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Abstract 

  Acute kidney injury (AKI) is a common syndrome characterized by a sudden 

decline in kidney function that can potentially lead to death. Ischemia/reperfusion injury 

(IRI) is the leading cause of AKI and is inevitable during kidney transplants. There is no 

effective treatment available to treat IRI. Pathways involved in IRI are evidenced to lead 

to reactive oxygen species (ROS), inflammation, fibrosis, apoptosis, DNA damage 

response (DDR) and autophagy. Vitamin B12 (B12) or cobalamin, is essential for the 

human body and is pharmacologically known to scavenge ROS, suppressing 

inflammation and reverse impaired autophagy that occurs in B12 deficient conditions. 

To test whether B12 has beneficial effects in IRI, I subjected cultured mouse proximal 

tubule cells (BU.MPT) to a hypoxia/reperfusion (H/R) procedure and measured 

transcription of markers for inflammation (Mcp1, Il6, Nos2) and fibrosis (fibronectin), 

protein markers for apoptosis(Tgf1, c-cap3), and DDR (p.H2AX) induced by 

hypoxia/reperfusion (H/R). Presence of B12 during the H/R procedure at 0.3µM 

dramatically inhibited the upregulation of these markers studied and to an increased cell 

survival. Together, my findings suggest that B12 is a highly promising molecule to 

prevent/treat AKI. 

 

 

 

 

 

 

 



Introduction  

  Acute kidney injury (AKI) is a clinical condition that affects roughly 200,000 

people every year in the United States1. It is characterized by the sudden decline of 

renal function, leading to the dangerous accumulation of waste products and chemical 

imbalance in one’s blood2. The disease progresses from cellular damage to decreased 

glomerular filtration rate, leading to kidney failure and in severe situations, it results in 

death2. Despite its frequency and severity, there is limited treatment of AKI and most 

are still in the development stage. For example, animal studies of α-melanocyte–

stimulating hormone (α-MSH) have confirmed its anti-inflammatory and anti-apoptotic 

activities to protect from AKI1. However, because its reduction of serum creatinine is not 

considered an acceptable endpoint for FDA requirements of drug registration, it is not 

yet an approved treatment1. 

  Many causes can lead to AKI such as severe dehydration, but the leading cause 

of AKI is ischemia renal injury (IRI) or renal ischemia/reperfusion injury which is 

unavoidable during kidney transplant3,4. During IRI, there are two distinct stages that 

lead to cell damage. The ischemia phase can be characterized as the inhibition of 

oxygen flow to the organ, which leads to the accumulation of metabolic intermediates. 

When reperfusion occurs and oxygen flow is restored to the organ, these intermediates 

react with oxygen to produce oxygen radicals, namely superoxide (O2
ˉ) and hydrogen 

peroxide (H2O2) which leads to uncontrolled oxidation of cells. For example, during 

ischemia, ATP is catabolized into ADP and AMP, which leads to an abnormally high 

accumulation of hypoxanthine. When hypoxanthine reacts with oxygen of reperfusion, 

xanthine oxidase catabolizes hypoxanthine to xanthine which generates O2
ˉ, a free 

radical. Xanthine is further catabolized to uric acid by xanthine oxidase and more O2
ˉ is 



also generated, which causes excessive oxidative stress on cells5.  

  IRI can be reduced if certain reagents can suppress free radical generation or 

scavenge them. Allopurinol, an inhibitor of xanthine oxidase, which was used mainly for 

clinical treatment of gout may also have beneficial effects on ischemia-reperfused 

kidneys5, 6. However, Bussmann et al. reported that Allopurinol did not exert protective 

effects on the kidneys of rats subjected to ischemia-reperfusion injury7, Therefore, there 

is yet to be a universally successful result of using allopurinol to treat IRI.   Superoxide 

dismutase (SOD), however, could be more effective in treating renal IRI, as it is an O2ˉ 

scavenger. In 1993, Pollak et al. found that post-operative renal function did not change 

when human recombinant SOD was administered immediately prior to renal allograft 

and 1 hour after it in a randomized double-blind trial8. In 2001, Yin et al reported that 

Sod gene transduction minimized ischemia-reperfusion–induced acute renal failure9. 

