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Abstract 

Nataniel M. Holtzman: Predicting Lake Depths from Topography to Map Global Lake Volume 

(Under the direction of Tamlin M. Pavelsky) 

 

The depth of a lake affects its role in climate and biogeochemical cycling. There is a lack 

of lake depth data due to the difficulty of measuring bathymetry, which impedes the accurate 

inclusion of lakes in climate models and the assessment of global water resources and carbon 

storage. However, lake depths can be estimated from land topography, for which remotely-

sensed DEM data is available. We develop a simple statistical model to predict lake depth from 

two explanatory variables: the mean relief above the lake surface of an area around the lake, and 

whether the lake’s location was glaciated in the last ice age. The model is based on 328 lakes 

with known depths, located on all continents but Antarctica, and has an r2 of 0.57. We then apply 

this model to a database of over 200,000 lakes to produce global gridded maps of predicted total 

lake volume and average depth. The realistic depth estimates provided by our model can improve 

the accuracy of future studies of climate and water resources. 
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Introduction 

Lakes are important to climate, biogeochemistry, and ecology, and human activities. A 

lake’s depth modulates its role in all of these systems. Depth affects the lake’s residence time for 

nutrients and pollutants (Hollister et al., 2011), and what community of organisms can live in the 

lake. Knowledge of those factors is vital to models of biogeochemical cycles and of ecology. 

Data on residence time and water volume itself is also needed for regional water resources 

planning (Sobek et al., 2011). Recently, remote sensing has allowed for better assessments of 

lake occurrence on a global scale (Verpoorter et al, 2014). Such products are a step towards 

quantifying the total contribution of lakes to biogeochemical cycles, but without depth data we 

do not have a complete picture. Unknown lake depths produce significant uncertainty in regional 

and global estimates of carbon cycling (Sobek et al., 2011). 

Being filled with water, lakes have a greater heat capacity than land. Large lakes can 

delay the seasonal temperature changes on nearby land. Inclusion of the Great Lakes and other 

large lakes makes regional climate models more accurate (Long et al., 2007). The climate impact 

of small lakes is not well-studied, although it is known to be significant at least in Arctic areas, 

where abundant lakes can cover more than one-third of a region’s land surface (Martynov et al., 

2012; Rouse et al., 2005).  

Lakes are ignored in many global climate models that have coarse horizontal resolution 

(Subin et al., 2012). Regional models that do include lakes usually treat them in a very simplified 

manner, assigning all lakes the same depth. In an effort to improve on this representation, recent 

research has examined coupling RCMs to simple models of the internal thermal structure of 

lakes (Subin et al., 2012). Lake depth data becomes vital when using these coupled models. Even 
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if individual lakes are not resolved in a climate model, gridded values of lake depth and volume 

could be used in parameterizing the thermal properties of the land surface.  

The only way to measure the depths – and thus volumes – of lakes is to use sonar or other 

methods that require visiting the lake and surveying it from a boat. Lake bathymetry cannot be 

reliably measured remotely except in the case of very clear lakes. In this study, we explore a 

method to approximate a lake’s depth and volume, based on remotely sensed measurements of 

nearby land surface and the lake’s location. Previous studies of this sort of depth prediction have 

focused on single regions such as Sweden, Quebec, or the eastern United States (Sobek et al., 

2011; Heathcote et al., 2015; Hollister et al., 2011). In this paper we show that such a method 

works on a worldwide scale. We then apply this model to a database of over 200,000 lakes to 

produce global gridded maps of predicted average lake depth and total lake volume. 

