
Long	1	

	

Abstract

Many students face difficulty when writing documents due to various reasons such as language

barriers, content misunderstanding, or lack of formal writing education. They are often too shy or

busy to visit a writing center or speak with a professor during office hours. Technology also falls

short in this arena. Asynchronous collaboration systems require students to self-report when they

are struggling and many students tend to under-report difficulty. Synchronous collaboration

systems eliminate the need for self-reporting, but require teachers to constantly monitor their

students. By combining synchronous and asynchronous collaboration paradigms, this project is

able to create a mixed-focus collaborative writing system in which students and teachers engage

in collaboration only when triggered by an automatically or manually generated event that

indicates the student is facing difficulty. This mixed-focus system was created by combining two

existing architectures: 1) the EclipseHelper difficulty architecture for inferring programming

difficulty, and 2) the Google Docs collaborative writing environment. The new, combined

architecture allows teachers to intervene and offer remote assistance to their students when they

are automatically notified that a student is facing difficulty. A user study was conducted to

evaluate this new architecture. Students used the system to complete a two-page paper given in a

class they were taking, and data were recorded during the writing and help-giving process. Using

both qualitative and quantitative analysis, the data were evaluated. Overall, students found the

help-giving model easy to use and appreciated the feedback they received. However, difficulty

was predicted infrequently, likely as a result of inherent differences between writing and

programming. Future work will involve further analysis of the data in order to improve the

difficulty prediction algorithm.

Long	2	

	

Introduction

Many students face difficulty when writing documents. This is an issue faced by students

of all ages, from middle-school students who are just beginning to learn about how to write an

essay to graduate students writing lengthy research papers. Resources that help facilitate writing

feedback often lack general-purpose remote real-time assistance capabilities, and this thesis aims

to fill that gap. By combining existing collaboration paradigms and difficulty assistance

architectures, this project creates a new architecture that allows teachers to intervene and offer

remote assistance to their students when they are automatically notified that a student is facing

difficulty. This paper discusses the development of this new architecture, a field-study created to

evaluate the architecture, and an analysis of the results of the field-study.

Related Work

Benefits of Collaboration While Writing

Writing is crucial to education and it has been shown that writing improves

understanding and critical thinking skills [1]. Giving and receiving feedback is important not

only in helping students improve their writing skills, but also in helping them to develop skills

related to personal judgment and responsibility [2]. Thus, it is important that students learn how

to write well, and that they are able to receive instructor and peer feedback during the writing

process.

However, while peer feedback is certainly helpful, students often feel more secure when

they receive feedback from a teacher [2]. Gielen et al. noted that teacher feedback is more

complex than peer feedback and, while their study revealed that students who receive teacher

rather than peer feedback do not necessarily perform better, students do interpret comments from

a teacher as being more reliable [5, 6].

Long	3	

	

A system that allows students to receive regular feedback from both teachers and peers

would then be ideal. It has been shown that these feedback systems lead to learning benefits.

For example, Hanjani found that EFL (English as a Foreign Language) students benefit from

collaborative revision [7]. Collaboration as a writing tool can also extend beyond just the

revision process to collaborative content creation. Pair writing has been shown to improve

accuracy [8] and future writing [9]. Collaborative learning systems that allow a tutor to provide

real-time feedback to a student have also led to an increase in knowledge retention [10].

Existing Solutions and the Need for a Mixed-Focus Architecture.

A number of resources already exist for students who need help with their writing. There

are several automatic natural language processing tools that focus on helping students correct

their grammar and spelling errors [10, 11, 12]. Some of these tools are very sophisticated, and

can be particularly helpful to ESL (English as a Second Language) students who might

disproportionately struggle with syntactical errors. Several other tools can auto-grade

assignments for content errors, although their capacity can be limited [13, 14].

 When these tools fail, students can take initiative and seek help from an instructor.

However, students are often too shy or too busy to do this. In high school or middle school,

parents and teachers often have to reach out to students who are falling behind. Students may be

overlooked or not receive the academic attention they need, especially if class sizes are large. At

the college level, struggling students are expected to visit the writing center or speak with a

professor during office hours. This extra step can be intimidating and time-consuming, especially

for new students who are unfamiliar with campus resources, shy students who are nervous to

approach a professor to ask for help, or students who are busy with other work and do not have

time in their schedule for an in-person visit. Another problem with many of these resources is

Long	4	

	

that teachers and professors often refer students to help only after they do poorly on an

assignment. It would be more beneficial for students to have access to help before receiving a

bad grade so that they do not run the risk of falling behind.

