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A framework for incorporating DTI Atlas Builder registration into Tract-Based 
Spatial Statistics and a simulated comparison to standard TBSS 
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Abstract - Tract-based spatial statistics 

(TBSS) is a software pipeline widely used in 
comparative analysis of the white matter 
integrity of groups of diffusion tensor 
imaging (DTI) datasets. However, several 
components of TBSS have been criticized 
over the years. Many of these criticisms 
stem, in part, from its white matter 
skeletonization and projection and the lack 
of directional data in its calculations. In 
addition, currently there exist no accepted, 
unbiased methods for comparing TBSS to 
its counterparts, and there is clearly a need 
for a more intuitive user-friendly software 
interface for running TBSS. In this study, I 
have altered existing diffusion atlas building 
software and integrated it into TBSS named 
DAB-TBSS (DTI Atlas Builder Tract-Based 
Spatial Statistics) by using advanced 
registration offered by DTI Atlas Builder and 
incorporating blurring into the skeletal 
projection step. Here, I also propose a 
framework for simulating population 
differences for diffusion tensor imaging 
data, providing a more substantive means 
of empirically comparing DTI group analysis 
programs such as TBSS 

 
Overview of TBSS 

Tract-based spatial statistics is an open-
source tool in the FMRIB Software Library 
(Jenkinson et al, 2012), developed at the 
FMRIB at Oxford. The purpose of this tool 
is to identify statistically significant 
differences in white matter neural tracts 
across groups of medical images of the 
brain. Given a population of test images 
and control images, TBSS can find the 
white matter tracts that show areas of 
statistically significant differences between 
the white matter integrity of these groups, 

quantified by a one-dimensional 
measurement of DTI (usually fractional 
anisotropy, FA). 

TBSS works in a multi-step process. 
From a given DTI or DWI (Diffusion-
Weighted Imaging) dataset, TBSS 
processes FA maps derived from the DTI 
datasets in a four-step process. First, they 
are preprocessed; this means that the data 
is scaled and presented to the user in such 
a way as to make quality control easier. 
Second, each subject is registered via 
deformable registration into the MNI152 
(Montreal Neurological Institute 152) 
standard space [11] (in preceding this step, 
the user may optionally affine align every 
image to the most representative subject in 
the group, then register the resulting 
images to MNI152). Third, from these 
deformably registered FA maps, TBSS 
creates a mean FA image and estimates a 
white matter skeleton that runs through the 
centers of all major white matter tract 
regions (this same skeleton, found from FA, 
would also be used were the user tests 
non-FA measurements). Fourth, TBSS 
projects the maximal FA values of all 
subjects onto the skeleton and displays 
areas on the skeleton in which there is a 
statistically significant difference between 
each group of subjects. This process is also 
detailed on the FMRIB website [10].  

 
Overview of previous research and 
suggestions for improving TBSS 

While TBSS is easy to use, its flaws have 
been discussed and expounded upon 
extensively in past studies. The risks of 
TBSS proposed by its original authors 
(Smith et al, 2006) were issues with respect 
to the extent of spatial smoothing, the 
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inclusion of grey matter regions within the 
FA skeleton projection, and interpreting 
regions of crossing and neighboring tracts. 
Smith et al further suggested that potential 
areas of improvement were to use the full 
diffusion tensor information rather than just 
FA, at multiple points within the TBSS 
pipeline. 

Later studies expanded on these and 
suggested different practices for using 
TBSS. In general, it is the consensus that 
registration is improved through the use of 
directional data. (Bach et al, 2014) suggest 
using DTI-TK (available at 
www.nitrc.org/projects/dtitk) as an alternate 
registration method, and has the potential 
to improve registration results since it is 
tensor-based; similarly, (Schwarz et al, 
2014) analyzed the use of the ANTS-SyN 
algorithm, which also uses directional data 
in the application of the deformable 
registration. 

The skeleton projection step has been a 
widely criticized component of TBSS, but 
there is less consensus about the ways in 
which it should be addressed. This step is 
used to account for any potential 
misalignments between subjects and the 
skeleton, and it does so by projecting the 
maximal FA value within a certain range 
orthogonal to the skeleton onto the 
skeleton. (Van Hecke et al., 2010) pointed 
out that the area with the highest FA values 
has never been verified to be an area of 
particular interest within white matter tracts. 
(Zalesky et al, 2011) introduced a metric for 
assessing this skeleton projection step, 
going on to conclude that its alignment of 
maximum FA values comes at the expense 
of aligning voxels that are anatomically 
concordant; maximum FA values do not 
necessarily represent the center of a tract. 
(Schwarz et. al, 2014) suggested to do 
away with the skeleton projection step 
entirely, in favor of stronger registration 
techniques that do not require as much 

alignment correction. (Bach et al, 2014) 
outlines the differences between white 
matter skeletons upon variation of the 
threshold, suggesting that this be chosen 
on a case-by-case basis. While there is 
theoretical work happening now that would 
be able to incorporate directional data in the 
creation of a skeleton, no tools have been 
built that are capable of doing this. The 
problems with the current skeletonization 
method have been well-documented, and 
while some best practices are agreed upon 
(such as threshold selection), there are no 
feasible alternatives to address many of 
these criticisms. 

