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Abstract

A random graph model defines a distribution over graphs, and
this distribution induces a distribution over certain measurements of
graphs, such as the Von Neumann entropy. Interestingly, the Von
Neumann entropy of an empirical network typically has a very small
probability to be drawn from the distribution over the Von Neumann
entropy of graphs generated by the Erdős-Rényi random graph model
with the same number of vertices and edges. It has been shown that
Erdős-Rényi random graph model may be inappropriate for modeling
certain properties of real-world networks such as the small-world prop-
erty [22] and scale-free property [2], and the Von Neumann entropy
provides yet another, complementary way to measure how real-world
networks differ from Erdős-Rényi random graphs. Subjecting the net-
work to a random rewiring process offers another approach to measure
how far it is from an Erdős-Rényi random graph. In particular, it can
be shown using Markov chain theory that the ensemble of networks
after many non-degree-preserving rewirings limits to the ensemble of
Erdős-Rényi random graphs. In this paper, we develop a connection
between these two approaches by studying the Von Neumann entropy
of networks undergoing rewiring. More specifically, we are interested in
the number of rewiring times needed until the Von Neumann entropy of
the rewired graph is larger than some quantile of the distribution over
the Von Neumann entropy of Erdős-Rényi random networks, as it can
be used to quantify the difference between any given network and net-
works generated by the Erdős-Rényi random graph model. However,
performing a large number of simulations to compute the expected
number of rewiring times is not computationally efficient, and we ap-
ply matrix perturbation methods to derive an estimation by using a
small perturbation to the adjacency matrix to approximate one ran-
dom rewiring of a graph. The estimation can be computed directly for
a given network without performing any numerical simulation.
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1 Introduction

In recent years, networks have gained increasing attention as a tool for mod-
eling complex systems, including social, biological, technological, and infor-
mation networks. Networks can be considered as graphs in which vertices
represent individuals and edges represent interactions between individuals,
and they can be represented by adjacency matrices. Given a simple graph,
the adjacency matrix A is defined as

Aij =

{
1 if there is an edge between vertex i and vertex j

0 otherwise

and the degree matrix D is defined as

Dij =

{∑
k Aik if i = j

0 otherwise

Spectral graph theory is the study of properties related to the eigenvalues
and eigenvectors of matrices associated to a graph, and one important matrix
is the Laplacian matrix. Given a simple graph, the Laplacian matrix L is
defined as

L = D −A

Hence the elements of the Laplacian matrix L are given by

Lij =


Dij if i = j

−1 if i 6= j and Aij = Aji = 1

0 otherwise

(There are several different ways to define a Laplacian matrix, and this ver-
sion is often called either the combinatorial or unnormalized Laplacian ma-
trix.) The concept of the Laplacian matrix of a graph is used in a wide range
of applications such as analyzing diffusion and random walks on networks
[4, 19, 20], calculating the number of spanning trees for a graph [16, 18, 5],
and performing community detection [17, 11].

In this paper, we will study the Von Neumann entropy [8, 18, 5] of net-
works undergoing random rewiring process. The Von Neumann entropy of
a graph is a concept that allows one to measure the similarity of networks
based on the spectra of the Laplacian matrix L. More specifically, given a
network, we are interested in the expected number of rewiring times needed
until the Von Neumann entropy of the network undergoing random rewiring
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is “close enough” to the distribution of Von Neumann entropy of networks
generated by a random graph model with the same number of vertices and
edges. The Von Neumann entropy of a graph is closely related to the spec-
tral properties of its Laplacian matrix, and we will use matrix perturbation
techniques to give a highly correlated estimation of the expected number
of rewiring that are required for a given network to be similar to networks
within a random graph ensemble.

The remainder of this thesis is organized as follows. In section 2, we in-
troduce two types of random graph models and two corresponding types of
random rewiring processes. In section 3, we use the concept of the Von Neu-
mann entropy of a graph to define a hitting time for non-degree-preserving
random rewiring process. In section 4, we apply matrix perturbation meth-
ods to derive an estimation of the expected hitting time and present numer-
ical simulation results. In section 5, we provide a concluding discussion.

2 Random Graph Models and Random Rewiring
Processes

In this section, we will introduce two types of random graph models (the
Erdős-Rényi model [10] and the configuration model [3]), and two corre-
sponding types of random rewiring processes (non-degree-preserving rewiring
and degree-preserving rewiring). Each random graph model defines a distri-
bution over graphs on a certain space of graphs, and each random rewiring
process defines a discrete-time Markov chain with a finite number of states
representing graphs in the corresponding space of graphs. Both the Erdős-
Rényi model and the configuration model can be used as null models to
study the structural properties of networks, and both non-degree-preserving
rewiring process and degree-preserving rewiring process can be used to model
networks that change in time, but they differ in the specific structural and
dynamical properties of networks that are modeled [1].