Therefore, SOD plays an inclusive role in renal IRI, as almost no findings have been 

published regarding the topic since. This also indicates the urgency of finding AKI 

interventions, as hundreds of thousands of patients experience this life-threatening 

illness every year.  

  Vitamin B12 (B12, cobalamin) has been shown to exhibit a SOD mimetic activity 

which scavenges superoxide free radicals10. In a reverse direction, B12 deficiency has 

been found to result in lower SOD activity in livers of C57BL/6 mice11. In addition to its 

antioxidant effect, B12 has anti-inflammation and autophagy properties, as it is involved 

in the production of S-Adenosyl Methionine (SAM) 12, the universal donor to over 100 

DNA, protein, and lipid methylation reactions13. More specifically, B12 is a cofactor for 

the conversion of homocysteine to methionine, which is then converted to SAM. 



Therefore, the addition of B12 reverses impaired autophagy caused by high 

concentration of homocysteine resulting from B12 deficiency in mouse astrocytes15. 

SAM additionally inhibits the expression of tumor necrosis factor-alpha (TNFα), an 

inflammatory protein induced by lipopolysaccharides (LPS) in human leukocytes.   

  Based on these previous findings, the first objective of my study was to test 

whether B12 has a beneficial effect on hypoxia/reperfusion injury and the mechanism(s) 

involved in the effect of this molecule in vitro.  

Methods 

Cell culture, In vitro hypoxia/reperfusion (H/R) experiment: BU.MPT cells of the 

mouse kidney proximal tubular epithelial cell (PTEC) line15, established by Dr. JS Levine 

was maintained in DMEM medium supplemented with 10% fetal bovine serum (FBS) 

and 10 units/mL of interferon-γ (IFN-γ) at 37 ºC. In preparation for the experiments, cells 

were grown to ≥90% confluence in a humidified 5% (v/v) CO2 atmosphere at 39 ºC in 

the absence of IFN-γ containing 10% v/v FBS. In this condition, BU.MPT cells behave 

like primary cultures of mouse kidney PTEC15. After confluence, cells were starved for 

24 hours with 0 % FBS and were randomly divided into 4 groups. The first group of cells 

grew in a normal culture condition of 21% oxygen and medium with 10% FBS and 

4.5g/L glucose. The second cell group grew in normal culture conditions with 0.3µM 

vitamin B12. The third cell group grew in a H/R condition and the fourth group grew in a 

H/R condition with 0.3µM B12. The hypoxia condition culture took place in an anaerobic 

chamber equilibrated with approximately 1% O2, 5%CO2 and 94% N2 and media 

lacking glucose and FBS. After 3 hours under the hypoxia condition, the two 

experimental cell groups were returned to the normal culture condition with addition of 



glucose (4.5g/ml) and FBS (10%) for 1 hour, which was regarded as reperfusion. B12 

(0.3µM) was added to medium during 3-hour incubation.  At the end of the experiments, 

medium and cells were collected for analysis. The dosage was chosen based on other 

B12 literature reports16 preliminary experiments which confirmed 0.3 µM provided 

significant decrease (50%) of Mcp1 expression 

Cell viability assay: Cells were cultured in 96-well plates and received the treatment 

described above. Then, 10 μl of CCK-8 solution (Sigma) was added to each well (1/10 

dilution) and the plates were further incubated for 3 hours. The absorbance was 

measured at 450 nm using a microplate reader (SpectraMax M5 Microplate Reader, 

Molecular Devices). The mean optical density (OD) of five wells in the indicated groups 

was used to calculate the percent cell viability according to the following formula: 

Percent cell viability = OD treatment group/OD control group.  