For students who cannot seek in-person help, there exist asynchronous collaboration

systems [15, 16], which provide mechanisms for students to receive feedback from a remotely

located instructor. However, these systems do not allow for immediate feedback. In addition,

requiring students to initialize asynchronous collaboration and self-report difficulty can

potentially lead to both over-reporting and under-reporting of difficulties. Johannesen and Eide

found that active students benefit more from computer supported learning environments than

passive students, since passive students will tend to under-report difficulties [17]. Because

passive students would also intuitively be less likely to attend office hours or go to a writing

center for help, it is even more important for learning technology to target their needs. Several

studies have shown that similar issues arise in cooperative programming environments;

developers are less likely to ask each other for help when they are working in different locations

[18], new programmers are often late to ask for help [19], and programmers of all levels reach

out to teammates only as a last resort after exhausting other forms of help [20].

To enable real-time assistance and minimize the self-reporting issue, there exist several

writing environments that allow for synchronous collaboration [21, 22]. In these environments,

multiple peers or instructors can work together on one document to engage in collaborative

writing and revision. However, for a teacher to be able to help a student in a moment of need, the

teacher has to be watching the collaborative document in order to see that the student is

struggling. This is time-consuming and not scalable even for small classroom environments.

Long	5	

	

In order to remedy this problem and facilitate a learning environment that benefits

passive students who are not co-located with the professor without placing unrealistic

expectations on instructors, the author has focused on combining the synchronous and

asynchronous learning environments into a mixed-focus learning environment. Dewan et al.

discuss mixed-focus collaboration, defining it as an interaction mechanism that allows for both

individual and group work to occur [23]. In a mixed-focus environment [Figure 1], students and

teachers are able to work individually, only coming together to collaborate when a certain event

occurs. Any event monitored by the collaborators can trigger this collaboration [23]. In a mixed-

focus programming environment, this event is either an explicit request for help or a difficulty

inference generated automatically [24]. In a mixed-focus writing environment, the event could

also be triggered either manually or automatically. The automatic events prevent the problematic

need for self-reporting that is present in asynchronous environments, and the system as a whole

provides students with real-time assistance. In addition, it allows the teacher to manage students

Facing
difficulty;

Collaboration

Facing
difficulty;

Collaboration

Facing
difficulty;

Collaboration

No difficulty;
individual work

No difficulty;
individual work

No difficulty;
individual work

Figure 1: A Mixed Focus System

Long	6	

	

in a more scalable manner than in a synchronous environment.

Architecture: an Interoperable Solution

Based on the earlier discussion, it is clear that a successful teacher-student writing

environment needs several features. In keeping with the mixed-focus nature of the system, it

needs to have a mechanism for inferring difficulty and then indicating to the teacher that the

student is facing an obstacle. The student should also be able to manually report that they are

facing difficulty. After the teacher receives notice of this event, the writing environment needs to

facilitate conversation and collaboration between the teacher and student so that the difficulty

can be resolved. In order to reuse existing tools for communication, collaboration, notification,

and difficulty inference, the author combined existing tools and associated architectures to create

a new interoperable tool and architecture. This architecture isolates what is different about this

project, while identifying and reusing what is shared with other works.

Difficulty Inference Algorithm: EclipseHelper

The first existing tool that the author sought to incorporate was EclipseHelper, which has

been implemented to assist students with programming assignments. It solves the self-reporting

issue present in asynchronous assistance platforms by predicting when student programmers are

facing difficulty [24].

The EclipseHelper algorithm looks at ratios of aggregate commands entered by the

student in order to predict whether the student is facing difficulty. Commands such as typing a

character or navigating between files within Eclipse are mapped to broader categories such as

Edit or Navigation. After a certain number of commands are collected, a prediction is made

using the ratios of each command category to the total number of commands collected in that

segment. Segments are defined by number of commands collected, not time passed. Using these

Long	7	

	

ratios, a prediction is made [Figure 2]. Several parameters can be adjusted in generating these

predictions. The segment length (the number of commands collected before a prediction is made)

and startup lag (the number of commands the algorithm ignores before making the first

prediction) can both be modified.

