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ABSTRACT 

        In the past decade, tumor-germline next generation sequencing has become a 

routine part of personalized oncology care. Via this method, germline mutations are 

typically subtracted from those in the tumor to identify somatic mutations, thus negating 

the possibility of discovering germline variants. Previously, it has been proposed that the 

identification of germline variants could have significant clinical implications for patients 

with hereditary cancers and their family members. In this exploratory research study, we 

sought to investigate the prevalence of germline variants identified through clinical 

tumor-germline sequencing among a cohort of patients across ten major cancer types. 

Germline sequencing data from 439 individuals undergoing tumor-germline sequencing 

through the LCCC1108/UNCseq™ (NCT01457196) study were analyzed for genetic 

variants in 36 hereditary cancer susceptibility genes. Variants indicative of hereditary 

cancer predisposition were identified in 19 (4.3%) patients. For about half (10/19), these 

findings represent new molecular diagnostic information with potentially important 

implications for the patient and their family. Genes with pathogenic variants included the 

hereditary cancer genes: ATM, BRCA1, BRCA2, CDKN2A, and CHEK2. Furthermore, a 

substantial proportion of patients (178, or 40.5%) had Variants of Uncertain Significance 

(VUS), 24 of which had VUS in genes pertinent to the presenting cancer. Overall, with 

approximately 4% of cases harboring pathogenic variants in known hereditary cancer 

susceptibility genes, diagnostic germline findings such as these could be beneficial for 

patients and their families.  
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INTRODUCTION 

 Cancer is a leading cause of death worldwide, with an estimated 1.68 million new 

cases in 20151. Recently, major technological advances in massively parallel sequencing 

coupled with dramatic reductions in cost have positioned next-generation sequencing as 

an integral tool used in cancer care. The application of this technology has enabled 

clinicians and scientists to recognize the potential of personalized oncology, particularly 

with respect to diagnosing tumors and determining effective courses of action for cancer 

patients2.  

Cancer is primarily a genetic disease caused by mutations in a wide variety of 

genes, including proto-oncogenes and tumor suppressor genes. These genetic changes can 

either be acquired post-conception (somatic mutation) or be present constitutively in all 

cells of the body as a result of inheritance or early post-zygotic events (hereafter referred 

to as constitutional or germline mutations)3. In patients with hereditary cancer 

syndromes, the presence of germline mutations can complicate the use of next-generation 

sequencing in identifying somatic mutations in a patient’s tumor. Typically, when tumor-

germline sequencing is performed on entire genomes, exomes, or selected genes, 

germline variants are “subtracted out” from those found in the tumor in order to identify 

somatic mutations in the tumor (figure 1). Previous studies have shown that germline 

variant subtraction enhances the specificity of detecting somatic mutations4. As a result, 

pathogenic germline mutations that predispose a patient to increased cancer susceptibility 

may be overlooked when seeking out somatic variants via tumor-germline sequencing. 

Thus, ignoring the germline variants post “subtraction” will likely miss these critical 

variants, which can have profound implications for cancer patients with hereditary cancer 
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syndromes. For instance, knowledge of these variants can guide the preventive care of the 

patient and their family members. Moreover, in a fraction of cases, knowledge of these 

variants can also influence treatment targets, as is the case with the use of PARP 

inhibitors in patients with BRCA1 and BRCA2 mutation-associated cancers4.  

 

Figure 1.  Tumor-germline sequencing workflow. Germline variants derived from 

normal tissue are typically subtracted out from tumor sequences in order to identify 

somatic mutations, thus negating the possibility of discovering germline mutations. 

 

While the majority of cancer cases arise sporadically via acquired somatic mutations, 

inherited germline mutations are estimated to play a major role in roughly 5 to 10 percent 

of all cancers5. The burden of germline mutations in cancer patients varies by cancer 

type, with some tumor types having lesser-known germline etiology (e.g. lung cancer, 

kidney cancer, etc.) and others with well-known germline etiologies (e.g. breast cancer, 

ovarian cancer). Despite our knowledge of the relative frequencies of hereditary cancers, 

empirical data illustrating the burden of germline mutations identified through routine 

tumor-germline sequencing of patients with cancer remains insufficient6.  
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Given the potential ramifications of missing critical germline variants in patients 

with cancer, we conducted an exploratory study within patients undergoing tumor-

germline sequencing to explore the frequency of opportunistically identified pathogenic 

germline variants within cancer predisposing genes.  

