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Abstract

The cohomology of the real Grassmann and flag manifolds is discussed
at length, making use of Stiefel-Whitney classes. It is shown that the tan-
gent bundle of the Grassmannian splits into line bundles over the flag
manifold. Additionally, it is found that the cohomology of the flag mani-
fold is exactly the polynomial algebra Z2[e1, . . . , en], for one-dimensional
classes ei, modulo the relation

∏
i(1 + ei) = 1. Using facts about this

ring to compute the dimension of the Stiefel-Whitney class of the normal
bundle to the Grassmannian, we find a lower bound for immersions of
certain real Grassmannians. In particular, Gn

(
Rn+k

)
with n ≤ 2s ≤ k

and n+k ≤ 21+s cannot be immersed in dimension less than n
(
2s+1 − 1

)
.

1 Introduction

An immersion is a smooth map from one manifold into another whose derivative
is injective at each point in the domain. Immersions are an important topic
of study in the field of geometric topology, so it is natural to seek results on
their existence or nonexistence. Here we consider immersions of the Grassmann
manifolds Gn

(
Rn+k

)
into Rl.

A significant amount of background material is provided here for the reader
who is not familiar with details of the spaces involved or the notion of character-
istic classes. This material is derived from Milnor and Stasheff [4] and comprises
much of sections 1–3.

The main result of this paper is Theorem 5.2 showing that Gn

(
Rn+k

)
where

n and k satisfy n ≤ 2s ≤ k and n+ k ≤ 21+s cannot be immersed in dimension
less than n

(
2s+1 − 1

)
. This result is proved in [3], and the work here follows that

paper closely (although it should be noted that Hiller and Stong write Gk

(
Rk+n

)
rather than Gn

(
Rn+k

)
; the latter is used here to maintain consistency with

Milnor and Stasheff). We begin with a few standard results. First, the tangent
bundle of Gn

(
Rn+k

)
is isomorphic to hom

(
E,E⊥

)
, where E is the universal

bundle whose fiber at a plane in the Grassmannian is that plane. Next, the
immersion dimension of a manifold in Rl must be at least the dimension of the
manifold plus the dimension of the Stiefel-Whitney class of its normal bundle,
which is the multiplicative inverse of the Stiefel-Whitney class of the tangent
bundle. Last is that w(T )w(E ⊗ E) = w(E)n+k, where T = T

(
Gn

(
Rn+k

))
is

the tangent bundle of the Grassmannian.
Along the way we will use the flag manifold Flag(Rn), whose elements are

strictly increasing sequences of linear subspaces of Rn. The relevant property
is that the universal bundle E pulls back to a direct sum of line bundles under
the projection Flag

(
Rn+k

)
→ Gn

(
Rn+k

)
sending a flag to its n-dimensional

subspace. Of general interest are Theorem 4.1 indicating a presentation of the
flag manifold’s cohomology (a well-known result), and Theorem 4.3 elaborating
its structure (less well-known).
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2 The Grassmann manifold

The Grassmann manifold, or Grassmannian, of dimension n over Rn+k, is a
manifold whose elements are the linear subspaces of Rn+k of dimension n. It is
denoted Gn

(
Rn+k

)
.

2.1 Topology

To produce the topology on Gn

(
Rn+k

)
, it is most convenient to define it as a

quotient space.

Definition 2.1. The Stiefel manifold1 Vn

(
Rn+k

)
is the space of all linearly

independent ordered sets (“n-frames”) of n vectors in Rn+k. It is topologized
as a subspace of Rn(n+k) = M(n+k, n), consisting of those matrices all of whose
n× n minors have nonzero determinant.

Vn

(
Rn+k

)
is the preimage of (R \ {0})(

n+k
n ) under the function sending a

matrix to a list containing for each choice of n of n+k columns the determinant
of those columns. That function is continuous (in fact, it is a polynomial), so
Vn

(
Rn+k

)
is an open subset of Rn(n+k).

Definition 2.2. The Grassmannian Gn

(
Rn+k

)
is the set of n-dimensional lin-

ear subspaces of Rn+k, with the quotient topology derived from the map from
Vn

(
Rn+k

)
to Gn

(
Rn+k

)
sending each set of vectors to the space it spans.

For convenience, we set G = Gn

(
Rn+k

)
and V = Vn

(
Rn+k

)
for the remain-

der of this section.
It is clear from this definition that the spaces G1

(
R1+k

)
are identical to

RPk, as V1

(
R1+k

)
is just R1+k \ {1}, and 1-dimensional subspaces are lines.

Theorem 2.1. Gn

(
Rn+k

)
is compact and Hausdorff.

Proof. The quotient map V → G factors through a map from V to the set
V0
n

(
Rn+k

)
(or V0) of orthonormal n-frames given by the Gram-Schmidt pro-

cedure. Thus G can be represented as a topological quotient of V0, with the
subspace topology inherited from

(
S(n+k)−1)n. As that space is compact and

V0 is closed in it (being the preimage of I ∈M(n,R) under the map A 7→ ATA),
G is compact.

To show that G is Hausdorff, it suffices to find a continuous function sep-
arating two given elements X,Y in G. Let w ∈ X \ Y , and define f(Z) to be
the square of the distance from w to Z ∈ G (in the Euclidean metric on Rn+k).
Thus

f(Z) = w · w − πZ(w) · πZ(w)

= w · w +
∑
i

(zi · w)
2
,

1This definition is not universal: many sources define the Stiefel manifold as the space of
orthonormal n-frames.
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where πZ is projection onto Z and {zi}ni=1 is any orthonormal basis for Z.
Clearly f(X) = 0 < f(Y ), and the above formula shows that the induced map
is continuous on V0 and hence f is continuous on G.

2.2 Topological manifold structure

We will now demonstrate that any point X ∈ G has a neighborhood

U =
{
Y ∈ G | Y ∩X⊥ = {0}

}
,

which is homeomorphic to the real vector space hom
(
X,X⊥

)
. This proves that

G is a topological manifold of dimension

dim
(
hom

(
X,X⊥

))
= dimX · dim

(
X⊥
)

= nk.

Let Y ∈ U for the neighborhood U described above. Thus

Y ⊂ Rn+k = X ⊕X⊥.

Define orthogonal projections p : Rn+k → X, q : Rn+k → X⊥. Thus p(Y ) = X,
and since dimY = dimX, p|Y is a linear isomorphism. Then the map

q ◦ (p|Y )
−1

: X → X⊥

is a function in hom
(
X,X⊥

)
corresponding to Y . Conversely, such a function

yields Y , which is its graph: given f : X → X⊥,

Y = {x+ f(x) | x ∈ X }.

