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ABSTRACT 

Non-alcoholic steatohepatitis (NASH) is an emerging public health problem without effective 

therapies. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into bioactive 

epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory and protective effects. 

However, the functional relevance of the CYP epoxyeicosanoid metabolism pathway in the 

pathogenesis of NASH remains poorly understood. Our studies demonstrate that both mice with 

methionine-choline deficient (MCD) diet-induced NASH and humans with biopsy-confirmed 

NASH exhibited significantly higher free EET concentrations compared to healthy controls. 

Targeted disruption of Ephx2 (the gene encoding for soluble epoxide hydrolase) in mice further 

increased EET levels and significantly attenuated MCD diet-induced hepatic steatosis, 

inflammation and injury, as well as high fat diet-induced adipose tissue inflammation, systemic 

glucose intolerance and hepatic steatosis. Collectively, these findings suggest that 

dysregulation of the CYP epoxyeicosanoid pathway is a key pathological consequence of NASH 

in vivo, and promoting the anti-inflammatory and protective effects of EETs warrants further 

investigation as a novel therapeutic strategy for NASH.   
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INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) is a rapidly growing public health concern that 

is prevalent in approximately 30% of the United States population and fueled by the diabetes 

and obesity epidemic (1, 2). Progression from hepatic steatosis to non-alcoholic steatohepatitis 

(NASH) occurs in approximately 10-20% of cases, and is characterized by progressive hepatic 

inflammation, injury, and fibrosis; however, the mechanisms that underlie the development and 

progression of this syndrome remain poorly understood (2). Furthermore, there are currently no 

treatments approved for the prevention or treatment of NASH (1, 2). In order to develop novel 

therapeutic strategies for NASH, an improved understanding of the key pathways that regulate 

its development and progression is needed. 

Cytochrome P450 (CYP) enzymes are expressed abundantly in the liver where they are 

essential for the oxidative biotransformation of xenobiotics. In parallel to cyclooxygenases 

(COX) and lipoxygenases (LOX), certain CYP isoforms metabolize arachidonic acid to 

biologically active eicosanoids. Notably, CYP epoxygenase enzymes from the CYP2J and 

CYP2C subfamilies metabolize arachidonic acid to bioactive epoxyeicosatrienoic acids (EETs) 

(3). However, EETs are rapidly hydrolyzed by soluble epoxide hydrolase (sEH, EPHX2) to their 

corresponding dihydroxyeicosatrienoic acids (DHETs), which are generally less biologically 

active (4). CYP epoxygenase-derived EETs elicit cellular and organ protective effects in various 

preclinical models, including hypertension, ischemia-reperfusion injury and chemotherapy-

induced organ injury, via attenuating inflammation, apoptosis and fibrosis (4-6). More recently, it 

has been reported that promoting the effects of EETs elicits protective effects in obesity-

associated metabolic disease and in the atherogenic diet model of NAFLD/NASH in preclinical 

models (7-12). In addition, altered circulating CYP-derived DHET concentrations have been 

observed in humans diagnosed with NAFLD/NASH (13). However, the impact of NASH on EET 

concentrations in humans is unknown, and the functional relevance of the CYP 

epoxyeicosanoid metabolism pathway in the development and progression of NASH remains 

poorly understood. 

Therefore, the objective of this study was to 1) evaluate whether EET levels are 

significantly altered following experimental induction of NASH in mice and in humans with 

biopsy-confirmed NASH; and, 2) determine whether promoting the effects of CYP epoxygenase-

derived EETs attenuates the development and progression of NASH in mice. 
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MATERIALS AND METHODS 

 

Reagents. Reagents were obtained from ThermoFisher Scientific (Waltham, MA) unless 

otherwise indicated. 

 

Animals. All experiments were performed in adult mice on a C57BL/6J background (age 8-20 

weeks). Wild-type (WT) C57BL/6J mice were purchased from Jackson Laboratory (Bar Harbor, 

ME). A colony of mice with targeted disruption of Ephx2 (Ephx2-/-) were backcrossed onto a 

C57BL/6J genetic background for more than 10 generations, as described (14, 15). All mice had 

free access to food and water and were housed with littermates (one to four mice per cage) in 

temperature and humidity controlled rooms using a 12 hour light/dark cycle. All studies were 

completed in accordance with the Public Health Service Policy on Humane Care and Use of 

Laboratory Animals, and were approved by the Institutional Animal Care and Use Committee at 

the University of North Carolina-Chapel Hill (UNC) and the National Institute of Environmental 

Health Sciences. 

 

Experimental Induction of NAFLD/NASH in Mice. The first series of experiments evaluated 

the impact of experimental induction of NASH on hepatic and circulating CYP-derived 

eicosanoid concentrations in WT mice. Male WT mice were fed a commercially available 

methionine-choline deficient (MCD) diet (D518810, Dyets Inc., Bethlehem, PA; n=14) or a 

composition-matched methionine-choline replete control diet (D518754; n=10) for 4 weeks. 

Dietary depletion of methionine and choline leads to hepatic steatosis and oxidative stress, and 

subsequent liver injury, inflammation and fibrosis, and is a widely used preclinical model of 

NASH (16, 17). The second series of experiments evaluated the effect of disrupting sEH-

mediated EET hydrolysis on MCD diet induced hepatic steatosis, injury and inflammation in 

male and female Ephx2-/- (n=27 [male: n=14, female: n=13]) and corresponding WT control 

(n=24 [male: n=8, female: n=16]) mice. A parallel group of WT mice were fed the control diet for 

reference (n=15 [male: n=6, female: n=9]). 

