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ABSTRACT

RYAN A. GIBSON: Pruning Sets of Modularity Partitions in Single and Multi-layer Networks Via
an Equivalence to Stochastic Block Model Inference

(Under the direction of Peter J. Mucha, Katherine Newhall, and Marc Niethammer)

Partitioning a network into communitites of densely connected nodes is an important problem

across a wide range of disciplines. We demonstrate a method for pruning sets of such partitions

to identify small subsets that are statistically significant from the perspective of stochastic block

model inference. Crucially, our method works in both single and multi-layer domains and allows

for restricting to a fixed number of communities when desired. On the examples considered here,

our procedure identifies fewer than 10 “important” partitions, even when the number of unique

input partitions exceeds 100,000. Additionally, we derive upper bounds on the resolution parameter

for which modularity maximization can be equivalent to optimizing the likelihood fit to a degree-

corrected stochastic block model. We demonstrate that these bounds hold in practice, providing

a priori regions where modularity maximization heuristics “should” be run if a certain number of

communities is desired.
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CHAPTER 1

Introduction to Community Detection

Many real-world data sets can be naturally encoded as a “network” in which entities and their

relationships are represented by the nodes and edges in an underlying graph structure, respectively.

The use of graph-based analysis has proved to be a powerful tool in biology, computer science,

sociology, neuroscience, and many related fields.

One of the most popular techniques for the analysis of networks is community detection (also

known as graph or network clustering in some fields). A precise definition of “community” has never

been widely accepted, but informally the problem is to partition a network into clusters of nodes that

are more densely connected internally than to the rest of the network.

While the interpretation of such community structure is domain-specific, its existence is often

of significant interest. For example, in social networks, communities may demarcate the limits of

social cliques or groups. In biological networks encoding the relations between genes or proteins,

clusters can reveal information about biological pathways and processes. In technological networks,

the hierarchical structure of communities (that is, the recursive structure obtained by repeatedly

dividing a graph into communities within communities) can be used to compress datasets and detect

abnormalities. In computer science, many standard problems such as scheduling work on computing

clusters can be naturally reduced to community detection or graph partitioning. For general reviews

of community detection’s applications, see [1–4].

Needless to say, interest in community detection is vast and interdisciplinary. Unfortunately,

most useful formulations of the problem are NP-Hard and thus intractable to solve exactly. In this

chapter, we discuss two popular methods for detecting communities in networks and an important

equivalence between them that the rest of this thesis will focus on.



1.1 Modularity-Based Methods

One of the most popular methods for community detection is to heuristically maximize a quantity

known as modularity, which for unweighted networks and the standard Newman-Girvan [5] null

model is given by

Q =
1

2m

∑
i,j

[
Aij − γ ·

kikj
2m

]
δ(ci, cj) , (1.1)

where A is the adjacency matrix of the network (Aij = 1 when nodes i and j are connected and

Aij = 0 otherwise), m is the number of edges in the network, ki is the degree of node i (the number

of edges connected to node i), ci is the community label of node i, and δ is the Kronecker delta

function so that δ(ci, cj) = 1 when nodes i and j are in the same community (i.e. ci = cj) and is 0

otherwise.

In Newman and Girvan’s original definition, γ = 1 so that Q gives a measure of how many more

edges are observed in the network’s communities than would be expected in a random rewiring of its

edges. That is, if the communities in a partition are much more densely connected than one would

expect by random chance alone, the partition has a “high” value of Q.

The “resolution parameter” γ was added by Reichardt and Bornholdt [6] (similar to an approach

proposed by Arenas et al. [7]) to overcome detectability issues in large networks. In particular, when

the network is very large in comparison to its communities, modularity with γ = 1 can fail to detect

some community structure (in such cases, merging two communities may increase Q even when the

connections between them are very weak [8]).

This addition of the γ prefactor helps resolves this issue by allowing us to detect communities at

many different scales – when γ is small, we tend to find a few large communities and as γ increases,

we tend to find many smaller communities. In this way, γ can serve as a parameter that chooses the

“importance” of the network topology (the Aij term) versus the null model (here, the kikj
2m term).

Exact optimization of modularity is NP-Hard1 [11] and many limitations are known when the

null model does not describe the network well (e.g. when the community sizes vary drastically).

Regardless, fast heuristics exist for its maximization (perhaps most notably the Louvain [12] and

1In fact, for any constant ρ > 0, it is NP-Hard to find a partition of a network with modularity at least ρ ·Qopt where
Qopt is the optimal modularity over all possible partitions [9, 10].
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Leiden [13] algorithms) and this strategy remains one of the most popular methods for detecting

communities in real-world networks.

1.2 Stochastic Block Model Inference

Another popular method for detecting communities is to fit a particular generative model known as a

“stochastic block model” to the network of interest. Importantly, this method is statistically principled

rather than being ad hoc or motivated through heuristics alone.

In general, one divides a set of n nodes into K groups and denotes the group membership of

node i by gi. Additionally, a matrix Ω is specified whose elements determine the connection strengths

between the various communities; the higher the value for
(
Ω
)
rs

= ωrs, the greater the number of

edges between groups r and s.

The simplest of these models considers every possible edge between nodes in groups r and s

to exist with probability ωrs (and thus, no edge to exist with probability 1− ωrs). In this way, the

diagonal of the Ω matrix determines the internal connection densities of the K communities and the

off-diagonal terms specify the density of connections between communities.

Unsurprisingly, this simple model does not fit real-world networks well2 and as with most

community detection methods, many different variants exist. For the remainder of this section, we

will direct our focus towards the “degree-corrected stochastic block model”, which can fit networks

with arbitrary degree distributions. Much of the discussion here is adapted from [14, 15], but we’ve

altered the notation to more closely match later parts of the thesis.

In addition to the group assignments and Ω matrix, we assign an expected degree to the nodes of

the network such that node i will on average have ki neighbors. Then, the number of edges between

nodes i and j are independently Poisson distributed with mean kikj
2m · ωgigj or half this value when

i = j.

Naturally, when fitting such a model to a network, one chooses the observed degree sequence

for the ki’s and the observed number of edges for m. With this information, we can determine the

probability that a partition of a network with adjacency matrix A and group assignments g was

2As Newman notes in [14], “there are no good fits when the model you are fitting is simply wrong”.
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drawn from this stochastic block model by simply considering each possible edge one-by-one:

P (A | Ω,g) =

[∏
i

(
1
4mk

2
i ωgigi

)Aii/2
(Aii/2)!

e−
1

4m
k2i ωgigi

]
·

∏
i<j

(
1
2mkikjωgigj

)Aij
Aij !

e−
1

2m
kikjωgigj


lnP (A | Ω,g) =

∑
i

{
1

2
Aii ln

(
1

4m
k2i ωgigi

)
− ln

[
(Aii/2)!

]
− 1

4m
k2i ωgigi

}
+
∑
i<j

[
Aij ln

(
1

2m
kikjωgigj

)
− ln(Aij !)−

1

2m
kikjωgigj

]
.

For the purposes of optimization, we may neglect constants that do not alter the argmax of this

expression and simplify this log-likelihood to

lnP (A | Ω,g) =
∑
i

{
1

2
Aii ln

(
1

4m
k2i ωgigi

)
−�������

ln
[

(Aii/2)!
]
− 1

4m
k2i ωgigi

}
+
∑
i<j

[
Aij ln

(
1

2m
kikjωgigj

)
−����ln(Aij !)−

1

2m
kikjωgigj

]

=
∑
i,j

[
Aij lnωgigj −

1

2m
kikjωgigj

]
+

������������∑
i,j

[
Aij ln

(
1

2m
kikj

)]

lnP (A | Ω,g) =
∑
i,j

(
Aij lnωgigj −

kikj
2m

ωgigj

)
. (1.2)

Essentially, partitions of a network whose groups exhibit strong community structure consistent with

Ω will have “large” log-likelihoods in this equation. Hence, it is possible to heuristically maximize

this quantity with respect to Ω and g to find the most likely set of group assignments under this

generative model.

1.3 Newman’s Equivalence Between Modularity Maximization and

Maximum Likelihood of a Stochastic Block Model

Newman demonstrated that these two schemes of community detection, modularity maximization and

statistical inference based on stochastic block models, become equivalent under certain conditions.

In this section, we briefly review his primary results from [14].

Consider a restricted version of the stochastic block model discussed in section 1.2 where the Ω

matrix only takes on two values: one shared by all diagonal entries and one shared by all off-diagonal
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entries. That is,

ωrs =


ωin, if r = s,

ωout, if r 6= s

so that all communities have the same in-group and between-group connection propensities. This

particular case is called a “planted partition model”.3 Following Newman, note that this allows us to

write

ωrs = (ωin − ωout)δ(r, s) + ωout

lnωrs = ln

(
ωin

ωout

)
δ(r, s) + lnωout

= (lnωin − lnωout) δ(r, s) + lnωout .

We can use these equations to rewrite our objective function from Equation 1.2 for optimizing the

log-likelihood that an observed graph fits a degree-corrected SBM,

lnP (A | Ω,g) =
∑
i,j

(
Aij lnωgigj −

kikj
2m

ωgigj

)

=
∑
i,j

{
Aij

[
ln

(
ωin

ωout

)
δ(gi, gj) + lnωout

]
− kikj

2m
[(ωin − ωout)δ(gi, gj) + ωout]

}

= ln

(
ωin

ωout

)∑
i,j

[
Aij −

kikj
2m
· ωin − ωout

lnωin − lnωout

]
δ(gi, gj)

+
∑
i,j

[
Aij lnωout −

kikj
2m

ωout

]
.

Once again, we may ignore constants that do not affect optimization to obtain

lnP (A | Ω,g) =
�
����

ln

(
ωin

ωout

)∑
i,j

[
Aij −

kikj
2m
· ωin − ωout

lnωin − lnωout

]
δ(gi, gj)

+
∑
i,j

[
�����
Aij lnωout −��

���kikj
2m

ωout

]

=
∑
i,j

[
Aij −

kikj
2m
· ωin − ωout

lnωin − lnωout

]
δ(gi, gj) ,

3More commonly, “planted partition” refers to the case in which nodes are connected with probabilities pin and pout

(depending on community membership), but we are considering a degree-corrected version here.
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Note the striking resemblance to modularity! In particular, maximizing this expression is exactly the

same as maximizing

Q =
1

2m

∑
i,j

[
Aij − γ ·

kikj
2m

]
δ(ci, cj)

when

γ =
ωin − ωout

lnωin − lnωout
. (1.3)

In this way, this choice of γ is the “correct value” of the resolution parameter if we wish to make

modularity maximization equivalent to the maximum likelihood fit of a planted partition, degree-

corrected stochastic block model. We will often call this the “γ estimate” or “resolution parameter

estimate” of a partition.