 

METHODS 

Summary 

 The experimental design for this study can be divided into three main steps: (1) 

Tumor-germline sequencing, (2) Variant calling, and (3) Variant Classification. Germline 

sequencing data from 439 individuals undergoing tumor-germline dyad sequencing were 

analyzed for genetic variants in 36 hereditary cancer susceptibility genes. Patients across 

10 major cancer types were included in the study. In order to realistically assess the 

burden of germline variants among individuals who receive tumor-germline sequencing, 

patients were included in the study irrespective of having prior clinical indicators of 

hereditary cancer predisposition. The germline variants found in the patients were then 

evaluated for pathogenicity using a variant classification framework previously published 

by the American College of Medical Genetics.  

 Steps (1) and (2) were performed by other members of the Berg Lab, while step 

(3) was conducted by Krunal Amin, Bryce Seifert, and Julianne O’Daniel. 

 

(1) Tumor-germline sequencing  

Participants were enrolled in the LCCC1108 study (UNC clinical sequencing 

study, referred to hereafter as UNCseq™). Informed consent and whole blood DNA (or 
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buccal as appropriate) were obtained from all patients through an institutional review 

board (IRB)-approved protocol at the Lineberger Comprehensive Cancer Center and the 

University of North Carolina, Chapel Hill (NCT01457196). The UNCseq™ study aims to 

associate known molecular alterations with clinical outcomes in oncology and uses this 

information to support treatment decisions through reporting of genetic profiling to 

clinicians. The overarching study consent describes the collection and analysis of both 

tumor and germline tissue including the explicit possibility for identification of an 

underlying hereditary cancer predisposition. Participants consent to the reporting of all 

results deemed clinically significant. Consent was obtained by UNCseq™ study staff for 

the primary study at enrollment. Patients were referred into the UNCseq™ study team by 

their clinic physician and enrolled according to their treated cancer (Table 1) and thus the 

tumor tissue to be analyzed. All patients enrolled between 11/2011 and 06/2014 for the 

cancer types listed in Table 1 were included in our data capture for exploratory germline 

analysis. 

 

(2) Variant Calling 

 Library preparation and gene capture methods have been described previously7. 

Briefly, DNA was extracted from blood using a Puregene DNA Purification kit (Gentra 

Systems), DNeasy Blood and Tissue Kit (Qiagen), or a Maxwell MDx16TM (Promega, 

Inc.). In each methodology, DNA was extracted according to the manufacturer’s 

protocol. DNA was fragmented to approximately 180-225 base pairs 7 using a Covaris 

E220 focused ultrasonicator instrument (Covaris, Inc.). Postfragmentation, the sample 

was enriched for appropriately sized fragments using an automated separation step 
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employing AMPure beads (Beckman Coulter). Fragment size enrichment and subsequent 

library preparation steps involving precise liquid handling steps were performed using the 

Agilent basic Bravo A and/or the Bravo B robot(s) (Agilent Technologies). Gene capture 

was performed using a SureSelectXT custom capture kit according to the manufacturer’s 

protocol (Agilent Technologies). All exons of the 247 genes on the UNCseq™ panel 

were sufficiently captured with average coverage depth of 750X (see Supplementary 

Table 1-Capture V6 within Jeck et al. listing all 247 genes).  