The MCD diet is limited by a lack of significant weight gain and glucose intolerance (16, 

17). Thus, a third series of experiments was completed to evaluate the effect of disrupting sEH-

mediated EET hydrolysis on the development of obesity-associated hepatic steatosis. Male and 

female Ephx2-/- (n=41 [male: n=26, female: n=15]) and corresponding WT control (n=46 [male: 

n=33, female: n=13]) mice were fed a commercially available high-fat diet (HFD; D12492 [60% 

kcal fat], Research Diets Inc., New Brunswick, NJ) for 8 weeks. A parallel group of WT mice 
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were fed a composition-matched low-fat diet (LFD; D12450B [10% kcal fat]) for reference (n=28 

[male: n=16, female: n=12]). 

Body weight was measured in each mouse weekly. Food consumption was measured 

weekly in each cage by weighing the food at the beginning and end of each week. At the 

termination of each experiment, blood was collected via cardiac puncture, plasma was 

separated by centrifugation, and liver and epididymal white adipose tissue (eWAT) were 

harvested. One part of each tissue was snap-frozen in liquid nitrogen and stored at −80°C. The 

remainder was either fixed in 4% paraformaldehyde and embedded in paraffin or embedded in 

Tissue-Tek O.C.T. compound and snap-frozen in liquid nitrogen for subsequent histological 

analysis.  

 

Human NASH Case:Control Study. Human samples were obtained from a single-center, 

case:control study of male and female patients with biopsy-confirmed NASH (n=7) and 

corresponding healthy volunteer controls (n=15) (18, 19). The inclusion and exclusion criteria 

have been described in detail previously (18). Briefly, patients with biopsy-confirmed non-

cirrhotic NASH (defined as a NAFLD activity score (NAS) >3) and a BMI ≤45 kg/m2 were 

recruited from the UNC hepatology clinic. In parallel, healthy volunteers with no history of 

hepatic or metabolic disease and a BMI ≤30 kg/m2 were recruited from the local community. 

Written informed consent was obtained from all participants. The study protocol was approved 

by the UNC Biomedical Institutional Review Board. 

Study participants fasted overnight prior to initiation of the study visit at the UNC Clinical 

and Translational Research Center. A blood sample was collected from an indwelling catheter 

at baseline and every 30 min for 2 h after administration of a standardized meal containing 509 

kcal (27.2 g protein, 23.9 g fat, 53.3 g carbohydrates), as described (18, 19). Serum was 

separated by centrifugation, aliquoted and stored at -80°C until analysis. 

 

Quantification of Eicosanoid Concentrations. Free eicosanoid metabolite concentrations 

were quantified from mouse and human samples using a targeted liquid chromatography-

tandem mass spectrometry (LC/MS/MS) method with optimized sensitivity and specificity for 

EET quantification, as previously described (11, 12, 20). Briefly, plasma/serum (0.25 mL) and 

homogenized liver (20 mg) and eWAT (50 mg) tissue were diluted in 0.1% acetic acid/5% 

methanol solution containing 0.009 mM butylated hydroxytoluene (BHT), and internal standards 

were added. The samples were processed by liquid-liquid extraction to isolate lipids, and then 

dried. Following reconstitution, free eicosanoid metabolites were quantified by LC/MS/MS, as 
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described (11).  

Data were acquired and concentrations were quantified with Analyst software (v1.5, 

Applied Biosystems) using metabolite and internal standard peaks for each sample. Tissue 

concentrations were normalized to tissue weight. In the human study, detectable metabolite 

concentrations that were <0.5x the lower limit of quantitation or >1.5x the upper limit of 

quantitation were imputed as such. Metabolites with more than 50% of the values outside of this 

range were not included in the analysis. Among the panel of 34 CYP-, COX- and LOX-derived 

metabolites evaluated, 24 metabolites met the criteria for analysis (Table S2). Twenty-one of the 

24 metabolites (88%) had <10% of their values outside of the quantitation range. 

Due to significant correlations among the EET and DHET regioisomers (11, 12, 20), the 

sum of the EET regioisomers (sum EETs) and DHET regioisomers (sum DHETs) were 

calculated to minimize redundancy. The sum of the EET and DHET regioisomers (sum 

EETs+DHETs) and the ratio of 14,15-EET to 14,15-DHET (14,15-EET:14,15-DHET ratio) were 

calculated as biomarkers of CYP epoxygenase and sEH metabolic function, respectively. 

Concentrations of 20-hydroxyeicosatetraenoic acid (HETE) were quantified as a biomarker of 

CYP omega-hydroxylase metabolic function. 

 

Biochemical Analysis in Mice. Plasma alanine aminotransferase (ALT) levels were quantified 

using a Vitros 350 automated chemical analyzer (Ortho-Clinical Diagnostics, Rochester, NY). 

Triglyceride levels were quantified in homogenized liver tissue using the Biovision Triglyceride 

quantification Kit according to the manufacturer’s instructions (Biovision Incorporated, Milpitas, 

CA).  

 

Quantitative RT-PCR in Mice. Liver and eWAT RNA were isolated and reverse transcribed to 

cDNA, as described (12, 21). Expression of hepatic Cyp2c44 (Mm0197184_m1), Cyp2c50 

(Mm00663066_gH), Cyp2j5 (Mm00487292_m1), Ephx2 (Mm01313813_m1), Lpl 

(Mm00434764_m1), Col1a1 (Mm00801666_g1), Col3a1 (Mm01254476_m1), Srebp1 

(Mm00550338_m1), Fasn (Mm00662319_m1) and Scd1 (Mm00772290_m1), and eWAT Ccl2 

(Mm00441242_m1) were quantified using Taqman® Assays on Demand (Life Technologies, 

Foster City, CA), normalized to Gapdh (endogenous control, Mm99999915_g1) and expressed 

relative to the WT control group using the 2-ΔΔCt method (12, 21). 