Additionally, Newman gives an iterative procedure to find this correct choice of γ. First, note

that the expected number of within-community edges in this model is

min =
1

2

∑
i,j

[
kikj
2m
· ωin · δ(gi, gj)

]
=
ωin

4m

∑
r

κ2r ,

where κr =
∑

i kiδ(gi, r) is the sum of the degrees of all nodes in group r. Then, we can estimate

ωin =
2min∑

r κ
2
r/(2m)

, ωout =
2mout∑

r 6=s κrκs/(2m)
=

2m− 2min

2m−∑r κ
2
r/(2m)

. (1.4)

Thus, with an initial guess for γ, we can repeatedly maximize modularity with the number of

communities fixed and compute new estimates for ωin and ωout. This gives a new value for γ and

we repeat until convergence. Moreover, when considering networks drawn from a planted partition

model, this scheme is guaranteed to converge in the limit of large node degrees.

For real-world networks (which are obviously not drawn from such planted partitions), no such

guarantee can be made, but the procedure still appears to be efficient in practice.

We emphasize that this equivalence only holds if the number of communities is fixed during

the maximization of modularity. Otherwise, maximizing modularity is akin to the simultaneous

maximum likelihood fit between many different SBMs, each with a different number of blocks K

and potentially different parameters ωin and ωout.4 Unsurprisingly, this method of statistical inference

4In this case, it is not exactly the same as the simultaneous maximum likelihood fit, but we defer a more in-depth
discussion to section A.5.
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among many different SBMs is not common in the literature (though some recent work has focused

on choosing priors that allow for comparison between different models [16]) and is one of the reasons

that modularity maximization is not used to infer the number of communities in a network. Indeed,

in discussing the equivalence, Newman notes that

“Maximization of modularity with [the number of communities] allowed to vary does

not, in general, give good estimates of the number of communities in a network, and it

is certainly possible that we get different and incorrect numbers of communities were

[the number of communities] allowed to vary.” [14]

Unfortunately, in practice the number of communities in a network is not known a priori. Indeed,

one of the goals of community detection is to find statistically significant clusters of nodes without

considering how many exist in the system that the network is drawn from.

As such, the most widely used heuristics (e.g. the Louvain algorithm [12]) do not keep the

number of communities fixed. We will return to this issue in section 2.5 and section A.5.
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CHAPTER 2

The Use of Newman’s Parameter Estimation in
Pamfil et al.

Pamfil et al. [17] generalized Newman’s [14] original equivalence to several variants of “multi-

layer networks” in which a collection of interrelated networks are treated as individual “layers” in a

larger, connected network. In this chapter, we briefly describe this extension of Newman’s duality to

multi-layer settings.

As usual, they are many different formulations of multi-layer networks, but Pamfil et al.’s

extension focuses on three particular types: “temporal”, “multilevel”, and “multiplex” networks.

Under certain choices of resolution parameters, an extension of modularity to multi-layer settings

can be shown to be equivalent to statistical inference using multi-layer stochastic block models.

2.1 Multi-layer Modularity

Consider a set of T layers of n× n adjacency matrices At, 1 ≤ t ≤ T , each representing the same

set of n nodes. Further introduce a set of interlayer couplings Cst, one for each pair of distinct layers

1 ≤ s, t ≤ T such that node j in layer s is connected to itself in layer r with weight Csrj .

Then, the goal of community detection is to determine group membership per node and per layer,

so e.g. we must find the group assignment gsi of node i in layer s.1 Under this framework, Mucha et

al. [18] derived an extension of modularity to multi-layer settings:

Q =
1

2µ

∑
ijsr

[(
Asij − γs

ksi k
s
j

2ms

)
δ(s, r) + Csrj δ(i, j)

]
δ
(
gsi , g

r
j

)
, (2.1)

1In the original paper, all variables are indexed with subscripts, so the group assignment of node i in layer s is denoted
gis, but we choose to use the notation gsi of Pamfil et al. [17] here to simplify the discussion in later sections.



where ksi is the degree of node i in layer s, ms is the number of edges in layer s, and 2µ =∑
is (ksi +

∑
r C

sr
i ) is twice the sum of all the network’s edge weights. Note that in this formulation,

each layer has a different “intralayer resolution parameter” with the weighting of the null model in

layer s being controlled by γs.

Mucha et al. [18] also introduced an interlayer resolution parameter ω to control the importance

of the interslice couplings in Equation 2.1. Similar to the usage of γs, one could include this as a

multiplicative factor on the Cstj term, but the original formulation takes the equivalent approach of

absorbing ω into the definition of the weights of Cst. For simplicity, the interslice couplings were

taken to be binary so that this resolution parameter ω appears as

Cstj =


ω, if node j is connected between layers s and t

0, otherwise
(2.2)

This particular choice is known as uniform (interslice) coupling [19] since the weights of the

interslice couplings are identical across all layers.

2.2 Temporal Networks

Temporal networks are those in which each layer encodes interactions during some period or instance

of time. Hence, the layers can be placed in chronological order and a larger graph can be created by

connecting each node to its copy in the preceding and subsequent layers (“ordinal coupling” between

layers). Other interlayer connection strategies exist, but when the literature refers to “temporal

networks”, it is almost always the case that interlayer connections are strictly ordinal [20].

2.2.1 Uniform Coupling

Consider a network with T layers where layer t, 1 ≤ t ≤ T has adjacency matrix At. Then, where

the interlayer edges between layers t−1 and t all have weight ωt, this network has a “supra-adjacency

9



matrix” given by

A =



A1 ω2I 0 . . . 0

0 A2 ω3I . . . 0

...
...

...
. . . 0

0 0 0 . . . ωtI

0 0 0 . . . At


so that each block on the diagonal represents intralayer connections and each nonzero off-diagonal

block represents connections between adjacent layers (directed so as to represent the flow of informa-

tion forward in time, though this is equivalent to having half the weight in both directions). In this

way, node i in layer t is represented in the supra-adjacency matrix by node n(t− 1) + i.

We will initially restrict our focus to the uniform interslice coupling case where ωt = ω for all

layers t. Then, the setup of the underlying multi-layer SBM is a fairly straightforward extension of

Newman’s strategy [14] for the duality in the monolayer case.

As before, consider the intralayer connections in layer t given by At to be drawn from a

degree-corrected, planted partition stochastic block model with K blocks. In this SBM, the within-

community edge propensities are given by θin and between-community edge propensities are given

by θout.

Note that these edge propensities θin and θout are directly analogous to the values of ωin and ωout

from our discussion of the monolayer duality in section 1.3. However, ω is already used to represent

the interlayer resolution parameter in Equation 2.1 and Equation 2.2, so to avoid confusion we adopt

this θin, θout notation from Pamfil et al. [17].

The underlying SBM model further assumes that labels are copied between layers with “copying

probability” p. That is, the ground truth group assignment gti of node i in layer t is copied from layer

t− 1 with probability p and is assigned randomly according to a null distribution P0 with probability

1− p. For the purposes of the equivalence here, this null distribution P0 is taken to be uniform across

all possible community labels 1, . . . ,K.

Under this model, consider a partition g of the multi-layer network where gti is the group

membership of node i in layer t. Then, neglecting constants that do not affect optimization, we can

10



write out the posterior probability of g in our model2

lnP (g | A, θin, θout, p,K) =
T∑
t=1

N∑
i,j=1

(
Atij −

θin − θout

ln θin − ln θout
·
ktik

t
j

2mt

)
δ
(
gti , g

t
j

)

+
T∑
t=2

N∑
i=1

ln
(

1 + p
1−pK

)
ln θin − ln θout

· δ
(
gt−1i , gti

)
,

where as before, kti is the degree of node i in layer t and mt is the number of edges in layer t.

Note the resemblance to multi-layer modularity – maximizing this expression is exactly the same as

maximizing multi-layer modularity

Q =
1

2µ

T∑
t=1

N∑
i,j=1

(
Atij − γ ·

ktik
t
j

2mt

)
δ
(
gti , g

t
j

)
+

T∑
t=2

N∑
i=1

ω · δ
(
gt−1i , gti

)
(2.3)

when

γ =
θin − θout

ln θin − ln θout
and ω =

ln
(

1 + p
1−pK

)
ln θin − ln θout

, (2.4)

where we have rewritten Q from Equation 2.1 with uniform interlayer and intralayer resolution

parameters to make the equivalence more obvious.

Hence, these γ and ω are the “correct values” of the intralayer and interlayer resolution parame-

ters if we want multi-layer modularity maximization to be equivalent to the maximum likelihood fit

of the SBM considered here. As before, we will call the values in Equation 2.4 the “γ estimate” and

“ω estimate” (together, “resolution parameter estimates”) of a partition.

θin and θout are estimated in much the same way as we estimated ωin and ωout in the monolayer

case, with the added restriction that group memberships are considered per-layer rather than in

aggregate.3

The copying probability p of labels from one layer to the next is simply estimated using the

observed frequency with which the group membership of node i persists across layers – i.e. we can

estimate p by calculating the probability that gt−1i = gti over all layers t = 2, . . . , T and all nodes

i = 1, . . . , N .

2Some of the simplifications required here are particularly nontrivial, so we direct the interested reader to the original
description in [17] for the complete derivation.

3I.e. the community strengths in layer t are computed as κtr =
∑
i k
t
iδ
(
gti , r

)
and then normalized using the number

of edges per layer in Equation 1.4 with
∑
r κ

2
r/(2mt).
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Then as in the monolayer case in section 1.3, we can iteratively find “correct” values for (γ, ω)

by maximizing modularity with the number of communities fixed, computing new estimates for γ

and ω, and then repeating until convergence.

2.2.2 Non-Uniform Coupling

A similar result can be derived when considering non-uniform coupling where the intralayer SBM

parameters θtin, θtout, number of communities per layer Kt, intralayer resolution parameters γt,

interlayer resolution parameters ωt, and copying probabilities pt vary over the layers t. We defer that

discussion to the original paper in [17], but for the sake of completeness, the equivalence in this case

is to multi-layer modularity with added intralayer weights βt (cf. Equation 2.3)

Q =
1

2µ

T∑
t=1

βt

N∑
i,j=1

(
Atij − γt ·

ktik
t
j

2mt

)
δ
(
gti , g

t
j

)
+

T∑
t=2

N∑
i=1

ωt · δ
(
gt−1i , gti

)
and the correct choices of γt, ωt, and βt are given by

γt =
θtin − θtout

ln θtin − ln θtout
, ωt =

ln
(

1 + pt
1−ptKt

)
〈ln θtin − ln θtout〉t

, βt =
ln θtin − ln θtout

〈ln θtin − ln θtout〉t
(2.5)

where 〈·〉t denotes a mean across all layers.

2.3 Multilevel Networks

A multilevel network is an extension of temporal networks in which the interactions between layers

encode a hierarchy of relationships [21]. For example, individuals may work in a department of a

company in a certain sector the economy and this inclusion could be modeled as interlayer edges

between four different layers (individual, department, company, and sector of economy). In contrast

to temporal networks, these interlayer relationships need not represent an ordinal flow (e.g. across

time) and nodes connected across layers do not necessarily represent the same entity.

Importantly, the hierarchy of relationships admits a natural ordering of layers and the copying

probability model from temporal networks in section 2.2 can be adapted for use here. In particular,
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the group memberships need to be copied from parent to child across layers to ensure that at most a

single connection exists to each node as the labels are copied from layer to layer.