Western blot: Fresh cultured cells were lysed in radioimmunoprecipitation assay buffer 

(RIPA) buffer and protein concentration was determined by BCA protein assay kit 

(Thermo scientific, IL). Total protein of 20 to 60 µg/lane were subjected to 10%–20% 

SDS-PAGE, electrotransferred onto PVDF membranes, The antibodies used in the 

study were:  phospho-Histone H2A.X (Ser139) (#9718, 20E3, Cell Signaling), cleaved 

Caspase-3 (Asp175)( #9664, 5A1E, Cell Signal ), caspase3 (9665; Cell Signaling 

Technology),p-Chk1 (Ser345; 2348; Cell Signaling Technology), β-actin (13E5; Cell 

Signaling Technology). The intensity of the targeted protein band was evaluated using 

Image Studio Software (San Francisco, CA). Individual protein level was quantitated 

relative to the -actin level in the same sample and further normalized to the respective 

control group, which was set as one. 



Quantitative RT-PCR: Total RNA from cells was extracted using Trizol (Life 

Technologies, St. Paul, MN) following the manufacturer's instruction. NanoDrop 

spectrophotometer method and gel electrophoresis was used to check quantity and 

quality of RNA. mRNA was quantified with TaqMan real-time quantitative RT-PCR 

(7500 real time PCR system, Applied Biosystems, Foster City, CA) by using one-step 

RT-PCR Kit (Bio Rad, Hercules, CA) with 18s as reference genes in each reaction for 

mouse tissue.  

Statistical analysis:  Experiments were carried out 4 plates (P100) per group, and 

experiments were repeated two times.  Data are presented as mean ± SEM.  

Multifactorial ANOVA test was used with the program JMP 12.0 (SAS Institute Inc. Cary, 

NC).  Post hoc analyses were done using the Tukey–Kramer Honest Significant 

Difference test. Differences were considered to be statistically significant with p values 

less than 0.05. 

 

Results 

 

Vitamin B12 inhibits hypoxia/reperfusion (H/R) induced inflammation, fibrosis, 

DNA damage response, and apoptosis in cultured mouse proximal tubule cells.  

To investigate the effects of vitamin B12, experiments were performed on mouse 

proximal tubule cells17. B12 prevented cell death induced by H/R and it had no effect on 

control cells (Fig. 1A). In addition, the expression of inflammatory marker genes, 

including Mcp1 (monocyte chemoattractant protein 1), Il6 (interleukin 6) and Nos2 

(inducible nitric oxide synthase).  In addition, Tgf1 (transforming growth factor beta-1, 



an apoptosis and fibrosis marker18) and Fibronectin (a fibrosis marker) was upregulated 

by H/R whereas the addition of B12 suppressed this upregulation (Fig. 1 C,D,E,F). B12 

had no effects on the expression of Il6, Nos 2, Tgf1, and Fibronectin in the control 

cells. In contrast, B12 also significantly suppressed the level of Mcp1 transcript in 

control cells, which requires further examination to understand its mechanism. (Fig. 1B). 

On western blots, I found that cleaved- caspase-3(c-Cas3, apoptosis marker) was 

upregulated by H/R but the addition of B12 decreased its expression. Lastly, p-H2A.X 

(phosphorylated histone 2AX, hallmark of DDR) protein levels increased by H/R, and 

the addition of B12 decreased the level of the proteins (Fig. 1G) in H/R conditions, but it 

had no effects on proteins levels in control cells.  

 

Discussion 

  In this study, B12 executed protective effects on injuries induced by H/R in 

mouse proximal tubular cells by significantly decreasing inflammation, fibrosis, DDR and 

apoptosis induced by H/R. Proximal tubule cells were used for this study because 

epithelial cell injury associated with H/R is most sensitive in proximal tubule cells in 

most animal models of ischemia19 .They are most sensitive to H/R due to limited 

glycolytic capacity. These cells preferentially utilize lipids over glucose for energy and 

are rather gluconeogenic. This leads to the inability to maintain normal ATP levels under 

oxidative stress.  