The resulting map Y → hom
(
X,X⊥

)
is continuous: choose a frame {xi}ni=1

for X (that is, an element in V that maps to X). For any Y ∈ U , (p|Y )
−1

sends the chosen frame to a frame on Y , yielding an injective map λ from U
to V with inverse given by the canonical projection back to G. This map
can be shown to be continuous through explicit calculation (noting that λ is
continuous if and only if the induced map V→ V is continuous). Given any set
of n vectors {vi}ni=1, there is a linear map X → Rn+k sending xi to vi. Clearly
the assignment of linear maps to sets of vectors is linear in vi, and so when we
restrict to Im(λ) ⊂ V we obtain a linear map—call it µ. Finally, there is a
continuous function from hom

(
X,Rn+k

)
to hom

(
X,X⊥

)
given by composition

with q, the projection onto X⊥. Thus Φ is given by the composition

U
λ // V

µ // hom
(
X,Rn+k

) q◦ // hom
(
X,X⊥

)
and is continuous since each component is continuous.

The inverse map from hom
(
X,X⊥

)
to U is also continuous, as choosing a

frame {xi}ni=1 for X yields a frame {yi} for Y which depends continuously on
a function f : X → X⊥, with yi = xi + f(xi). Thus we have constructed a
homeomorphism Φ from U to hom

(
X,X⊥

)
.
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2.3 Smooth structure and tangent bundle

To show that G is a smooth manifold, it suffices to show that the maps Φ
obtained at each point in G are smoothly compatible. Consider X and U defined
as before, and let X ′ ∈ U . X ′ has a neighborhood U ′, with a homeomorphism
Φ′ : U ′ → hom

(
X ′, X ′⊥

)
. A straightforward computation shows that Φ and Φ′

are smoothly compatible, that is,

Φ′ ◦ Φ−1 : Φ(U ∩ U ′)→ Φ′(U ∩ U ′)

is smooth.

Definition 2.3. The universal bundle E on Gn

(
Rn+k

)
is the subbundle of the

trivial bundle Rn+k obtained by taking at each point in Gn

(
Rn+k

)
the subspace

it corresponds to.

We also define E⊥ ' Rnk/E to be the subbundle of Rn+k obtained by taking
the vector space X⊥ to be the fiber over X ∈ G.

Then, because the fiber of E over X is X and the fiber of E⊥ over X is X⊥,
the tangent space of G is given by

T ' hom
(
E,E⊥

)
(1)

as a vector bundle.

3 Stiefel-Whitney Classes

3.1 Definition and basic properties

The Stiefel-Whitney class w(V ) of a finite rank real vector bundle V over a
space X is an element of H∗(X;Z2). We write w(V ) =

⊕
i∈N wi(V ), where

wi(V ) ∈ Hi(X;Z2). The operation w uniquely satisfies:

1. Normalization.
w
(
γ11
)

= 1 + a

Where γ11 is the tautological line bundle over RP1 and a is the generator
of H1

(
RP1;Z2

)
, so that H∗

(
RP1;Z2

)
= Z2[a]/

(
a2
)
.

2. Rank.

w0(V ) = 1 ∈ H0(X;Z2)

wi(V ) = 0 ∈ Hi(X;Z2), if i > rank(V ).

3. Whitney product formula.

w(V ⊕W ) = w(V )^w(W )
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4. Naturality.
w(f∗V ) = f∗w(V )

for f∗ the pullback by a continuous map f : X ′ → X.

Proofs of the existence and uniqueness of the Stiefel-Whitney classes are given
by Milnor and Stasheff [4].

It is clear from the last axiom that given a homeomorphism of spaces, the
induced isomorphism in cohomology fixes Stiefel-Whitney classes. Addition-
ally we see that the trivial bundle Rn over a space has Stiefel-Whitney class
zero, since it pulls back from the trivial bundle on a point, which has trivial
cohomology.

In the case of Grassmannians, it can be shown that the cohomology ring
is generated by the Stiefel-Whitney classes wi(E), 0 < i ≤ n, of the universal
bundle. We refer to again Milnor and Stasheff for a proof [4, p. 83].

3.2 Computation for T (RPn)

For the real projective space RPn = G1

(
Rn+1

)
, the universal bundle has di-

mension one and hence has just one nonzero Stiefel-Whitney class, w1(E) = a.
Thus the cohomology ring is a quotient of the ring Z2[a]. As the projective
space must have a top-level cohomology class, but no classes of greater degree,
its cohomology ring is Z2[a]/

(
an+1

)
(this fact can be shown by more elementary

means, but Stiefel-Whitney classes provide a very elegant proof). We will refer
to the universal bundle E on RPn as the tautological line bundle γ to match
convention.

As an aside, it is simple to compute w(γ) using only the knowledge of
H∗(RPn;Z2). Let the tautological bundle on RP1 be γ1. The inclusion R1 → Rn
induces an inclusion ι : RP1 → RPn. ι∗ pulls γ back to the γ1, whose Stiefel-
Whitney class we know from axiom 1. By naturality, ι∗(w(γ)) = w(γ1) = 1 +a,
implying that w1(γ) is nonzero. Since w(γ) has no terms of degree greater than
one, as γ is a one-dimensional bundle, we have w(γ) = 1 + a.

We now complete our computation of w(T (RPn)), starting with equation 1:

T (RPn) ' hom
(
γ, γ⊥

)
.

To simplify, we add the trivial bundle R = hom(γ, γ) to each side, obtaining

T (RPn)⊕ R ' hom
(
γ, γ⊥ ⊕ γ

)
= hom

(
γ,R1+n

)
= hom(γ,R)

⊕1+n
.

We can further simplify using the fact that hom(γ,R) = γ, from Appendix A.
Applying w and using the Whitney product formula,

w(T (RPn))w(R) = w(γ)1+n.

Since w(R) = 1, we obtain

w(T (RPn)) = (1 + a)n+1.
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3.3 Consequences for immersions

Suppose we have a manifold M of dimension n and an immersion

f : M → Rn+k.

Then f∗ sends T
(
Rn+k

)
to a vector bundle on M , which is necessarily trivial

of dimension n + k and contains T (M) as a sub-bundle. Defining the normal
bundle

N(M) = T (M)⊥

as a sub-bundle of the trivial bundle Rn+k, we have

N(M)⊕ T (M) = Rn+k

and consequently

w(N(M))w(T (M)) = w
(
Rn+k

)
= 1.

If we know the cohomology ring of M and the Stiefel-Whitney class of its tan-
gent space, this places constraints on the dimension of spaces in which M is
embedded. The constraints are due to the fact that the dimension of N(M) is
k, so that terms of order greater than k must be zero. If k ≥ n, then there are
no restrictions as the cohomology ring of M has no terms of order greater than
k.