	
Figure 2: EclipseHelper Architecture

The EclipseHelper algorithm is still being refined, but it has been tested and improved

over the course of several user and field studies [24, 25]. Students who have used the plugin have

given it positive reviews, saying that it helped them to solve time-consuming problems and that

they appreciated using the tool [25]. For these reasons, this project builds upon the EclipseHelper

difficulty inference algorithm in an attempt to create a similar environment for document writers.

Collaboration and Communication: Google Docs

As mentioned earlier, a writing environment also needs to facilitate collaboration and

communication between the teacher and student. One successful writing environment that

already does this is Google Docs. Several key features made Google Docs more suitable for this

study than other commonly used writing environments. First, Google Docs is already a widely

used platform amongst students of all ages. Using this framework instead of creating a custom

Long	8	

	

editor minimizes the learning curve for users by allowing them to continue to use a platform with

which they are already comfortable. Google Docs also runs on the web, allowing students to

work on their document from any computer.

Second, previous research [26] indicates that software agents are more effective when

they are presented as “peer companions” because receiving peer rather than instructor feedback

reduces anxiety and fear of failure. This is supported by previous research on the benefits of peer

editing [5]. Since Google Docs has a proven history of aiding peer-to-peer collaboration, the

author hypothesized that students who are accustomed to collaborating with peers in the Google

Docs environment will be more open to working with a teacher or a helpful computer agent

through the same interface. This new interface will combine the anxiety-reducing experience of

receiving peer feedback with the benefits of instructor feedback mentioned in the Introduction.

To ensure that the teacher and software agent are presented as “peer companions” [26], the

plugin UI that I created seamlessly integrates with the Google Docs interface [Figure 3].

	
Figure 3: Google Docs User Interface

Finally, Google Docs allows external plugins to extend its functionality. Google Drive

has an easy-to-use API, and Google Docs already tracks every revision made to a document for

collaborative purposes. The author built upon an open-source project called Draftback [27],

which uses a Google Chrome extension to examine the history of a Google Doc in order to

replay the entire history of revisions to the document. This revision-tracking ability provides the

basis for integration with the EclipseHelper algorithm, which will be discussed in more detail

Long	9	

	

later. For all of these reasons, Google Docs proved to be a suitable writing environment to assist

with collaboration and communication between teacher and student.

The Interoperable Architecture

 To combine the difficulty inference architecture of EclipseHelper with the collaboration

and communication architecture of Google Docs, the author created a new architecture to

facilitate a difficulty-triggered collaborative writing environment. In this new architecture, user

commands are collected from Google Docs, mapped to EclipseHelper command categories, and

passed into the EclipseHelper difficulty inference algorithm [Figure 4]. Once a prediction is

generated, it is sent back to Google Docs, where the student can choose to correct it or continue

with their work. The teacher is notified via email if the student is facing difficulty [Figure	5].

Server

Student 1

Student 3

Student 2

Eclipse
Helper

Eclipse
Helper

Eclipse
Helper

Command
Mapping

Command
Mapping

Command
Mapping

Figure 4: Interoperable Architecture Inner Workings

Long	10	

	

	

Figure	5:	Interoperable	Architecture	User	Experience	

Implementation

Creating the new interoperable architecture required several additions to the

EclipseHelper architecture. EclipseHelper was originally designed as an algorithm for individual

use, so the author had to create a server to allow data from multiple students to be processed at

once. In addition, the author had to modify prediction settings to make the algorithm work for

student writers. When initially testing the tool, it rarely predicted difficulty. This was because of

the segment length and startup lag. The typical programming assignment takes far longer and is a

more command-rich experience than writing a two-page paper, so waiting 50 commands to make

a prediction (startup lag) and then making predictions only every 25 commands (segment length)

was not working. As a result, the author shortened the startup lag to 10 and the segment length

to 5. Finally, writing and programming involve different commands and therefore customized

command mappings are necessary. These command mappings are used to map document-

specific commands collected within Google Docs to broader EclipseHelper command categories

(Figure 6).

Creating the modifications to these command mappings was a two-step process. First,

document commands had to be collected from the Google Docs writing environment. The creator

Long	11	

	

of the Chrome extension Draftback noted that every time a user types something in a Google

Doc, a web request is sent from Google that indicates exactly what was edited and what type of

edit was made (insert, delete, style, etc.) [27]. These requests are then stored in a log file that

allows Google to keep track of revision history and collaboration within a document. Draftback

uses this log file to replay the revision history of the document; the tool created for this thesis

does not use this log file and instead uses a Chrome extension to listen to the web requests as

they are sent in order to allow for live processing of commands. The Chrome extension created

for this thesis also extends beyond Draftback and listens to browser events in addition to Google

Docs commands. Commands are registered when users leave the focus of the document they are

working on, either by navigating to a new URL, opening a new tab, or leaving the browser.

