedy this problem and facilitate a learning environment that benefits 

passive students who are not co-located with the professor without placing unrealistic 

expectations on instructors, the author has focused on combining the synchronous and 

asynchronous learning environments into a mixed-focus learning environment. Dewan et al. 

discuss mixed-focus collaboration, defining it as an interaction mechanism that allows for both 

individual and group work to occur [23]. In a mixed-focus environment [Figure 1], students and 

teachers are able to work individually, only coming together to collaborate when a certain event 

occurs. Any event monitored by the collaborators can trigger this collaboration [23]. In a mixed-

focus programming environment, this event is either an explicit request for help or a difficulty 

inference generated automatically [24]. In a mixed-focus writing environment, the event could 

also be triggered either manually or automatically. The automatic events prevent the problematic 

need for self-reporting that is present in asynchronous environments, and the system as a whole 

provides students with real-time assistance. In addition, it allows the teacher to manage students 
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Figure 1: A Mixed Focus System 
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in a more scalable manner than in a synchronous environment.  

Architecture: an Interoperable Solution 

Based on the earlier discussion, it is clear that a successful teacher-student writing 

environment needs several features. In keeping with the mixed-focus nature of the system, it 

needs to have a mechanism for inferring difficulty and then indicating to the teacher that the 

student is facing an obstacle. The student should also be able to manually report that they are 

facing difficulty. After the teacher receives notice of this event, the writing environment needs to 

facilitate conversation and collaboration between the teacher and student so that the difficulty 

can be resolved. In order to reuse existing tools for communication, collaboration, notification, 

and difficulty inference, the author combined existing tools and associated architectures to create 

a new interoperable tool and architecture. This architecture isolates what is different about this 

project, while identifying and reusing what is shared with other works.  

Difficulty Inference Algorithm: EclipseHelper 

The first existing tool that the author sought to incorporate was EclipseHelper, which has 

been implemented to assist students with programming assignments. It solves the self-reporting 

issue present in asynchronous assistance platforms by predicting when student programmers are 

facing difficulty [24].  

The EclipseHelper algorithm looks at ratios of aggregate commands entered by the 

student in order to predict whether the student is facing difficulty. Commands such as typing a 

character or navigating between files within Eclipse are mapped to broader categories such as 

Edit or Navigation. After a certain number of commands are collected, a prediction is made 

using the ratios of each command category to the total number of commands collected in that 

segment. Segments are defined by number of commands collected, not time passed. Using these 
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ratios, a prediction is made [Figure 2]. Several parameters can be adjusted in generating these 

predictions. The segment length (the number of commands collected before a prediction is made) 

and startup lag (the number of commands the algorithm ignores before making the first 

prediction) can both be modified. 

	
Figure 2: EclipseHelper Architecture 

 
The EclipseHelper algorithm is still being refined, but it has been tested and improved 

over the course of several user and field studies [24, 25]. Students who have used the plugin have 

given it positive reviews, saying that it helped them to solve time-consuming problems and that 

they appreciated using the tool [25]. For these reasons, this project builds upon the EclipseHelper 

difficulty inference algorithm in an attempt to create a similar environment for document writers. 

Collaboration and Communication: Google Docs 

As mentioned earlier, a writing environment also needs to facilitate collaboration and 

communication between the teacher and student. One successful writing environment that 

already does this is Google Docs. Several key features made Google Docs more suitable for this 

study than other commonly used writing environments. First, Google Docs is already a widely 

used platform amongst students of all ages. Using this framework instead of creating a custom 
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editor minimizes the learning curve for users by allowing them to continue to use a platform with 

which they are already comfortable. Google Docs also runs on the web, allowing students to 

work on their document from any computer. 

Second, previous research [26] indicates that software agents are more effective when 

they are presented as “peer companions” because receiving peer rather than instructor feedback 

reduces anxiety and fear of failure. This is supported by previous research on the benefits of peer 

editing [5]. Since Google Docs has a proven history of aiding peer-to-peer collaboration, the 

author hypothesized that students who are accustomed to collaborating with peers in the Google 

Docs environment will be more open to working with a teacher or a helpful computer agent 

through the same interface. This new interface will combine the anxiety-reducing experience of 

receiving peer feedback with the benefits of instructor feedback mentioned in the Introduction. 

To ensure that the teacher and software agent are presented as “peer companions” [26], the 

plugin UI that I created seamlessly integrates with the Google Docs interface [Figure 3].  