MicroRNA (miR)-122 is the most abundant miRNA in hepatocytes, and is released in 

response to hepatocellular injury; as a consequence, circulating miR-122 levels have emerged 

as a sensitive biomarker of liver injury in multiple preclinical models, including MCD diet-evoked 
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NASH, and in humans (22, 23). Circulating miR-122 levels were quantified in the MCD diet 

experiments by real-time quantitative RT-PCR, as described, with minor modifications (24). 

Briefly, total RNA was extracted from heparinized plasma (25 µL) using the mirRNeasy 

serum/plasma kit (QIAGEN, Valencia, CA) according to the manufacturer’s instructions. A 

synthetic miRNA, Caenorhabditis elegans miR-39 (QIAGEN, 1.6X108 copies) was added to 

each sample during the extraction procedure. Total RNA was incubated for 1 hour at 25⁰C with 

1 unit of heparinase I from Flavobacterium heparinum (Sigma) to overcome heparin-induced 

enzymatic interference in PCR reactions, and then reverse transcribed using the Taqman® 

miRNA Reverse Transcription Kit (Life Technologies). Expression of miR-122 was quantified 

using a commercially-available miR-122 TaqMan® Advanced miRNA Assay (Life Technologies), 

normalized to cel-miR-39, and expressed relative to the WT control group using the 2-ΔΔCt 

method (25).  

 

ELISA in Mice. Liver tissue was homogenized and monocyte chemoattractant protein-1 (MCP-1 

protein) levels were quantified in liver homogenates using the mouse CCL2/JE/MCP-1 

Quantikine® ELISA kit (R&D Systems, Minneapolis, MN) after loading equal amounts of protein 

into each well, as described (12). Concentrations were normalized to mg of liver protein. 

 

Histology in Mice. Embedded liver and eWAT tissue were sectioned using a serial interrupted 

technique (5 μm sections, 200 μm apart), as described (11, 12). Liver sections underwent 

hematoxylin and eosin (H&E) and Oil Red O staining, and eWAT sections underwent F4/80 

immunohistochemical staining (#MCA497, AbD Serotec, Raleigh, NC). Digital images were 

acquired with the ScanScope CS slide capture device (Aperio, Vista, CA) and analyzed using 

ImageScope Version 11.1 (Aperio).  

The extent of hepatic steatosis was evaluated by quantifying Oil Red O staining intensity 

on digital liver section images using NIH ImageJ software, as described (26). An average value 

across nine non-overlapping 10X fields (three fields/section x three sections/mouse) was 

calculated for each mouse. Data were expressed relative to the control diet referent group in 

each experiment. The extent of macrophage infiltration into eWAT was quantified by counting 

the number of crown-like structures per 10X field, as described (27). Crown-like structures were 

defined as a shrunken adipocyte surrounded by F4/80 stained macrophages. An average value 

across 15 non-overlapping fields (five fields/section x three sections/mouse) was calculated for 

each mouse. A pilot experiment revealed no detectable crown-like structures in female mice fed 
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a HFD for 8 weeks, which is consistent with prior reports in the literature (28); thus, crown-like 

structures were only quantified in male mice. All analyses were blinded to treatment group. 

 

Glucose Tolerance Testing in Mice. Mice were fasted 6 hours, and then dosed with 20% D-

glucose by intraperitoneal injection (2 mg/g body weight). Whole blood was collected via tail nick 

before and 20, 30, 60, 90 and 120 min following dosing, and blood glucose concentrations were 

measured using the Accu-Chek Aviva Plus Glucometer (Roche Diagnostics GmbH, Mannheim, 

Germany), as described (11). The area under the glucose concentration-time curve (glucose 

AUC0-120min) was calculated using the trapezoidal method. 

 

Statistical Analysis. Data are presented as mean ± standard error of the mean (SEM) unless 

otherwise indicated. Data that were not normally distributed were log-transformed prior to 

statistical analysis. Statistical analysis was performed using SAS-JMP 10.0 or SAS 9.3 software 

(SAS Institute, Cary, NC), and P<0.05 was considered significant. 

In the human study, population characteristics were compared across cases and 

controls using student’s t-test or Wilcoxon test for continuous variables and Fisher’s exact test 

for categorical variables, as appropriate. In order to capture average circulating metabolite 

exposure over the two hour blood sampling period, the area under the eicosanoid 

concentration-time curve (AUC0-120min) was calculated using the trapezoidal method. The sum 

EETs AUC was the primary endpoint. The sum DHETs, sum EETs+DHETs, and 14,15-

EET:DHET ratio AUC’s were secondary endpoints. Comparisons across cases and controls 

were completed using the student’s t-test. In addition, an exploratory metabolomic analysis 

(student’s t-test for each of the 24 individual metabolites followed by a false discovery rate 

[FDR] analysis) was performed with MetaboAnalyst v3.0, as described (20, 29). 