2.1 The Erdős-Rényi Model and Non-Degree-Preserving Rewiring

The most basic and classic random graph model is the Erdős-Rényi model.
In fact, there are two closely related but slightly different models for gener-
ating random graphs that are called the Erdős-Rényi model.

The first model G(N,M) generates a random graph with N vertices
and M edges by choosing M edges uniformly at random from the

(
N
2

)
=

N(N − 1)/2 possible edges for a graph with N vertices. In total there are
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(N(N−1)/2
M

)
different graphs with N vertices and M edges, and all of them

have the same probability of being generated by this model.
The second model G(N, p) generates a random graph with N vertices

by connecting each pair of vertices independently with equal probability
p. Every graph with N vertices is possible to be generated by this model,
and the number of edges of a graph with N vertices follows a binomial
distribution B(N(N − 1)/2, p). Therefore the probability of generating a
graph with N vertices and M edges is

pM (1− p)N(N−1)/2−M

In this paper, we will focus on G(N,M).
Given a graph with N vertices and M edges, we can define a non-degree-

preserving random rewiring process by simultaneously choosing an edge to
remove from the existing edges uniformly at random and an edge to add from
the pairs of vertices that are not connected uniformly at random. This non-
degree-preserving rewiring process defines a time-homogenous discrete-time
Markov chain on a finite state space with

(N(N−1)/2
M

)
states, where each

state represents a graph with N vertices and M edges. This finite state
discrete-time Markov chain is irreducible (it is possible to get to any state
from any state) and aperiodic (returns to any state can occur at irregular
times), therefore it is positive recurrent (expected return time of any state
is finite) and has a unique limiting distribution, and it converges to this
limiting distribution regardless of its initial state. In addition, each state i
in the Markov chain is connected to k = M [N(N − 1)/2−M ] other states,
which implies that the Markov chain describes a k-regular graph. By writing
down the balance equations

πj =
∑
i

πiPij for any j

where Pij is row stochastic “transition matrix” such that
∑

j Pij = 1 and
the normalization equation ∑

j

πj = 1

we can see that the unique positive solution is πj = 1/
(N(N−1)/2

M

)
, which

means that the limiting distribution of this Markov chain is the uniform
distribution on the space of graphs with N vertices and M edges. We note
that this distribution over graphs is the same as the distribution defined by
the first Erdős-Rényi model G(N,M).
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2.2 The Configuration Model and Degree-Preserving Rewiring

The configuration model G(N,~k) generates a random graph with N vertices
and a fixed degree sequence ~k uniformly at random. The degree sequence ~k
is defined as an N×1 vector in which ki denote the degree of vertex i, and it
can be chosen by drawing ki i.i.d. from some distribution such as the Poisson
distribution or as the precise degree sequence of an empirical network.

Given a graph with N vertices and a degree sequence ~k, we can de-
fine a degree-preserving random rewiring process by simultaneously choos-
ing two different edges (a, b) and (c, d) connecting four different vertices to
remove from the existing edges uniformly at random and then adding two
new edges (a, c) and (b, d) so that the degree sequence is preserved. This
degree-preserving rewiring process defines a time-homogenous discrete-time
Markov chain on a finite state space, where each state represents a graph
with N vertices and the degree sequence ~k. This finite state discrete-time
Markov chain is also irreducible and aperiodic, therefore it is positive recur-
rent and has a unique limiting distribution, and it converges to this limiting
distribution regardless of its initial state.

3 The Von Neumann Entropy and the Expected
Hitting Time of Random Rewiring Processes

The Von Neumann entropy is initially defined as a function of a density
matrix in quantum mechanics to measure the departure of a quantum system
from its pure state, but recently it has been generalized to be defined as a
function of a graph [5, 8, 18]. Given a graph G with N vertices and M
edges, the Von Neumann entropy h of a graph G is defined as

h = −Tr(LG log2 LG)

where LG = 1
2ML is the Laplacian matrix associated to the graph G rescaled

by 1
2M . Since LG is positive semi-definite and Tr(LG) = 1, it can be shown

that h can be written in terms of the set {λ1, λ2, . . . , λN} of eigenvalues of
LG as

h = −
N∑
i=1

λi log2(λi)

where by convention we have 0 log2(0) = 0 [8]. The Von Neumann entropy
encodes information about the spectral properties of a graph, which in turn is
closely related to topological structure of a graph [6]. It can be interpreted as
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a measure of regularity of a graph, since in general regular graphs have higher
Von Neumann entropy when the number of edges is fixed [18]. Moreover, it
is also shown that the Von Neumann entropy are smaller for graphs in which
the vertices form a highly connected cluster when the number of edges is
fixed [18]. In addition, the Von Neumann entropy can be used to define a
notion of “distance” between networks, and one can perform clustering on
networks using this notion of distance [8].