	
Figure 3: Google Docs User Interface 

Finally, Google Docs allows external plugins to extend its functionality. Google Drive 

has an easy-to-use API, and Google Docs already tracks every revision made to a document for 

collaborative purposes. The author built upon an open-source project called Draftback [27], 

which uses a Google Chrome extension to examine the history of a Google Doc in order to 

replay the entire history of revisions to the document. This revision-tracking ability provides the 

basis for integration with the EclipseHelper algorithm, which will be discussed in more detail 
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later. For all of these reasons, Google Docs proved to be a suitable writing environment to assist 

with collaboration and communication between teacher and student. 

The Interoperable Architecture 

 To combine the difficulty inference architecture of EclipseHelper with the collaboration 

and communication architecture of Google Docs, the author created a new architecture to 

facilitate a difficulty-triggered collaborative writing environment. In this new architecture, user 

commands are collected from Google Docs, mapped to EclipseHelper command categories, and 

passed into the EclipseHelper difficulty inference algorithm [Figure 4]. Once a prediction is 

generated, it is sent back to Google Docs, where the student can choose to correct it or continue 

with their work.  The teacher is notified via email if the student is facing difficulty [Figure	5]. 
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Figure 4: Interoperable Architecture Inner Workings 
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Figure	5:	Interoperable	Architecture	User	Experience	

Implementation 

Creating the new interoperable architecture required several additions to the 

EclipseHelper architecture. EclipseHelper was originally designed as an algorithm for individual 

use, so the author had to create a server to allow data from multiple students to be processed at 

once. In addition, the author had to modify prediction settings to make the algorithm work for 

student writers. When initially testing the tool, it rarely predicted difficulty. This was because of 

the segment length and startup lag. The typical programming assignment takes far longer and is a 

more command-rich experience than writing a two-page paper, so waiting 50 commands to make 

a prediction (startup lag) and then making predictions only every 25 commands (segment length) 

was not working.  As a result, the author shortened the startup lag to 10 and the segment length 

to 5. Finally, writing and programming involve different commands and therefore customized 

command mappings are necessary. These command mappings are used to map document-

specific commands collected within Google Docs to broader EclipseHelper command categories 

(Figure 6).  

Creating the modifications to these command mappings was a two-step process. First, 

document commands had to be collected from the Google Docs writing environment. The creator 
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of the Chrome extension Draftback noted that every time a user types something in a Google 

Doc, a web request is sent from Google that indicates exactly what was edited and what type of 

edit was made (insert, delete, style, etc.) [27]. These requests are then stored in a log file that 

allows Google to keep track of revision history and collaboration within a document. Draftback 

uses this log file to replay the revision history of the document; the tool created for this thesis 

does not use this log file and instead uses a Chrome extension to listen to the web requests as 

they are sent in order to allow for live processing of commands. The Chrome extension created 

for this thesis also extends beyond Draftback and listens to browser events in addition to Google 

Docs commands. Commands are registered when users leave the focus of the document they are 

working on, either by navigating to a new URL, opening a new tab, or leaving the browser. 

Commands are also recorded when users scroll through their document, move their caret, or use 

the spellcheck tool.  

The second part of the creating a new command mapping involved mapping these 

document commands to EclipseHelper command categories. The categories that EclipseHelper 

can currently map to are Edit, Debug, Insert, Delete, Focus and Navigation.  The Edit category 

encompasses both the Insert and Delete subcategories; depending on the mapping that the 

programmer chooses, either the Edit super-category or the Insert and Delete subcategories can be 

used to make predictions.  The Focus category encompasses commands that relate to leaving and 

entering Eclipse, and the Navigation category encompasses commands that related to navigating 

between classes in Eclipse. Many of the command mappings used when editing a document are 

clearly analogous to those used when writing a program, but some of the less obvious mappings 

made in this implementation will be discussed here. These mappings are also visualized in 

Figure 6.  
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Mapping to the Debug category proved to be the most interesting problem, as document 

writing does not have commands that are directly analogous to using the debugger in Eclipse. 

Currently, both compile errors and use of the debug tool map to the Debug category in 

EclipseHelper. The author concluded that spelling and grammatical errors made while writing a 

document are analogous to compile errors in a program. Developing a counterpart for use of the 

debug tool was somewhat more complicated. It is somewhat intuitive that the process of 

debugging a program is analogous to revising a paper, but what does that revision process entail?  