In the mouse experiments, eicosanoid and phenotype comparisons across diet (MCD 

versus Control, HFD versus LFD) and genotype (Ephx2-/- versus WT) were completed using a 

generalized linear model (proc glm). In order to account for the potential effects of sex on the 

observed differences in each phenotype across experimental groups (30), the following 

variables were included in the model: sex, diet*sex interaction (impact of sex on the diet effect), 

and genotype*sex interaction (impact of sex on the genotype effect). Differences in the glucose 

tolerance test profile and body weight over time were evaluated using generalized linear model 

repeated-measures ANOVA, and a post-hoc Scheffe’s test. Correlations were evaluated using 

Pearson correlations where indicated. 
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RESULTS 

 

Experimental induction of NASH in mice increases hepatic and circulating CYP derived 

epoxyeicosanoids. We first investigated the effect of MCD diet administration, which evoked 

histologic changes consistent with the development of NASH (Fig. S1A), on free CYP-derived 

eicosanoid concentrations in liver. The sum EET (Fig. 1A), sum DHET (Fig. 1B), and sum 

EET+DHET (Fig. 1C) concentrations in liver were significantly increased in mice with MCD diet-

evoked NASH compared to controls. Similar effects were seen with each EET and DHET 

regioisomer (Table S1). Although the hepatic 14,15-EET:DHET ratio (Fig. 1D) and hepatic 20-

HETE concentrations (Fig. 1E) also appeared to be higher in MCD diet-fed mice, these 

differences were not statistically significant. Furthermore, liver and plasma EET concentrations 

exhibited a significant positive correlation (r=0.732, P<0.001), and plasma EETs were 

significantly increased in MCD diet-fed mice compared to controls (Fig. 1F). Similar differences 

were observed with the EET regioisomers and the DHET metabolites in plasma (Table S1). 

Hepatic expression of key Cyp2c and Cyp2j epoxygenases was significantly reduced in 

the MCD diet-fed mice compared to controls (Fig. S1B). Hepatic Ephx2 expression was also 

significantly suppressed in MCD diet-fed mice (Fig. S1C), and a significant inverse relationship 

between free hepatic EET concentrations and Ephx2 expression was observed (Fig. S1D; 

r=-0.557, P=0.005). Moreover, expression of lipoprotein lipase (LpL), a key enzyme that 

regulates the release of esterified CYP-derived eicosanoids from lipoprotein phospholipids (31), 

was significantly higher in MCD diet-fed mice (Fig. S1E) and Lpl mRNA levels exhibited a 

significant positive correlation with free hepatic EET concentrations (Fig. S1F; r=0.725, 

P<0.001).  

 

Patients with biopsy-confirmed NASH exhibit higher circulating CYP-derived 

epoxyeicosanoids compared to healthy volunteer controls. We subsequently evaluated 

circulating eicosanoid metabolite concentrations in a population of patients with biopsy-

confirmed NASH and corresponding healthy volunteer controls. The demographic and clinical 

characteristics of the study population are described in Table 1. Consistent with the MCD diet 

preclinical model, total circulating sum EETs (Fig. 2A), sum DHETs (Fig. 2B), and sum 

EETs+DHETs (Fig. 2C) were significantly higher in the NASH patients compared to the healthy 

volunteer controls. NASH patients exhibited higher circulating sum EET, sum DHET and sum 

EET+DHET concentrations compared to controls over the two-hour sampling period (Fig. S2). 

No significant difference, however, in the 14,15-EET:DHET ratio was observed (Fig. 2D). 
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Evaluating the panel of 24 CYP, LOX and COX-derived metabolites (Table S2) revealed that 

14,15-EET and 20-HETE were the most substantially altered circulating metabolites across 

cases and controls, and the only metabolites with a P-value <0.05 and a FDR q-value <0.10.  

 

Disruption of sEH-mediated EET hydrolysis attenuates MCD diet-evoked NASH in male 

and female mice. Due to the observed increase in free EET levels in the presence of NASH, 

we sought to evaluate the functional contribution of CYP epoxygenase-derived EETs to the 

development and progression of NASH by administering the MCD diet to male and female 

Ephx2-/- mice. Consistent with the above experiments, free hepatic EETs and DHETs were 

higher in WT mice fed the MCD diet compared to controls (Fig. 3, Table S3). Sex did not modify 

the impact of the MCD diet on any metabolite in WT mice (Table S3). Consistent with disruption 

of sEH-mediated EET hydrolysis, MCD diet-fed Ephx2-/- mice exhibited significantly higher free 

EET levels, 14,15-EET:DHET ratios and 12,13-epoxyoctadecaenoic acid (EpOME): 

dihydroxyoctadecaenoic acid (DHOME) ratios, and significantly lower DHET levels in liver 

compared to MCD diet-fed WT controls (Fig. 3, Table S3). Hepatic 20-HETE concentrations, 

however, did not significantly differ across Ephx2-/- and WT mice (Table S3).  

Administration of the MCD diet resulted in significant hepatic steatosis, injury and 

inflammation (Fig. 4), as well as weight loss (Fig. S3A). The increases in hepatic steatosis (Fig. 

4A, Fig. S3B), plasma miR-122 and ALT levels (biomarkers of hepatocellular injury; Fig. 4B and 

4C), hepatic expression of MCP-1 (a key inflammatory chemokine that regulates macrophage 

infiltration; Fig. 4D), and hepatic collagen expression (early biomarkers of collagen deposition 

and fibrosis; Fig. 4E and 4F) evoked by the MCD diet were significantly attenuated in Ephx2-/- 

mice. No differences in body weight (Fig. S3A), food consumption (20.8 vs. 22.6 

grams/week/mouse, P=0.381), or the expression of key mediators of lipogenesis (Fig. S3C-E), 

were observed across Ephx2-/- and WT mice, respectively. Sex did not modify the observed 

differences in any phenotype across Ephx2-/- and WT mice (as evidenced by genotype*sex 

interaction P>0.05 for all endpoints), indicating that the protective effects of Ephx2 disruption 

were similar in males and females.   