3.4 Stiefel-Whitney class inverses

The cohomology ring H∗(M ;Z2) of a space M is a graded algebra over Z2.
We consider only spaces M with finite-dimensional cohomology. Let A =
H∗(M ;Z2) and Ai = Hi(M ;Z2), so that

A =

n⊕
i=0

Ai.

Let πi be projection onto Ai, that is, if a =
∑
i ai with ai ∈ Ai, then πi(a) = ai.

The Stiefel-Whitney classes occupy a subset W of A with constant coefficient
equal to one,

W = {w ∈ A | π0(w) = 1 }.

We will show that this set is a group under multiplication, and consequently
that we can divide as well as multiply the Stiefel-Whitney classes of tangent
bundles.

Define the index function i : A→ [0,∞] by

i(0) =∞

i(a) = min{ i | πi(a) 6= 0 }, a 6= 0.
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Clearly i(a+ b) ≥ min(i(a), i(b)), and i(a) > n only if a = 0. It is easy to show
additionally that i(ab) ≥ i(a) + i(b).

To show that W is closed under multiplication, let 1 + v, 1 + w ∈W . Then

(1 + v)(1 + w) = 1 + v + w + vw

i((1 + v)(1 + w)− 1) ≥ min(i(v), i(w), i(v) + i(w)) ≥ 1,

so (1 + v)(1 + w) lies in W . W clearly contains the multiplicative identity 1,
and we can demonstrate that it has inverses using the formula

1

1 + x
= 1 + x+ x2 + x3 + · · ·

where factors of −1 are omitted because A is a Z2-algebra. Since i(x) ≥ 1, we
have i

(
xk
)
≥ k, so xk is zero for k larger than the maximum grade n. Then

(1 + x)
(
1 + x+ x2 + · · ·+ xn

)
= 1 + xn+1 = 1.

Consequently W is a group under multiplication and the inverse formula given
provides the unique inverse. This inverse is unique not only in W but in A
because if a(1 + w) = 1 for a ∈ A, 1 + w ∈ W , then π0(a)π0(1 + w) = π0(1),
or π0(a) = 1. For a Stiefel-Whitney class w(V ), we denote its multiplicative
inverse by w(V ).

3.5 Immersions of projective spaces

We combine the results of the two previous sections:

Theorem 3.1. A lower bound for the immersion dimension of n-dimensional
manifold M is n+ k, where

k = dimw(N(M)) = dimw(T (M)).

We now specialize to the case of RPn, with H∗(RPn;Z2) = Z2[a]/
(
an+1

)
and w(T (RPn)) = (1 + a)n+1.

We note that in any algebra over Z2, (a+b)2 = a2 +b2, that is, squaring is a

homomorphism. We conclude that (1+a)2
l

= 1+a2
l

, which is 1 in Z2[a]/
(
an+1

)
if 2l > n. Therefore the inverse of w(T (RPn)) = (1 + a)n+1 in H∗(RPn;Z2) is

(1 + a)2
l−n−1, where 2l > n. This polynomial has the same value for all l that

satisfy the given inequality by uniqueness of inverses. Its degree is computed
most easily if we additionally require that 2l ≤ 2n, so that 2l − n− 1 < n is the
degree. Consequently

Theorem 3.2. The space RPn cannot be immersed in dimension less than 2l−1,
where 2l−1 ≤ n < 2l.
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4 The flag manifold

4.1 Definition

In working with the Grassmannian it is convenient to introduce another quotient
of V0

n(Rn), the space of orthogonal n-frames in Rn. Our intention is for the
flag manifold, which we denote using Flag(Rn), to consist of all complete flags
in Rn, that is, all strictly increasing sequences

{0} = V0 ( V1 ( V2 ( · · · ( Vn = Rn.

As the dimensions of the Vi must be strictly increasing, it follows that dimVi = i.
Noting that a flag is equivalent to an ordered set of orthogonal lines in Rn (so
that Vi is the span of the first i lines), we let

Definition 4.1. The flag manifold Flag(Rn) is the quotient of V0
n(Rn) by the

relation setting {xi}ni=1 ∼ {x′i}
n
i=1 when xi = ±x′i for all i.

Thus the flag manifold is the quotient of the action on V0
n(Rn) of a discrete

group (Z×)
n
, where Z× = {−1, 1} under multiplication (so Z× is cyclic of order

2). V0
n(Rn) is the submanifold of

(
Sn−1

)n ⊂ M(n,R) satisfying the (smooth)
relation ATA = I, so Flag(Rn) inherits its smooth manifold structure.

The flag manifold Flag
(
Rn+k

)
projects to the Grassmannian Gn

(
Rn+k

)
by

sending a flag to its n-dimensional space.

4.2 Cohomology

Theorem 4.1. The cohomology ring H∗(Flag(Rn);Z2) is generated by n one-
dimensional classes e1, e2, . . . , en, which obey the relation

n∏
i=1

(1 + ei) = 1.

Proof. The desired classes are found using the map π : Flag(Rn) →
(
RPn−1

)n
which sends a flag to the orthogonal lines defining it. The cohomology ring of
each copy of RPn−1 is generated by a single one-dimensional class, and we define
ei to be the pullback of this class in the ith copy.

By naturality of Stiefel-Whitney classes, we have

ei = π∗i (w1(γ)) = w1(π∗i (γ)),

where πi is the projection of Flag(Rn) onto the ith component. We let γi =
π∗i (γ). The bundle

⊕
i γi is the trivial bundle Rn, since the product of all the

lines in a flag is always the entire space. The relation of the classes,
∏
i(1 + ei) =

1 is then given by applying w.

To find nonzero elements in the cohomology of the flag space, we use the
Leray-Hirsch theorem [1, p. 432]:
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Theorem 4.2. Let E be a fiber bundle over the space B with fiber F and
projection map p : E → B, and R be a commutative ring. Assume also:

(a) Hn(F ;R) is a finitely generated free R-module for each n.

(b) There exist classes cj ∈ Hkj (E;R) such that i∗(cj) form a basis for
H∗(F ;R) for each inclusion i : F → E sending F to a fiber.

Then the map Φ: H∗(B;R) ⊗R H∗(F ;R) → H∗(E;R),
∑
ij bi ⊗ i∗(cj) 7→∑

ij cj ^p∗(bi) is an isomorphism.