Other than this tweak to copying probabilities, the derivation is very similar to temporal networks.

Indeed, the correct choices for resolution parameters match exactly with the temporal case! For

uniform coupling, the “correct γ and ω estimates” are given in Equation 2.4 and for non-uniform

coupling, the “correct parameters” are as in Equation 2.5.

2.4 Multiplex Networks

Multiplex networks are those in which the edges between nodes are categorized by type. Then, the

edges of each type are embedded into layers of a larger network with exactly one type of edge per

layer [20]. Here, the interactions between layers are taken to be fully connected.

The precise details of the derivations for the multiplex case are complicated and we will only

briefly summarize the methods and results here. Once again, we direct the interested reader to the

full description in the original paper [17].

Unfortunately, these networks do not admit any natural ordering of layers and so the copying

probability approach from the temporal and multilevel network models does not directly apply here.

In fact, the approach taken in Pamfil et al. [17] is essentially to consider label copying over all

possible orderings of the layers.

Indeed when the network has T layers, the derived expression for the optimal interlayer resolution

parameter ωst between layers s and t requires a sum over the symmetric group ST−1 in which each

summand individually involves a product over all layers t = 2, . . . , T . Needless to say, this sum has

(T − 1)! terms and is only tractable for networks with an extremely small number of layers,4 though

it is not uncommon to have only a few layers in some real-world settings.

However, simplifications can be made when the copying probabilities pst between all pairs of

layers s, t ∈ {1, . . . , T} are taken to have the same value pst = p and all possible orderings of the

layers are sampled with equal probability 1/(T !). In this case, the problematic sum over ST−1 can

4The rate of growth of the factorial function is often not fully appreciated – over the course of a few days, current high
end desktop CPUs can perform about 19! operations, high end GPUs or computational accelerators can perform about 21!
operations, and the global computing capacity can perform about 26! operations.
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be approximated to obtain

ω =
ln
(

1 + p
1−pK

)
T 〈ln θin − ln θout〉t

as the optimal value for the interlayer resolution parameter in uniform multiplex networks. Note

that this estimate is equivalent to dividing the ω estimate from temporal and multilevel models by

the number of layers T (cf. Equation 2.5). Informally, this scaling by a factor of T corrects for the

T -fold increase in number of interlayer edges when compared to temporal networks.5

Moreover, it is not straightforward to estimate p in the multiplex case since one must consider

all permutations of the layers individually. The estimate of persistence of group labels must be

considered across all pairs of layers

P (gsi = gti) ≈
1

NT (T − 1)

N∑
i=1

T∑
t=1

∑
s 6=t

δ
(
gsi , g

t
i

)
(2.6)

and it can be shown that the expected probability of gsi = gti under all possible permutations of layers

is given by

P (gsi = gti) =
2
(
1− 1

K

)
T (T − 1)

T−1∑
n=1

pn(T − n) +
1

K
. (2.7)

Hence, we can estimate p here by equating the right-hand sides of Equation 2.6 and Equation 2.7 and

solving the resulting polynomial root-finding problem.

This calculation only works when all copying probabilities take the same value pst = p as

before. A tractable method for accurately approximating pst when this is not the case remains an

open problem.

5Due to the ordinal coupling in temporal networks with T layers and N nodes per layer, such networks have N(T − 1)
interlayer edges. However, multiplex networks here have fully connected interlayer interactions and thus haveN ·T (T −1)
interlayer edges.
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2.5 Differences with Newman’s Scheme for Determining the “Correct

Values” of Resolution Parameters

Importantly in Newman’s equivalence [14] and the extensions described in this chapter, the duality

between modularity maximization and maximum likelihood to a stochastic block model only holds

when the number of communities, K, is fixed.

In iterating until the resolution parameter estimates converge, Pamfil et al. [17] maximizes

modularity using the GenLouvain algorithm [22]. Notably, this algorithm is based on the Louvain

procedure of [12] and thus does not keep the number of communities fixed. This poses three primary

issues in practice.

1. Due to a significantly larger search space, modularity maximization algorithms that allow K

to vary tend to be much more stochastic than those that fix K. This can cause problems with

the convergence of the iterative resolution parameter estimation.

2. When not fixing K, we will discover multiple “correct” values for the resolution parameters

far more frequently than when K is fixed, depending on the initialization values (e.g. when

two fixed points of the iterative scheme correspond to different K). Indeed, one of the

nice guarantees of Newman’s original procedure was that it would eventually “converge to

the correct value of γ (and the correct community structure) for networks that are actually

generated from a planted partition model (in the limit of large node degrees)” [14].

3. In regions where modularity maximization heuristics do not consistently return partitions with

the same number of communities, the resulting resolution parameter estimates vary wildly and

can lead to convergence problems. In fact, this can “hide” significant partitions when heuristics

do not effectively estimate K.

We now demonstrate these issues on the karate club network of Zachary [23] which is one of the

simplest and most popular examples of community structure in the network science literature. This

network describes the social relationships between individuals in a university karate club shortly

before a disagreement between an administrator and the instructor split the group in two.
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First, we analyze the results of the iterative scheme to find γ estimates when using two different

modularity maximization algorithms: the Louvain algorithm [12] as implemented by Vincent Traag

in [24] (which does not restrict the number of communities K) and the spin glass algorithm of

Reichardt and Bornholdt [6] as implemented in igraph [25] (where we restrictK = 2 as in Newman’s

paper [14]). The behavior of γ estimation under these two algorithms is shown in Figure 2.1.
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Figure 2.1: Behavior of the iteration to determine “correct” values for the resolution parameter γ.

Arrows show the average movement (over 100 trials) induced in γ space where the base of the tail

lies at the initialization γ and the head of the tail lies at the resulting γ estimate after one iteration.

Pairs of (initialization γ, final converged γ) obtained across many runs as shown in blue.

Left: Behavior of the scheme when using the Louvain algorithm [12], which does not fix K.

Right: Behavior of the scheme when using the spin glass algorithm [6] restricted to finding K = 2

communities.

First, note that the stochasticity is greatly increased when using Louvain to maximize modularity.

Newman [14] found that his iterative scheme consistently converged to finding an optimal estimate

γ ≈ 0.78 where a 2-community partition has highest modularity. This matches the behavior we see

when using the spin glass algorithm where convergence to γ ≈ 0.78 occurs after the first iteration of

the scheme, regardless of initialization γ.

16



However, when using Louvain, the scheme more frequently converges to an estimate of 1.0 ≤

γ ≤ 1.1, where a 4-community partition has highest modularity. Indeed, convergence to γ ≈ 0.78

only occurs when the iterative procedure is initialized with a very small γ value. Even then, the

algorithm still usually returns an estimate of 1.0 ≤ γ ≤ 1.1.

Second, while the procedure using the spin glass algorithm always returns the same final

resolution parameter estimate, the procedure using Louvain finds multiple “correct values”. Most

frequently, a 4-community partition with 1.0 ≤ γ ≤ 1.1 is returned, but the 2-community partition

with γ ≈ 0.78 from Newman’s experiments [14] and a 3-community partition with γ ≈ 0.9 are

occasionally found as well.

Indeed, there is a strong dependence of a partition’s γ estimate and its number of communities,

which causes much of the inconsistency when using Louvain here. We show this dependency on the

karate club in Figure 2.2.
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Figure 2.2: Frequency of γ estimates on the Karate Club from 1,000,000 runs of Louvain across a

uniform grid of γ ∈ [0.0, 2.0]. Relative frequencies are given in terms of all observed partitions with

the same number of communities K.

For example, if Louvain “chooses” at random between a 2-community or 3-community partition,

the iterative scheme will randomly continue with γ ≈ 0.78 or γ ≈ 0.9.
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In hindsight, this is unsurprising – the duality between modularity optimization and stochastic

block model inference depends on estimates of the SBM parameters, which may differ greatly when

the number of blocks is changed.6 Hence, in general, the results of resolution parameter estimation

will strongly depend on the number of communities returned by the modularity maximization

heuristic of choice.

6We will discuss the duality more in appendix A and will analyze models in which multiple meaningful ground-truth
partitions exist with different number of blocks K in appendix B.
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CHAPTER 3

Introduction to the CHAMP Algorithm and Par-
tition Post-Processing

Weir et al. described a method in [26] for pruning a set of partitions of a network to a subset

in which each partition has higher quality than all others for some choice of resolution parameter

values. The motivation and “CHAMP” (Convex Hull of Admissible Modularity Partitions) algorithm

are briefly summarized here.

3.1 Linearity of Modularity

Initially, we’ll restrict our focus to the single-layer notion of modularity. This is given by

Q =
1

2m

∑
i,j

[Aij − γPij ] δ(ci, cj) ,

where the “null model” is typically taken to be the configuration null model so that Pij =
kikj
2m .

We often run modularity maximization heuristics at many different values of γ to detect commu-

nities at various scales, especially when a ground truth number of communities is unknown. In these

cases, runs of the heuristics at one value of γ are treated completely independently from those at a

different value γ′ 6= γ.

However, we can rewrite the equation for modularity to gain information about each partition

across many values of the resolution parameter, regardless of the original value for which the

modularity maximization heuristic was run. Ignoring leading multiplicative constants (which do not



affect optimization), the modularity of a fixed partition σ is given by

Qσ(γ) =
∑
i,j

[Aij − γPij ] δ(ci,σ, cj,σ)

=
∑
i,j

Aij · δ(ci,σ, cj,σ)− γ
∑
i,j

Pi,j · δ(ci,σ, cj,σ)

= Âσ − γP̂σ ,

where Âσ and P̂σ are the within-community sums of Aij and Pij respectively. Note that for a fixed

partition σ, these values are constant, so Qσ is linear in γ.

A similar result holds for multi-layer networks where we introduce an additional interlayer

connections matrix C and interlayer resolution parameter ω. In this case, (ignoring multiplicative

constants), modularity is given by

Qσ(γ, ω) =
∑
i,j

[Aij − γPij + ωCij ] δ(ci,σ, cj,σ)

= Âσ − γP̂σ + ωĈσ ,

where Âσ, P̂σ, and Ĉσ are the within-community sums of Aij , Pij and Cij respectively. Importantly,

this is linear in both resolution parameters γ and ω.

In other words, each partition of a single-layer network is represented by a line in (γ,Q) space

and each partition of a multi-layer network is represented by a plane in (γ, ω,Q) space. In this way,

we can consider the quality of a partition across many different resolution parameter values.

This generalizes in a straightforward way to the case in which we have an arbitrary number of

resolution parameters. If we have a form of modularity written as

Qσ(γ1, . . . , γk) =
∑
i,j

[Aij − γ1P1,i,j − γ2P2,i,j − · · · − γkPk,i,j ] δ(ci,σ, cj,σ)

= Âσ − γ1P̂1,σ − γ2P̂2,σ − · · · − γkP̂k,σ ,

then each partition is represented by a hyperplane in (γ1, . . . , γk, Q) space.
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3.2 Definitions

Consider a network and a set of partitions Σ = {σ1, . . . , σs} of this network. When modularity has

resolution parameters γ1, . . . , γk, we introduce the following terminology:

• A partition σ ∈ Σ is “dominant” or “optimal” at (γ1, . . . , γk) ifQσ(γ1, . . . , γk) ≥ Qσ′(γ1, . . . , γk)

for all σ′ ∈ Σ.