 

Disruption of sEH-mediated EET hydrolysis attenuates HFD-evoked metabolic syndrome 

and NAFLD in male and female mice. Since the MCD diet is limited by a lack of weight gain, 

adipose tissue inflammation and glucose intolerance, which are key pathological drivers of the 

metabolic syndrome and NAFLD in humans (16, 17), we also evaluated the functional 

contribution of CYP epoxygenase-derived EETs to the development of NAFLD by administering 
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a HFD to male and female Ephx2-/- mice. Consistent with disruption of sEH-mediated EET 

hydrolysis, HFD-fed Ephx2-/- mice exhibited significantly higher 14,15-EET:DHET ratios in 

eWAT compared to HFD-fed WT mice (8.13±1.45 [n=12] vs. 3.05±0.62 [n=11], respectively, 

P<0.05). 

Administration of the HFD for 8 weeks resulted in significant weight gain, adipose tissue 

inflammation, glucose intolerance and hepatic steatosis (Fig. 5, 6, and S4). The HFD-evoked 

increase in hepatic steatosis was significantly attenuated in Ephx2-/- mice (Fig. 5, Fig. S4D). 

Although no significant difference in weight gain was observed across Ephx2-/- and WT mice 

(Fig. 6A), Ephx2-/- mice exhibited a significantly attenuated induction of systemic glucose 

intolerance (Fig. 6B-D) and MCP-1 expression in eWAT (Fig. S4A) compared to WT mice. Sex 

did not modify the observed differences in hepatic steatosis, glucose intolerance and eWAT 

MCP-1 expression (genotype*sex interaction P>0.05 for all endpoints), indicating that the 

protective effects of Ephx2 disruption were similar in males and females. Although eWAT 

crown-like structures were not detected in female mice, consistent with prior reports (28), the 

HFD-evoked increase in eWAT macrophage infiltration in male WT mice was significantly 

attenuated in male Ephx2-/- mice (Fig. S4B and S4C). 

 

DISCUSSION 

Nonalcoholic steatohepatitis is a rapidly growing public health concern characterized by 

progressive hepatic inflammation, injury, and fibrosis; however, the key pathways that regulate 

its development and progression remain poorly understood and no approved treatments are 

available (1, 2). Promoting the effects of CYP epoxygenase-derived EETs has emerged as an 

anti-inflammatory and protective therapeutic strategy for cardiometabolic disease (4-6). Despite 

the well-established pathologic role of hepatic inflammation in NASH and the abundance of CYP 

enzyme expression in the liver, the functional contribution of the CYP epoxyeicosanoid 

metabolism pathway to the pathogenesis of NASH has remained largely unexplored. Through 

integration of preclinical and human studies, this investigation is the first to demonstrate that 1) 

experimental induction of NASH in mice with the MCD diet increases free hepatic and 

circulating EET concentrations; 2) humans with biopsy-confirmed NASH similarly exhibit higher 

circulating free EET concentrations compared to healthy controls; and, 3) targeted disruption of 

Ephx2 further increases free EET levels and significantly attenuates MCD diet-evoked hepatic 

steatosis, inflammation and injury in mice. Collectively, these findings suggest that dysregulation 

of the CYP epoxyeicosanoid pathway is a key pathological consequence of NASH, the 

observed increase in free EET concentrations may be a compensatory effect triggered to slow 
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the progression of NASH in vivo, and promoting the effects of EETs is a novel therapeutic 

strategy for NASH that warrants further investigation. 

It is well-established that inflammatory stimuli suppress hepatic CYP-mediated 

xenobiotic metabolism through cytokine-mediated transcriptional downregulation of CYP 

expression (32). In addition, we have reported that hepatic CYP epoxygenase expression and 

EET biosynthesis is suppressed in mice in an LPS model of acute inflammation, a high-fat diet 

model of insulin resistance, and the atherogenic diet model of NAFLD (12, 21, 33). Consistent 

with these prior studies, experimental induction of NASH with the MCD diet significantly 

suppressed hepatic expression of key Cyp2c and Cyp2j epoxygenases. In contrast, the MCD 

diet significantly increased free hepatic and circulating EET and DHET concentrations in mice. 

Consistent with these preclinical data, human patients with biopsy-confirmed NASH also 

exhibited significantly higher circulating free EET and DHET levels compared to healthy 

controls. Further investigation revealed that hepatic Ephx2 expression was suppressed in MCD 

diet-fed mice, and a significant inverse relationship between free hepatic EET concentrations 

and Ephx2 expression was observed. Although the 14,15-EET:DHET ratio, a biomarker of 

reduced sEH metabolic function, appeared to be higher in MCD diet-fed mice and in human 

NASH patients, these differences were not statistically significant. Thus, a NASH-evoked 

suppression of sEH expression and EET hydrolysis did not fully account for the observed 

increase in EET levels. It is important to note that free eicosanoid concentrations were 

quantified in the current study. It is well-established that cellular EETs are esterified to 

membrane phospholipids and >90% of circulating EETs are esterified to lipoprotein 

phospholipids in humans and rodents (31, 34). Expression of LpL, an enzyme that plays a key 

role in release of esterified CYP-derived eicosanoids from lipoprotein phospholipids (31), was 

significantly higher in mice fed the MCD diet. This was consistent with a prior report, which also 

demonstrated that direct activation of LpL abrogates the progression of NASH (35). In the 

current investigation, Lpl mRNA levels exhibited a significant positive correlation with free 

hepatic EET concentrations. Taken together, these findings demonstrate that the CYP 

epoxyeicosanoid metabolism pathway is significantly dysregulated in the presence of NASH, 

and suggest that an increased release of esterified EETs may contribute, at least in part, to the 

observed increase in free hepatic and circulating EET concentrations. 