Flag(Rn) may be viewed as a tower of fiber bundles where the fiber in each
case is a projective space. We can obtain this tower by successively choosing
subspaces of Rn—first V1, then V2, and so on. Let Fk be the space of flags

{0} = V0 ( V1 ( · · · ( Vk

where dimVk = k. Clearly our choice for V1 is any line in Rn, so F1 is equal
to RPn−1, or equivalently a fiber bundle over a single point with fiber RPn−1.
Once we have chosen the first k − 1 subspaces, the choice of Vk is equivalent to
picking a line in Rn/Vk−1, which is isomorphic to Rn−k+1, meaning that Fk is
a fiber bundle over Fk−1 with fiber RPn−k.

Given the fiber bundle Fk → Fk−1, we verify the conditions for Leray-Hirsch
(with R = Z2). Since the cohomology ring of the fiber, H∗

(
RPn−k;Z2

)
, is

equal to Z2[a]/
(
an−k+1

)
, each cohomology group Hj

(
RPn−k;Z2

)
is the free Z2-

module generated by aj . To generate the group, then (and satisfy condition b),
it suffices to show that i∗(ek) is nonzero in RPn−k (equivalently, it is equal to
a). But this follows because π ◦ i is the natural inclusion induced by the map
Rn−k → Rn, so it sends the generator of RPn to the generator of RPn−k.

This construction makes it clear that a set of elements which generate
H∗(Flag(Rn);Z2) by addition is given by the products

∏
i e
ki
i satisfying ki ≤

n − 1 for all i. It happens that the relation
∏
i(1 + ei) = 1 allows us to write

any polynomial in ei in terms of such monomials, a fact which we do not prove
(or require) in this paper.

4.3 Monomials in H∗(Flag(Rn);Z2)

Theorem 4.3. In the cohomology of Flag(Rn),

(1) eni = 0 for all i.

(2) The top dimension is 1
2n(n− 1). A monomial

∏
i e
ki
i of that dimension is

nonzero if and only if the ki are a permutation of the set {0, 1, . . . , n− 1}.
Proof. (1) is clear simply by noting that ei = π∗i (a), where a generates the
cohomology of RPn−1. In the latter space, an = 0, so eni = π∗i (an) = 0.

To show (2), we begin with the above construction of the flag manifold as
an iterated fiber bundle. This construction clearly indicates that

dim(Flag(Rn)) =

n∑
k=1

dim
(
RPn−k

)
=

n−1∑
i=0

i =
n(n− 1)

2
.
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That the given monomial is nonzero is readily apparent from Leray-Hirsch. For
simplicity, we go through the ei in order. The top-dimensional component added
at each step is en−ii , so the product of this element and the previous nonzero
component is the top-dimensional component in the new flag manifold Fi. Since
the cohomology ring of F0 (a point) is trivial, the term

∏n
i=1 e

n−i
i is nonzero.

There is a map Flag(Rn) → Flag(Rn) for any permutation σ ∈ Sn which
sends a tuple of orthogonal lines to the same lines permuted by σ. Clearly such
a map is a homeomorphism. However, this map also rearranges the cohomology
classes by sending ei to eσ(i). Consequently the monomial

∏
i e
n−i
σ(i) for any

σ ∈ Sn is nonzero, or equivalently
∏
i e
ki
i is nonzero if the ki are a rearrangement

of the set {0, 1, . . . , n− 1}.
It remains to show that any monomial with dimension 1

2n(n − 1) not of
this form is equal to zero. We will call monomials fitting the form, that is,∏
i e
ki
i with {ki} = {0, 1, . . . , n − 1}, decreasing monomials. For an arbitrary

top-dimensional monomial expressed as a product
∏
i e
ki
i , let Kj , for 0 ≤ j ≤ n,

be the set of basis elements ei for which the corresponding ki are greater than
or equal to j. Define dj = |Kj | and pj =

∏
i∈Kj

ei, so that

P =

n∏
j=1

pj .

Clearly Kj ⊂ Kj−1 for all j, so dj form a non-increasing sequence. For a
decreasing monomial, we have dj = n − j, and the sequence (dj) is strictly
decreasing. In fact this property holds only for decreasing monomials: the total
dimension of the monomial is

∑
j≥1

dj =
∑
k

d0 − n∑
j=1

dj − dj−1

,
where d0 is fixed at n. The maximal value of this expression is attained only
when dj − dj−1 is minimized, that is, when it is always equal to 1.

We will show that monomials which are not decreasing are zero by directly
using the relation found in Theorem 4.1,

n∏
i=1

(1 + ei) = 1.

For j > 0, the degree j component of the left-hand side is the sum of all j-
dimensional monomials which contain at most one copy of each ei. Thus it
contains

(
n
j

)
components corresponding to the choices of j of the ei. As the

jth component of the right-hand side is zero, that polynomial is zero in the
cohomology ring of Flag(Rn), or in other words a product of j distinct generators
is equal to the sum of all other products of j distinct generators. As a special
case, we note that the product

∏n
i=1 ei is zero.
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 · · · ·◦ ◦ ◦ ·
◦ ◦ ◦ ·

 =

 · · · ·
◦ ◦ · ∗
◦ ◦ ◦ ·

+

 · · · ·
◦ · ◦ ∗
◦ ◦ ◦ ·

+

 · · · ·
· ◦ ◦ ∗
◦ ◦ ◦ ·


=

 · · · ·
◦ ◦ · ·
◦ ◦ ◦ ◦

+

 · · · ·
◦ · ◦ ·
◦ ◦ ◦ ◦

+

 · · · ·
· ◦ ◦ ·
◦ ◦ ◦ ◦


Figure 1: Rewriting a monomial as a sum of vanishing terms. The rows corre-
spond to pl with p1 at the bottom, and the columns to variables ei, with element
(l, i) marked if ei ∈ Kl. Each monomial in the final sum is zero since it contains
ei for each i.

Suppose we have a monomial P =
∏
i e
ki
i for which the first (that is, for

minimal j) value of dj − dj−1 not equal to 1 is 0. We will demonstrate by
induction that such monomials are zero. If j = 1, this is clear, as d1 = d0 = n
implies that the p1 contains ei for each 1 ≤ i ≤ n, and thus is the product
of all generators, which we have just noted is zero. Now suppose j > 1. By
hypothesis dj = dj−1, so Kj = Kj−1 and pj = pj−1. Now rewrite pj as the
sum of all other products of dj generators (this procedure is illustrated in figure
1). Consider a single summand P ′ of the resulting expression for P obtained by
replacing pj with qj =

∏
ea∈Lj

ea. Since Lj is distinct from Kj = Kj−1, some
terms ea ∈ Lj are not in Kj−1. Consequently for each such term ea, there is an
la < j − 1 such that ea ∈ Kla \Kla−1. The la are distinct, since the fact that
dl − dl−1 = 1 for l < j implies that Kla \Kla−1 has only one element, and the
ea are distinct. Then taking l = mina la, we have dk − dk−1 = 1 for all k < l,
while dl − dl−1 = 0, and P ′ is zero by induction on j.