As we have previously stated, a random graph model defines a distribu-
tion over graphs on a certain space of graphs. Specifically, the Erdős-Rényi
random graph model defines a uniform distribution over graphs with N ver-
tices and M edges. This distribution over graphs induces a distribution over
the Von Neumann entropy of graphs, and we can run numerical simulations
for a large number of times to obtain an empirical distribution over Von
Neumann entropy of graphs to approximate the theoretical distribution over
the Von Neumann entropy of Erdős-Rényi random graphs of same sizes. For
this numerical simulation, we generate T = 10000 samples of Erdős-Rényi
random networks and plot the estimated probability density function of the
Von Neumann entropy of Erdős-Rényi random network samples.
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Figure 1: The estimated probability density function of the Von Neumann
entropy of Erdős-Rényi random networks
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As we can see, in Figure 1, the Von Neumann entropy of Erdős-Rényi
random networks with N = 112 vertices and M = 425 edges are mostly
in the range of [6.57, 6.66]. However, as we will see in the next numerical
simulation, the Von Neumann entropy of an empirical network is usually
smaller than almost all the Von Neumann entropy of networks generated by
the Erdős-Rényi random graph model. In other words, the Von Neumann
entropy of an empirical network typically has a small probability to be drawn
from the distribution over Von Neumann entropy of Erdős-Rényi random
graphs with the same number of vertices and edges. This indicates that the
structure of an empirical network is typically different from the structure of
networks generated by the Erdős-Rényi random graph model. To quantify
this difference, we consider the expected hitting time of the Markov chain
defined by the non-degree-preserving rewiring process. More specifically,
for a given network, we are interested in the expected number of rewiring
times needed until the Von Neumann entropy of the network undergoing
non-degree-preserving rewiring falls within some range of the distribution
over Von Neumann entropy of Erdős-Rényi random graphs of same sizes.

Now we present some numerical simulation results to visualize this pro-
cess. The graph we use is the adjacency network of common adjectives and
nouns in the novel David Copperfield by Charles Dickens [17]. Vertices rep-
resent the most commonly occurring adjectives and nouns in the book, and
edges represent any pair of words that occur in adjacent to one another in the
book. The network has N = 112 vertices and M = 425 edges. For each sim-
ulation, we perform non-degree-preserving random rewiring for K = 1500
time steps, and we run T = 100 independent simulations. The blue, red and
yellow curves represent the 5% quantile, median and 95% quantile of the
empirical distribution over the Von Neumann entropy of rewired networks,
respectively. The red and pink horizontal lines represent the median and 5%
quantile, 95% quantile of the empirical distribution over the Von Neumann
entropy of Erdős-Rényi random networks of same size and density.

As we can see, in Figure 2, the Von Neumann entropy of the original
graph is much smaller than the 5% quantile of the empirical distribution
over the Von Neumann entropy of Erdős-Rényi random graphs of same size
and density. However, as the number of rewiring times increases, the em-
pirical distribution over the Von Neumann entropy of the rewired graphs is
becoming more and more “close” to the the empirical distribution over the
Von Neumann entropy of the Erdős-Rényi random graphs. After randomly
rewiring the original graph for about 1200 times, the distribution over the
Von Neumann entropy of the rewired graph becomes almost identical to that
of the Erdős-Rényi random graphs. In other words, by studying the Von
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Figure 2: The Von Neumann entropy of networks undergoing random
rewiring

Neumann entropy of networks, we numerically observe that the distribution
of rewired networks converges to the Erdős-Rényi random graph ensemble.
We note that such convergence would be otherwise difficult to observe.

4 A Matrix Perturbation Method to Estimate the
Expected Hitting Time

In the previous section, we performed numerical experiments to study the
hitting time of non-degree-preserving rewiring process. However, this ap-
proach is generally not computationally efficient, especially when the graph
is large. Therefore, for the remainder of this research we will seek a way to
estimate the expected hitting time given a graph G without performing ac-
tual numerical simulations. In other words, we would like to find a function
f(G) of a graph that approximates the empirical expected hitting time of
the graph G.