It is worth mentioning that one 
component that has not received as much 
attention in the study of the TBSS pipeline 
has been the use of measurements of DTI 
other than FA. While there have been some 
investigations into this in the context of 
other studies (Nave et al, 2011), Axial 
Diffusivity (AD), Mean Diffusivity (MD), and 
Radial Diffusivity (RD) have rarely been the 
focus of studies of TBSS, even though 
cross-group differences in these values 
may indicate areas that are affected 
uniquely by disease or drug use, which FA 
may fail to detect. 

FA, however, is essential in the use of 
TBSS because it is not sensitive to the 
diffusivity of cerebrospinal fluid, whose 
diffusion tensors would have a larger 
magnitude of diffusion but are undirected. 
Thus, when TBSS selects the largest value 
perpendicular to project to the skeleton, 
there is little risk that its selected value is 
far outside the center of a white matter 
tract. The vectors mapping the maximum 
FA value perpendicular to the tract to the 
skeleton is provided in a separate output 
file; currently, TBSS is designed to use 
these vectors when projecting any 
measurement of DTI onto the skeleton. The 
use of virtually any measurement other than 
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FA thus risks picking up values outside of a 
white matter tract. 

 
Proposed alterations of TBSS 

As said previously, TBSS essentially 
throws out directional tensor information in 
its initial steps and focuses on fractional 
anisotropy. Even so, this decision is, in 
many ways, practical; after all, FA is a the 
major measurement employed in studies of 
white matter integrity or pathology. How, 
then, could directional data be enhancing 
such studies within the framework of 
TBSS? 

As stated above, registration is the most 
straightforward way for this to happen. 
Several methods to register DTI images 
have been proposed that are superior to the 
FA-based registration that TBSS uses. 

Additionally, one could imagine the use 
of a decomposition algorithm in estimating 
the white matter skeleton, and, beyond that, 
incorporating directional data when finding 
projection vectors to the white matter 
skeleton. However, such sophisticated 
skeleton extraction and projection 
algorithms are beyond this study. 

If incorporating directional data into the 
later steps of TBSS is not straightforwardly 
feasible, then a worthwhile investigation 
may be to research the use of DTI 
measurements other than FA into the 
skeletal analysis step. TBSS already 
provides this capability, but as stated 
previously, very few studies have used this 

capability likely due to lack of ease-of-use. 
With TBSS, one may use projection paths 
derived from the locations of maximal FA 
values to project AD, RD, or MD values 
onto the skeleton. 

While the importance of the maximal FA 
value in proximity of the white matter 
skeleton has been questioned (see above), 
thus far no other practical and superior 
heuristic for selecting an FA value to project 
on the skeleton has been proposed. The 
AD, MD, and RD values within the same 
voxel are not indicative of particularly 
important locations at all; the highest FA 
value does not necessarily correspond to 
the highest MD, RD, or AD value within the 
white matter tract. Selecting the maximal  
(or minimal) MD, RD, or AD could easily 
lead to an area outside of the white matter 
tract. 

One interesting variation on the 
standard TBSS projection of non-FA 
measures would be to select a Gaussian 
area of the MD, RD, or AD image at the 
voxel of the maximum FA value. This gives 
more assurance of the projected value as it 
is computed over a a larger area. 
Furthermore, this method of Gaussian 
sampling of an area could be used for the 
FA value only, which would, if anything, 
remove noise from the projected values.  

Thus, there are at least two concrete 
areas in which TBSS may be improved: its 
registration method, and the projection of 

 
Figure 1: A rough guideline of the steps for DAB-TBSS 
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diffusion measures other than FA along the 
projection path. 