• A partition σ ∈ Σ is “somewhere optimal” if it is optimal for some choice of (γ1, . . . , γk).

Otherwise, we say σ is “nowhere optimal”.1

• The “domain of optimality” or “domain of dominance” of σ ∈ Σ is the convex polytope of

values (γ1, . . . , γk) for which σ is dominant. This domain is nonempty if and only if σ is

somewhere optimal.

For example, the domain of optimality of a single-layer partition is a (potentially empty)

contiguous range of γ values. Similarly, the domain of optimality of a multi-layer partition is a

convex polygon in the (γ, ω) plane.

3.3 The CHAMP Algorithm

Consider a set of partitions Σ = {σ1, . . . , σs} of a network. For any particular choice of resolution

parameter, one might be interested in the partition σi ∈ Σ that has maximal modularity.

The CHAMP algorithm provides a method for determining the set of optimal partitions at

all values for the resolution parameters at once while simultaneously determining each partition’s

domain of optimality.

This is done by noting that the optimal partition in Σ for any given choice of resolution parameters

(γ1, . . . , γk) is the one with greatest modularity value Q(γ1, . . . , γk). Hence, the set of all partitions

that are somewhere optimal can be described by the piecewise hyperplanar upper envelope of the

hyperplanes in (γ1, . . . , γk, Q) space that represent the partitions in Σ.

In this way, finding the set of all partitions that are somewhere dominant is equivalent to finding

the region in (γ1, . . . , γk, Q) space that is above all the partitions’ hyperplanes. That is, if we consider

1In the original paper [26], “admissible” is used in place of “somewhere optimal”.
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for each partition σi, the halfspace defined by the region “above” its hyperplane in (γ1, . . . , γk, Q)

space (i.e. the region of larger Q values for all choices of resolution parameters), then our problem

reduces to “halfspace intersection”.

This is precisely the method that CHAMP uses to construct the subset of Σ consisting of

somewhere dominant partitions and their associated domains of optimality. This procedure is visually

summarized in Figure 3.1.
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Figure 3.1: Summary of the CHAMP algorithm for single-layer networks with one resolution

parameter γ. Left: Partitions are sampled in (γ,Q) space, using a modularity maximization heuristic.

Center: The partitions are considered as halfspaces in (γ,Q) space. Right: The intersection of the

halfspaces is obtained and the resulting facets are projected into the space of resolution parameters to

obtain the set of somewhere dominant partitions and their domains of optimality.

Halfspace intersection is a well studied computational geometry problem and efficient algorithms

exist for solving it (provided the dimensionality of the space is not too large). In particular, CHAMP’s

implementation at [27] uses the software package Qhull which “may be used for 2-d up to 8-d”,

according to the authors on qhull.org [28]. Crucially, for single-layer and multi-layer network

analysis (where only 2 and 3 dimensions are needed, respectively), the worst case running time of

Qhull is O(n lg n) for n input partitions.
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3.4 Summary of CHAMP’s Benefits

Primarily, CHAMP provides a method for pruning a large number of partitions of a network (po-

tentially taken from a vast range of the resolution parameter space and from various computational

heuristics) into the small subset of partitions that are somewhere dominant.

Importantly, each partition is treated as a hyperplane and not just as a single point in the resolution

parameter space to take full advantage of the input partitions. Indeed, if a partition were returned

by a computational heuristic running at resolution parameter γ, it is possible for that partition to

be dominant for many values γ′ 6= γ. Moreover, we have found that the most common partitions

returned by the Louvain algorithm at γ are generally less optimal than the highest quality partition

obtained by sweeping over nearby γ′ ≈ γ.

In the original CHAMP paper, the pruned subsets were often observed to be several orders of

magnitude smaller than the full set of partitions,2 though this obviously depends on the size and

variance in quality of the set of partitions to be pruned.

Moreover, since this pruning problem reduces to halfspace intersection, the method is very

quick for practical resolution parameter spaces where the dimensionality is small. In fact, taking the

intersection of millions of random halfspaces in R3 takes only a few seconds – compared to running

modularity maximization heuristics, this amounts to a vanishingly small fraction of the execution

time of community detection pipelines.

2The original paper focused on examples where “pruned subsets of admissible partitions [were] 20-to-1785 times
smaller than the sets of unique partitions [...] input into CHAMP” [26].
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CHAPTER 4

Using CHAMP with the Parameter Estimation Map

4.1 Stability Under the Resolution Parameter Estimation Map with

CHAMP

If we use CHAMP [26] to prune a set of partitions, we can consider the behavior of the resolution

parameter estimation procedures on each of the somewhere dominant partitions. Here, by passing

through Newman’s duality from [14], note that restricting focus to somewhere dominant partitions

is equivalent to only comparing those partitions that have a maximum likelihood fit to a (planted

partition, degree corrected) stochastic block model as the parameters vary.1

Crucially, the resolution parameter estimation on this pruned subset of partitions is completely

deterministic and discrete.

For instance, consider a set of somewhere dominant partitions of a multi-layer network so that

the convex 2D domains of optimality tile the (γ, ω) plane. Then, since each partition admits an

estimate for its “correct” (γ, ω) parameters, we can consider the domain of optimality in which these

parameters lie. This defines a discrete map between all domains given by the movements through the

resolution parameter space induced by our estimates.

Then, a partition whose resolution parameter estimate lies within its domain of optimality is

analogous to a fixed point of the iterative estimation procedures from Newman [14] and Pamfil et al.

[17]. In this case, we will say that the partition is “stable under the resolution parameter estimation

map” with respect to the pruned subset of partitions or (for the purposes of brevity) that the partition

is “stable”.

1In general, there may be some concerns about potentially removing important partitions through pruning with CHAMP.
However, the quality of partitions considered for the iterative resolution parameter estimation are directly related to the
likelihood of the underlying fit to an SBM and thus, the quality of the resulting γ estimate. Hence, we believe that it is
reasonable to ignore the nowhere dominant partitions here.



4.2 Benefits Gained from Using CHAMP

First, recall precisely what it means for a partition to be stable under our map here. Such a partition

has greater quality than all other partitions of interest at the value of the resolution parameter where

modularity maximization becomes equivalent to (planted partition, degree corrected) stochastic block

model inference. In short, stability of a partition under the resolution parameter estimation map

signifies that it is “statistically significant” from the perspective of SBM inference.

The benefit of using CHAMP here is many fold.

4.2.1 Suppression of Stochasticity in Parameter Estimation

First, by suppressing the stochasticity of modularity maximization heuristics during iterative resolu-

tion parameter estimation, we no longer have to worry about issues of randomness while determining

stability or fixed points. Of course, we have to pay for this by actually finding a set of partitions to

prune in the first place, but testing a partition for stability now becomes as easy as finding self loops

in a graph.

4.2.2 Statistically Principled When Restricting the Number of Communities

Second, we may regain the statistical grounding of Newman’s [14] scheme that Pamfil et al.’s [17]

lacks by restricting our focus to partitions with a fixed number of communities through CHAMP.

Then, the duality between modularity maximization and stochastic block model inference is well

principled once again.

We obviously cannot guarantee that the results will be exactly the same as with heuristics

that keep the number of communities fixed since we’re ultimately at the mercy of our community

detection algorithm of choice. However, if the input set of partitions contains some reasonably high

quality K-community partitions, then the behavior of our scheme should not differ greatly from

Newman’s original proposal. Indeed, in practice when networks have strong K-block structure, we

have found that the Louvain algorithm detects partitions with K communities for fairly large ranges

of the resolution parameters.
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4.2.3 Handling Networks with Multiple “Correct” Resolution Parameter Values

Third, the reduction to a deterministic map allows us to more easily handle networks in which there

are multiple “correct” values for the resolution parameter. We have seen this occur in practice and

have explicitly constructed models (see appendix B) in which multiple partitions of a network are

simultaneously stable under the parameter estimation map.

4.2.4 When Communities are Strong Enough, K Does Not Need to be Fixed

Fourth, particularly strong community structure may be stable under the map even when the number

of communities is not fixed (as in Pamfil et al.’s proposal [17]). As previously stated, this notion

of stability is not as well founded as convergence in Newman’s original scheme, but it is strictly

stronger.

By fixing the number of communities being considered and thus decreasing the number of

partitions of interest, we only increase the sizes of the domains of optimality. Hence, if a partition is

stable when considering any number of communities, it will also be stable when only considering

those partitions that share its number of communities. Indeed, stability of a partition σ with respect

to a full set of partitions Σ necessarily implies stability of σ with respect to any subset of Σ that

includes σ.
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CHAPTER 5

Results

In this chapter, we discuss the results of our pruning strategy from chapter 4 on a synthetic

multi-layer network and two real-world networks. In all three cases, we will make direct comparisons

to the behavior of Pamfil’s et al.’s procedure in [17].

5.1 The Karate Club

We first show the results of our procedure on the karate club network of Zachary [23] that we used

in section 2.5. Recall that this network describes the social relationships in a university karate club

shortly before a disagreement split the club in half.

We obtained 10,000,000 partitions1 of this network by running the Louvain algorithm (as

implemented by Vincent Traag in [24]) across a uniformly spaced grid for γ ∈ [0.0, 2.0] and then

used CHAMP [26] to prune this to the subset of partitions that are somewhere dominant.

Among these partitions were 539 unique partitions with more than one community (the single-

community partition is optimal for very small values of γ) and the pruned subset from CHAMP

has only 9 partitions. Some details of these partitions are shown in Table 5.1 and their domains of

optimality and γ estimates are shown in Figure 5.1.

1It’s important to note that we are running the Louvain algorithm an extremely large number of times only for the
purposes of being exhaustive (though 10 million runs on this small of a network takes fewer than 5 minutes on my desktop
computer) – the results for this network are qualitatively similar when the number of Louvain runs are as low as 100 to
1000. In fact, the stable partitions of interest in Figure 5.2 generally appear with as few as a dozen input partitions.

In practice, you would run community detection heuristics for only as long as your situation allows (of course, the
computational abilities differ greatly between those using a laptop and those with access to large compute clusters or AWS
instances). Fortunately, the number of partitions in CHAMP’s pruned subset appears to converge very rapidly, so while
the quality of our method’s results may improve as the number of input partitions increases, it is in no way mandatory to
run modularity maximization heuristics for an inordinate amount of time. Indeed, CHAMP will prune a set of partitions,
regardless of how small or large the set may be.



Number of communities K 2 3 4 5 6 7 8

Number of unique partitions 10 23 109 184 156 49 7

Number of unique partitions in CHAMP’s pruned subset 1 1 2 1 2 1 0

Number of unique partitions in CHAMP’s pruned subset

when only considering partitions with K communities
2 3 3 4 4 3 2

Table 5.1: A description of the unique partitions returned by running the Louvain heuristic 10 million

times on Zachary’s karate club network and the pruned subsets from running CHAMP on these

partitions.
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Figure 5.1: The domains of optimality and associated γ estimates for the 9 partitions of the karate

club in the pruned subset from CHAMP.