To this end, in this section we conduct a perturbation analysis of the Von
Neumann entropy to approximate how it changes when an edge is randomly
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rewired. To do so, we first develop perturbation analyses for the Laplacian
matrix (Sec. 4.1) and its eigenvalues (Sec. 4.2) and eigenvectors (Sec. 4.3).
We present a perturbation analysis of the Von Neumann entropy in Sec. 4.4,
and introduce a function f(G) to approximate the expected hitting time in
Sec. 4.5.

Before continuing, we define some notations and constraints for our per-
turbation analysis. Given an undirected, unweighted graph G with N ver-
tices and M edges, let A denote the adjacency matrix of G, and D denote
the degree matrix of G. The Laplacian matrix L of the graph G is defined
as L = D − A. Let L denote the Laplacian matrix before rewiring an edge
(p, q) to (r, s), and L′ denote the Laplacian matrix after rewiring an edge
(p, q) to (r, s). Then L′ = L + ∆L. We assume the edges are not identical
before and after one rewiring, namely p 6= q 6= r 6= s.

4.1 The Expected Value of the Difference Between Laplacian
Matrices

The process of randomly rewiring an edge (p, q) to (r, s) can be decomposed
into two steps. The first step is removing an edge (p, q) from the original
graph G(0), resulting in an intermediate graph G(1). The second step is
adding an edge (r, s) to the graph G(1), resulting in the rewired graph G(2).
Let L(0) denote the Laplacian matrix of the original graph G(0), L(1) denote
the Laplacian matrix of the intermediate graph G(1), and L(2) denote the
Laplacian matrix of the rewired graphG(2), then we have L(1) = L(0)+∆L(0),
L(2) = L(1) + ∆L(1). In terms of our previous notations, we have

L = L(0) , L′ = L(2) , ∆L = ∆L(0) + ∆L(1)

4.1.1 Removing an edge

In this section we study how the Laplacian matrix changes due to the removal
of an edge (p, q).

As we have stated previously, the elements of the Laplacian matrix L
are given by

Lij =


Dii if i = j

−1 if i 6= j and Aij = Aji = 1

0 otherwise

Since removing an edge (p, q) means Apq = Aqp changes from 1 to 0, the
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elements of ∆L
(0)
ij are given by

∆L
(0)
ij =


−1 if i = j ∈ {p, q}
1 if i ∈ {p, q} and j ∈ {p, q} \ i
0 otherwise

Hence the expected value of ∆L
(0)
ij is given by

E[∆L
(0)
ij ] =

{
P (p = i or q = i)× (−1) if i = j

P ((p = i and q = j) or (p = j and q = i))× 1 if i 6= j

Since there are M edges in total, and we can only remove an edge when
Aij = Aji = 1, we can write down the probabilities as

P (p = i or q = i) =
di
M

and

P ((p = i and q = j) or (p = j and q = i)) =
Aij

M

After substituting these probabilities into the previous equation, we have

E[∆L
(0)
ij ] =

{
− di

M if i = j
Aij

M if i 6= j
(1)

4.1.2 Adding an edge

In this section we study how the Laplacian matrix changes due to the addi-
tion of an edge (r, s).

Since adding an edge (r, s) means Ars = Asr changes from 0 to 1, the

elements of ∆L
(1)
ij are given by

∆L
(1)
ij =


1 if i = j ∈ {r, s}
−1 if i ∈ {r, s} and j ∈ {r, s} \ i
0 otherwise

Hence the expected value of ∆L
(1)
ij is given by

E[∆L
(1)
ij ] =

{
P (r = i or s = i)× 1 if i = j

P ((r = i and s = j) or (r = j and s = i))× (−1) if i 6= j

13



Since there are N(N−1)
2 possible edges in total for a graph with N vertices,

and we can only add an edge when Aij = Aji = 0, and {i, j} 6= {p, q}.
Therefore, there are N(N−1)

2 −M possible edges to add. Let R = N(N−1)
2 −M ,

then we can write down the probabilities as

P (r = i or s = i) =
N − 1− di

R

and

P ((r = i and s = j) or (r = j and s = i)) =
1−Aij

R
After substituting these probabilities into the previous equation, we have

E[∆L
(1)
ij ] =

{
N−1−di

R if i = j

−1−Aij

R if i 6= j
(2)

4.1.3 Rewiring an edge

In this section we study how the Laplacian matrix changes due to the
rewiring of an edge (p, q) to (r, s). Since rewiring an edge can be decom-
posed into removing an edge and adding an edge, we can simply combine
the results in previous sections and write down a formula for E[∆Lij ].