Commands are also recorded when users scroll through their document, move their caret, or use

the spellcheck tool.

The second part of the creating a new command mapping involved mapping these

document commands to EclipseHelper command categories. The categories that EclipseHelper

can currently map to are Edit, Debug, Insert, Delete, Focus and Navigation. The Edit category

encompasses both the Insert and Delete subcategories; depending on the mapping that the

programmer chooses, either the Edit super-category or the Insert and Delete subcategories can be

used to make predictions. The Focus category encompasses commands that relate to leaving and

entering Eclipse, and the Navigation category encompasses commands that related to navigating

between classes in Eclipse. Many of the command mappings used when editing a document are

clearly analogous to those used when writing a program, but some of the less obvious mappings

made in this implementation will be discussed here. These mappings are also visualized in

Figure 6.

Long	12	

	

Mapping to the Debug category proved to be the most interesting problem, as document

writing does not have commands that are directly analogous to using the debugger in Eclipse.

Currently, both compile errors and use of the debug tool map to the Debug category in

EclipseHelper. The author concluded that spelling and grammatical errors made while writing a

document are analogous to compile errors in a program. Developing a counterpart for use of the

debug tool was somewhat more complicated. It is somewhat intuitive that the process of

debugging a program is analogous to revising a paper, but what does that revision process entail?

To gain a better understanding of this process, the author collected survey responses

about college students’ writing processes. Surveys were collected from seven different college

students with a variety of different majors1. When asked how they noticed and/or resolved

content and phrasing errors in their papers, many students stated that they would reread their

paper several times looking for organizational, grammatical, and phrasing errors. Some students

revised on a smaller scale, treating each paragraph or sentence as a mini-draft and revising it

before reading over the paper as a whole. Many students said they would also read their essay

out loud or ask a peer to read over it before submitting a final draft. Between a rough draft and a

final paper, most students stated that they made a small number of edits to fix phrasing or

grammatical errors, although some students made structural changes. One stated, “I often even

print out my paper so that I can physically draw the rearrangements”.

The findings from this small survey are supported by more extensive previous research

on the revision process. Hayes and Flower present a model for the stages of document writing

that consists of several stages: “planning (generating ideas and organizing them), sentence

generation (producing a draft based on your plan), and revising (improving a draft)” [28]. These

																																																								
1	Dramatic Art, Business and Psychology, Economics and Computer Science, Political Science, Public Policy and
International Studies, Anthropology, Religious Studies	

Long	13	

	

processes do not occur separately; they are often interwoven throughout the process of writing a

document [28]. The different approaches amongst students that were found in the author’s study

are also supported by previous research. Hayes and Flower note that expert writers tend to

conceive of revision as a “whole-text” task [28]. They make large-scale structural changes and

reformulate their paper in order to improve their argument. Novice writers, on the other hand,

tend to make minor changes to words or phrasing, often revising on a smaller scale.

From these results, the author concluded that concrete actions like using collaboration

tools to facilitate peer-editing, scrolling through a document to make minor edits in specific

locations (in the case of a novice writer), and moving or copy/pasting large chunks of text (in the

case of an expert writer) all occur during the revision state of the writing process. As a result, the

author chose to map copy/paste commands that deal with more than 100 characters and

scroll/move caret commands to the Debug category. The EclipseHelper algorithm does not

currently support analysis of sequences of commands (i.e. scrolling to a new page and then

making several small edits) or location-based commands (i.e. making a lot of edits in one

paragraph), but this is an area for future exploration that is discussed in more detail in the

analysis. The final command mapping that the author developed is visualized in Figure 6. The

Navigation category is empty because scroll/move caret commands were mapped to the Debug

category.

	

Figure 6: Command Mappings

Edit	

Insert	

Delete	

Style	

Focus	

Switch	
tabs	

New	URL	

Leave	
Chrome	

Navigation	 Debug	

Large	
insert	

Large	
delete	

Move	
caret	

Scroll	

Long	14	

	

Evaluation: A User Study

After conceptualizing and developing this system, questions still remained about how

well the tool would fare in a real-world environment. Would students appreciate receiving

unsolicited help, or would they find it unnerving? Would the EclipseHelper algorithm predict

document difficulty as well as it predicted programming difficulty? Would students find the

interface the author developed easy to use? Would they even want to install the tool? To find

answers to these questions, the author conducted a field study.