To complete the proof, consider the monomials for which the first value of
dj − dj−1 not equal to 1 is greater than one. We will show that each such
monomial is zero in two steps—first, by assuming that dj − dj−1 is exactly
2, and next, by showing that any monomial with a greater difference can be
rewritten as a sum of monomials of the first kind. To simplify both proofs, we
note a consequence of the result from last paragraph on the rewriting operation
performed there: when rewriting a term pl of P , we can ignore combinations
not contained entirely in Kj−1. This is due to the fact that if any ei in the
result falls outside of that set, then the first dj − dj−1 not equal to 1 is equal to
0, so the resulting monomial P ′ is zero. We also define the function

h(P ) =
∑
l

ldl,

a positive integer associated to any given monomial. If we choose k with Kk =
Kk−1, and rewrite pk, then each summand P ′ in the result must have lower h
than P . This is because some term of Lk (where pk is moved to

∏
ea∈Lk

ea must
lie outside of Kk = Kk−1, so it moves to Kl with l < k. This exchange decreases

11



h by k− l. No term Kl with l > k can increase in size when we rewrite, because
any element of Lk in Kl merely fills the value occupied earlier by an element of
Kk. Thus h(P ) > h(P ′).

Let dj − dj−1 = 2, and dl − dl−1 = 1 for l < j. Choose k > j such that
dk − dk−1 = 0 (recall that we are guaranteed at least one such index because
the monomial is not a decreasing one). When we rewrite pk, the terms p̃k which
lie entirely in Kj−1 fall in one of the following categories:

• Two elements of p̃k lie in Kj \Kj−1. In this case, the corresponding P ′

will have K ′j = K ′j−1 and be zero.

• Exactly one element lies in Kj \ Kj−1. In this case, there is another
term which contains the other element and is otherwise equal. These
elements are equal, as when we rewrite pj in the first, the only combination
contained in Kj−1 is the pj of the second. Thus they annihilate.

• All elements of p̃k lie in Kj−1. Here we use the fact that h(P ) > h(P ′)
(noting that we rewrote a term pk = pk−1). As there is a minimum
possible h, P ′ is zero by induction on h.

Now let dj − dj−1 > 2. Again, we choose k > j with dk − dk−1 = 0, rewrite
pk, and split the terms contained in Kj−1 into cases:

• The elements of p̃k cover Kj \ Kj−1. Again, we obtain P ′ = 0 as K ′j =
K ′j−1.

• The elements of p̃k cover all but one of Kj\Kj−1. Now we have dj−dj−1 =
1, but d′j+1 ≤ dj , so d′1+j−d′j ≤ 2. Thus P ′ is not a decreasing monomial,
and h(P ) > h(P ′).

• The elements of p̃k leave at least two elements of Kj \ Kj−1 uncovered.
Then P ′ is not a decreasing monomial, and h(P ′) < h(P ).

To summarize, each monomial which is non-decreasing is either zero or can
be written as a sum of non-decreasing monomials with strictly smaller h value.
Since h is a positive integer, all non-decreasing top-dimensional monomials are
zero.

Remark. The rewriting procedure described in the above proof can also be
used to show explicitly that all decreasing monomials are equivalent. Let P be
the decreasing monomial given by the permutation σ ∈ Sn, that is,

P =

n∏
i=1

ei−1σ(i), pj =
∏
i>j

eσ(i), Kj =
{
eσ(i) | i > j

}
.

Then when we rewrite pj , the only terms that give a decreasing monomial are
those whose elements lie in Kj−1 (as discussed above) but cover Kj+1. The
latter condition arises because if an element of Kj+1 is left out, that element
moves from Kj+1 to Kj , increasing dj by one so that dj = dj−1. But it is

12



evident that the only polynomial satisfying these conditions other than pj is the
one that exchanges eσ(i) for eσ(i−1). Since the exponents of those terms differ
only by one, this exchange also exchanges the two terms in the full monomial,
so that the new monomial is the one given by σ◦(j−1, j). Since Sn is generated
by the pair-exchanging permutations (j− 1, j), we can obtain all the decreasing
monomials using transformations of this form.

5 Immersions of Grassmannians

5.1 The Hsiang-Szczarba formula

This section follows closely the derivation in section 3.2. To compute the Stiefel-
Whitney class of the tangent bundle T of Gn

(
Rn+k

)
, recall (from equation 1)

that
T ' hom

(
E,E⊥

)
,

where E is the universal bundle. Adding hom(E,E) to both sides,

T ⊕ hom(E,E) ' hom
(
E,E⊥ ⊕ E

)
= hom

(
E,Rn+k

)
= hom(E,R)

⊕n+k
.

Since Gn

(
Rn+k

)
is compact and Hausdorff,

hom(E,R) = E∗ ' E.

We then obtain, by taking Stiefel-Whitney classes of the earlier equation,

w(T )w(E ⊗ E) = w(E)n+k. (2)

This result is sometimes referred to as the Hsiang-Szczarba formula.
We know that w(E) = 1 +

∑
i xi, where xi generate H∗

(
Gn

(
Rn+k

)
;Z2

)
as

a ring. It remains to find w(E ⊗ E).

5.2 The splitting principle

The Stiefel-Whitney class of a tensor product is not readily apparent in the
general case. However, there is a simple formula for line bundles: given line
bundles L1, L2, with w(L1) = 1 + l1 and w(L2) = 1 + l2, we have

w(L1 ⊗ L2) = 1 + l1 + l2.

This is equivalent to a proposition from Hatcher’s Vector Bundles and K Theory,
which states that the function w1 : Vect1(X) → H1(X;Z2) is a group homo-
morphism, where Vect1(X) is the group of line bundles on X under the tensor
product [2, p. 86].

13



For general vector bundles, the splitting principle provides a convenient way
to calculate tensor products. The principle states that for any space X with
vector bundle V , there is a space Y and map p : Y → X such that the induced
homomorphism p∗ on cohomology is injective and the vector bundle p∗V splits
as a direct sum of line bundles p∗(V ) =

⊕n
i=1 Vi. Then given a vector bundle

V , the following procedure suffices to compute w(V ⊗ V ): first select a space Y
and map p : X → Y with the above properties and split p∗V into a sum of line
bundles Vi. Compute w(Vi) = 1 + vi. Then

p∗(w(V ⊗ V )) = w(p∗(V ⊗ V )) = w

((⊕
i

Vi

)
⊗

(⊕
i

Vi

))

= w

⊕
ij

Vi ⊗ Vj


=
∏
ij

w(Vi ⊗ Vj)

=
∏
ij

(1 + vi + vj).