Previous lipidomic analyses in humans have demonstrated that NAFLD/NASH is 

associated with dysregulated fatty acid metabolism (36, 37); however, the relationship between 

the presence of NASH and altered CYP-derived eicosanoids has remained largely unexplored. 

Due in part to the technical complexity of quantifying EETs, which are not measured on 
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traditional metabolomic or eicosanoid analytical platforms, major gaps in knowledge surrounding 

the biologic and therapeutic importance of EETs in human disease exist. A recent investigation 

demonstrated that circulating DHET concentrations were significantly higher in NASH patients 

compared to controls (13). Our analysis corroborated these findings in mice and humans, and 

demonstrated for the first time that free circulating EETs, but not EET:DHET ratios, are also 

significantly elevated in patients with NASH. During the two-hour postprandial period, circulating 

EET levels and the 14,15-EET:DHET ratio appeared to increase and DHET levels appeared to 

decrease (Figure S2). The observed increase in the 14,15-EET:DHET ratio over time in both 

NASH patients and healthy controls suggests that sEH metabolic function may be suppressed 

during the post-prandial period. To our knowledge, the effect of acute feeding on circulating 

CYP-derived EETs and DHETs has never been investigated in preclinical models or in humans. 

Future studies appear warranted to validate and elucidate these effects.  

Our exploratory analysis of 24 oxylipin metabolites revealed that 14,15-EET and 20-

HETE were the most substantially altered metabolites in patients with NASH. Interestingly, 

Loomba et al. also reported that a stable metabolite of 20-HETE (20-COOH AA) was 

significantly higher in NASH patients compared to controls (13). In our experiments, even 

though hepatic 20-HETE concentrations were not significantly altered in MCD-diet fed mice, 

circulating 20-HETE levels were significantly higher in MCD-diet fed WT mice compared to 

controls (Table S1; 1.5±0.2 vs. 0.65±0.06 ng/mL, respectively, P=0.001). Given the well-

documented pro-inflammatory and pro-injury effects of 20-HETE in the cardiovascular and renal 

systems (38), future studies that evaluate the functional contribution of 20-HETE to the 

development and progression of NASH are warranted. 

Although this study was the first to quantify EET and 20-HETE concentrations in human 

NASH patients, our analysis has limitations that must be acknowledged. First, this study was 

limited by its small sample size. Thus, completing sex-stratified analyses and adjusting for 

multiple covariates was not feasible. Second, although sum EET levels were designated as our 

primary endpoint, multiple secondary comparisons were completed and there is a possibility of 

false-positive associations. We calculated an FDR q-value for each comparison; however, these 

data should be interpreted with caution. Third, numerous potentially important eicosanoids were 

either below the limit of quantitation or not evaluated by the employed LC/MS/MS method. Thus, 

future studies in larger populations are needed to validate these preliminary findings, adjust for 

multiple covariates, and more rigorously evaluate the association between EETs and the 

presence of NASH relative to metabolites derived from parallel pathways. 

It is well-established that CYP-derived EETs have potent anti-inflammatory effects by 
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attenuating NF-κB signaling, as well as pro-survival and anti-apoptotic effects by multiple 

mechanisms (4-6, 15, 39). As a consequence, promoting the effects of EETs yields vascular, 

myocardial, renal and cerebral protective effects in various preclinical models, including 

hypertension, ischemia-reperfusion injury and chemotherapy-induced organ injury via 

attenuation of inflammation, apoptosis and fibrosis (40-44). More recently, inhibition of sEH-

mediated EET hydrolysis has been shown to abrogate obesity-associated hepatic inflammation 

and steatosis, atherogenic diet evoked hepatic inflammation and injury, and carbon tetrachloride 

induced hepatic inflammation and fibrosis (8, 12, 45). Although these accumulating data 

suggest that EETs and sEH are key regulators of multiple biological processes central to the 

pathogenesis of NAFLD/NASH, the functional role of the CYP epoxyeicosanoid metabolism 

pathway in the development and progression of NASH has not been rigorously studied. Using 

the well-established MCD diet model of NASH (16, 17), we demonstrated that mice with 

targeted disruption of Ephx2 exhibited increased hepatic EET levels and significantly attenuated 

hepatic steatosis, pro-inflammatory chemokine expression, injury, and collagen activation. 

These data were consistent with the anti-inflammatory and protective effects of EETs in other 

models. In contrast, the expression of key mediators in the lipogenesis signaling pathway were 

similar in Ephx2-/- and WT mice. Taken together, these findings demonstrate that sEH is an 

important regulator of NASH-associated hepatic inflammation and injury, and suggest that the 

anti-inflammatory and cellular protective effects of EETs, and not marked alterations in 

lipogenesis, mediated the observed protective effects in Ephx2-/- mice. These data also suggest 

that the observed increase in free EET concentrations in the presence of NASH may be a 

compensatory effect triggered to slow the progression of NASH. Future studies are needed to 

establish the direct hepato-protective effects of EETs, delineate the underlying mechanisms, 

and further evaluate therapeutic utility of increasing EET levels in NASH. 