This study enlisted students in two different Political Science classes (Introduction to

Political Science and American National Government) at a two-year community college. The

students were asked to complete an assignment for their course using the tool the author

developed. The subject of the assignment was Social Security, and after being given some

background, students were asked to write a response detailing their thoughts on the issue of

Social Security, backing up their opinions with several outside sources. The author acted as the

instructor, offering help to students when she received a notification that they were in difficulty.

Most of the students who participated in this field study are working full time jobs or

caring for children in addition to pursuing their degree, and there were several non-native

English speakers who participated. This was an ideal target audience for this tool, as it is

designed to help students who struggle while writing but may not have the time to visit office

hours for help.

Long	15	

	

Results

Qualitative Results

Student Results

After the students completed their assignments, they were given a survey asking about

their reactions to the tool. Selected reactions are included in Table 1. When asked how they felt

about receiving unsolicited help while writing, most students had positive reactions and found

the help welcome. Students did not appear to have privacy concerns, and everyone appeared to

feel comfortable being watched while writing. This is consistent with previous research that has

found that students are willing to sacrifice privacy when they experience real-life benefits [29].

Students were also asked a more general question about what their help experience was

like as a whole. Most students very much appreciated the help they received, and one student

expressed that even though she did not receive help, she felt more confident in her writing

process knowing that help was available if she needed it.

When asked about how easy the user interface was to use, all six of the students who

participated successfully in the study said the user interface was either “Very easy” or

“Somewhat Easy” to use. However, there are 12 other students who were originally enthusiastic

about the tool and signed up for the study, but did not complete it. While some of these students

likely just did not complete the assignment, at least three of the students struggled with the

installation process and misunderstood parts of the instructions, causing their data to be invalid.

Others probably faced similar issues, but did not make it as far in the process.

These are important problems that likely did not arise with the EclipseHelper field study

because EclipseHelper was tested on a class of mostly technologically savvy Computer Science

students. Introducing new technology to non-CS students proved to be more difficult and

Long	16	

	

although students were generally enthusiastic and excited to install the tool, the technological

barrier served as a deterrent.

Finally, students were asked about suggestions for improvement to the tool. Students

(accurately) felt that there were too few difficulty predictions made by the tool, an issue that will

be discussed in more detail in the analysis. Several students also expressed a desire for natural

language processing functionality to be added to the tool, so that they could receive better

spelling, grammar, and phrasing feedback automatically. Potential future work could integrate

GoogleDocs with a natural language processing architecture such as Grammarly [10],

SpellCheckPlus [11], or CyWrite [12].

Q1: Unsolicited Help Q2: Help Experience Q3: Usability Q4: Suggestions for Improvement
“The offer of assistance
was surprising, but not
unwelcome. It felt natural
to be able to have the chat
and comment thread
available.”

“Though I did not need help
and didn't face any difficulties,
I felt more confident in my
writing process knowing that
help was available should I
need it. I feel that this would
be very helpful to students,
particularly in online classes,
where they often are not able
to establish open and more
immediate lines of
communication with the
instructors.”

“I have not used
Google docs very
often, and have
relied on Word to
type my documents
for classes. The
Google doc
environment is much
easier to navigate
and the option of
communication to
receive assistance is
invaluable.”

Several students felt that the predictions
were inaccurate. Students thought that
long pauses, slow typing, and excessive
spelling errors should indicate difficulty

“It was Welcome and
Natural and nice to have
someone right there to ask
help from”

“I believe that this would be
beneficial for both students
and teachers. As a teacher, I
like the fact that I could check
in on my students and their
progress, answering questions
as needed. From a student
standpoint, having help
available when struggling on a
paper is a wonderful option.”

All six students
reported that the tool
was either “Very
easy” or “Somewhat
easy” to use

One student enjoyed receiving feedback
on a paper after completion, rather than
while they were writing.

 “If the tool highlighted grammar and
spelling errors that would be helpful.
And also when it reads that you are
facing difficulty have it suggest solutions
to the problem.”

 “Maybe some kind of engine that I
would put my sentence in and it would
arrange it the correct way, sometimes I

Long	17	

	

feel I haven't set the right word in the
right location. Or more synonyms in
hand to find some more complex words
then the ones that I already know.”