Library quality was assessed with a Bioanalyzer or Tapestation 2200 (Agilent 

Technologies) using either D1K Screentapes or High Sensitivity D1K Screentapes 

(Agilent Technologies). Completed libraries were normalized and pooled using Bravo 

robots guided by vWorks automation control software (Agilent Technologies), and 

sequenced at the UNC High Throughput Sequencing Facility (HTSF) using a 

HiSeq2500TM (Illumina). Alignment and variant calling of the sequencing reads have 

been described previously, with the addition of Isaac and FreeBayes for variant calling as 

well as ABRA for read realignment7-10. In brief, germline sequencing reads were mapped 

to the hg18 reference genome using the Burrows Wheeler Aligner and ABRA. ABRA is 

a bioinformatics platform designed to improve indel detection and accuracy for 

estimation of variant allele frequency11. The germline variants were then called using 

Varscan12, FreeBayes haplotype-based variant detector9, and Isaac to improve calling 

near indels by local realignment13. Lastly, variants were 8 annotated using ANNOVAR14. 

Generally, mean target coverage for all patients ranged from 100-2000X, with the 

average being approximately 750X. Germline variants and variant annotations were 

stored in a local PostgreSQL database.  
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While the NGS methods used here may detect copy number variation (CNV), we 

did not use it for this purpose. If we had, any CNV would have been verified through a 

Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory at UNC 

Chapel Hill. Validation of the assay including assessment of sensitivity and specificity to 

detect germline variants was not performed because this is an exploratory research study. 

Any variants deemed clinically significant, and thus warranting return to the patient, are 

confirmed on a new sample through an orthogonal method within the CLIA certified 

Molecular Genetics Laboratory at the University of North Carolina at Chapel Hill.  

 

(3) Variant classification 

 Variants were first filtered through a list of 36 known hereditary cancer genes 

and then prioritized for analysis based on minor allele frequencies, protein effect, and 

existence in databases of previously reported pathogenic variants (see Table 1 for 

analyzed genes). Allele frequency data were obtained from The 1000 Genomes Browser 

(http://browser.1000genomes.org/index.html), National Heart, Lung, and Blood Institute 

Exome Variant Server ESP6500 Data Set (http://evs.gs.washington.edu/EVS/), and/or 

The Exome Aggregation Consortium (ExAC, http://exac.broadinstitute.org/). In order to 

focus our analysis on rare, highly penetrant variants, variants with a maximum allele 

frequency of 0.001 were filtered out (Figure 2).  
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Figure 2. Analysis was focused on rare, highly penetrant variants. Given the low 

incidence of most hereditary cancer syndromes in the population, common 

variants are unlikely to contribute to hereditary cancer predisposition. 

 

Online resources for variant classification included The National Center for 

Biotechnology Information ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/), the 

Leiden Open-Source Variation Database (LOVD, http://www.lovd.nl/2.0/index_list.php), 

and the Catalogue of Somatic Mutations in Cancer (COSMIC, 

http://cancer.sanger.ac.uk/cosmic). COSMIC was used to determine if a variant existed in 

tumors from similar tissues of origin. After a preliminary computational classification, 

variant counts were generated using an in-house python script and validated manually. 

Variants underwent tiered review by trained molecular analysts in conjunction with 

discussion in a multidisciplinary group. Evidence curation and variant classification was 

performed in a manner similar to the more recently published guidelines from the 

American College of Medical Genetics and Genomics and the Association for Molecular 

Pathology10 (Figure 3). As the patients were not selected for clinical or family histories 
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suggestive of a hereditary cancer predisposition, this phenotype information was not 

available during the variant review process. Therefore, the molecular analysts utilized an 

incidental or secondary variant analysis approach such that a high threshold for 

pathogenicity must be met for variant result. The medical and family history presented in 

Table 2 was obtained from medical record review after variant analysis. Following 

stringent review, variants classified as Likely Pathogenic or Known Pathogenic were 

identified as eligible for return to patients. Prior to results return, these variants will be 

confirmed through analysis of a new sample via an orthogonal method (e.g. Sanger 

sequencing) and verified by an American Board of Medical Genetics and Genomics 

(ABMGG)-certified molecular pathologist. The confirmation step was ongoing at the 

time of submission. Once confirmed, the hereditary cancer predisposing variants will be 

returned to the patients through a board certified genetic counselor experienced in 

hereditary cancer. When medical record review documented a clinically known 

hereditary cancer predisposing variant, no additional steps for confirmation and results 

return were performed. 
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Cancer Type (Subtype) Cases  