The proposed pipeline, DAB-TBSS, 
addresses these. First, it uses the ANTS-
SyN algorithm within DTI-Reg for 
registration to an iteratively improving 
average DTI image as implemented in 
DTIAtlasBuilder (Verde et al, 2014). ANTS-
SyN was selected in DTIAtlasBuilder as it 
has shown in numerous comparison studies 
to be the best performing registration 
algorithm for 3D medical imaging data. 
Secondly, DAB-TBSS computes the local 
Gaussian average of DTI measures at the 
location of of the maximal FA value that is 
then projected to the white matter skeleton, 
instead of the maximal FA value itself. 
Thus, a local average of AD, MD, or RD is 
obtained, rather than the value directly 
underlying the voxel of maximal FA 

 
DAB-TBSS Pipeline Details 

DAB-TBSS performs step-by-step similarly 
to TBSS; the instructions for TBSS can be 
found in the TBSS user guide 
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/Us
erGuide). To make the organization of 
results easier, the overall setup for folders 
and naming conventions in DAB-TBSS 
have been kept the same. Though there 
might be some overlapping descriptions 
with the FSL TBSS user guide, this section 
will describe the entire proposed DAB-
TBSS from beginning to end for clarity. 

DAB-TBSS itself is primarily a set of 
Unix shell scripts (bash) that perform 
function calls to DTIAtlasBuilder and the 
FSL library.  
Linking the output of DTI Atlas Builder with 

dab_tbss_1 
dab_tbss_1 is the script that 

preprocesses DTI datasets, registers them 
to the same space as DTI Atlas Builder, 
then estimates and applies a mask to the 
results. This currently supports .nrrd, .nii.gz 
and .nii files. 

Gaussian average estimation with 
dab_tbss_2 

dab_tbss_2 is the script that estimates the 
fractional anisotropy, axial diffusivity, radial 
diffusivity, and medial diffusivity from each 
subject, optionally applies a Gaussian blur 
to each of these images, and compiles all 
eight into files which it outputs into a folder 
called “stats”. This can be run directly after 
the completion of dab_tbss_1.sh. 

When this is done running, there 
should be four new folders -- entitled FA, 
AD, MD, and RD -- which contain all of the 
image estimates (and their corresponding 
Gaussians, if applicable). Additionally, there 
should be a folder called “stats” which has 
the projected property maps “all_FA.nii.gz”, 
“all_RD.nii.gz”, “all_AD.nii.gz”, and 
“all_MD.nii.gz”, and their corresponding 
Gaussian files. These are 4D compilations 
of all measurement estimations of all 
subjects in a particular set, with the same 
mask (made from the mean FA) applied to 
each subject. Additionally, this script 
measures the mean values of these sets 
(though not the Gaussians) and puts the 
result into the stats folder. 
 

White matter skeletonization with 
dab_tbss_3 

This script estimates a white matter 
skeleton and projects the DTI measurement 
onto it. By default, the script will look for the 
Gaussian-blurred images from the previous 
step (assuming that they were generated) 
and project those onto the skeleton. If it 
finds no such images, it will project the 
standard values onto the skeleton. If 
Gaussian images were generated in the 
previous step, then projection of the 
standard values onto the skeleton can be 
forced with the argument “--nogaussian”,. 

 
Group analysis with dab_tbss_4 

This step separates the projected data into 
groups and finds the differences between 
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groups of subjects across the white matter 
skeleton. dab_tbss_4 requires a group file 
to run -- something indicating which of two 
groups each subject is in. 
 FSL requires that groups be 
distinguished with two particular files in the 
stats folder. If those files are present, the 
script will run automatically. However, when 
these are not present, the user is presented 
with a .csv file that is output in the main 
folder. The user is given instructions to edit 
the subjects listed in that folder and to 

categorize them into their proper groups. 
When dab_tbss_4.sh is run again, this .csv 
file is turned into the proper format. 

Following this, the script uses this output 
to run FSL’s randomize function, which 
finds differences in each group of subjects 
across the values projected onto the 
skeleton. 

 
Performance Evaluation via 

Simulation of Group Effects 
A problem with TBSS, or any such group 
comparison software, is quantifying whether  
any potential alteration to the pipeline is an 
improvement or not. In most cases 
(Schwarz et al, 2014; Bach et al, 2014), 
alterations are tested on datasets acquired 
by the research groups that conducted the 
study. However, since these datasets are 
usually typical to a particular kind of study, 
they are a poor way to test differences in 
the general case. If both TBSS and its 
proposed alterations find a false positive or 
false negative at a point along the dataset, 
it is necessary to point out a common 
weakness in both methods. 