Assuming we are working in Z2, we can simplify slightly, noting that 1+vi+vi =
1 and (1 + vi + vj)

2
= 1 + v2i + v2j . We obtain

p∗(w(V ⊗ V )) =
∏
i<j

(
1 + v2i + v2j

)
.

Finally, we must find a cohomology class whose value under p∗ is the computed
result. Such a class will necessarily be equal to w(V ⊗ V ) since p∗ is injective.

We will not need to prove, or in fact use, the splitting principle in order to
carry out this procedure, as it turns out we know a space over which the vector
bundle E splits—it is the flag manifold discussed in section 4.

Theorem 5.1. The map Ψ: Flag
(
Rn+k

)
→ Gn

(
Rn+k

)
sending a flag to the

plane in it of dimension n splits the universal bundle into line bundles.

Proof. Recall the map π : Flag
(
Rn+k

)
→
(
RP(n+k)−1)n+k sending a flag to the

tuple of orthogonal lines associated with it. Composing π with projection onto
the ith factor yields n+ k maps πi : Flag

(
Rn+k

)
→ RP(n+k)−1. We claim that

Ψ∗(E) =

n⊕
i=1

π∗i (γ)

where γ is the tautological line bundle on RP(n+k)−1. But this is clear: the fiber
of Ψ∗(E) at a flag containing the plane Vn is simply that plane, and the fiber of
the direct sum is the direct sum of the lines V1, V2/V1, . . . , Vn/Vn−1, also equal
to Vn.
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We also need to demonstrate that Ψ∗ is injective on cohomology, a fact
we will show using the Leray-Hirsch theorem. The isomorphism given in the
conclusion of that theorem automatically implies that p∗ is injective on coho-
mology, since p∗(b) = Φ(b ⊗ 1). Thus we need only find a sequence of fiber
bundles with initial base space Gn

(
Rn+k

)
and final space Flag

(
Rn+k

)
each sat-

isfying the conditions of Leray-Hirsch, and for which the resulting projection
Flag

(
Rn+k

)
→ Gn

(
Rn+k

)
is Ψ. For the first such map, we recall the par-

tial flag manifold Fn from the proof of Theorem 4.1. This manifold may be
represented as a bundle over Gn

(
Rn+k

)
where p sends a partial flag to its n-

dimensional component. The fiber p−1(Vn) for a plane Vn ∈ Gn

(
Rn+k

)
is the

set of partial flags ending in Vn, a space which is isomorphic to Flag
(
Rn−1

)
via

any isomorphism of Vn and R. The remainder of the fiber bundles to get to
Flag

(
Rn+k

)
are simply those constructed while proving Theorem 4.1, which we

verified in the proof to satisfy Leray-Hirsch. Thus we need only show that the
first fiber bundle satisfies those conditions. Condition (a) is immediate because
H∗(Fn;Z2) is a polynomial ring, and condition (b) follows by taking the classes
ei for 1 ≤ i ≤ n − 1 in Fn as generators for Flag

(
Rn−1

)
. Clearly the total

projection sends a flag in Flag
(
Rn+k

)
to its n-dimensional component, that is,

it is exactly Ψ. Thus Ψ∗ is injective on cohomology.

5.3 An immersion bound for some Grassmannians

In this section we will combine the Hsiang-Szczarba formula with our earlier
work on the flag manifold and some extensive computation to conclude:

Theorem 5.2. Given n, k such that n ≤ 2s ≤ k and n+ k ≤ 2s+1, Gn

(
Rn+k

)
cannot be immersed in dimension less than n

(
2s+1 − 1

)
.

When n = 1 this result restricts to the bound of Theorem 3.2 on projective
spaces. To prove it we begin with

Lemma 5.3. In any Z2-algebra generated by one-dimensional classes ei, 1 ≤
i ≤ n, the identity ∏

1≤i<j≤n

(ei + ej) = s(n−1,n−2,...,1)(e1, . . . , en)

holds, where s is a monomial symmetric polynomial as defined in Appendix B.

Proof. For n = 2, the result is clear, as the left-hand side has only a single term
e1 + e2 and the right-hand side is equal to s(1)(e1, e2) = e1 + e2, the sum of the
two monomials with degree one.

Now for a given n denote the left-hand side by An. Assume

An = s(n−1,n−2,...,1)(e1, . . . , en).

Then An+1 is formed by multiplying An by all the terms containing en+1:

An+1 = An

n∏
i=1

(ei + en+1).
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The 2n terms in the product can be divided according to the number of times
en+1 appears in them. In each case, the remaining ei in that term are distinct
and taken from the set {1, . . . , n}. Thus we have

n∏
i=1

(ei + en+1) =

n∑
j=0

ejn+1s(1,...,1)(e1, . . . , en),

where the s(1,...,1) term on the right-hand side contains n − i ones. In order
to multiply this result by An, we move An inside the sum, and use Corollary
B.2’s statement that the product s(1,...,1)(e1, . . . , en) · s(n−1,n−2,...,1)(e1, . . . , en)
is equal to s(n,n−1,...,j+1,j−1,...,0)(e1, . . . , en). Thus

An+1 =

n∑
j=0

ejn+1s(n,n−1,...,j+1,j−1,...,0)(e1, . . . , en).

But the sum on the right simply groups all of the monomial components of
s(n,n−1,n−2,1,...,0)(e1, . . . , en+1) by the number of copies of en+1 they contain, so
it is equal to that polynomial. The lemma now follows by induction.

Lemma 5.4. wn(n−1)(E ⊗ E) is nonzero in H∗
(
Gn

(
R2n−1);Z2

)
.

Proof. Since the map Ψ: Flag
(
R2n−1)→ Gn

(
R2n−1) induces an injective map

Ψ∗ in cohomology, it suffices to show that the n(n− 1)-dimensional term of

Ψ∗(w(E ⊗ E)) =
∏

1≤i<j≤n

(
1 + (ei + ej)

2
)
,

where ei are the generators of H∗
(
Flag

(
R2n−1);Z2

)
, is nonzero. The number of

terms in the product is 1 + 2 + · · ·+ (n− 1) = n(n−1)
2 , so the term of dimension

n(n− 1) includes no 1 terms of the product and is equal to

Ψ∗
(
wn(n−1)(E ⊗ E)

)
=

∏
1≤i<j≤n

(ei + ej)
2

=
(
s(n−1,n−2,...,1)(e1, . . . , en)

)2
= s(2n−2,2n−4,...,2)(e1, . . . , en)

(where for the last equality we recall that squaring is a homomorphism). To
show that this term is nonzero, we multiply by the value

e = e2e
2
3 · · · en−2n−1e

n−1
n en−2n+1 · · · e2n−2.