(% of Total) 

Hereditary cancer susceptibility 

genes evaluated 

Colorectal 53 (12.1%) 
MLH1,MSH2, MSH6, APC, PTEN, 

SMAD4, STK11 

Ovarian 29 (6.6%) 
BRCA1, BRCA2, MRE11A, TP53, 

MSH6, CHEK2 

Breast (Ductal, Lobular, Other) 114 (26.0%) 
BRCA1, BRCA2, ATM, CHEK2, 

CDH1, MRE11A, PTEN, STK11 

Musculoskeletal 41 (9.3%) TP53  

Lung (Non-small cell, Small cell, 

Other) 
31 (7.1%) TP53 

Kidney 30 (6.8%) VHL, MET 
Brain/CNS (Astrocytoma, Glioma, 

Oligodendroglioma, Other) 
54 (12.3%) NF1, NF2, TSC1, TSC2, TP53 

Skin (Melanoma, Non-melanoma, 

Other) 
39 (8.9%) CDKN2A, PTCH1# 

Hematologic (ALL, AML, CLL, 

Other)* 
29 (6.6%) RUNX1, CEBPA, TP53  

Pancreas 19 (4.3%) 
BRCA1, BRCA2, CDKN2A, 

ATM,TP53  
Total 439  

Other  hereditary cancer genes 

AKT1, ATR, CBL, CDC73, CDKN1B, EGFR, MEN1 

NTRK1, PIK3CA, RB1, RET, SMARCA4, 

SMARCB1,WT1 

*Hematologic cancer abbreviations: Acute Lymphoblastic Leukemia (ALL), Acute Myeloid 

Leukemia (AML), Chronic Lymphocytic Leukemia (CLL). 
#PTCH1 variants were considered relevant only in skin cancer cases that were of the non-

melanoma type. 

 

Table 1. UNCseq™ cancer cases and hereditary susceptibility genes analyzed 
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Figure 3. Evidence framework. This chart published by the American College of  

Medical Genetics organizes each of the criteria by the type of evidence as well as  

the strength of the criteria for a benign (left) or pathogenic (right) assertion. 

 

RESULTS 

To assess the frequency of pathogenic variants in a group of unselected cancer 

patients undergoing tumor sequencing, we analyzed germline variants from 439 patients 

ascertained through the UNCseq™ study. Although all 247 genes of the UNCseq™ panel 

were sequenced, we specifically investigated germline variants in 36 genes that were 

previously determined to be strongly associated hereditary cancer syndromes that were 
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present on the somatic sequencing panel.  Based on current knowledge about the 

spectrum of cancers associated with these hereditary cancer syndromes, 24 of the 36 

genes were considered concordant with the cancer types of the patients being analyzed 

(Table 1).  These cancers included colorectal, ovarian, breast, musculoskeletal, lung, 

kidney, brain/CNS, melanoma, hematologic, and pancreatic cancers12, 15-20. Of all cases 

examined, 19/439 (4.3%) had pathogenic germline variants in a hereditary cancer 

predisposing gene. Of these, 12 were in genes concordant with the presenting cancer at 

enrollment and 7 were in other hereditary cancer genes (Figure 4, Table 2). The majority 

of these findings occurred in patients with colorectal, ovarian, breast, and pancreatic 

cancers; very few such findings occurred in patients with musculoskeletal, lung, kidney, 

brain, skin, or hematologic malignancies. 