Although the MCD diet is a well-established preclinical model that evokes hepatic 

inflammatory and histopathologic effects similar to human NASH, this model is limited by a lack 

of weight gain, adipose tissue inflammation and glucose intolerance, which are key pathological 

features of the metabolic syndrome and drivers of NAFLD/NASH in humans (1, 16, 17). Our 

experiments in a HFD model demonstrated that disruption of sEH-mediated EET hydrolysis also 

mitigates obesity-associated adipose tissue inflammation, systemic glucose intolerance and the 

early development of hepatic steatosis in vivo, without changes in weight gain. Given the 

integral role of MCP-1 expression and subsequent macrophage infiltration into adipose tissue to 

the obesity-associated development of glucose intolerance and type 2 diabetes, which are key 

pathologic drivers of NAFLD (28, 46-48), the anti-inflammatory effects of EETs in adipose tissue 
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appear to be a key component of their metabolic protective effects in the early stages of 

NAFLD. In addition, accumulating evidence has demonstrated that EETs evoke a myriad of 

protective effects in preclinical models of obesity, such that sEH inhibitors and EET analogs 

attenuate adipogenesis, pancreatic islet dysfunction, endoplasmic reticulum stress in liver and 

adipose tissue, and insulin resistance (7-12). Although previously published studies were 

completed almost exclusively in male mice, the protective effects of Ephx2 disruption were 

similar in males and females in our experiments. Collectively, these data further demonstrate 

the potential therapeutic utility of promoting the effects of EETs in obesity-associated metabolic 

disease. It is important to note, however, that HFD administration for much longer durations (>6 

months) is necessary to evoke hepatic inflammatory and histopathologic effects consistent with 

NASH (16, 17). Thus, future studies evaluating the effects of Ephx2 disruption and novel 

therapies that promote the effects of EETs, including sEH inhibitors and stable EET analogs, 

are needed to more fully elucidate the functional contribution of CYP-derived EETs to the 

development and progression of obesity-associated NASH. 

Despite increasing prevalence and substantial liver- and cardiovascular-related morbidity 

and mortality, no treatment has been approved by the FDA for NASH (1, 2). Thus, identifying 

and characterizing new therapeutic targets is critical. The ideal intervention for NASH would: a) 

elicit direct anti-inflammatory and protective effects in the liver to slow NASH progression and 

the development of end-stage liver disease, b) attenuate obesity-driven adipose inflammation 

and insulin resistance to slow the development and progression of hepatic steatosis (the most 

common underlying etiology of NASH), and, c) elicit systemic and vascular anti-inflammatory 

effects to prevent cardiovascular disease (the leading cause of death in NASH patients) (2). The 

anti-inflammatory and cardiovascular protective effects of EETs are well-established (4-6, 49). 

Importantly, sEH inhibitors are in preclinical and clinical development for chronic inflammatory 

conditions (50, 51). Given the metabolic and hepatic protective effects in preclinical models of 

obesity and NAFLD/NASH described herein, promoting the effects of EETs has enormous 

potential as a novel therapeutic strategy for NAFLD/NASH and warrants further investigation. 

 

CONCLUSIONS 

In summary, we have demonstrated that the CYP epoxyeicosanoid metabolism pathway 

is significantly dysregulated in the presence of NASH, such that free EET concentrations are 

significantly higher following experimental induction of NASH in mice and in patients with 

biopsy-confirmed NASH. In addition, genetic disruption of sEH further increased EET levels and 

attenuated MCD-diet induced hepatic steatosis, inflammation and injury in mice. Genetic 
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disruption of sEH also mitigated obesity-associated adipose tissue inflammation, systemic 

glucose tolerance, and the early development of hepatic steatosis. Collectively, these findings 

suggest that dysregulation of the CYP epoxyeicosanoid metabolism pathway is a key 

pathological consequence of NAFLD/NASH in vivo, and promoting the anti-inflammatory and 

protective effects of EETs offers considerable promise as a therapeutic strategy for 

NAFLD/NASH. 
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FIGURES 

 

Figure 1. 

 

 

 

Figure 1. Hepatic and circulating CYP-derived eicosanoid concentrations in wild-type 

mice following experimental induction of NASH. Male mice fed the MCD diet exhibited 

significantly higher free hepatic (A) sum EETs, (B) sum DHETs, and (C) sum EETs+DHETs 

concentrations compared to mice fed a methionine-choline replete control diet (Control: n=10, 

MCD: n=14). In contrast, no significant differences in hepatic (D) 14,15-EET:DHET ratio or (E) 

20-HETE concentrations were observed. (F) Sum EETs concentrations in plasma were also 

significantly higher in mice fed the MCD diet (Control: n=8, MCD: n=13). Data are presented as 

mean ± SEM, and are plotted on a log scale. *P<0.05 versus control.   
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Figure 2. 

 

 

 

Figure 2. Circulating CYP epoxygenase-derived eicosanoids in a human population of 

patients with biopsy-confirmed NASH and healthy volunteer controls. Free serum 

eicosanoid concentrations were quantified at baseline (fasting) and at 0.5, 1.0, 1.5 and 2.0 

hours following administration of a standardized meal. In order to quantify the average 

circulating metabolite exposure over the two hour blood sampling period, the area under the 

concentration-versus-time curve (AUC0-120min) was calculated for each metabolite and compared 

across NASH cases (n=7) and healthy volunteer controls (n=15). The (A) sum EETs, (B) sum 

DHETs, and (C) sum EETs+DHETs AUC were significantly higher in NASH patients versus 

healthy volunteer controls. (D) No significant difference in the 14,15-EET:DHET AUC was 

observed. Data are presented as mean ± SEM. *P<0.05 versus healthy volunteers. 
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Figure 3. 