To gain a better understanding of this process, the author collected survey responses 

about college students’ writing processes. Surveys were collected from seven different college 

students with a variety of different majors1. When asked how they noticed and/or resolved 

content and phrasing errors in their papers, many students stated that they would reread their 

paper several times looking for organizational, grammatical, and phrasing errors. Some students 

revised on a smaller scale, treating each paragraph or sentence as a mini-draft and revising it 

before reading over the paper as a whole. Many students said they would also read their essay 

out loud or ask a peer to read over it before submitting a final draft. Between a rough draft and a 

final paper, most students stated that they made a small number of edits to fix phrasing or 

grammatical errors, although some students made structural changes. One stated, “I often even 

print out my paper so that I can physically draw the rearrangements”. 

The findings from this small survey are supported by more extensive previous research 

on the revision process.  Hayes and Flower present a model for the stages of document writing 

that consists of several stages: “planning (generating ideas and organizing them), sentence 

generation (producing a draft based on your plan), and revising (improving a draft)” [28]. These 

																																																								
1	Dramatic Art, Business and Psychology, Economics and Computer Science, Political Science, Public Policy and 
International Studies, Anthropology, Religious Studies	
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processes do not occur separately; they are often interwoven throughout the process of writing a 

document [28]. The different approaches amongst students that were found in the author’s study 

are also supported by previous research. Hayes and Flower note that expert writers tend to 

conceive of revision as a “whole-text” task [28]. They make large-scale structural changes and 

reformulate their paper in order to improve their argument. Novice writers, on the other hand, 

tend to make minor changes to words or phrasing, often revising on a smaller scale.  

From these results, the author concluded that concrete actions like using collaboration 

tools to facilitate peer-editing, scrolling through a document to make minor edits in specific 

locations (in the case of a novice writer), and moving or copy/pasting large chunks of text (in the 

case of an expert writer) all occur during the revision state of the writing process. As a result, the 

author chose to map copy/paste commands that deal with more than 100 characters and 

scroll/move caret commands to the Debug category. The EclipseHelper algorithm does not 

currently support analysis of sequences of commands (i.e. scrolling to a new page and then 

making several small edits) or location-based commands (i.e. making a lot of edits in one 

paragraph), but this is an area for future exploration that is discussed in more detail in the 

analysis. The final command mapping that the author developed is visualized in Figure 6. The 

Navigation category is empty because scroll/move caret commands were mapped to the Debug 

category. 

	

Figure 6: Command Mappings 
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Evaluation: A User Study  

After conceptualizing and developing this system, questions still remained about how 

well the tool would fare in a real-world environment. Would students appreciate receiving 

unsolicited help, or would they find it unnerving? Would the EclipseHelper algorithm predict 

document difficulty as well as it predicted programming difficulty?  Would students find the 

interface the author developed easy to use? Would they even want to install the tool? To find 

answers to these questions, the author conducted a field study.  

This study enlisted students in two different Political Science classes (Introduction to 

Political Science and American National Government) at a two-year community college. The 

students were asked to complete an assignment for their course using the tool the author 

developed. The subject of the assignment was Social Security, and after being given some 

background, students were asked to write a response detailing their thoughts on the issue of 

Social Security, backing up their opinions with several outside sources. The author acted as the 

instructor, offering help to students when she received a notification that they were in difficulty.  

Most of the students who participated in this field study are working full time jobs or 

caring for children in addition to pursuing their degree, and there were several non-native 

English speakers who participated. This was an ideal target audience for this tool, as it is 

designed to help students who struggle while writing but may not have the time to visit office 

hours for help.  
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Results 

Qualitative Results 

Student Results 

After the students completed their assignments, they were given a survey asking about 

their reactions to the tool. Selected reactions are included in Table 1. When asked how they felt 

about receiving unsolicited help while writing, most students had positive reactions and found 

the help welcome. Students did not appear to have privacy concerns, and everyone appeared to 

feel comfortable being watched while writing. This is consistent with previous research that has 

found that students are willing to sacrifice privacy when they experience real-life benefits [29]. 

Students were also asked a more general question about what their help experience was 

like as a whole. Most students very much appreciated the help they received, and one student 

expressed that even though she did not receive help, she felt more confident in her writing 

process knowing that help was available if she needed it. 

When asked about how easy the user interface was to use, all six of the students who 

participated successfully in the study said the user interface was either “Very easy” or 

“Somewhat Easy” to use. However, there are 12 other students who were originally enthusiastic 

about the tool and signed up for the study, but did not complete it.  While some of these students 

likely just did not complete the assignment, at least three of the students struggled with the 

installation process and misunderstood parts of the instructions, causing their data to be invalid. 