By the linearity of expectation, we have

E[∆L] = E[∆L(0)] + E[∆L(1)] (3)

We substitute Eqs. 1 and 2 into 3 to obtain

E[∆Lij ] =


N−1−di

N(N−1)
2

−M
− di

M if i = j

Aij

M −
1−Aij

N(N−1)
2

−M
if i 6= j

(4)

4.1.4 Linear approximation of rewiring multiple times

In previous sections we derived the formula to compute the expected value
of the difference between Laplacian matrices before and after rewiring one
time. We can use linear approximation to approximate the expected value of
the difference between Laplacian matrices before and after rewiring multiple
times. Let L0 denote the original Laplacian matrix before any rewiring, and
Ln denote the Laplacian matrix after rewiring n times, then

E[(Ln − L0)ij ] ≈ E[n∆Lij ] =

n( N−1−di
N(N−1)

2
−M
− di

M ) if i = j

n(
Aij

M −
1−Aij

N(N−1)
2

−M
) if i 6= j

(5)
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Now we present some numerical simulation results to support our theo-
retical results. The graph we use is the same as the graph used in previous
numerical simulations. It has N = 112 vertices and M = 425 edges.

First, we ran numerical simulations to compute E[∆Lij ] by choosing
three specific entries (i, j). The first entry (51, 51) is on the diagonal, the
second entry (22, 19) is not on the diagonal and corresponds to an edge, and
the third entry (88, 59) is not on the diagonal and does not correspond to an
edge. For each choice for the number of rewires, n, we computed the mean
across T = 10000 simulations. We plot the results for this experiment in
Figure 3 and Figure 4. The straight lines represent the theoretical prediction
according to Eq. (5), and the symbols and error bars represent the mean
values and standard errors that we observe, respectively.

Next we ran numerical simulations to compute ||E[∆L]||F , where || · ||F
is the matrix Frobenius norm. For each choice of the number of rewires,
n, we computed the mean across T = 10000 simulations, and we plot the
results in Figure 5. The straight line represents the theoretical prediction
according to Eq. (5), and the X symbols represent the observed values.

4.2 The Expected Value of the Difference Between Eigenval-
ues of Laplacian Matrices

In this section we will use matrix perturbation theory to derive a relationship
between E[∆L], the expected difference between Laplacian matrices, and
E[∆λi], the expected difference between eigenvalues of Laplacian matrices.
The central idea is to use a small perturbation to the adjacency matrix of
the graph to approximate the process of randomly rewiring an edge of a
graph. However, whether such approximation will be sufficiently accurate
or not depends on the size and density of the graph, and intuitively we would
expect that the approximation will be more accurate for large dense graphs.

Throughout this section we will use ∆L, ∆λi, and ∆vi to denote the ac-
tual difference between the Laplacian matrices, eigenvalues of the Laplacian
matrices, and eigenvectors of the Laplacian matrices before and after one
rewiring, and we will use δL, δλi, and δvi to denote the difference between
the Laplacian matrices, eigenvalues of the Laplacian matrices, and eigenvec-
tors of the Laplacian matrices before and after one small perturbation.

Let λi and vi denote the i-th eigenvalue and the associated unit eigen-
vector of a Laplacian matrix L, then we have

Lvi = λivi

Let λ′i and v′i denote the corresponding eigenvalue and the associated unit
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eigenvector of the Laplacian matrix L′ after perturbation, then we also have

L′v′i = λ′iv
′
i
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Figure 5: ||E[∆L]||F for different number of rewirings

Let δL = L′−L, δλi = λ′i−λi, and δvi = v′i−vi, then the previous equation
is equivalent to

(L+ δL)(vi + δvi) = (λi + δλi)(vi + δvi)

After expanding both sides of the equation, we have

Lvi + Lδvi + δLvi + δLδvi = λivi + λiδvi + δλivi + δλiδvi

Since Lvi = λivi, and we can discard higher order delta terms δLδvi and
δλiδvi. the previous equation reduces to

Lδvi + δLvi = λiδvi + δλivi

Multiplying vTi on both sides, we have

vTi (Lδvi + δLvi) = vTi (λiδvi + δλivi) (6)

Since L is symmetric, we have vTi L = (Lvi)
T = (λivi)

T = vTi λi. Hence

vTi (Lδvi + δLvi) = vTi λiδvi + vTi δLvi (7)
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Since vi is a unit vector, we have

vTi (λiδvi + δλivi) = λvTi δvi + δλiv
T
i vi = λiv

T
i δvi + δλi (8)