   Overall, BRCA1 and BRCA2 harbored 11/19 (57.9%) of the pathogenic variants, 

the majority of which were classified Likely Pathogenic because they were novel variants 

expected to result in an early truncation or for which existing evidence suggested a 

pathogenic role based on classification guidelines10 (Figure 5).  As would be expected in 

an unselected cancer patient population, a small percentage had previously undergone 

clinical genetic assessment for hereditary cancer predisposition. Medical record review 

following variant classification revealed that the BRCA1/2 variants identified in breast 

and ovarian cancer patients in this study had all been previously identified through 

routine clinical genetic testing, indicated based on medical and family history21.  The 

ATM and CDKN2A pathogenic variants identified in breast cancer patients were not 

previously known (Table 2), reinforcing the idea that additional variants may exist in 
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breast cancer patients that would be missed in individuals whose clinical testing was 

restricted to BRCA1 and BRCA222-23. 

  The table in Appendix 1 shows a clinical summary of UNCseq™ patients with 

germline pathogenic variants. Some patients had a personal history of cancer consistent 

with the variant identified in the germline analysis, but had been enrolled for cancers that 

were presumably unrelated (Table 2).  For example, Patient 11 was previously diagnosed 

with breast cancer at age 41 and was enrolled in UNCseq™ when diagnosed with 

colorectal cancer at age 49.  She was found to have a pathogenic canonical splice site 

variant in BRCA1 (NM_007294.3:c.594-2A>C) that provides an explanation for her 

breast cancer (Appendix 1), but is not likely to have any relevance to her colorectal 

cancer diagnosis.  Similarly, Patient 17 was previously diagnosed with breast cancer at 

age 52, but was enrolled in the UNCseq™ study for non-small cell lung cancer.  She was 

found to have a pathogenic nonsense variant in ATM (NM_000051.3:c.352C>T, 

(p.Gln118Ter)) (Appendix 1) that provides a plausible explanation for her breast cancer 

and could potentially suggest a role of ATM in lung cancer, although previous studies 

have found limited evidence to support this role or suggested that environmental factors 

may contribute much more significantly.  

  Although relatively few patients had clearly pathogenic variants, 178/439 (40.5%) 

had a germline Variant of Uncertain Significance (VUS) (Figure 6).  In 24 patients, a 

VUS was found in a gene relevant to the presenting cancer type, while 143 patients had a 

VUS in hereditary cancer genes unrelated to their cancer type.  Not surprisingly, 11 

patients had a VUS in both pertinent and non-pertinent genes (Figure 6).  
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Figure 4. Germline findings across all UNCseqTM patients. The percentages of patients 

with Pathogenic variants (light shading) or Variants of Uncertain Significance (VUS, 

dark shading) in genes that are concordant with the tumor type are depicted as stacked 

bar graphs. Numbers above the bars represent the sample size for the specific tumor type. 

Numbers in parentheses represent the number of patients with Variants of Uncertain 

Significance or Pathogenic variants. Here, Pathogenic variants include both Likely 

Pathogenic (LP) and Known Pathogenic (KP) variants. In both the ovarian and breast 

cancer groups, one patient in each group had a Variant of Uncertain Significance and a 

Pathogenic variant. Hence, 8 cases were found to have pathogenic variants in genes 

concordant with breast cancer, 3 cases were found with pathogenic variants in genes 

concordant with ovarian cancer, and 1 case was found to have a pathogenic variant in a 

gene concordant with pancreatic cancer. 
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Figure 5. Germline pathogenic variants identified in all UNCseqTM patients. The numbers 

of Known Pathogenic (KP) and Likely Pathogenic (LP) variants across all UNCseq™ 

patients analyzed are depicted as a bar graph, divided by gene. 

 

 

 

Figure 6A Variants occurring in genes relevant to the patient’s cancer diagnosis. 

Figure 6B Variants occurring in genes unrelated to the patient’s cancer diagnosis. 

Numbers above the bars represent the frequency of patients with 0,1,2,3 or 4 variants. 