Note that when the number of communities is left unrestricted, there is exactly one stable

partition in CHAMP’s pruned subset (namely, the 4-community partition in Figure 5.1 whose γ

estimate lies within its domain of optimality). This corresponds to the partition that Pamfil et al.’s

iterative procedure most frequently converged to in Figure 2.1.
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However, when the number of communitiesK is restricted prior to post-processing with CHAMP,

we find exactly one stable partition per choice of K = 2, 3, . . . , 8. The stable 2, 3, and 4 community

partitions are shown in Figure 5.2.

Figure 5.2: Force-directed layouts of the 3 stable partitions of the network from CHAMP’s pruned

subsets when only considering partitions of 2, 3, and 4 communities, respectively (left to right).

Importantly, our 2-community stable partition closely matches the true splitting of the karate

club and our 4-community stable partition is the same as the one obtained from Pamfil et al.’s iterative

procedure.2

5.2 Synthetic Multi-layer Temporal Network

Recall from section 2.2 that a temporal network represents interactions that occurred at several

different instances of time. In such a network, each period of time is represented by a layer and the

nodes in each layer are connected to the instances of the same node in the previous and subsequent

layers (hence encoding the chronological sequence of the layers’ interactions).

In this section, we focus on a synthetic test used in Pamfil et al. [17] to generate temporal

networks. The generative model, first used by Ghasemian et al. [29], is as follows.

First, we generate a ground-truth community membership in the first layer by splitting evenly

between K available community labels. Then, for each subsequent layer, the community label is

2Recall from subsection 4.2.4 that a stable partition σ with respect to a set of partitions Σ will also be stable in any
subset of Σ that includes σ. Hence, since this 4-community partition was stable in Figure 5.1, it is also stable when we
restrict consideration to partitions with exactly 4 communities.
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copied from the previous layer with probability η and randomly assigned from all K possible labels

with probability 1− η.

Using this ground-truth community assignment, edges are independently placed between pairs

of nodes in each layer with probability pin if the nodes are in the same ground-truth community and

with probability pout otherwise. A model parameter ε = pout/pin is used to control the strength of the

community structure in these layers (smaller values of ε place more edges within communities than

between communities).

In our tests here, we generated multi-layer networks with “copying probability” η = 0.7, edge

probability ratio ε = 0.4, number of layers T = 15, number of communities K = 2 and 150 nodes

per layer.3 The behavior of Pamfil et al.’s iterative procedure on this network is shown in Figure 5.3.
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Figure 5.3: The behavior of the iterative procedure introduced in Pamfil et al. [17] on our synthetic

network. The parameter values for the ground truth community are shown as a blue point near

(ω, γ) ≈ (0.98, 0.94). Over a grid of the (ω, γ) plane, arrows indicate the direction of the updated

resolution parameter estimates after maximizing modularity with the Louvain algorithm for this

choice of (ω, γ), averaged over five trials. As in [17], arrow sizes are scaled down for clarity (here,

shown as 10% their actual update movement).

3Note that this choice of K = 2 means the copying of labels from one layer to the next actually occurs with probability
η + 1

2
(1 − η) = 0.85. This choice is used in both [17] and [29], so we have also chosen to use only two ground truth

communities.
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This iterative scheme converges close to the ground truth resolution parameter estimates for

much of the (ω, γ) plane, but notably there are regions for which the scheme diverges away from the

ground truth values (e.g. most initializations with γ > 1.1 fail to converge to the ground truth).

We now compare these results to our method, which in part will explain why the above scheme

can diverge in this way.

After generating a network using the above model, we obtained 50,625 partitions by running the

Louvain algorithm in a 225× 225 uniform grid of γ ∈ [0.0, 2.0], ω ∈ [0.0, 2.0]. Of these partitions

were 33,410 unique partitions with more than one community. We start by pruning with CHAMP

with the number of communities left unconstrained.

Across the entire resolution parameter area γ ∈ [0.0, 2.0], ω ∈ [0.0, 2.0], our pruned subset from

CHAMP has 77 partitions with more than one community. The domains of optimality and associated

resolution parameter estimates are shown in Figure 5.4.
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Figure 5.4: Domains of optimality for the partitions in CHAMP’s pruned subset (approximately 25

partitions are somewhere dominant in the region of the (ω, γ) plane shown). For each partition, an

arrow is drawn from the centroid of the partition’s domain of optimality to its resolution parameter

estimate (ω, γ).

Qualitatively, these domains exhibit the same behavior as the iterative scheme shown in Figure 5.3

with many partitions’ estimates lying close to the ground truth resolution parameter values of
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(ω, γ) ≈ (0.98, 0.94). Once again, the partitions dominant in the approximate region γ > 1.1 do not

converge near this ground truth. To see why this is the case, we plot the number of communities in

these partitions and their AMIs4 with the ground truth 2-community partition in Figure 5.5.
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Figure 5.5: Top: Domains of optimality from CHAMP’s pruned subset, colored by AMI with the

ground truth partition. Bottom: Domains of optimality from CHAMP’s pruned subset, colored by

number of communities.

4In short, the adjusted mutual information (AMI) is a measure of how closely two partitions agree where values closer
to 1 indicate stronger alignment and 0 indicates “no alignment”. In contrast to normalized mutual information (NMI),
AMI is adjusted for chance so that random clustering have an expected AMI of 0.
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Here, we see the issue is precisely the one discussed in section 2.5 where the resolution parameter

estimates depend heavily on the number of communities in the partition. In fact, the transition around

γ ≈ 1.1 is marked by an incredibly rapid increase in the number of communities from K = 2 to

K ≈ 15! Unsurprisingly, this transition also coincides with a sharp decrease in alignment with the

ground truth partition.

Now, we analyze the stable partitions from CHAMP’s pruned subset (once again, with the

number of communities unconstrained). 5 out of the 77 partitions with more than one community are

stable and the details of these partitions are given in Table 5.2.

Number of communities K AMI with ground truth (ω, γ) estimate

2 0.95 (0.94, 0.95)

12 0.12 (1.21, 1.23)

13 0.13 (1.30, 0.93)

16 0.11 (1.32, 0.89)

21 0.09 (1.50, 0.85)

28 0.07 (1.62, 0.84)

Table 5.2: Details of the stable partitions from CHAMP’s pruned subset on this synthetic network.

Recall that the ground truth resolution parameter estimates here are (ω, γ) ≈ (0.98, 0.94).

Notably, the 2-community stable partition has very strong alignment with the ground truth

(agreeing for ∼99.5% of the network’s nodes). In fact, it has the highest AMI value with the ground

truth group membership among any of the partitions in CHAMP’s pruned subset.

The domains of all other stable partitions lie beyond the transition where the number of com-

munities increases at γ ≈ 1.1 and do not closely match the ground truth. Indeed, in a network with

two ground truth communities and only 15 layers, the relatively large number of communities in the

other stable partitions (K = 12, 13, 16, 21, 28) suggest that they are only dominant for unreasonable

choices of the intralayer resolution parameter γ.

Finally, we reproduce Figure 5.4 when CHAMP’s pruned subset only considers partitions with

K = 2, constituting 6,794 partitions from the original runs of the Louvain algorithm. We show the

domains of optimality and (ω, γ) estimates in Figure 5.6.
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Figure 5.6: Domains of optimality for the partitions in CHAMP’s pruned subset when we restrict

K = 2. For each partition, an arrow is drawn from the centroid of the partition’s domain of optimality

to its resolution parameter estimate (ω, γ).

In this case, CHAMP’s pruned subset has 23 partitions that are somewhere dominant and exactly

one of these is stable. This is the same high-AMI, stable 2-community partition that was discovered

when K was left unconstrained (since as we’ve seen before, stability of a partition persists when

restricting focus to a smaller subset of partitions).

5.3 Lazega Law Network

Following Pamfil et al. [17], we now demonstrate our approach on the “Lazega Law Firm” network

[30]. This is a 3-layer multiplex network that describes the relationships between 71 attorneys. In

particular, the individuals were asked to list

1. The members of the firm that they go to for basic professional advice.

2. The members of the firm that they closely work with.

3. The members of the firm that they socialize with outside of work.
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These directed associations were then used to form three layers of a network, referred to as the

“Advice”, “Coworker”, and “Friend” layers, respectively. Each node (representing an individual) is

then connected to its copy in all other layers to form the complete multiplex network with 213 nodes

(71 in each of the 3 layers).

This network is also annotated with various pieces of metadata, which we will use to analyze

our results. Here, in order to compare with [17], we will use the following pieces of metadata: status

(“partner” or “associate”), gender, office (3 possibilities), seniority (years with the firm, grouped into

5-year bins), age (grouped into 5-year bins), practice (“litigation” or “corporate”), and law school (4

options, one of which is “other”).

We ran 1,000,000 instances5 of the Louvain algorithm on a uniform 2000×500 grid of γ ∈ [0, 2],

ω ∈ [0, 3], which identified 211,219 unique partitions with more than one community. The pruned

subset from CHAMP (where we do not yet restrict the number of communities K) has 152 unique

partitions with more than one community. Details of these partitions are given in Table 5.3 and their

domains of optimality are shown in and Figure 5.7 and Figure 5.8.

Number of communities K 2 3 4 5 6 7 ≥ 8

Number of unique partitions 2.6K 30.4K 34.1K 22.4K 19.5K 18.2K 83.9K

Number of unique partitions in

CHAMP’s pruned subset
8 19 23 22 15 13 52

Number of unique partitions in

CHAMP’s pruned subset

when only considering

partitions with K communities

38 45 52 71 55 63 -

Number of stable partitions in

CHAMP’s pruned subset

when only considering

partitions with K communities

3 2 3 3 2 2 -

Table 5.3: A breakdown of the unique partitions returned by the running the Louvain algorithm 1

million times on the Lazega Law Firm network and the resulting pruned subsets from CHAMP.

5We note that this large number of iterations is excessive, but we choose to err on the side of being exhaustive here. We
will return to the performance of our scheme on this network at the end of this section.

35



0.5 1.0 1.5 2.0 2.5 3.0

ω

0.8

0.9

1.0

1.1

1.2

γ

Lazega Law Firm Domains with Number of Communities

3

4

5

N
u

m
b

er
of

C
om

m
u

n
it

ie
s

Figure 5.7: Domains of optimality for the partitions in CHAMP’s pruned subset, colored by number

of communities.
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Figure 5.8: Domains of optimality for the partitions in CHAMP’s pruned subset. Left: Domains are

annotated with arrows that indicate their partition’s resolution parameter estimates (ω, γ). Partitions

with communities that are the same across all layers have an estimate of ω =∞, so we have truncated

to ω = 3 for plotting purposes. Right: Domains and resolution parameter estimates for the three

stable partitions.