Plugging equations 7 and 8 into equation 6, we have

δλi = vTi δLvi

Since ∆λi ≈ δλi, ∆L ≈ δL, we have

∆λi ≈ vTi ∆Lvi

By the linearity of expectation, we have

E[∆λi] ≈ E[vTi ∆Lvi] = vTi E[∆L]vi

Now we present some numerical simulation results. The graph we use
is the same as the graph used in previous simulations, and it is a relatively
small graph with N = 112 vertices and M = 425 edges. As we have stated
before, small perturbation to the adjacency matrix is only an approximation
of the process of randomly rewiring an edge of a graph, and there are mainly
two ways to account for this fact and test if our estimation becomes more
and more accurate as the process of randomly rewiring an edge becomes
more and more “close” to a small perturbation. The first way is to run
simulations on graphs of different sizes, and ideally we would like to see
our estimation becomes more and more accurate as the size and density
of the graph becomes larger and larger. However, this method requires
computing the eigenvalues of large matrices, which is time-consuming if we
want to run simulations for a large number of times. The second way is to
introduce a constant ε to control the magnitude of the perturbation, and
it is the way we will use. Specifically, given the original adjacency matrix
A(0), first we randomly rewire an edge and obtain a new adjacency matrix
A(1). Then we manually shrink ∆A = A(1)−A(0) by a factor of ε by setting
A(2) = A(0) + ε(A(1) − A(0)). We consider A(2) as the resulting adjacency
matrix after a small perturbation is applied to A(0), and by linearity of
expectation we can write down the expected value of the difference between
Laplacian matrices as

E[L(2) − L(0)] = εE[L(1) − L(0)] =

ε(
N−1−di

N(N−1)
2

−M
− di

M ) if i = j

ε(
Aij

M −
1−Aij

N(N−1)
2

−M
) if i 6= j
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If we let ε = 1, then the result is the same as randomly rewiring an edge.
However, we can also let ε < 1, such as ε = 0.1, and we would expect our
estimation to become more accurate, because a smaller ε means a smaller
perturbation.

In our numerical simulations, we try three different values of ε, namely
ε = 1, ε = 0.1 and ε = 0.01, and we compare the results to see if our
estimation becomes more accurate as ε decreases from ε = 1 to ε = 0.01.
For each simulation, we compute ∆λi for every entry i, and we run the
simulation for T = 10000 times. The blue line represents the theoretical
values E[∆λi], and the symbols and error bars represent the mean values
and standard errors of the simulation results.
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Figure 6: E[∆λi] for all entry i when ε = 1

As we can see, in Figure 6, when ε = 1, our estimation of E[∆λi] based
on matrix perturbation method is not very accurate. One possible reason
is that the size of the graph is not large enough, and therefore randomly
rewiring an edge of the graph cannot be accurately modeled as a “small
perturbation”. However, as shown in Figure 7 and 8, when ε = 0.1 and
ε = 0.01, our estimation becomes more and more accurate, and this re-
sult confirms our expectation that the smaller the perturbation, the more
accurate our estimation of E[∆λi] becomes.

19



0 20 40 60 80 100 120

Entry i

-12

-10

-8

-6

-4

-2

0

2

4

E
[∆

λ
i
]

×10
-3 Difference of Eigenvalues of Laplacian Matrices After One Rewiring (ǫ=0.1)

Figure 7: E[∆λi] for all entry i when ε = 0.1
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Figure 8: E[∆λi] for all entry i when ε = 0.01
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4.3 The Expected Value of the Difference Between Eigen-
vectors of Laplacian Matrices

In this section we will continue using matrix perturbation theory to derive a
relationship between ∆L, the expected value of the difference between Lapla-
cian matrices, ∆λi, the expected value of the difference between eigenvalues
of Laplacian matrices, and ∆vi the expected value of the difference between
eigenvectors of Laplacian matrices.

Using the notations defined in the previous section, we have

Lδvi + δLvi = λiδvi + δλivi

Hence
(L− λiI)δvi = (δλiI − δL)vi (9)

Now we consider the singular matrix L − λiI. Let Λ = diag(λ1, · · · , λn)
and V = [v1 · · · vn] where each vi is a column unit eigenvector, then by the
spectral theorem, since L is symmetric, we can decompose L as