Percentages represent the percent of all UNCseq™ patients analyzed. 
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DISCUSSION 

Frequency of Pathogenic Germline Variants 

 This thesis explores the yield of clinically relevant findings from germline 

analysis in patients undergoing tumor-germline dyad sequencing. The proportion of 

patients found harboring a pathogenic germline mutation (4.3%) is consistent with the 

range reported in previous hereditary cancer studies3, 24-25. It should be noted that this 

frequency is only an estimate, and may vary based on which genes are included in the 

capture panel as well as the cancer types considered. For example, a similar exploratory 

study conducted by Schrader et al. 20164 reported a frequency of 12% of cancer patients 

sequenced via tumor-germline dyad sequencing harboring germline mutations. However, 

Schrader and colleagues4 expanded the survey to include 187 genes associated with 

Mendelian diseases while also including a wider array of tumor types than this study (e.g. 

prostate cancer, thyroid cancer, liver cancer, etc.). If the data published by Schrader and 

colleagues4 were limited to the same cancer types and hereditary cancer predisposition 

genes in our current analysis, a pathogenic variant would be found in 3.9% of cases, 

which is consistent with our findings. This also demonstrates a limitation in our analysis 

in that only hereditary cancer predisposition genes in patients from 10 major cancer types 

were considered. Future studies should aim to ascertain the frequency of incidental 

germline findings in other Mendelian disorders besides hereditary cancer syndromes, as 

these incidental findings may also reveal information critical diagnostic information 

about a patient. 

 Moreover, the distribution of pathogenic variants across cancer types (Figure 4) 

generally aligned with our expectations. Despite only accounting for roughly one-third of 
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the patient cohort, the majority of pathogenic variants were in patients with breast and 

ovarian cancer, which are tumor types that both have well-documented genetic etiologies. 

Perhaps more surprisingly, none of the patients diagnosed with colorectal cancer were 

found to have a mutation in a gene associated with Lynch Syndrome, which accounts for 

roughly 3 to 5% of all colorectal cancer cases. However, this is likely due to the relatively 

small number of colorectal cancer cases evaluated (N = 53). In tumor types with lesser-

known genetic etiologies (i.e. musculoskeletal, lung, kidney, brain/CNS, skin, 

hematologic cancers), no pathogenic germline variants were found as expected. 

 Furthermore, while the majority of pathogenic germline findings occurred in 

genes that were concordant with the presenting cancer at enrollment, a significant portion 

(7/19, or 36.8%) of the pathogenic variants were found in discordant genes – meaning 

that either the mutation was found in a gene that was concordant with another cancer type 

or in one of the “Other hereditary cancer genes” listed in Table 1. For example, a BRCA1 

pathogenic variant was found in patient 11 with colorectal cancer, BRCA2 in patient 15 

with AML, and so on (Appendix 1). The vast majority of the discordant findings occurred 

in patients who had cancer types with lesser-known genetic etiologies, such as acute 

myeloid leukemia, non-small cell lung cancer, and musculoskeletal cancer. These 

incidental findings  

 Finally, among the 19 patients with positive findings in a hereditary cancer 

predisposition gene, half of the pathogenic variants had previously been identified 

through clinical evaluation. The other half, representing roughly ~2% of patients in the 

entire cohort, were not associated with any prior clinical cancer genetic evaluation. For 

this group of patients, the opportunistic germline analysis provides critical information 
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that was not otherwise known to the patient and their family, enabling potential lifesaving 

interventions26-27. Identifying pathogenic germline variants could also provide important 

prognostic information, guiding surgical procedures and or targeted therapeutic options 

for the individual cancer patient, thereby providing immediate applications2, 28. However, 

we recognize that such unexpected germline susceptibility information might be 

unwelcome to some patients depending on their personal situation or preference for 

information. Therefore, further long-term follow-up is needed in order to assess what 

portion of patients would ultimately welcome and benefit from such information.  