One term in the product is

e · e2n−21 e2n−42 · · · e2n = e2n−21 e2n−32 · · · e2n−2.

Because the product is homogeneous and this term has degree 1
2 (2n−1)(2n−2),

the dimension of Flag
(
R2n−1), we can apply the second fact from Theorem 4.3

to show that the other terms in the product are zero.
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Each term in the product is obtained from an assignment of values in the
tuple (2n−2, 2n−4, . . . , 0) to indices 1, . . . , n. We will demonstrate that the only
ordering which yields a nonzero product is the one placing them in descending
order. The result follows from induction on the tuple index: to begin, no term
can have degree higher than 2n − 2, so the exponent 2n − 2 must be paired
with e1, which has exponent 0 (the minimum) in e. Next, no remaining term
can have degree higher than 2n − 3, so 2n − 4 must be sent to index 2, with
exponent 1, the new minimum. Each time we add the term 2n − 2j at index
j in the tuple, the maximum exponent of any remaining ei is 2n − j − 1 and
the minimal remaining exponent in e is the one for ej , j − 1. The sum of these
exponents is 2n − j − 1, so the jth exponent in the tuple must be paired with
ej . Because Ψ∗

(
wn(n−1)(E ⊗ E)

)
yields a nonzero monomial when multiplied

by e, wn(n−1)(E ⊗ E) is nonzero as desired.

Lemma 5.5. Let i : Gn

(
Rn+k−1

)
→ Gn

(
Rn+k

)
be the natural inclusion sending

a plane X ⊂ Rn+k−1 to X × {0} ⊂ Rn+k, and consider an arbitrary class
x ∈ Hn(k−1)(Gn

(
Rn+k

)
;Z2

)
. Then〈

x^wn(E),
[
Gn

(
Rn+k

)]〉
=
〈
i∗(x),

[
Gn

(
Rn+k−1

)]〉
,

where [M ] is the fundamental class of the space M .

Proof. The proof here is substantially the same as that of [5]. The result arises
from the construction of Flag

(
Rn+k

)
as an iterated fiber bundle over Gn

(
Rn+k

)
illustrated in Theorem 5.1. If we decompose the fiber Flag(Rn) of the first
bundle into an iterated bundle of projective spaces RPn−1,RPn−2, . . . ,RP1,
then we obtain a representation of Flag

(
Rn+k

)
as an iterated fiber bundle

over Gn

(
Rn+k

)
all of whose fibers are projective spaces. Letting u be a top-

dimensional form in the Grassmannian (and also its pullbacks into bundles over
the Grassmannian, for simplicity), the top-dimensional forms in the resulting
bundles over the Grassmannian are

uen−11 , uen−11 en−22 , uen−11 en−22 en−33 , . . .

for the first set of bundles. Then if u′ denotes the last of these (and pullbacks,
again), the top-dimensional forms leading to Flag

(
Rn+k

)
are

u′ek−1n+1, u
′ek−1n+1e

k−2
n+2, u

′ek−1n+1e
k−2
n+2e

k−3
n+3, . . . .

Note that en does not appear in any of the above expressions. This is because the
nth plane of a flag in Flag

(
Rn+k

)
is already determined by the Grassmannian—

indeed, it is the plane given by the projection Ψ—so any factors of en come
from the Grassmannian. We may include a fiber bundle for the nth plane, but
its fiber will be RP0, a single point. From the above, the top-dimensional form
derived from u is

Ψ∗(u)en−11 en−22 . . . en−1e
k−1
n+1e

k−2
n+2 . . . en+k−1.
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This class must have the same value on
[
Flag

(
Rn+k

)]
as u on

[
Gn

(
Rn+k

)]
.

To obtain our result, first consider
〈
i∗(x),

[
Gn

(
Rn+k−1

)]〉
. This expression

is equal to the value of

Ψ∗(i∗(x))en−1n . . . en−1e
k−1
n+1 . . . en+k−2

on Flag
(
Rn+k−1

)
, where Ψ∗ ◦ i∗(x) = (i ◦ Ψ)∗(x) is a symmetric function of

en+1, . . . , en+k−1. The left-hand side
〈
x · wk(E),

[
Gn

(
Rn+k

)]〉
is given by the

value of
Ψ∗(x)e1 . . . en · en−1n . . . en−1e

k−1
n+1 . . . en+k−1

on the flag manifold, since Ψ∗(wn(E)) = e1 . . . en. Again, Ψ∗(x) is a symmetric
polynomial, this time of en+1, . . . , en+k. The element multiplied by Ψ∗(x) here

is exactly
∏n+k−1
i=1 ei times the element multiplied by Ψ∗(i∗(x)) above, so any

summand in Ψ∗(x) containing en+k will be eliminated by the product. The
components that remain arise from a symmetric polynomial in en+1, . . . , en+k−1.
But this polynomial must be equal to Ψ∗(i∗(x)), so the two values are the
same.

We note that for the statement proved, it suffices to consider an iterated
fiber bundle ending in the partial flag manifold Fn. However, the link between
evaluation of a form on a Grassmannian and on the flag manifold is perhaps of
more general interest, so it is shown here.

The above lemma may be simplified somewhat for our limited use in this
paper.

Corollary 5.6. If i∗(x) is a nonzero top-level class in Gn

(
Rn+k

)
, then xwn(E)

is a nonzero top-level class in Gn

(
Rn+k+1

)
.

Finally, we may prove the theorem stated at the beginning of this section.

Proof of Theorem 5.2. Let n, k satisfy n ≤ 2s ≤ k and n+ k ≤ 2s+1, and define
l = 2s+1 − n− k. Recall the Hsiang-Szczarba formula (2)

w(T )w(E ⊗ E) = w(E)n+k.

We isolate w(T ):
w(T ) = w(E ⊗ E)w(E)n+k.

w(E)2
s+1

is equal to 1, as its pullback to the flag manifold is

w(Ψ∗(E))
2s+1

=

(
n∏
i=1

1 + ei

)2s+1

=

n∏
i=1

(
1 + e2

s+1

i

)
And e2

s+1

i = 0 from the first part of Theorem 4.3. Thus

w(E)n+k = w(E)2
s+1−n−k = w(E)l
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and
w(T ) = w(E ⊗ E)w(E)l.