The three stable partitions here (one with K = 3 and two with K = 4) agree with three of

the common convergence points (ω, γ) of Pamfil et al.’s [17] iterative procedure on this network.
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We additionally consider restricting K = 2, 3, and 4 prior to post-processing with CHAMP, which

reveals five more stable partitions, four of which correspond to (ω, γ) estimates that are missed by

the iterative procedure in [17]. These domains are shown in Figure 5.9 and the associated community

memberships are visualized in Figure 5.10.
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Figure 5.9: Domains of optimality and resolutions parameter estimates for the stable partitions when

we separately fix K = 2, 3, 4 (shown top-to-bottom) prior to pruning with CHAMP.
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Figure 5.10: Visualizations of the stable partitions in the Lazega Law Firm network with K = 2, 3, 4.

In each plot, the nodes are colored based on their community label and all plots show the same

ordering of nodes. Note that stable partition 5 is very similar to stable partition 8. Also, stable

partitions 4 and 6 are virtually identical.
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As one might expect, the community labels per individual match closely between the layers that

represent their close coworkers and the members of the firm that they go to for advice. However,

we often find individuals that are placed in a community in the “Friend” layer that differs from their

community in the “Advice” or “Coworker” layers.

We now compute the alignment of our stable partitions with the metadata and compare our

results to those of Pamfil et al. [17]. In short, Pamfil et al. ran their iterative procedure 100 times,

identified three primary clusters of common convergence points (ω, γ), and used consensus clustering

to convert these clusters into three partitions, each with 3 communities. As in [17], we will refer to

these as “cluster 1, 2, 3” and note that the partitions for clusters 2 and 3 are very similar (in fact, they

differ in only about 5 of the 271 community labels). These results are shown in Table 5.4.

Approximate (ω, γ) Office Practice Age Seniority Status Gender Law School

Stable Partition 1, K = 2 (0.5, 0.9) 0.192 0.163 0.033 0.024 0.002 0.000 0.006

Stable Partition 2, K = 2 (∞, 0.8) 0.854 0.000 0.072 0.031 0.037 0.016 0.007

Stable Partition 3, K = 2 (∞, 0.9) 0.268 0.507 0.041 0.027 0.025 0.001 0.000

Stable Partition 4, K = 3 (∞, 1.1) 0.610 0.469 0.105 0.052 0.040 0.026 0.007

Stable Partition 5, K = 3 (0.7, 1.0) 0.599 0.193 0.114 0.071 0.079 0.027 0.017

Stable Partition 6, K = 4† (∞, 1.1) 0.595 0.455 0.118 0.061 0.049 0.031 0.022

Stable Partition 7, K = 4 (0.8, 1.2) 0.525 0.212 0.159 0.117 0.150 0.091 0.026

Stable Partition 8, K = 4† (0.7, 1.1) 0.563 0.196 0.116 0.090 0.077 0.035 0.020

Cluster 1, K = 3 (0.5, 1.0) 0.575 0.351 0.136 0.148 0.161 0.041 0.026

Cluster 2, K = 3 (1.3, 1.0) 0.613 0.462 0.097 0.054 0.040 0.026 0.008

Cluster 3, K = 3 (∞, 1.0) 0.614 0.401 0.097 0.054 0.043 0.027 0.012

Average over 100 runs - 0.588 0.431 0.114 0.086 0.080 0.032 0.016

†Here, the fourth communities are extremely small (only one node in the case of Stable Partition 6), so one could also group these with K = 3.

Table 5.4: Normalized Mutual Information (NMI) scores of our five stable partitions withK = 2, 3, 4

and the three consensus clusterings from Pamfil et al. [17].

Our stable partitions 5 and 8 roughly match cluster 1 and our stable partitions 4 and 6 roughly

match clusters 2 and 3. However, we recover significant communities that are overlooked by Pamfil

et al.’s iterative scheme [17]. Indeed, stable partition 2 is very strongly aligned with the office

metadata and stable partition 3 is more strongly aligned with the practice metadata than any of the

three clusters from the iterative procedure.
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One might assume that we recover more information about the network simply because we

have run modularity maximization heuristics an extremely large number of times (one million!).

However, when we use only 25 runs of Louvain on a 5× 5 uniform grid of the more reasonable range

γ ∈ [0.5, 1.5], ω ∈ [0, 3], we almost always find the same convergence points (ω, γ) from Table 5.4.

Indeed, Pamfil et al. uses 100 runs of their iterative procedure to analyze this network, each of

which requires optimizing modularity multiple times. We have found that we are able to perform

∼2000 runs of the Louvain algorithm in the same amount of time, especially since the computa-

tions required for finding (ω, γ) estimates on multiplex networks are particularly complicated (see

section 2.4).

We in no way suggest that the Pamfil et al.’s strategy needs to be run 100 times, nor that the

implementation is particularly optimized, but believe this indicates our procedure can be performant

in practice.
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CHAPTER 6

Maximum γ Estimates

In this chapter, we derive maximum possible γ estimates for ground truth partitions of stochastic

block models.

We first derive the result for simple, non-degree-corrected SBMs and then show that the same

maximums hold in the general, degree-corrected case. Finally, we demonstrate that real-world

networks have community structure consistent with these derivations, yielding bounds on which

values of γ “should” be used in modularity when searching for partitions of K communities.

6.1 Equal Block Size, Non-Degree-Corrected, Planted Partition SBMs

Consider a simple stochastic block model that follows some of the “assumptions of modularity”

derived from Newman’s equivalence [14] (discussed in section A.2). In particular, consider a

planted partition stochastic block model in which all blocks have equal size. Let pairs of nodes

within communities be connected with probability pin and pairs of nodes between communities be

connected with probability pout. Here, we require that pin > pout in order to have assortative SBMs

that exhibit community structure.1

For simplicity, this SBM is not degree-corrected – we are defining the SBM in terms of pin and

pout rather than ωin and ωout. We further make the simplifying assumption that nodes cannot be

connected to themselves; i.e. self loops cannot exist.

1This makes the logic easier, though for this simple SBM, the results here hold for arbitrary pin and pout.



This allows us to generate networks with N nodes, divided into K blocks of size B = N/K

nodes each. These K communities are connected according to the preference matrix

Pij =



pin pout . . . pout

pout pin . . . pout

...
...

. . .
...

pout pout . . . pin


, i, j = 1, . . . ,K .

Then, we have the following expected values

mean degree 〈k〉 = (B − 1)pin + (K − 1)B · pout∑
r

κ2r = K ·
[
B(B − 1)pin + (K − 1)B2 · pout

]2
min = K ·

(
B

2

)
· pin

mout =

(
K

2

)
·B2 · pout

and thus from Equation 1.4 we obtain that, in expectation,

ωin =
K(B − 1)pin

(B − 1)pin + (K − 1)B · pout
and ωout =

KB · pout

(B − 1)pin + (K − 1)B · pout
. (6.1)

Hence, our expected “ground truth” γ estimate from Equation 1.3 is given by

γ =
K(B − 1)pin −KB · pout

(B − 1)pin + (K − 1)B · pout
· 1

ln
(
B−1
B · pin

pout

)
and in the limit of large N , this yields

lim
N→∞

γ =
K · pin −K · pout

pin + (K − 1) · pout
· 1

ln
(
pin
pout

) .
Note this limit only involves changing the (B − 1) factors to B, so the expected γ estimate above is

often close to this limiting value as long as B is not too small.
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Perhaps surprisingly, this value only depends on the ratio pin/pout and is thus directly tied to the

strength of the SBM’s community structure,2

lim
N→∞

γ =
K
(
pin
pout
− 1
)

(
pin
pout

+ (K − 1)
)

ln
(
pin
pout

) . (6.2)

Even more surprisingly, this implies that for any given value of K, the possible expected γ estimates

are bounded! This is shown in Figure 6.1 where we plot with respect to pout/pin (to keep the

ratio bounded within 0 and 1), so smaller values of pout/pin actually represent stronger community

structure.
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Figure 6.1: The expected γ estimates for various choices of K in our SBM as pout/pin varies.

We can numerically maximize3 this function and have gathered maximum γ estimates for various

K in Table 6.1.

2We are implicitly assuming that pout 6= 0 here, but this is required to keep the network connected.
3For K > 2, the maximums seem to be transcendental and thus cannot be written in any particularly “nice” way.
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K 2 3 4 5 6 7 8 9 10

γmax 1.0000 1.0926 1.2427 1.4027 1.5640 1.7241 1.8824 2.0388 2.1931

Table 6.1: Maximum “expected ground truth γ estimates” for our simple SBM with 2 ≤ K ≤ 10,

rounded to four decimal places. We note that all the γ estimates given in Newman’s original paper

on the duality [14] are less than the associated γmax derived here.

In this way, it is never “correct” to be searching for 5-community partitions beyond γ ≈ 1.4 if

we wish to make modularity maximization equivalent to the maximum likelihood fit to our SBM

(which is not degree-corrected here).

Indeed, since partitions that exhibit strong community structure are often close to optimal near

their γ estimates (e.g. stable partitions or fixed points in Pamfil et al.’s [17] iterative scheme), this

also suggests that one should not be run modularity maximization heuristics above the γmax values

associated with the maximum K of interest.

It is important to realize that these maximum γ estimates are not directly applicable in the

degree-corrected case. Indeed, we can see from Equation 6.1 that the expected ωin and ωout estimates

are restricted to

ωin + (K − 1)ωout = K (6.3)

for a K block SBM here. Essentially, our simplified model restricts the degree-corrected SBM

parameters to a line segment in Ω space. We visually demonstrate this phenomenon in Figure 6.2.
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Figure 6.2: Visualization of possible ωin and ωout values and associated maximum γ estimates in our

simple SBM with K = 2, 3.

6.2 Degree-Corrected, Planted Partition SBMs

We now show that the same maximum γ estimates hold in the more general, degree-corrected

case. For a fixed number of communities K > 2, we can rewrite our ωin and ωout estimates from

Equation 1.4 as

ωin =
4m ·min∑

r κ
2
r

and ωout =
4m2 − 4m ·min

4m2 −∑r κ
2
r

.

Then, all κr > 0 and
∑

r κr = 2m, so the Cauchy-Schwarz inequality yields

(
K∑
r=1

κr · 1
)2

≤
(

K∑
r=1

κ2r

)
·
(

K∑
r=1

12

)
4m2

K
≤

K∑
r=1

κ2r .
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Moreover, when we have assortative community structure (i.e. ωin > ωout),

ωin > ωout

4m ·min∑
r κ

2
r

>
4m2 − 4m ·min

4m2 −∑r κ
2
r

(4m ·min)

(
4m2 −

∑
r

κ2r

)
>
(
4m2 − 4m ·min

)(∑
r

κ2r

)

16m3 ·min −
��������4m ·min

∑
r

κ2r > 4m2
∑
r

κ2r −
��������4m ·min

∑
r

κ2r

4m ·min >
∑

κ2r ,

and thus 4m2

K ≤∑r κ
2
r < 4m ·min. Hence,

ωin + (K − 1)ωout =
4m ·min∑

r κ
2
r

+ (K − 1)
4m2 − 4m ·min

4m2 −∑r κ
2
r

,

and for these possible
∑

r κr values,

∂

∂min
[ωin + (K − 1)ωout] =

4m∑
r κ

2
r

− (K − 1)
4m

4m2 −∑r κ
2
r

< 0 ⇐⇒
∑
r

κ2r >
4m2

K
.