 

Variants of Uncertain Significance  

 Often, variants of uncertain significance (VUS) are returned to patients after the 

diagnostic evaluation of hereditary cancer risk29. However, when tumor-germline 

sequencing is performed for prognostic or therapeutic indications, the identification of 

germline variation would be considered an incidental or secondary finding. In this 

situation, as per the evidence-based guidelines published by the American College of 

Medical Genetics and Genomics10, only Pathogenic or Likely Pathogenic findings should 

be reported to patients. This notion is supported by our data, in which we discovered at 

least one VUS in almost half (40.5%) of all patients. By definition, the clinical relevance 

of these variants remains to be determined. Based on the low prior probability of clinical 

relevance, the majority of these variants are likely to be inconsequential.  
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CONCLUSION 

Though it is a major focus of precision medicine efforts, whether next generation 

sequencing should be applied on a routine basis for tumor mutation profiling remains to 

be determined30. Here, we demonstrate that utilizing an incidental/secondary variant 

analysis approach for germline sequence data in unselected patients undergoing tumor-

germline sequencing may provide a small but important benefit with regard to the 

detection of clinically relevant, highly penetrant variants in hereditary cancer 

predisposition genes. Most of these findings can be ascertained through cancer genetics 

evaluation recommended on the basis of family history, age at presentation, ancestry or 

tumor phenotype. However, some of these patients may not be referred to a cancer 

genetic service31-34 and a minority will be missed due to lack of typical clinical and/or 

family history indications35-36. 

Potentially unsuspected pathogenic variants have now been reported in a small, 

but not insignificant, proportion of cancer patients undergoing therapeutically indicated 

tumor-germline testing4,6, and our data provide further support to this scenario. 

Disclosing the identification of a hereditary cancer predisposition would be highly 

relevant to the clinical care of these cancer patients and have important implications for 

their relatives’ medical guidance. Providers who obtain tumor sequencing will need to be 

cognizant of the implications of tumor-germline analysis with respect to potential 

incidental findings37, understand the differences between tumor sequencing and clinical 

genetic testing for hereditary cancer susceptibility, and be able to effectively 

communicate these issues to their patients. 
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APPENDIX 1: Clinical summary of UNCSeqTM patients with germline pathogenic variants 

Patient Cancer type at 
Enrollment 

Sex Agea Gene cDNA changeb Protein 
change 

Variant type Classification Clinical 
Genetics 

Evaluation 

Personal 
and/or Family 

History 

Prior 
Clinical 
Testing 

Clinical 
Test 

Resultc 

Concordance 
with Cancer at 

Enrollmentd 

1 Ovarian F 48 BRCA1 NM_007294.3: 
c.5266_5267insC 

p.(Gln1756fs) Frameshifting 
indel 

KP Yes Ashkenazi  
Jewish  
F:Lung, Bladder   
MA: Pancreas, 
72 

Yes (+) Yes 

2 Ovarian F 41 BRCA1 NM_007294.3: 
c.5193+1G>T 

N/A Splice-site KP Yes No Cancer 
History 

Yes (+) Yes 

3 Breast  F 37 
 

CDKN2A NM_000077.4: 
c.35C>A 

p.(Ser12Ter) Nonsense LP Yes Personal: 
Melanoma, 21,31 
Family: 
Adopted 
 

Yes (-) No 

4 Breast F 55 BRCA1 NM_007294.3: 
c.2457_2457delC 

p.(Asp821fs) Frameshifting 
indel 

KP Yes MMaR:Breast, 
Ovarian, 
Pancreas 
M:Breast, 36 

Yes (+) Yes 

5 Breast F 29 BRCA1 NM_007294.3: 
c.211A>G 

p.(Arg71Gly) Missense KP Yes S:Breast, 28;   
M:Breast,42 
MA:Breast,33;  
MA:Breast,37 

Yes (+) Yes 

6 Breast F 63 ATM NM_000051.3: 
c.1561_1562delAG 

p.(Glu522fs) Frameshifting 
indel 

LP Yes M:Breast,55;  
MA:Breast,30s& 
40s  
3MU:Blood 
MA:Cancer,60s 

Yes (-) Yes 

7 Breast F 29 BRCA2 NM_000059.3: 
c.7538_7539insA 

p.(Thr2515fs) Frameshifting 
indel 

LP Yes M:Breast, 
39&49, and 
Brain/CNS, 58 

Yes (+) Yes 

8 Breast F 35 BRCA1 NM_007294.3: 
c.131G>A 

p.(Cys44Tyr) Missense KP Yes PA: Bilateral 
Breast, 45 

Yes (+) Yes 

9 Breast F 37 BRCA2 NM_000059.3: 
c.8575delC 

p.(Gln2859fs) Frameshifting 
indel 

KP Unknown Unknown 
(adopted) 

Yes (+) Yes 



a"Age"at"the"time"of"diagnosis"
b Transcripts are listed according to the HGVS nomenclature recommendations or the commonly accepted transcript. 
c Clinical Test Result: (+) = Same Mutation Reported, (-) = Gene was not included in the clinical genetic test and these negative 
results indicate new diagnostic results. 