L = V ΛV T =

n∑
j=1

λjvjv
T
j

Since V TV = V V T = I, we have

L− λiI = V (Λ− λiI)V T =
∑
j 6=i

(λj − λi)vjvTj

Define pseudoinverse of the matrix L− λiI as

(L− λiI)+ =
∑
j 6=i

1

(λj − λi)
vjv

T
j

Then after left multiplying equation 9 by (L− λiI)+, we have

δvi = (L− λiI)+(δλiI − δL)vi

Since ∆vi ≈ δvi, ∆λi ≈ δλi, ∆L ≈ δL, we have

∆vi ≈ (L− λiI)+(∆λiI −∆L)vi

By the linearity of expectation, we have

E[∆vi] = (L− λiI)+E[∆λiI −∆L]vi

=
∑
j 6=i

1

(λj − λi)
vjv

T
j (E[∆λi]I −E[∆L])vi

=
∑
j 6=i

vTj E[∆L]vi

(λi − λj)
vj

(10)
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Although this result is not used in deriving E[∆h], we note that it can
be useful for deriving equations for other measurements of a graph.

4.4 The Expected Value of the Difference Between Von Neu-
mann Entropies

In this section we will use the results in previous sections to drive a rela-
tionship between ∆h, the difference between the Von Neumann entropy of
the graphs, and ∆λi, the difference between eigenvalues of Laplacian matri-
ces. Note that in previous sections when we derive the formula for the Von
Neumann entropy h of a graph G as

h = −
N∑
i=1

λi log2(λi)

the λi are the eigenvalues of the rescaled Laplacian matrix 1
2ML. If we use

the notations defined in previous matrix perturbation sections, we would
have

h = −
N∑
i=1

λi
2M

log2(
λi

2M
)

where λi are the eigenvalues of the Laplacian matrix L.
Let h and h′ denote the Von Neumann entropy of a graph before and

after one small perturbation, and using the notations defined in the previous
sections, we have

h = −
N∑
i=1

λi
2M

log2(
λi

2M
)

and

h′ = −
N∑
i=1

(
λi

2M
+
δλi
2M

)
log2

(
λi

2M
+
δλi
2M

)
Using first order Taylor series approximation, we have(
λi

2M
+
δλi
2M

)
log2

(
λi

2M
+
δλi
2M

)
≈ λi

2M
log2(

λi
2M

)+
δλi
2M

(
log2(

λi
2M

) +
1

ln(2)

)
Since δh = h′ − h, we have

δh ≈ −
N∑
i=1

δλi
2M

(
log2(

λi
2M

) +
1

ln(2)

)
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Since ∆λ ≈ δλ, δh ≈ ∆h, we have

∆h ≈ −
N∑
i=1

∆λi
2M

(
log2(

λi
2M

) +
1

ln(2)

)
By the linearity of expectation, we have

E[∆h] ≈ −
N∑
i=1

E[∆λi]

2M

(
log2(

λi
2M

) +
1

ln(2)

)
(11)

Now we present some numerical simulation results. The graph we use
is the same as the graph used in previous simulations, and it has N = 112
vertices and M = 425 edges. Similar to what we did in previous numerical
simulations, we use a constant ε to control the perturbation magnitude,
and we try different values of ε to see if our estimations become more and
more accurate as ε decreases. For each value of ε, we run the simulation
for T = 10000 times. The blue line represents the theoretical values E[∆h],
and the red symbols and error bars represent the mean values and standard
errors of the simulation results.
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Figure 9: E[∆h] for different values of ε

As we can see, in Figure 9, when ε = 1, our estimation of E[∆h] based
on matrix perturbation method and first order Taylor series approximation
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is not very accurate. One possible reason is that the size of the graph is
not large enough, and therefore randomly rewiring an edge of the graph
cannot be accurately modeled as a “small perturbation”. However, when ε
gradually decreases, our estimation becomes more and more accurate, and
this result confirms our expectation that the smaller the perturbation, the
more accurate our estimation of E[∆h] becomes.

4.5 Estimation of the Expected Hitting Time

In this section we use the results from previous sections to estimate the
expected hitting time. For a given graph with N vertices and M edges, let
h denote its Von Neumann entropy, and let h(.05) denote the 5% quantile
of the empirical distribution over Von Neumann entropy of Erdős-Rényi
random graphs with N vertices and M edges. We are interested in the
expected number of non-degree preserving rewiring times needed until the
Von Neumann entropy of the rewired graph is no less than h(.05), and one
natural estimation would be

f(G) =
h(.05) − h
E[∆h]

The intuition is that the Von Neumann entropy of a graph is expected to
increase by E[∆h] after one random rewiring, and if the Von Neumann
entropy of a graph is constantly increasing at this rate, then the number of
non-degree preserving rewiring times needed until the Von Neumann entropy
of the rewired graph is no less than h(.05) is simply the difference between the
target Von Neumann entropy and the initial Von Neumann entropy divided
by the increasing rate.