Others probably faced similar issues, but did not make it as far in the process.  

These are important problems that likely did not arise with the EclipseHelper field study 

because EclipseHelper was tested on a class of mostly technologically savvy Computer Science 

students. Introducing new technology to non-CS students proved to be more difficult and 
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although students were generally enthusiastic and excited to install the tool, the technological 

barrier served as a deterrent.  

Finally, students were asked about suggestions for improvement to the tool. Students 

(accurately) felt that there were too few difficulty predictions made by the tool, an issue that will 

be discussed in more detail in the analysis. Several students also expressed a desire for natural 

language processing functionality to be added to the tool, so that they could receive better 

spelling, grammar, and phrasing feedback automatically. Potential future work could integrate 

GoogleDocs with a natural language processing architecture such as Grammarly [10], 

SpellCheckPlus [11], or CyWrite [12].  

Q1: Unsolicited Help Q2: Help Experience Q3: Usability Q4: Suggestions for Improvement 
“The offer of assistance 
was surprising, but not 
unwelcome. It felt natural 
to be able to have the chat 
and comment thread 
available.” 

“Though I did not need help 
and didn't face any difficulties, 
I felt more confident in my 
writing process knowing that 
help was available should I 
need it. I feel that this would 
be very helpful to students, 
particularly in online classes, 
where they often are not able 
to establish open and more 
immediate lines of 
communication with the 
instructors.” 

“I have not used 
Google docs very 
often, and have 
relied on Word to 
type my documents 
for classes. The 
Google doc 
environment is much 
easier to navigate 
and the option of 
communication to 
receive assistance is 
invaluable.” 

Several students felt that the predictions 
were inaccurate. Students thought that 
long pauses, slow typing, and excessive 
spelling errors should indicate difficulty 
 

“It was Welcome and 
Natural and nice to have 
someone right there to ask 
help from” 

“I believe that this would be 
beneficial for both students 
and teachers. As a teacher, I 
like the fact that I could check 
in on my students and their 
progress, answering questions 
as needed. From a student 
standpoint, having help 
available when struggling on a 
paper is a wonderful option.” 

All six students 
reported that the tool 
was either “Very 
easy” or “Somewhat 
easy” to use 

One student enjoyed receiving feedback 
on a paper after completion, rather than 
while they were writing. 
 

   “If the tool highlighted grammar and 
spelling errors that would be helpful. 
And also when it reads that you are 
facing difficulty have it suggest solutions 
to the problem.” 
 

   “Maybe some kind of engine that I 
would put my sentence in and it would 
arrange it the correct way, sometimes I 
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feel I haven't set the right word in the 
right location. Or more synonyms in 
hand to find some more complex words 
then the ones that I already know.” 

Table 1: Qualitative Result Summary 

Instructor Results 

The author also made several qualitative observations after acting as an instructor during 

the field study. The author noticed that beyond offering students assistance, the tool also has the 

potential to increase student awareness. Whereas while programming, students are typically 

aware they are facing difficulty because their program does not run or compile, when students 

are writing a document, they can be oblivious to the fact that they are writing poorly. This lack of 

awareness increases the value of this tool – it can serve not only to help teachers focus on 

struggling students, but also to make students aware of their own difficulty.  

In addition, the author found that the previous research on self-reporting [17] was 

confirmed. Even when the author/instructor entered into the document environment to offer help 

to a student, the student was more likely to hit the “Facing Difficulty” button than ask the 

instructor a question directly in chat. This supports the hypothesis that students are often too shy 

to ask a human for help and consequently under-report difficulties. This result may also be 

because students felt intimidated asking for help from an instructor and found engaging with the 

button that was purposefully presented as a “peer companion” [26] more desirable.  

Finally, the author observed that it was difficult to manage and respond to even just six 

students writing at the same time. A future solution to this could involve contacting different 

instructors depending on the difficulty being faced. For instance, the professor could be 

contacted for content-related difficulties, the reference librarian could be contacted for source-

related difficulties, and the writing center could be contacted for grammar-related difficulties. 
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This could also be improved if students completed their assignments at more distributed time 

intervals; all of the six students in this study completed the assignment within the same day. 