Finally, this means

ωin + (K − 1)ωout ≤
4m · 0∑

r κ
2
r

+ (K − 1)
4m2 − 4m · 0
4m2 −∑r κ

2
r

≤ (K − 1)
4m2

4m2 − 4m2/K

≤ (K − 1)
1

1− 1/K
= (K − 1)

K

K − 1
= K ,

which matches the bound we obtained in Equation 6.3 for the non-degree-corrected SBM. We

visualize this bound in the (ωin, ωout) plane in Figure 6.3.
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Figure 6.3: Visualization of possible ωin and ωout values in our degree-corrected SBM for K = 2, 3.

Note that the maximum γ estimates from section 6.1 hold when ωin > ωout (“assortative SBMs”).

6.3 Observed γ Estimates in Real-World Networks

We now compute γ estimates on the giant connected component of a handful of networks from the

Stanford Large Network Dataset Collection [31]. Here, we focus on 16 single-layer social networks4,

ranging from 4K to 82K nodes and 17K to 948K edges.

We ran the Louvain algorithm 1000 times on each network on a uniform grid of γ ∈ [0, 10]. Then,

we computed γ estimates for each partition and grouped these estimates by K. These are shown in

Figure 6.4, plotted alongside the average5 and maximum γ estimates derived from Equation 6.2.

4 In particular, we use

• The 8 networks from the Gemsec Facebook dataset (gemsec-Facebook)

• The 3 networks from the Gemsec Deezer dataset (gemsec-Deezer)

• The 2 Slashdot social networks from November 2008 and February 2009 (soc-Slashdot0811 and soc-Slashdot0922)

• The (anonymized) social circles from Facebook (ego-Facebook)

• The Who-trusts-whom network of Epinions.com (soc-Epinions1)

• The Wikipedia who-votes-on-whom network (wiki-Vote)

5The “average” γ estimate is the average value of γ = (ωin − ωout)/(lnωin − lnωout) on the triangle in the (ωin, ωout)
plane with vertices (1, 0), (1, 1), and (K, 0). These triangles define the possible Ω estimates for assortative degree-
corrected SBMs (as shown in Figure 6.3).
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Figure 6.4: Boxplots of observed γ estimates on 16 social networks from SNAP [31], plotted

alongside the average and maximum γ estimates from our degree-corrected SBM.

Indeed, all observed γ estimates on these networks lie below our γmax values and our γmean

values appear to match the median estimates.

This provides a priori bounds on the range of resolution parameters that should be used in

modularity maximization if a maximum desired number of communities is known or can be estimated.

We are hopeful that this can be used to guide modularity-based community detection strategies in a

less ad-hoc way.
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CHAPTER 7

Conclusion and Future Work

In this thesis, we have presented a pruning strategy that combines the equivalences of Newman

[14] and Pamfil et al. [17] with the partition post-processing tool of Weir et al. [26]. This new strategy

is statistically principled and reduces the number of partitions that one would need to consider by a

remarkable degree. Indeed, in the examples considered here, the subsets of stable partitions (those

that are “significant” from the perspective of stochastic block model inference) were often many

orders of magnitude smaller than the original set of partitions. Moreover, our method addresses some

of the shortcomings of Pamfil et al.’s iterative procedure and we have shown that this allows us to

recover significant community structure that their algorithm misses.

This thesis also derived upper bounds on the values of the resolution parameter for which single-

layer modularity maximization can be equivalent to optimizing the likelihood fit of a degree-corrected,

planted partition stochastic block model. This provides a priori bounds on which values for the

resolution parameter “should” be chosen if a desired number of communities is known or can be

approximated.

Future work could focus on incorporating this procedure into pipelines that repeatedly maximize

modularity rather than using it as a post-processing tool. In fact, Qhull’s [28] implementation of

halfspace intersection supports incremental adding of halfspaces, so one could create a variant of

CHAMP that efficiently updates the pruned subset of partitions and their domains of optimality

as each new partition is found. In fact, we have found that we tend to find the stable partitions of

interest even when the number of runs of the Louvain algorithm [12] is small, so we believe that

such a variant could be very performant in practice. Moreover, the manner in which the domains of

optimality and resolution parameter estimates are updated could be used to guide the choice of new

resolution parameters during the runs of modularity maximization procedures.



Additional future work could focus on analyzing the equivalences between modularity max-

imization and SBM inference in more detail, especially when the number of communities is not

fixed. We briefly discuss these ideas in appendix A, starting in section A.5 with an overview of the

single-layer equivalence when the number of communities is allowed to vary. We also outline some

methods to transfer between regions of resolution parameters and SBM parameters in section A.3

and section A.4, but do not fully analyze their utility. These results could be used to “rescale” a

partition’s domain of optimality to the region of Ω parameters for which it has a greater likelihood fit

to an underlying SBM than any other observed partitions. Hence, such a rescaling might allow for

a statistically principled comparison of the areas of domains of optimality across a wide range of

resolution parameters.
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APPENDIX A

A Closer Look at the Details and Consequences
of Newman’s Equivalence

Here, we discuss some details of Newman’s equivalence [14] that were glossed over in our

discussion in section 1.3.

Recall from section 1.2 and section 1.3 that finding the maximum likelihood fit of a planted

partition, degree-corrected SBM amounts to maximizing

lnP (A | Ω,g) =
1

2
ln

(
ωin

ωout

)∑
i,j

[
Aij −

kikj
2m
· ωin − ωout

lnωin − lnωout

]
δ(gi, gj)

+m(lnωout − ωout)

(A.1)

and this becomes equivalent to the optimization of (single-layer) modularity

Q =
1

2m

∑
i,j

[
Ai,j − γ ·

kikj
2m

]
δ(ci, cj) (A.2)

when the resolution parameter takes value

γ =
ωin − ωout

lnωin − lnωout
. (A.3)

A.1 Equivalence to Modularity Maximization Holds Only When ωin >

ωout

First, this equivalence is to modularity maximization only when ωin > ωout so that the underlying

SBM exhibits assortative community structure (i.e. its communities are more densely connected

internally than they are to the rest of the network).



Earlier, we had ignored the leading ln (ωin/ωout) term in Equation A.1, claiming that it does not

affect optimization. However, consider the case in which the SBM has disassortative structure with

ωout > ωin so that nodes are more preferentially connected to nodes in other groups than nodes in

their own group. In this case, the leading multiplicative prefactor becomes negative!

Indeed, when ωout > ωin, the maximization of the likelihood is actually equivalent to the

minimization of modularity. When we refer to “community detection”, we are almost always

referring to the assortative case, so we had ignored this situation in the introductory chapter.

A.2 “Assumptions of Modularity”

Some variations on the stochastic block model include tunable parameters that allow for controlling

the sizes of the ground truth groups [32]. However, as Newman notes, “the version [...] to which

modularity maximization is equivalent, includes no such parameters, [...] which in effect means

that a priori the sizes of all groups are the same and hence that modularity maximization implicitly

prefers groups of uniform size” [14].

Moreover, when the number of communities is fixed and γ > 0, modularity maximization is

always equivalent to the maximum likelihood fit of some planted partition SBM – for arbitrary

γ′ > 0 there are an infinite number of choices for ωin and ωout that will make the estimated γ = γ′ in

Equation A.3 (see section A.3).

In this way, modularity maximization

• “Assumes” that all communities in a network are “statistically similar” (in the equivalence to

a planted partition, all communities share the same intra-group and inter-group connection

propensities ωin and ωout).

• “Assumes” that all communities in a network are the same size (since the SBM of interest

includes no parameters controlling group size). This means that a change in the number of

communities can make a large difference in the “assumed group size” (and thus, estimates for

ωin and ωout).

• Makes no assumption on the degree distribution of the network (since the equivalence is to a

degree-corrected SBM).
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A.3 Mapping Between γ and Ω in the Equivalence

Unsurprisingly since the resolution parameter estimation

γ =
ωin − ωout

lnωin − lnωout

maps a two-dimensional space of (ωin, ωout) to the one dimensional space of γ in a smooth way,1

this map is not one-to-one. Indeed, for any choice of γ′, there are an infinite number of (ωin, ωout)

pairs that satisfy γ = γ′ in the above equation, as shown in Figure A.1.
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Figure A.1: Left: The value of the γ estimate as ωin and ωout vary. Right: The possible (ωin, ωout)

pairs associated with various choices of γ.

This means that the equivalence with between modularity optimization and SBM inference

actually holds for many possible pairs of SBM parameters ωin and ωout. Indeed, given any desired

1Ignoring the singularities when ωin = ωout, this function is infinitely differentiable when ωin, ωout > 0.
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choice of γ and one of the two parameters ωin or ωout, we can compute the other parameter:

ωin(γ, ωout) =


−γ ·W−1

(
−ωout·e−ωout/γ

γ

)
, if ωout < γ

−γ ·W0

(
−ωout·e−ωout/γ

γ

)
, if ωout > γ

ωout(γ, ωin) =


−γ ·W−1

(
−ωin·e−ωin/γ

γ

)
, if ωin < γ

−γ ·W0

(
−ωin·e−ωin/γ

γ

)
, if ωin > γ

,

(A.4)

where W is the “Lambert W function”, the function satisfying W0(xe
x) = x for x ≥ −1 and

W−1(xe
x) = x for x ≤ −1.

Note that these ωin and ωout functions are continuous as seen in Figure A.1 – the “principal branch”

W0 meets the “lower branch” W−1 when the argument is −e−1, in which case ωin = ωout = γ

(though of course, the γ estimate is actually undefined here, but this matches the limiting behavior as

ωin → γ and ωout → γ).

A.4 Mapping Ranges of γ to Possible Ω Parameters of Planted Parti-

tion SBMs

This mapping between γ and possible (ωin, ωout) values also allows one to map entire domains of

dominance in the space of γ values to the corresponding region in the (ωin, ωout) plane. We show

this in Figure A.2.
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Figure A.2: Regions of possible ωin, ωout values for various ranges of γ estimates.

Indeed, when a partition has a domain of optimality given by [γcenter − r, γcenter + r], it appears

to be the case that

area in “Ω space” ≈ 13.1594725 · r · γcenter

∝ (area in “γ space”) · γcenter .

(A.5)

That is, if a partition has a domain of optimality given by γcenter ± r, the area of the corresponding

region in the ωin, ωout “planted partition parameters plane” (i.e. the area of the region for which the

partition has a greater likelihood fit to an underlying SBM than other partitions of the same number

of communities) scales in a manner proportional to r · γcenter.

In this way, one could rescale domains of optimality to represent the area in Ω space that the

domain represents after passing through the equivalence, though it’s unclear if this would actually be

useful in practice. One could also correct for the possible Ω values as K varies (see Figure 6.3).