By Lemma 5.4, wn(n−1)(E ⊗E) is nonzero in Gn

(
R2n−1). Applying Corol-

lary 5.6 l times, we find that wn(n−1)(E⊗E)wn(E)l is nonzero in Gn

(
R(2n−1)+l).

The exponent of R is

(2n− 1) + 2s+1 − n− k = 2s+1 + n− k − 1 < n+ k

since 1+2k > 2s+1, so we can pull this class back to a nonzero class in Gn

(
Rn+k

)
via a standard embedding. The dimension of the resulting class (which is the
top-level component of w(T )) is

n(n− 1) + nl = n(n+ l − 1) = n
(
2s+1 − k − 1

)
,

which when added to the dimension nk of the space gives a lower bound on the
immersion dimension of n

(
2s+1 − 1

)
.

A Dual vector bundles

Theorem A.1. For a paracompact Hausdorff smooth manifold M , any real
vector bundle over M is isomorphic to its dual.

Proof. We note for this theorem the well-known fact that a paracompact Haus-
dorff manifold M admits a smooth partition of unity subordinate to any given
open cover of M . Such a partition is a set of smooth functions ϕi, with∑
i ϕi = 1, such that any point x ∈ M has a neighborhood on which all but

finitely many ϕi are zero and the support of each ϕi (an open set, since ϕi are
smooth) is contained in some set in the given open cover of M .

Let V be a vector bundle over M . A vector bundle isomorphism of V with
its dual V ⊥ is an element of hom

(
V, V ⊥

)
which is everywhere injective (hence

bijective, as dimV = dimV ⊥). Since

hom
(
V, V ⊥

)
= hom(V,hom(V,R)) = hom(V ⊕ V,R),

we may instead find an element f of hom(V ⊕ V,R) with the property that
f(v, w) = 0 for all w only if v = 0. We will satisfy the stronger condition
that f(v, v) > 0 for all v 6= 0 (that is, f is a positive-definite bilinear form on
V ). This criterion is convex: if both f and g satisfy it, then clearly any linear
combination αf + (1− α)g with 0 ≤ α ≤ 1 does as well.

Given an open subset U of M such that V is trivial on U , it is easy to
construct a positive-definite form fU on V |U : letting v = dimV , take a vector
bundle isomorphism V |U ' Rv, and use the pullback of the ordinary Euclidean
metric x · y =

∑
i xiyi. Now given an open cover of M such that V is locally

trivial in each set in the cover, we take a partition of unity of M into ϕi sub-
ordinate to that cover and with ϕi supported on Ui. We can take fUi

to be
a positive-definite form on V |Ui

, and ϕifUi
to be a form on all of M whose

restriction to Ui is positive definite, extending by setting it to zero outside of
Ui. Then

∑
i ϕifUi is a positive-definite bilinear form on V , as at each point in

M it is a finite linear combination (with coefficients in [0, 1]) of such forms.
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B Monomial symmetric polynomials

Given a tuple α of nonnegative integers αi, 1 ≤ i ≤ k, We wish to define the
smallest (counted by number of additive terms) symmetric polynomial contain-

ing the monomial
∏k
i=1 x

αi
i . For ease of definition, we require that k is the same

as the number of variables n by extending the tuple αi with zeros. We note
that a naive sum over all permutations of the xi would include multiple copies
of terms when the αi are not distinct. Thus we sum instead over the elements
in the orbit of α under the action of the permutation group Sn on the product
Nn (by (σ · α)i = ασ−1(i)), a set which we denote using Snα.

Definition B.1. The monomial symmetric polynomial s(α1,...,αn)(x1, . . . , xn) is

the sum over all distinct permutations α′ ∈ Snα of the monomials
∏
i x

α′i
i . The

symmetric polynomial s(α1,...,αk)(x1, . . . , xn), k ≤ n, is equal to this polynomial
with αi set to zero for k < i ≤ n.

By convention we write the tuple α in descending order. The monomial sym-
metric polynomials generate all symmetric polynomials under addition alone, a
fairly intuitive fact that we will not require in this paper.

For convenience, we will define a few terms before proceeding. Given tuples
x = (x1, . . . , xn) and α = (α1, . . . , αn) of the same length, let xα =

∏
i x

αi
i . We

will use the previously defined action of Sn, denoting σ · α as σ(α). Finally, let
S(α) be the number of permutations which leave α fixed.

Multiplying two monomial symmetric polynomials to obtain a result ex-
pressed as a sum of such polynomials is in general a long computation. We note
the simplification that rather than summing the products of all terms in both
polynomials, it suffices to keep one of the tuples fixed and add the permutations
of the other to it, that is,

Theorem B.1. The product of two monomial symmetric polynomials sα and
sβ on n variables, where α and β have length n, is

sαsβ =
∑

β′∈Snβ

S(α+ β′)

S(α)
sα+β′ .

Proof. We begin by defining a polynomial that is easier to work with: for a
tuple α of length n and n variables xi, define

mα(x) =
∑
σ∈Sn

xσ(α).

Then mα includes S(α) copies of each monomial in sα, so mα = S(α)sα.
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Now

mαmβ(x) =
∑

ρ,σ′∈Sn

xρ(α)+σ
′(β)

=
∑

ρ,σ∈Sn

xρ(α+σ(β))

=
∑
σ∈Sn

mα+σ(β)(x).

Substituting using the formula mα = S(α)sα, we obtain

sαsβ(x) =
1

S(α)S(β)

∑
σ∈Sn

S(α+ σ(β))sα+σ(β)(x).

Rather than iterate over all permutations and divide by S(β), we can iterate
over the distinct permutations of β:

sαsβ =
1

S(α)

∑
β′∈Snβ

S(α+ β′)sα+β′ ,

the desired result.

Corollary B.2. Let β be a tuple of n−i ones followed by i zeros. The following
formula holds in n variables with coefficients in Z2:

sβs(n−1,n−2,...,0) = s(n,n−1,...,i+1,i−1,...,0).

Proof. We will work first in Z and then reduce to Z2. Let α = (n−1, n−2, . . . , 0).
Because S(α) = 1 (all elements of α are distinct), the preceding formula reduces
to

sαsβ =
∑

β′∈Snβ

S(α+ β′)sα+β′ ,

and we can immediately reduce to Z2.
A permutation γ = α+β′ consists of the tuple (n−1, n−2, . . . , 0) with ones

added to n− i of the components. Clearly γi ≥ γi+1, and γi = γi+1 if and only
if β′i = 0 and β′i+1 = 1. Thus each element in γ occurs once or twice, and the
number of elements occurring twice is equal to the number of times β′ increases.
But S(γ) is odd only if each element occurs exactly once, in which case β = β′,
and S(γ) = 1, so sαsβ = sα+β .
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