Quantitative Results 

Table 2 contains a quantitative summary of the results from the study to supplement the 

qualitative evaluations. The first row shows the number of times the algorithm predicted 

difficulty.  Clearly, it predicted difficulty very infrequently. This issue will be addressed in 

further detail in the analysis.  The second row shows the number of times students manually 

indicated they were facing difficulty by pressing the button. The third row shows the total 

number of predictions that were made by the algorithm for each student, and the fourth row 

shows the number of times that the author offered help to the student. 

 S1 S2 S3 S4 S5 S6 

Predicted 
difficulties 

0 0 0 1 0 0 

Manually 
Indicated 
difficulties 

4 0 0 1 0 8 

Total predictions 
made 

202 131 219 123 69 268 

Help offered 4+ times 0 times 2 times 1 time 1 time 8+ times 

Table 2: Quantitative Result Summary 

Analysis 

Lack of Difficulty Predicitons 

The lack of difficulty predictions mentioned in the Results section was likely due to 

several factors. First, a two-page paper is a far shorter and less command-rich task than a typical 

programming assignment. As mentioned earlier, the author tried to account for this when making 
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initial adjustments to prediction parameters such as startup lag and segment length, but the field 

study revealed that further adjustments need to be made. 

In addition, several aspects of the new command mapping that was created may have 

contributed to the lack of difficulty predictions.  First, Debug commands are a strong indicator in 

EclipseHelper that a student is facing difficulty. Many of the commands that the author mapped 

to the Debug category were related to the revision stage of the writing process.  However, most 

of the students who participated in the study did not engage in a lot of revision. This may be a 

writing skill that they have not learned or one that they did not care to use during such a short 

writing assignment, and this missing step likely contributed to the lack of difficulty predictions.  

Interestingly, these results are similar to EclipseHelper creator Carter’s discovery that more 

seasoned developers use the debug tool more often than programmers with less experience [24]. 

Second, as seen in Figure 6, the author chose a command mapping that mapped Insert 

and Delete commands to the Edit category, as this was the mapping Carter and Dewan used in 

their field experiment. There is an alternative command mapping that maps Insert and Delete 

commands to their own respective categories and gives better results in laboratory experiments 

[24], and this alternative mapping may have generated more difficulty predictions.  

Sequential and location-based command analysis might also improve results. Currently, 

EclipseHelper only supports difficulty predictions based on aggregate command ratios. The 

ability to look at location-based sequences of commands would allow for difficulty predictions to 

be generated when a student spends a long period of time editing the same section of a 

document, or when the student scrolls to a new part of the document to make a few edits. 

Finally, viewing playback of the students’ papers also revealed that periods of inactivity 

often serve as indicators of difficulty. Students indicated this in their qualitative feedback as 
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well. This was not the case in the original EclipseHelper algorithm, which assumed that periods 

of inactivity corresponded to students working on an unrelated task. However, the field study 

revealed that most students completed their paper in one session. This finding might differ 

depending on the length of the writing assignment. 

Future Improvements 

There are a number of areas for this project to go in the future. In addition to the potential 

improvements mentioned earlier, this project would benefit from more rigorous statistical 

analysis on the data collected in this study.  Statistical analysis using the Weka tool [30] has 

helped to improve the EclipseHelper algorithm, and it would be beneficial to conduct a similar 

analysis on the results from this study.  

Another area for future exploration is enhancing the teacher’s user-experience. At this 

point, the teacher is simply sent an email indicating that a student is facing difficulty. An 

interface that would allow teachers to view notifications from all students in one place, view 

details on a specific student, and visualize statistics on the assignment level should be valuable.  

Conclusion  

There are several key contributions that have been made by this thesis. First, the author 

had the initial idea of implementing a mixed focus system for document writing, which 

previously did not exist.  This architecture was then built and implemented. Finally, the success 

of this new architecture was evaluated via a field study.  The field study revealed that students 

find feedback received through the tool helpful, but it also revealed that there are differences 

between writing and programming that require modifications to be made to the difficulty 

inference algorithm.  
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Figure 7: Visualizer tool developed by author 

Even more significant than these results is that now that an initial set of user data has 

been collected, there is a testbed that can be used to re-run experiments on this data set.  Using 

the testbed, researchers can try out new command mappings, conduct new experiments without 

the overhead of a field study, and train new algorithms.  This testbed includes a tool that the 

author has built that allows researchers to visualize the command ratios used to make predictions 

within EclipseHelper [Figure 7, 31]. This allows researchers to easily identify what caused the 

algorithm to make incorrect predictions. This thesis, in combination with the visualizer created 

by the author and tools that have been developed by others, provides the basis for the future 

development of a writing-specific difficulty inference algorithm.  
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