Table 1: Qualitative Result Summary

Instructor Results

The author also made several qualitative observations after acting as an instructor during

the field study. The author noticed that beyond offering students assistance, the tool also has the

potential to increase student awareness. Whereas while programming, students are typically

aware they are facing difficulty because their program does not run or compile, when students

are writing a document, they can be oblivious to the fact that they are writing poorly. This lack of

awareness increases the value of this tool – it can serve not only to help teachers focus on

struggling students, but also to make students aware of their own difficulty.

In addition, the author found that the previous research on self-reporting [17] was

confirmed. Even when the author/instructor entered into the document environment to offer help

to a student, the student was more likely to hit the “Facing Difficulty” button than ask the

instructor a question directly in chat. This supports the hypothesis that students are often too shy

to ask a human for help and consequently under-report difficulties. This result may also be

because students felt intimidated asking for help from an instructor and found engaging with the

button that was purposefully presented as a “peer companion” [26] more desirable.

Finally, the author observed that it was difficult to manage and respond to even just six

students writing at the same time. A future solution to this could involve contacting different

instructors depending on the difficulty being faced. For instance, the professor could be

contacted for content-related difficulties, the reference librarian could be contacted for source-

related difficulties, and the writing center could be contacted for grammar-related difficulties.

Long	18	

	

This could also be improved if students completed their assignments at more distributed time

intervals; all of the six students in this study completed the assignment within the same day.

Quantitative Results

Table 2 contains a quantitative summary of the results from the study to supplement the

qualitative evaluations. The first row shows the number of times the algorithm predicted

difficulty. Clearly, it predicted difficulty very infrequently. This issue will be addressed in

further detail in the analysis. The second row shows the number of times students manually

indicated they were facing difficulty by pressing the button. The third row shows the total

number of predictions that were made by the algorithm for each student, and the fourth row

shows the number of times that the author offered help to the student.

 S1 S2 S3 S4 S5 S6

Predicted
difficulties

0 0 0 1 0 0

Manually
Indicated
difficulties

4 0 0 1 0 8

Total predictions
made

202 131 219 123 69 268

Help offered 4+ times 0 times 2 times 1 time 1 time 8+ times

Table 2: Quantitative Result Summary

Analysis

Lack of Difficulty Predicitons

The lack of difficulty predictions mentioned in the Results section was likely due to

several factors. First, a two-page paper is a far shorter and less command-rich task than a typical

programming assignment. As mentioned earlier, the author tried to account for this when making

Long	19	

	

initial adjustments to prediction parameters such as startup lag and segment length, but the field

study revealed that further adjustments need to be made.

In addition, several aspects of the new command mapping that was created may have

contributed to the lack of difficulty predictions. First, Debug commands are a strong indicator in

EclipseHelper that a student is facing difficulty. Many of the commands that the author mapped

to the Debug category were related to the revision stage of the writing process. However, most

of the students who participated in the study did not engage in a lot of revision. This may be a

writing skill that they have not learned or one that they did not care to use during such a short

writing assignment, and this missing step likely contributed to the lack of difficulty predictions.

Interestingly, these results are similar to EclipseHelper creator Carter’s discovery that more

seasoned developers use the debug tool more often than programmers with less experience [24].

Second, as seen in Figure 6, the author chose a command mapping that mapped Insert

and Delete commands to the Edit category, as this was the mapping Carter and Dewan used in

their field experiment. There is an alternative command mapping that maps Insert and Delete

commands to their own respective categories and gives better results in laboratory experiments

[24], and this alternative mapping may have generated more difficulty predictions.

Sequential and location-based command analysis might also improve results. Currently,

EclipseHelper only supports difficulty predictions based on aggregate command ratios. The

ability to look at location-based sequences of commands would allow for difficulty predictions to

be generated when a student spends a long period of time editing the same section of a

document, or when the student scrolls to a new part of the document to make a few edits.

Finally, viewing playback of the students’ papers also revealed that periods of inactivity

often serve as indicators of difficulty. Students indicated this in their qualitative feedback as

Long	20	

	

well. This was not the case in the original EclipseHelper algorithm, which assumed that periods

of inactivity corresponded to students working on an unrelated task. However, the field study

revealed that most students completed their paper in one session. This finding might differ

depending on the length of the writing assignment.