 To address this, I created a novel 
Matlab-based simulation tool for group 
effects. This tool creates synthetic 
differences in a given set of diffusion tensor 
images. It works in three steps. First, a user 
selects the coordinates of anatomically 
corresponding places in each subject. 
Then, a sphere of an indicated radius is 
placed at the center of these coordinates. 
Finally, the principal eigenvalue of all 
tensors that fall within this sphere are 
multiplied by a Gaussian random value with 
a specified mean and standard deviation. 
Optionally, the user may also specify   
mean and standard deviation values to edit 
the magnitude of the second and third 

Figure 2: Sagittal view of results of DAB-TBSS 
atlas upon a 10% variation in the principal 
eigenvalue between the two groups tested. 
The displayed voxel indicates a statistically 
significant difference in AD values of both 
groups along the ventral, middle, and dorsal 
corpus callosum (p < 0.05).  

 

    
Figure 3: A sagittal view of the detected differences in AD values in TBSS upon a 0.05% variation in the 
principal eigenvalue. While this did successfully detect a difference in the middle corpus callosum (left, p-
0.0423), it detected false positives outside of the corpus callosum (p= 0.0096 for the middle and p= 0.015 for 
simulation < control). 
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eigenvalues. In order to maintain the 
isotropy of factors such as cerebral-spinal 
fluid, only tensors that exceed a certain 
fractional anisotropy are altered (usually, a 
threshold FA of 0.1 is acceptable). 

 
DAB-TBSS and TBSS comparison 

For this study, I randomly selected the DTI 
datasets of a group of 20 patients from a 
study on drug abusing mothers, acquired 
on a 3T Siemens scanner with 21-direction 
diffusion-weighted imaging. These were 
simulated to have differences in selected 
regions in their dorsal, middle, and ventral 
corpus callosum, with the following set of 
setting: (µ=1.005, σ=0.001); (µ=1.01, 
σ=0.005); (µ=1.02, σ=0.005); (µ=1.05, 
σ=0.005); (µ=1.10, σ=0.005); (µ=1.15, 
σ=0.005). Results from this simulation will 
allos us to look at varying magnitudes of the 
group difference for the principal 
eigenvalue. Thus, 20 patients were 
compared to 20 simulated sets, and so no 
other statistically significant differences 
outside those simulated would be predicted 
to occur across these groups. I ran all of 
these datasets through TBSS and DAB-
TBSS for both FA and AD values. 
 
Results 
The results of this study as presented 
below indicates that the AD values within 
DAB-TBSS were the most powerful 
indicator of the changes indicated, as it was 
the only indicator to successfully find 
statistically significant differences in all 
three of the simulated areas (p < 0.05). This 
is not surprising given that AD value is 
same as the principal eigenvalue, which is 
the value that is modified in the simulation.  
While the standard TBSS AD analysis 
indicated those areas as being statistically 
significant at much lower percentages, it 
also showed many false positives at many 
areas further away from the localized 
regions of the dataset. The FA 

measurements of the normal TBSS dataset 
only managed to detect statistically 
significant differences at the middle cortex 
upon a 15% change in its principal 
eigenvalue. The FA differences measured 
in DAB-TBSS did not detect any statistically 
significant differences. 
 

Discussion 
In this study, it was found that the proposed 
alterations of TBSS were more effective at 
detecting simulated differences in data 
without producing any false positives. We 
increased the magnitude of axial diffusivity 
in localized regions within the ventral, 
middle, and dorsal corpus callosum of 20 
DTI datasets. It was found that testing for 
these differences directly on AD values in 
DAB-TBSS successfully detected these 
changes at a 5-10% magnitude of change, 
without producing a false positive 
throughout the dataset. While TBSS 
detected these differences, it also produced 
a number of false positives throughout the 
dataset. The FA measurement on TBSS 
found differences in the 10-15% range 
without such false positives, while FA 
measurements in DAB-TBSS did not find 
these differences. Thus, the method, in this 
study, that found the simulated differences 
most accurately, was DAB-TBSS with AD 
measurements. This suggests that non-FA 

 
Figure 4: A sagittal view of the results of TBSS at 
x=91/181. Displayed are the detected significant 
differences in FA upon a 15% increase in the 
principal eigenvalue, the first value that 
successfully predicted differences in those areas. 
While p<0.05 in areas around the ventral and 
middle corpus callosum, the FA indicators failed to 
detect differences around the dorsal region. 
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measurements in TBSS are useful, but the 
previous registration method may have not 
been as accurate as the differences in 
ANTS. Further studies comparing DAB-
TBSS to TBSS would increase the number 
of subjects, finding how many subjects are 
necessary to detect more subtle differences 
in the data, as well as the sensitivity it has 
to detecting RD and MD differences.  
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