Interestingly, this gives an alternate explanation for why the domains of optimality tend to get

smaller and the stochasticity of modularity maximization procedures tends to increase as γ grows

larger. As this occurs, the same area of possible ωin, ωout SBM parameters takes up an ever-smaller

range of the γ space.
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A.5 The “Equivalence” When K is not Fixed

As we’ve seen in section 1.3, the equivalence between modularity optimization and SBM inference

only holds when the number of blocks K is kept fixed. However, Pamfil et al. [17] used the

equivalence (and its extensions) without fixing the number of communities and we have found

that when the community structure is strong enough, we can sometimes detect stability under the

resolution parameter estimation map even as K varies (see subsection 4.2.4 and chapter 5 in general).

To help explain this, consider comparing the full log-likelihood SBM fit to modularity (for

simplicity, ignoring the self-loop terms),

lnP (A | Ω,g) =
1

2
ln

(
ωin

ωout

)∑
i,j

[
Aij −

kikj
2m
· ωin − ωout

lnωin − lnωout

]
δ(gi, gj)

+m(lnωout − ωout)

1

m
· lnP (A | Ω,g) = ln

(
ωin

ωout

)
· 1

2m

∑
i,j

[
Aij −

kikj
2m
· ωin − ωout

lnωin − lnωout

]
δ(gi, gj)

+ (lnωout − ωout) .

Then, when we take the resolution parameter to have the value from the equivalence γ = (ωin −

ωout)/(lnωin − lnωout), we have that

Q =
lnP (A | Ω,g) +m (ωout − lnωout)

m ln (ωin/ωout)
, (A.6)

where we’ve rewritten −(lnωout−ωout) as (ωout− lnωout) to emphasize that this quantity is positive

(in fact, (x− lnx) ≥ 1 for all positive x).

Of course, when K is held constant, we can repeatedly estimate ωin and ωout to determine γ

and iterate until convergence. Indeed, recall that when a network is actually drawn from a planted

partition of K blocks that this iteration should converge to the correct community structure in the

limit of large node degrees.

However, when we allow the number of communities K to vary in modularity maximization,

we similarly allow for ωin, ωout to vary in such a way that we can possibly converge to multiple
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correct ground truth values for ωin and ωout, each corresponding to an SBM with a different number

of blocks (and potentially different parameters).2

However, if we have partitions with varying numbers of communities in which our estimates for

ωin and ωout do not cause the (ωout − lnωout) and ln (ωin/ωout) terms in Equation A.6 to vary much,

the equivalence still approximately holds. This can occur, for example, if the community structure

for a certain number of blocks is so strong that the log-likelihood dominates the expression.

However, if the estimates for ωin and ωout differ greatly as K varies (e.g. if number of com-

munities changes rapidly as we saw in section 5.2), this equivalence can easily break down as the

optimization of modularity is biased towards manipulating the (ωout − lnωout) and ln (ωin/ωout)

terms more than the likelihood of the SBM fit.

Unfortunately, the precise relationship between our γ, ωin, and ωout estimates as K increases

depends heavily on the topology of the network. Hence, it is difficult to make any truly general

statements about the relationship between modularity optimization and SBM inference here.

2We explicitly construct examples of such networks in appendix B.
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APPENDIX B

Explicit Construction of a “Bistable” SBM

In general, it is possible for a network to have meaningful community structure at many dif-

ferent scales (for example, by considering a hierarchy of communities that are made up of smaller

communities). As such, it is natural to ask whether or not a network may have multiple meaningful

community structures that are simultaneously stable under our resolution parameter estimation when

we allow the number of blocks K to vary.

Here, we explicitly construct such a network model in which two ground truth partitions, one

with 2 communities and one with 3 communities, are simultaneously stable. Hence, we refer to such

a model as being “bistable”.

Consider an equal-block size SBM with 3 communities in which pairs of nodes are connected

between communities by the preference matrix (chosen somewhat arbitrarily)

Pij =


10/99 1/160 1/160

5/66 δ

5/66

 ≈


0.1010 0.0063 0.0063

0.0758 δ

0.0758

 , (B.1)

where δ is a tunable parameter. Then, when δ is small, our SBM exhibits strong 3-block structure,

but as δ increases towards 5/66, our SBM exhibits strong 2-block structure.

For some intermediate values of δ, however, we could say that a 3-community ground truth

partition coincides with the “2-community ground truth” that merges blocks 2 and 3.



Once again, we make the simplifying assumption that self loops do not exist. Then, following in

much the same way as in chapter 6, consider the preference matrix

Pij =


P11 P12 P13

P22 P23

P33

 . (B.2)

This gives the expected values

m
3 community ground truth
in =

(
B

2

)
·
∑
i

Pii

m
3 community ground truth
out = B2 ·

∑
i<j

Pij

m
2 community ground truth
in =

(
B

2

)
·
∑
i

Pii +B2 · P23

m
2 community ground truth
out = B2 ·

∑
i<j

Pij −B2 · P23

κ
3 community ground truth
1 = B(B − 1)P11 +B2[P12 + P13]

κ
3 community ground truth
2 = B(B − 1)P22 +B2[P12 + P23]

κ
3 community ground truth
3 = B(B − 1)P33 +B2[P13 + P23]

κ
2 community ground truth
1 = B(B − 1)P11 +B2[P12 + P13]

κ
2 community ground truth
2 = B(B − 1)[P22 + P33] +B2[P12 + P13 + 2P23] ,

(B.3)

where κr =
∑

i ki · δ(gi, r) is the sum of degrees in group r. Now, we rewrite modularity as

Q(γ) =
1

2m

∑
i,j

(
Aij − γ ·

kjkj
2m

)
δgigj =

min

m
− γ ·

∑
r κ

2
r

4m2
, (B.4)

which allows us to, in principle, calculate the domains of optimality for the 2-community and

3-community ground truth partitions by calculating the γ value for which their modularities become

equal.

We now return to the preference matrix in Equation B.1 where we explicitly fixed all values

except for P23 = δ. Then, with N nodes and block size B = N/3, plugging into Equation B.3 and
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Equation B.4 yields

m
3 community ground truth
in =

(
B

2

)
· 25

99

m
3 community ground truth
out = B2 ·

(
2

160
+ δ

)
m

2 community ground truth
in =

(
B

2

)
· 25

99
+B2 · δ

m
2 community ground truth
out = B2 · 2

160

κ
3 community ground truth
1 = κ

2 community ground truth
1 = B(B − 1) · 10

99
+B2 · 2

160

κ
3 community ground truth
2 = κ

3 community ground truth
3 = B(B − 1) · 5

66
+B2 ·

(
1

160
+ δ

)
κ

2 community ground truth
2 = B(B − 1) · 10

66
+B2 ·

(
2

160
+ 2δ

)
,

(B.5)

and

Q3 community ground truth(γ) =
1000(B − 1)

B(7920δ + 1099)− 1000
− γ ·

2
(
B2
(
δ + 433

5280

)
− 5B

66

)2
+
(
B2

80 + 10
99(B − 1)B

)2
4
(
B2
(
δ + 1

80

)
+ 25

198(B − 1)B
)2

Q2 community ground truth(γ) =
99B

−7920Bδ − 1099B + 1000
+ 1− γ ·

(
B2
(
2δ + 1

80

)
+ 5

33(B − 1)B
)2

+
(
B2

80 + 10
99(B − 1)B

)2
4
(
B2
(
δ + 1099

7920

)
− 25B

198

)2 .

(B.6)

By equating these two modularity functions, we find that the γ value for which the 3-community

ground truth partition becomes dominant over the 2-community partition is given by

γcross =
7040Bδ(B(7920δ + 1099)− 1000)

(B(5280δ + 433)− 400)2

lim
N→∞

γcross =
7040δ(1099 + 7920δ)

(433 + 5280δ)2
.

(B.7)

Finally, we can compute expected ground truth estimates ωin, ωout and γ,

ω
3 community ground truth
in =

80(80δ + 11)

320δ(80δ + 13) + 331

ω
3 community ground truth
out =

8(80δ + 1)(80δ + 11)

(160δ + 13)(160δ + 49)

ω
2 community ground truth
in =

256δ + 19

32δ(80δ + 13) + 25
+ 1

ω
2 community ground truth
out =

80(80δ + 11)

320δ(80δ + 13) + 331

γ3 community ground truth =
8(80δ + 11)2(320δ(80δ − 7)− 549)

(160δ + 13)(160δ + 49)(320δ(80δ + 13) + 331)
(

log
(

8(80δ+1)(80δ+11)
(160δ+13)(160δ+49)

)
− log

(
80(80δ+11)

320δ(80δ+13)+331

))
γ2 community ground truth =

2(80δ + 11)2(256δ + 19)

9(160δ + 13) (2560δ2 + 416δ + 25)
(

log
(
4(8δ+1)(80δ+11)
2560δ2+416δ+25

)
− log

(
160δ+22

1440δ+117

)) .

(B.8)
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Note that all the quantities in Equation B.8 do not depend on the number of nodes N or block size

B since they’re ultimately descriptions of the underlying SBM whose expected values should not

depend on the network size.

These results are plotted in Figure B.1, demonstrating that there is a large range of choices for δ

that result in the stability of both the 2-community and 3-community ground truths simultaneously.

0.00 0.01 0.02 0.03 0.04 0.05 0.06

δ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ

Analytic Solutions for the Example Bistable SBM

δ = 0.02251

δ = 0.04966

2-community ground truth γ estimate

3-community ground truth γ estimate

Optimality switch from K = 2 to K = 3

Figure B.1: Ground truth γ estimates for the 2-community and 3-community ground truth partitions

in our bistable SBM as N → ∞. The range of choices for δ which give expected bistability are

shown with dashed vertical lines.

We also drew networks from this SBM in simulation to demonstrate that our analytic results

appear in practice. This is shown in Figure B.2.
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Figure B.2: Probability of stability for the 2-community and 3-community partitions returned by the

Louvain algorithm on realizations of our example bistable SBM with N = 2400 (taken over 100

trials for each choice of δ).

We note that in this case, the expected mean degree per node increases with N , but this is not

the cause of the bistability. Indeed, a similar result can be found when we scale the probabilities Pij

down as N increases so that the expected mean degree is fixed, provided that the Pij are chosen so

that the ground truth partitions are detectable.

Finally, we plot layouts of some realizations from this example bistable SBM in Figure B.3.

Here, the existence (or lack thereof) of “meaningful” 2-community and 3-community partitions can

be visually verified as δ varies.
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δ = 0.02 :

δ = 0.035 :

δ = 0.05 :

Figure B.3: Force directed layouts from igraph [25] of realizations from our bistable SBM with

N = 600. For each δ, the 2-community ground truth is shown on the left and the 3-community

ground truth is shown on the right. Top: Realization with δ = 0.02, just before the start of the

bistable region for δ. Center: Realization with δ = 0.035, in the middle of the bistable region.

Bottom: Realization with δ = 0.05, just after the end of the bistable region.

We suspect that one could derive a completely general expression here for an arbitrary number

of blocks K and preference matrix P , but considering the relative complexity of Equation B.6,

Equation B.7, and Equation B.8, such a result might not be particularly illuminating. Moreover, we

were simply concerned with demonstrating that such bistable networks do exist, and thus this explicit

example is sufficient for our purposes.
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