Future Improvements

There are a number of areas for this project to go in the future. In addition to the potential

improvements mentioned earlier, this project would benefit from more rigorous statistical

analysis on the data collected in this study. Statistical analysis using the Weka tool [30] has

helped to improve the EclipseHelper algorithm, and it would be beneficial to conduct a similar

analysis on the results from this study.

Another area for future exploration is enhancing the teacher’s user-experience. At this

point, the teacher is simply sent an email indicating that a student is facing difficulty. An

interface that would allow teachers to view notifications from all students in one place, view

details on a specific student, and visualize statistics on the assignment level should be valuable.

Conclusion

There are several key contributions that have been made by this thesis. First, the author

had the initial idea of implementing a mixed focus system for document writing, which

previously did not exist. This architecture was then built and implemented. Finally, the success

of this new architecture was evaluated via a field study. The field study revealed that students

find feedback received through the tool helpful, but it also revealed that there are differences

between writing and programming that require modifications to be made to the difficulty

inference algorithm.

Long	21	

	

	

Figure 7: Visualizer tool developed by author

Even more significant than these results is that now that an initial set of user data has

been collected, there is a testbed that can be used to re-run experiments on this data set. Using

the testbed, researchers can try out new command mappings, conduct new experiments without

the overhead of a field study, and train new algorithms. This testbed includes a tool that the

author has built that allows researchers to visualize the command ratios used to make predictions

within EclipseHelper [Figure 7, 31]. This allows researchers to easily identify what caused the

algorithm to make incorrect predictions. This thesis, in combination with the visualizer created

by the author and tools that have been developed by others, provides the basis for the future

development of a writing-specific difficulty inference algorithm.

Long	22	

	

Works Cited

1. Bjork and Raisansen 1999; Galbraith 1999; Hayes and Flower 1986, Scardamalia and
Bereiter 1991, Tynjala 2001, cited in Lindblom-Ylanne, Sari, and Heikki Pihlajamaki.
“Can a Collaborative Network Environment Enhance Essay-writing Processes?” British
Journal of Educational Technology 34.1 (2003): 17-30. Web.

2. Magin, Douglas, and Phil Helmore. “Peer and Teacher Assessments of Oral Presentation
Skills: How Reliable Are They?” Studies in Higher Education 26.3 (2001): 287-98. Web.

3. Ertmer, Peggy A., Jennifer C. Richardson, Brian Belland, Denise Camin, Patrick
Connolly, Glen Coulthard, Kimfong Lei, and Christopher Mong. “Using Peer Feedback
to Enhance the Quality of Student Online Postings: An Exploratory Study.” Journal of
Computer-Mediated Communication 12.2 (2007): 412-33. Web.

4. Strijbos, Jan-Willem, Susanne Narciss, and Katrin Dünnebier. “Peer Feedback Content
and Sender's Competence Level in Academic Writing Revision Tasks: Are They Critical
for Feedback Perceptions and Efficiency?” Learning and Instruction 20.4 (2010): 291-
303. Web.

5. Gielen, Sarah, Lies Tops, Filip Dochy, Patrick Onghena, and Stijn Smeets. “A
Comparative Study of Peer and Teacher Feedback and of Various Peer Feedback Forms
in a Secondary School Writing Curriculum.” British Educational Research Journal 36.1
(2010): 143-62. Web.

6. Hanjani, Alireza Memari, and Li Li. “Exploring L2 Writers' Collaborative Revision
Interactions and Their Writing Performance.” System 44 (2014): 101-14. Web.

7. Wigglesworth, G. and N. Storch, Pair versus individual writing: Effects on fluency,
complexity and accuracy. Language Testing 2009. 26(3): p. 445-466.

8. Biria, R. and S. Jafari, The Impact of Collaborative Writing on the Writing Fluency of
Iranian EFL Learners. Journal of Language Teaching and Research, 2013. 4(1): p. 164-
175.

9. Azevedo, R., D.C. Moos, J.A. Greene, F.I. Winters, and J.C. Cromley, Why is externally-
facilitated regulated learning more effective than self-regulated learning with
hypermedia? Educational Technology Research and Development, 2008. 56(1): p. 45-72.

10. “Grammarly: Instant Grammar Check, Plagiarism Checker, Online Proofreader.” Free
Grammar Checker. Grammarly Inc. Web. 17 Apr. 2016.

11. Nadasdi, Terry, and Stefan Sinclair. “SpellCheckPlus: Online Spelling and Grammar
Checker for English as a Second Language.” SpellCheckPlus. Nadaclair Language
Technologies, 2016. Web. 17 Apr. 2016.