 

 

 

Figure 3. Hepatic CYP-derived eicosanoid concentrations in Ephx2-/- mice following 

experimental induction of NASH. (A) Sum EET levels and (B) the 14-15-EET:DHET ratio in 

liver were quantified in male and female wild-type (WT) and Ephx2-/- mice. Compared to WT 

mice fed a control diet for 4 weeks (WT-Control, n=11), WT mice fed the MCD diet (WT-MCD, 

n=15) exhibited significantly higher hepatic sum EET levels, whereas no significant difference in 

the 14,15-EET:DHET ratio was observed. Ephx2-/- mice fed the MCD diet (KO-MCD, n=12) 

exhibited significantly higher EETs and 14,15-EET:DHET ratio compared to WT-MCD. Data are 

presented as mean ± SEM, and are plotted on a log-linear scale. *P<0.05 versus WT-MCD. 
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Figure 4.  

 

 

 

Figure 4. Phenotypic characteristics of NASH in Ephx2-/- mice following experimental 

induction of NASH. Male and female mice were fed a methionine-choline deficient (MCD) or 

methionine-choline replete control diet for 4 weeks to induce NASH. The MCD diet-evoked 

increases in (A) histologic evidence of hepatic steatosis (measured by Oil Red O staining in 

serial interrupted liver sections; representative images are provided in Figure S3B) and (B) 

plasma miR-122 levels in wild-type (WT) mice were significantly attenuated in Ephx2-/- (KO) 

mice (WT-Control: n=8; WT-MCD: n=14-17; KO-MCD: n=16-19). The MCD diet-evoked 

increases in (C) plasma ALT levels, (D) hepatic MCP-1 levels, and hepatic mRNA levels of (E) 

collagen type I (Col1a1) and (F) collagen type III (Col3a1) also were attenuated in Ephx2-/- mice 

(WT-Control: n=14-15; WT-MCD: n=24; KO-MCD: n=25-27). Data are presented as mean ± 

SEM. *P<0.05 versus WT-MCD. 
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Figure 5.  

 

 

 

Figure 5. Hepatic steatosis in Ephx2-/- mice following experimental induction of obesity. 

Male and female mice were fed a high-fat diet (HFD) for 8 weeks to induce obesity and hepatic 

steatosis. (A) The HFD-evoked increase in liver triglyceride levels in wild-type (WT) mice was 

significantly attenuated in Ephx2-/- (KO) mice (WT-LFD: n=8; WT-HFD: n=22; KO-HFD: n=23). 

(B) Histologic evidence of hepatic steatosis, which was measured by Oil Red O staining in serial 

interrupted liver sections (representative images are provided in Figure S4D), was also 

attenuated in Ephx2-/- mice (WT-LFD: n=10; WT-HFD: n=11; KO-HFD: n=12). Data are 

presented as mean ± SEM. *P<0.05 versus WT-HFD. 
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Figure 6. 

 

 

 
Figure 6. Glucose intolerance in Ephx2-/- mice following experimental induction of 

obesity. Male and female mice were fed a high-fat diet (HFD) for 8 weeks to induce obesity and 

glucose intolerance. (A) Body weight was measured weekly and expressed as a percent change 

from baseline, and (B) fasting blood glucose levels were measured at 4 and 8 weeks (WT-LFD: 

n=28; WT-HFD: n=44-46; KO-HFD: n=41). At (C) 4 weeks (WT-LFD: n=22; WT-HFD: n=32; KO-

HFD: n=32) and (D) 8 weeks (WT-LFD: n=16; WT-HFD: n=23; KO-HFD: n=23), blood glucose 

concentrations were quantified over 120 minutes following an intraperitoneal glucose tolerance 

test (GTT). The corresponding glucose AUC0-120min was then calculated. The repeated measures 

ANOVA P-values are provided where applicable. *P<0.05 versus WT-HFD.  
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TABLES 

 

Table 1. Study population characteristicsa 

 

Characteristic Healthy volunteers    NASH Patients P-valueb 

 (n=15)  (n=7) 

Demographics     

 Age (years) 43.1 ± 12.5 48.1 ± 10.4 0.333 

 Male 7 (46.7%) 3 (42.9%) 1.000 

 African American 2 (13.3%) 0 (0.0%) 1.000 

 BMI (kg/m2)  25.3 ± 2.7 32.2 ± 5.2 0.011 

Serum Chemistry (fasting)     

       ALT (u/L) 28 [23-41] 55 [46-100] 0.001 

       Total Cholesterol (mg/dL) 182 [162-234] 220 [157-228] 0.972 

 Triglycerides (mg/dL) 81 [46-154] 247 [190-286] <0.001 

 Glucose (mg/dL) 84 [82-94] 125 [104-138] <0.001 

 Insulin (μIU/mL) 7.5 [5.8-9.4] 29.5 [16.2-54.3] <0.001 

Liver Histology     

 Total NASc - 5 [4-6]  

 Steatosis - 2 [1-3]  

 Ballooning - 2 [0-2]  

 Inflammation - 1 [0-2]  

 Fibrosis - 1 [0-3]  

Data presented as mean ± standard deviation, median [interquartile range], or count (%) 

ALT, alanine aminotransferase; BMI, body mass index; HDL, high density lipoprotein; NAS, NAFLD 

Activity Score 

aThese data have been previously reported (19) 

bStudent’s t-test or Wilcoxon test was performed for continuous variables and Fisher’s exact test was 

performed for categorical variables, as appropriate. 

cNAS is a validated histological scoring system that includes four distinct domains. The total (sum) score 

and the score for each domain are provided for the NASH patients (liver biopsies were not completed in 

healthy volunteers). 
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