 As a response to the injury induced by H/R, cells induce a cascade of 

inflammatory signals in order to recruit macrophages, neutrophils and other 

proinflammatory stimuli to the cell20. Although inflammation is an important physiological 



process to control damage and clear the injured cells, but often it overdoes and causes 

further damage of tissues. My results demonstrated that B12 treatment during the H/R 

condition significantly inhibited inflammation, as transcription level of Mcp1 decreased 

when B12 was added. Because Mcp1 is a protein involved in the recruitment, regulation 

of migration and infiltration of macrophages to the site of injury, decreased expression 

of this gene leads to suppressed inflammation and protects renal cells form further 

damage, thus preventing kidney damage. In addition, because of B12’s role of inhibiting 

transcription of the inflammatory response genes Il-6 and Nos2 (coding inducible nitric 

oxide synthase) in H/R conditions, there is evidence that its properties are reno-

protective. Lastly, due to B12’s capacity of inhibiting inflammation, it is an important 

treatment to prevent allograft kidney rejection during kidney transplant, as organ 

rejection is defined by excessive inflammation and this is one of the main causes of 

ESRD21.  

  In addition to inflammation, fibrosis (or the formation of excess fibrous connective 

tissue) was suppressed in by B12, as was demonstrated by the decreased transcription 

level and expression of Fibronectin, the glycoprotein responsible for wound healing 

through fibrosis21. Fibrosis also plays a critical role in IRI as an extension of the 

inflammation that occurs. The overproduction of Fibronectin and collagen causes 

fibrosis, and this excessive scar tissue formation significantly impairs cellular function22. 

Taken together, my data regarding inflammation and fibrosis suggests that B12 has 

potential to be a therapeutic agent for preventing the transition from AKI to CKD.  

  The data also provided evidence that B12 can reduce DDR. DDR plays a crucial 

role in cell death during IRI as a result of ROS. The ROS cause excessive oxidative 



damage on the cell, including degradation of DNA through oxidation of nucleic bases 

and DNA strand breakage. The rate of oxidative DNA damage is inversely related to life 

span of organisms so extreme oxidative stress results in cell dysfunction and death23. 

Therefore, the application of a ROS scavenger is critical for cell health. Because p-

H2AX, phosphorylated histone variant 2AX is a marker of DNA damage24, inhibited 

levels of H2AX indicated that there was suppressed DNA damage in the cells with B12.  

  Apoptosis was measured by cleaved caspase 3 (c-Cas3) and because H/R 

increased c-Cas3, but the addition of B12 to H/R conditions decreased it, suggesting 

that B12 inhibited apoptosis in this study. The effect of B12 on O2
- is under investigation 

now.  

Conclusion 

  The current data indicates that B12 may execute beneficial effects in IRI by 

inhibiting damaging factors/pathways; therefore, it is a promising treatment for AKI.  The 

in vitro data clearly show the B12 inhibits inflammation, fibrosis, apoptosis and DDR in 

proximal tubule cells.  It is also possible that B12 may inhibit these processes in other 

cell types, like endothelial cells and/or monocytes. Because multiple cell types and 

multiple factors/pathways are implicated in IRI in vivo, the precise role of individual cell 

type and/or factor is unclear.  A future experimental approach such as studying single 

cell RNA-seq25 could provide crucial information to better understand the role of 

different cells and the mechanism through which IRI occurs and B12 functions.  At any 

rate, although dietary absorption of B12 is complex and limited, there is no toxicity of 

high dose B12 has been indicated.  Further studies on its preventive and therapeutic 

use for IRI is warranted. 
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Figure 1. Vitamin B12 increases cell survival and inhibits Hypoxia/reperfusion (H/R) 

induced inflammation, fibrosis, DNA damage response (DDR) and apoptosis in proximal 

tubule cells.  

A) Relative cell viability measured by Cell Counting Kit-8. B-F) mRNA level of 

inflammatory and fibrotic genes. G) Western blot (left panel) and densitometric 

quantitative results (right panel) of p-H2A.X and c-Cap3/Cas3 in cells in four groups of 

cells. *p<0.05, **p<0.01. n=8. 



Legend 

con=control. H/R = hypoxia/reperfusion. B12 = vitamin B12. 

Mcp1: monocyte chemoattractant protein 1, Il6: interleukin 6, Nos2: inducible nitric oxide 

synthase, Tgfβ-1: transforming growth factor beta 1, p.H2AX: phosphorylated histone 2AX 

variant, c-Cap3/Cas3: cleaved capase3 /caspase-3  

 

 

 

 