12. “The CyWrite Project.” The CyWrite Project. Iowa State University, 2016. Web. 17 Apr.
2016.

13. “SAGrader: Help Your Students Learn through Revision.” SAGrader. The Idea Works,
Inc., 2013. Web. 17 Apr. 2016.

14. “NCWrite: Preparing Next Generation Writers.” NCWrite. Measurement Incorporated,
2016. Web. 17 Apr. 2016.

15. Zyto, S., D.R. Karger, M.S. Ackerman, and S. Mahajan. Successful Classroom
Deployment of a Social Document Annotation System. in Proc. CHI. 2012. ACM.; Yoon,
Y. and B.A. Myers. Capturing and analyzing low-level events from the code editor. in
Proceedings of the 3rd ACM SIGPLAN workshop on Evaluation and usability of
programming languages and tools. 2011. New York.

Long	23	

	

16. Yoon, D., N. Chen, B. Randles, A. Cheatle, S. Jackson, C. Loeckenhoff, A. Sellen, and F.
Guimbretière, RichReview++: Deployment of a Collaborative Multi-Modal Annotation
System for Instructor Feedback and Peer Discussion, in Proc. CSCW. 2016.

17. Johannesen, T., and E.M. Eide. “The Role of the Teacher in the Age of Technology: Will
the Role Change with Use of Information and Communication Technology in
Education?” European Journal of Open and Distance Learning (2000). Web.

18. Herbsleb, J.D., A. Mockus, T.A. Finholt, and R.E. Grinter. Distance, dependencies, and
delay in a global collaboration. in Proc. CSCW. 2000.

19. Begel, A. and B. Simon. Novice software developers, all over again. in International
Computing Education Research Workshop. 2008.

20. LaToza, T.D., G. Venolia, and R. Deline. Maintaining mental models: a study of
developer work habits. in Proc. ICSE. 2006. IEEE.

21. “Google Docs: About.” Google Docs. Google. Web. 17 Apr. 2016.
22. Anderson-Inman, Lynne, Carolyn Knox-Quinn, and Peter Tromba. “Synchronous

Writing Environments: Real-time Interaction in Cyberspace”. Journal of Adolescent &
Adult Literacy 40.2 (1996): 134–138. Web.

23. Dewan, Prasun, Puneet Agarwal, Gautam Shroff, and Rajesh Hegde. “Mixed-focus
Collaboration without Compromising Individual or Group Work.” Proceedings of the
2nd ACM SIGCHI Symposium on Engineering Interactive Computing Systems - EICS '10
(2010). Web.

24. Carter, Jason, and Prasun Dewan. “Mining Programming Activity to Promote Help.”
ECSCW 2015: Proceedings of the 14th European Conference on Computer Supported
Cooperative Work, 19-23 September 2015, Oslo, Norway (2015): 23-42. Web.

25. Carter, J. (2014). Automatic difficulty detection (Order No. 3633947). Available from
Dissertations & Theses @ University of North Carolina at Chapel Hill; ProQuest
Dissertations & Theses Global. (1612449483). Retrieved from
http://libproxy.lib.unc.edu/login?url=http://search.proquest.com/docview/1612449483?ac
countid=14244

26. Kapoor, Ashish, Winslow Burleson, and Rosalind W. Picard. “Automatic Prediction of
Frustration.” International Journal of Human-Computer Studies 65.8 (2007): 724-36.
Web.

27. Somers, James. “How I Reverse Engineered Google Docs To Play Back Any Document’s
Keystrokes.” James Somers. 4 Nov. 2014. Web. 17 Apr. 2016.

28. Hayes J R and Flower L S (1986) Writing Research and the writer. American
Psychologist 41 1106 – 1113.

29. Olson, J.S., J. Grudin, and E. Horvitz. Toward Understanding Preferences for Sharing
and Privacy. in Proc. CHI. 2005.

30. “Weka 3: Data Mining Software in Java.” Weka 3. The University of Wakato, n.d. Web.
18 Apr. 2016.

31. Long, Duri, Nicholas Dillon, Kun Wang, Jason Carter, and Prasun Dewan. “Interactive
Control and Visualization of Difficulty Inferences from User-Interface Commands.”
Proceedings of the 20th International Conference on Intelligent User Interfaces
Companion - IUI Companion '15 (2015). Web.