However, we would expect that our estimation of the expected hitting
time would be smaller than the actual value obtained from numerical simu-
lation, because as we can see from Figure 2, the increasing rate of the Von
Neumann entropy E[∆h] of the network undergoing rewiring is decreasing
as the number of rewiring times increases.

We perform numerical simulations to compare our estimation of the ex-
pected hitting time with the mean of the actual hitting time on multiple
empirical networks of different sizes. For each network, we perform T = 100
independent simulations, and in each simulation, we start from the empirical
network and keep performing non-degree-preserving rewiring until the Von
Neumann entropy of the rewired network is no less than h(.05), obtaining 100
different samples of hitting time for each network. We note that we do not
actually compute the Von Neumann entropy of the graph every time it is
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Network N M Reference

adjnoun 112 425 [17]
airport 500 2980 [7]
neural 297 2148 [22]

metabolic 453 2025 [9]
dolphins 62 159 [15]
lesmis 77 254 [14]
jazz 198 2742 [12]

email 1133 5451 [13]

Table 1: Basic summary statistics for the networks that we use for this
numerical simulation. The number of vertices is denoted by N , and the
number of edges is denoted by M .

rewired, because computing the Von Neumann entropy of a graph requires
computing all the eigenvalues of a graph, and the runtime of performing
this operation for millions of times is too large. Instead, we compute the
Von Neumann entropy of the rewiring graph for every 10dN/100)e rewirings.
This trick greatly reduces the runtime of the numerical simulation, because
the number of times of computing all the eigenvalues of a graph is reduced
by a factor of 10dN/100)e. Although it also increases the variance of the
sample mean estimator, the standard error of the sample mean divided by
sample mean is no larger than 0.05, which indicates that the sample mean
should be close enough to the true expected hitting time.

As we can see from Figure 10, the dotted least squares regression line
indicates that there is a linear relationship between our estimation and the
actual expected hitting time obtained from our numerical simulation. The
correlation coefficient is 0.9941. This numerical simulation demonstrates
that our estimation of the expected hitting time is strongly correlated with
the actual expected hitting time. However, the runtime of computing our

estimation of the expected hitting time f(G) = h(.05)−h
E[∆h] is much smaller

than computing the expected hitting time by performing a large number
independent random rewiring simulations, each rewiring for a large number
of times, because the only extra term that needs to be computed by our
estimation is E[∆h], which can be computed directly for a given graph G
with N nodes and M edges using our previous results.
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Figure 10: Comparison of the sample mean of actual hitting times and our

estimation h(.05)−h
E[∆h] for networks of different sizes

5 Conclusion

In this paper, we used the concept of the Von Neumann entropy of a graph
to define a hitting time for non-degree-preserving random rewiring process,
which is the number of rewiring times needed until the Von Neumann en-
tropy for the rewired graph is larger than 5% quantile of the distribution
over the Von Neumann entropy of Erdős-Rényi random networks. Since the
purpose of defining the hitting time is to quantify the difference between a
given network and networks generated by the Erdős-Rényi random graph
model with the same number of vertices and edges, we do not really need
to find an approximation of the actual value of the expected hitting time.
Instead, we only need to give an estimation that is positively correlated with
the expected hitting time, and we used

f(G) =
h(.05) − h
E[∆h]

where h and h(.05) are respectively the Von Neumann entropies of graph G
and the 5% quantile for the ensemble of Erdős-Rényi random graphs, and
E[∆h] is the expected change of the Von Neumann entropy due to one ran-
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dom rewiring as given by Eq. (11). The intuition behind our estimation
f(G) is a simple linear approximation, and we expect that a more accurate
estimation can be derived by using more complicated models such as an
exponential model to model the trajectories of the Von Neumann entropy
of networks undergoing rewiring. Experimental results show that our esti-
mation is highly correlated with the sample mean of the actual hitting time
obtained from numerical simulation, and the advantage of using our estima-
tion is that it can be computed directly without performing a large number
of simulations and taking the sample mean of the actual hitting times.

The central part of the estimation is E[∆h], which is obtained by using
a small perturbation to the adjacency matrix of the graph to approximate
one random rewiring of a graph, and then applying matrix perturbation
techniques to derive equations for E[∆L], E[∆λi], and E[∆h]. However,
whether such approximation would be sufficiently accurate or not depends
on the size and density of the graph, and as we have seen in our numerical
simulations, if the graph is relatively small, then matrix perturbation ap-
proximation might not be accurate. However, we would expect that as the
size and density of the graph increases, matrix perturbation approximation
would become more and more accurate.
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