Data and Methods 

Data 

In order to develop statistical relationships to predict lake depth, we require a substantial 

amount of training data.  We wrote a script to extract relevant information on lake depth and 

other variables from the World Lake Database website of the International Lake Environment 

Committee Foundation (ILEC), visiting each lake page and recording the lake name, area, 

latitude, longitude, maximum depth, and mean depth. The 481 lakes that had a mean depth were 

included in the training dataset. To obtain lake boundary information, we selected all the features 

of type “LAKE” from the Global Lakes and Wetlands Database (GLWD, Lehner and Doll, 

2004). This selection excludes reservoirs and wetlands. We performed a spatial join of the 

GLWD lakes with the ILEC data, joining each ILEC lake point to the closest GLWD polygon 

within 5 km. For lakes that did not match GLWD polygons, we manually corrected their 
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coordinates where possible.  The resulting dataset of 328 lakes constitutes our training dataset. 

Figure 1 shows the locations of these lakes, and Figure 2 (left column) compares their areas to 

the areas of all the GLWD lakes. The median training lake is larger in area than the median 

GLWD lake, with few training lakes on the scale of 1 km2 that is approximately the modal area 

among all GLWD lakes. Geographically, the training lakes are especially concentrated in the US, 

southern Canada, Argentina and Chile, Europe, and Japan. There is poor coverage of the Arctic, 

especially Siberia, and of mainland Asia in general, which is unfortunate as those are some of the 

regions with the densest concentrations of lakes. 

Methods 

We set out to study the relationship between a lake’s depth and the topographic relief in 

an area nearby the lake, obtained from a digital elevation model (DEM). We performed multiple 

linear regression in R with log(depth) as the response/dependent variable. The explanatory 

variables considered were mean, maximum, and minimum elevation near the lake; lake 

elevation; latitude; and lake area. We used the differences between topographic variables 

because it is the local relative topography that should affect lake depth. For each pair of 

topographic measurements 𝑚1, 𝑚2, we took log(|𝑚1 − 𝑚2| + 1). The logarithm is used to make 

the relationship with log(depth) more linear, and the absolute value and plus one are included to 

make sure the inside of the logarithmic expression is positive. We chose the best model, which 

contained two variables. 

To delineate the nearby area of consideration for measuring topographic variables, we 

constructed buffers around each lake polygon, with a width given by the formula identified by 

Heathcote et al., (2015):  
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Calculations involving elevation were done in Google Earth Engine, using two DEMs: ASTER 

GDEM from Global Emissivity Database version 3, and SRTM (Table 1) (Hulley et al., 2015; 

Jarvis et al., 2008). For each DEM, we calculated the mean, maximum, and minimum elevations 

in each buffer, and the elevation of each lake was estimated as the modal elevation within the 

lake polygon.  

The buffering and DEM calculations were repeated for all lakes in GLWD (not including 

reservoirs or lakes greater than 5000 km2 in area, whose mean depths and volumes were taken 

from ILEC). For each DEM, we applied the corresponding model to predict the log depths all 

lakes and then their depths, and the predicted mean depth was multiplied by the known area to 

calculate a predicted volume. The lakes were aggregated into 1 degree by 1 degree square grid 

cells. For each cell, total lake area and total predicted lake volume were calculated. Total volume 

divided by total area gives an area-weighted average of lake depth. Since the prediction error in 

log(depth) is approximately normal for any lake, the error in depth is approximately lognormal. 

The error in total volume or average depth, then, is the sum of many lognormal variables, which 

cannot be expressed mathematically in a simple way. If there are a large enough number of lakes 

in a cell, the error in total volume will be approximately normal due to the Central Limit 

Theorem, but many grid cells contain only a few lakes. For this reason, a Monte Carlo method 

was used to assess errors in the gridded product. For each cell, the simulated log depth of each 

lake was sampled from a normal distribution centered at the model-predicted value, with 

standard deviation given by the model standard error. Then total volume was calculated based on 

these simulated log depths. This simulation was performed 2000 times for each cell to obtain a 
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distribution of predicted total volume. Several quantiles of this distribution were recorded in 

order to describe the error in predicted total volume. 