10 Breast M 53 BRCA2 NM_000059.3: 
c.5718_5719delCT 

p.(Leu1908fs) Frameshifting 
indel 

LP Yes S:Breast,50; 
B:Colon,53 
PA:Breast, 55;  
PC:Colon, 35 
Known Familial 
Mutation 

Yes (+) Yes 

11 Colorectal 
 

F 49  
 

BRCA1 NM_007294.3: 
c.594-2A>C 

N/A Splice-site LP Yes Personal: 
Breast, 41 
Family:  
PA: Breast, 29; 
PC: Breast, 50 

Yes (+) No 

12 AML M 54 BRCA1 NM_007294.3: 
c.594-2A>C 

N/A Splice-site LP Unknown Not Reported No N/A No 

13 GI-other M 54 ATM NM_000051.3: 
c.8545C>T 

p.(Arg2849Ter) Nonsense LP No No Cancer 
History  

No N/A No 

14 Breast F 59 CHEK2 NM_007194.3: 
c.1100delC  

p.(Thr367fs) Frameshifting 
indel 

KP No Non-
Contributory 
M:Lymph node, 
80 
U: Liver 

No N/A Yes 

15 AML M 57 BRCA2 NM_000059.3: 
c.5233_5233delA 

p.(Met1745fs) Frameshifting 
indel 

LP No F:Pancreas, 72 No N/A No 

16 Pancreas M 61 ATM NM_000051.3: 
c.170G>A 

p.(Trp57Ter) Nonsense LP Yes B:Pancreas, 52 No N/A 
 

Yes 

17 NSCLC 
 

F 66  
 

ATM NM_000051.3: 
c.352C>T 

p.(Gln118Ter) Nonsense LP No Personal: 
Breast, 52 
Family:  
S:Breast,  
F: Bone 
(myeloma), 
B:Amyloidosis  

No N/A No 

18 Musculoskeletal F 57 CHEK2e NM_007194.3: 
c.1100delC 

p.(Thr367fs) Frameshifting 
indel 

KP No F:Kidney 
PGM:Lung, 
B:CNS (2)  

No N/A No 

19 Ovarian  F 52 
 

CHEK2 NM_007194.3:   
c.1486C>T 

p.(Gln496Ter) Nonsense LP No Personal: 
Melanoma, 57 
Family:  
PU: Stomach 

No N/A Yes 



d Concordance with cancer at enrollment: Yes = Pathogenic variant is in a gene that is concordant with the presenting cancer at 
enrollment.  No = Pathogenic variant is in a gene that is discordant with the presenting cancer at enrollment. 
e CHEK2 has been implicated as a susceptibility gene for a Li-Fraumeni-like cancer syndrome.  However, the current evidence for this 
association is disputed(50). 
 
Abbreviations: 
Cancer type: AML=Acute Myelogenous Leukemia; NSCLC= Non-small cell lung cancer.  
Gender: F= female; M= male.  Classification:  KP= Known Pathogenic; LP= Likely Pathogenic; VUS= Variant of Uncertain 
Significance. 
Family History: M=Mother; F=Father; S=Sister; B=Brother; MA= Maternal Aunt; MU= Maternal Uncle; MGM= Maternal 
Grandmother; MGF= Maternal Grandfather; MMaR=Multiple Maternal Relatives; PA= Paternal Aunt; PU= Paternal Uncle; 
PGF=Paternal Grandfather; PGM=Paternal Grandmother; PC= Paternal Cousin; U=Uncle. 
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