Results 

Of the 8 explanatory variables tested here, we developed a model with 2 variables. Table 

2 summarizes the relationship between pairs of topographic measurements and log(depth). The 

best predictor is log(|𝑚𝑒𝑎𝑛 − 𝑒𝑙𝑒𝑣| + 1), the mean relief of the buffer above the lake surface, 

which we will henceforth call meanelev. To assess whether the model should contain more 

variables than meanelev and an intercept, we found the correlations between the other variables 

and the residuals of the meanelev model (Table 3). The other topographic variables were not 

significant, as many of them are highly correlated with meanelev itself. The variable most 

strongly correlated with the residuals was latitude. However, the latitude effect is not large and 

becomes even smaller (although still statistically significant) when we include the dummy 

variable isglacial, which is 1 if a lake was covered by the ice sheet at the Last Glacial Maximum 

and 0 otherwise, using LGM ice extent shapefiles from Ray and Adams (2001). The increased 

depth of lakes in high latitudes (controlling for topography) can be explained by glacial lakes 

being deeper. Also, we were not confident that a possible latitude effect would be linear, as 

variables such as precipitation change non-linearly with latitude. More data on low-latitude lake 

depths are needed to assess whether there is a latitude effect on depth. There was no significant 

interaction between meanelev and either latitude or isglacial. 

The 2-variable model (meanelev and isglacial) is summarized in Table 4 and Figure 3.  

To determine whether to include more variables, we performed all-possible-subsets regression 

with a maximum of 8 variables, using the leaps R package. Table 5 compares the fit of the 2-

variable model with the model from all-possible-subsets regression with the best (lowest) 
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Bayesian Information Criterion (BIC), for both DEMs. The models with more variables are 

definitely better fits, but only by a small amount. (Adding more variables raised adjusted r2 from 

0.57 to 0.61 for ASTER, and 0.58 to 0.64 for SRTM.) The more variables the model includes, 

the more susceptible it is to overfitting and the less scientifically interpretable it is. We were 

particularly wary of overfitting because the distributions of the predictors and of lake area in the 

training data are quite different from those of the total GLWD lakes whose depths we aim to 

predict (Figure 2). For these reasons we chose to focus on the two-variable model. We also tried 

fitting the same two-variable model on each continent individually (Figure 4). The coefficient of 

meanelev was similar between Asia, Europe, and North America, and higher in South America. 

Africa has a lower value, but a large standard error of the coefficient as there are relatively few 

African lakes in the dataset. More depth data is needed to study regional differences in the 

relationship between topography and lake depth. 

The gridded maps of our lake volume predictions are shown in Figures 5 and 6. The 

regions with high lake volume per land area, aside from very large lakes such as the Caspian Sea, 

include Northern Canada, the west coast of North America the southern Andes, Scandinavia, the 

southern Tibetan Plateau, and northeastern Siberia. When we divide by lake area to get average 

depth, the maps are even more closely associated with terrain, largely following mountain ranges 

as one would expect from our elevation-based model. Because of the glacial component of the 

model, high-latitude mountains such as the Putorana Plateau in central Siberia stand out more. 

Errors in the gridded predictions are closely related to the number of lakes in a grid cell and 

whether all those lakes have similar volumes. The lowest errors are found where there are many 

small-to-medium sizes lakes per cell, mostly in northern latitudes. The highest errors are found 

where there is just one lake in a cell, which is true of 15% of ASTER-predicted cells. ASTER-
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based gridded volume predictions tended to be slightly higher than their SRTM-based 

counterparts (Figure 6). The mean difference was 0.013 log10(km3), which corresponds to 

ASTER predictions being 3% higher than their SRTM equivalents. That is statistically 

significant in a paired t-test with p < 0.001. The latitudinal distributions of total lake area and 

volume (figure 8) are dominated by the Caspian Sea and North American Great Lakes (between 

40 and 50 degrees north) and the African Great Lakes (between 0 and 10 south). There is a zone 

of roughly constant high lake area between 50 and 70 degrees north, but volume is much higher 

in its southern part than its northern part. There are zones of large volume relative to area at 20-

10 S and 40-50 S, indicating that lakes in those latitudes are predicted to be especially deep, 

probably due to the presence of mountains there. 

Discussion and Conclusion 

Our results suggest that it is possible to estimate lake depth for individual lakes around 

the world with relatively high accuracy, using a small number of variables in a simple statistical 

model based on land topography. All that is needed to predict a lake’s depth with our model is an 

outline of the lake’s approximate extent, publicly available elevation data from the ASTER or 

SRTM DEM, and a map of LGM ice sheet extent. The model can be applied to better constrain 

estimates of water resources in areas with known lake extent but unknown lake depth. It can also 

be used to produce lake depth estimates for use in regional climate models, which should 

increase RCM accuracy compared to using the same depth for all lakes.  

The global gridded estimates of lake water volume and average depth that we produced 

might be used in global climate models and global studies of carbon cycle dynamics. However, 

they are definitely an underestimate, because they are limited to the lakes in GLWD. GLWD 

intends to provide a global inventory of lakes with areas greater than 1 km2. According to 
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Verpoorter et al. (2014), such medium and large lakes make up a minority of the world’s lakes, 

but about 60% of total lake area. Also, GLWD undercounts lakes in its size range relative to 

Verpoorter et al.’s GLOWABO inventory, with about 250,000 lakes compared to about 350,000.  

As such, future advances could include applying our model to the Verpoorter et al. dataset or a 

similar product.   
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Figure 1. Geographic distribution of lakes in training dataset. 
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Figure 2. Comparison of training dataset with full GLWD. 
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Figure 3. Plots of actual vs fitted ln(depth), and histograms of residuals from regression. 

 

 
Figure 4. Variation in the meanelev coefficient of the model between continents. Error bars are 1 

standard error. 
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Figure 5. 1 degree by 1 degree gridded maps of model-predicted lake water storage using SRTM 

DEM. 
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Figure 6. 1 degree by 1 degree gridded maps of model-predicted lake water storage using 

ASTER DEM. 
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Figure 7. Relationship between ASTER-based and SRTM-based gridded lake water volume 

estimates 
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Figure 8. GLWD lake area and predicted total volume by latitude. Lines are 3-degree moving 

averages. 
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Table 1. DEM comparison. 
 

DEM SRTM ASTER 

Elevation measurement 

method 

Interferometric synthetic 

aperture radar 

Stereo pairs of IR/Visible 

images 

Regions not covered 
North of 60 degrees 

latitude 

New Zealand and other 

Pacific islands 

Spatial resolution (m) 90 100 

 

 

 

Table 2. Correlations with log(depth) of differences between pairs of topographic variables, 

transformed with f(x) = log(|x|+1).  (ASTER shown here; SRTM is similar.) 
 

  Max Mean Min 

Elev 0.62 0.74 0.26 

Max  0.58 0.62 

Mean   0.69 

 

 

 

Table 3. Correlations of predictor variables with residuals of 1-variable model. All other 

variables had correlations less than 0.15 in magnitude. 
 

DEM 

used Area abs(Latitude) isGlacial 

ASTER -0.18 0.23 0.21 

SRTM -0.13 0.28 0.25 

 

 

 

 

Table 4. Summary of final models. 

 

DEM used meanelev coef isglacial coef Intercept r2 Number of lakes 

ASTER 0.82 0.42 -0.99 0.57 328 

SRTM 0.83 0.49 -1.06 0.59 319 
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Table 5. Model fit comparison. RMSE was calculated using leave-one-out cross validation. 

Everything is comparable between the two DEMs except for the BIC (as they have different 

numbers of lakes). 

 

ASTER   

  2-var model Best-BIC model 

# of vars 2 6 

Adj. r2 0.57 0.61 

BIC 933 917 

Resid SE 0.97 0.92 

Xval RMSE 0.98 0.93 

   

SRTM   

  2-var model Best-BIC model 

# of vars 2 4 

Adj. r2 0.58 0.64 

BIC 901 866 

Resid SE 0.96 0.90 

Xval RMSE 0.97 0.91 
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