
ABSTRACT 
 
 
Chromosome segregation must occur with fidelity to maintain genome stability and prevent 

aneuploid disorders. During segregation, the kinetochore is assembled onto centromeric DNA 

and achieves the attachment of microtubule plus ends, which provide the force to physically 

segregate chromosomes to opposite poles of the cell. The kinetochore is a macromolecular 

protein/DNA machine composed of 8-9 biochemical complexes, the DNA-binding components 

of which define the inner kinetochore, and the microtubule-binding components of which define 

the outer kinetochore. The 3D protein architecture of the inner kinetochore in living cells 

remains poorly understood due to the resolution limits of live-cell imaging techniques. Here, we 

use pairwise, in vivo fluorescence microscopy to determine the position of kinetochore 

components relative to the centromere specific histone H3 variant, Cse4, with nanometer 

resolution. In addition, we complement kinetochore focus analysis with DNA dynamics 

simulations to propose a connection between chromatin dynamics and the observed anisotropy of 

the inner kinetochore proteins, Ame1 and Cse4, relative to the outer kinetochore proteins, Ndc80 

and Nuf2. 

 
INTRODUCTION 
 
 
The centromere is the region of the chromosome responsible for the segregation of chromosomes 

to opposite poles during mitosis. In the budding yeast saccharomyces cerevisiae, the centromeric 

DNA spans a ~150 bp region that associates with the histone H3 variant Cse4, specifying 

kinetochore assembly (Biggins 2013). The kinetochore physically links chromosomes to spindle 

microtubule (MT) plus ends. It functions to hold sister chromatids together until proper 

chromosome biorientation has been achieved and couples the force of MT polymerization and 
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depolymerization to chromosome segregation (Pearson et al. 2001; Santaguida and Musacchio 

2009; Joglekar et al. 2010). 

 
These functions are related to the specific arrangement of individual protein components on the 

DNA surface. The small size of the kinetochore has made it difficult to accurately visualize these 

structures in living cells using microscopy. One kinetochore is roughly 68 nm in length and 35 

nm in diameter (Joglekar et al. 2009). Furthermore, one spindle contains 16 kinetochores that 

cannot be distinguished from each other. Tagged kinetochores form a single focus until 

metaphase, when they separate into two foci (Goshima and Yanagida 2000; He et al. 2000; 

Pearson et al. 2001). While the kinetochore-MT interface has been well characterized, the nature 

of kinetochore attachment on chromatin remains poorly understood. Knowing the structure of the 

kinetochore at the centromere in living cells will be critical to understanding mechanisms 

responsible for kinetochore function.  

 
Mammalian kinetochores attach to multiple microtubules (20-25); In contrast, budding yeast 

kinetochores assemble on “point centromeres,” with each kinetochore attaching to a single 

spindle microtubule. The entire spindle contains 40 microtubules, including the 32 kinetochore 

microtubules and 8 interpolar microtubules (Santaguida and Musacchio 2009; Biggins 2013). 

The kinetochore is assembled from 8-9 distinct multicomponent complexes: CBF3, Ndc80, 

MIND, Spc105, Ctf19, DASH, Mif2 and COMA. Here, we define the inner kinetochore as the 

components that closely associate with centromeric DNA, and the outer kinetochore as those that 

associate with microtubules. The region spanning sister kinetochores is called the 

pericentromere. It is enriched in the SMC proteins cohesin and condensin, which organize DNA 

into compact loops (Yeh et al. 2008). While the kinetochores of yeast are simplified compared to 
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those found in other eukaryotes, most of the core components are conserved (Cheeseman and 

Desai 2008; Joglekar et al. 2008, 2009; Santaguida and Musacchio, 2009). 

 

The stereotypic nature of the kinetochore makes statistical analyses of the mitotic spindle 

feasible. While individual subunits are below the diffraction limit of 25 nm, the use of Gaussian 

fitting to determine centroids of associated fluorophore distributions has enabled mapping of the 

position of kinetochore proteins along the spindle axis with nanometer accuracy (Joglekar et al. 

2009). In this study, we use a pairwise, super-resolution fluorescence microscopy method and 

chromatin dynamics simulations paired with a microscope simulator to gain new insights into the 

structure of the budding yeast inner kinetochore.  

 
Electron micrographs of kinetochores show a structure that narrows to a dense cluster 

surrounding Cse4 (Gonen et al. 2012, Dimitrova et al. 2016). In vivo, the inner kinetochore 

complex COMA (Ame1) and Cse4 produce a focus that is more extended perpendicular to the 

spindle axis (anisotropic) than those produced by the outer kinetochore components Ndc80 and 

Nuf2 (Hasse et al. 2012). In the case of Cse4, this anisotropy is dependent on Pat1 and Xrn1 and 

therefore represents the presence of additional molecules around the centromere (Lawrimore et 

al. 2010; Hasse et al. 2013). Because the anisotropic focus produced by Ame1 is unaffected by 

Pat1 or Xrn1 deletions, it must be accounted for by another mechanism (Hasse et al. 2013).  

 
Experimental evidence and computer modeling support the idea that tension produced when 

sister kinetochores achieve biorientation is important for maintaining kinetochore-MT 

attachments (Gardner et al. 2005, Franck et al. 2007; Akiyoshi et al. 2010). The cell monitors 

this tension to identify and correct errors arising during the formation of attachments (Nicklas 
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and Koch 1969; Nicklas 1997). Previously, a physically accurate chromatin simulator has been 

used to show that the formation of DNA loops by condensin and cohesin creates tension along 

the pericentromere (Lawrimore et al. 2015). In addition, a deletion in either Bub1, a component 

of the spindle assembly checkpoint (SAC), or Sgo1, a protector of cohesion, is coincident with a 

loss of anisotropy at the inner kinetochore (Hasse et al. 2012). Taken together, these two findings 

suggest that changes in tension at the pericentromere may be associated with structural changes 

in the kinetochore.  

 
Here, we demonstrate that experimentally determined kinetochore position and focus dimensions 

can be recapitulated using a chromatin dynamics simulator run through a microscope simulator. 

This finding provides a feasible method for testing whether different chromatin configurations 

and conditions are consistent with kinetochore structural features observed using live-cell light 

microscopy.  

 

 
EXPERIMENTAL METHODS 
 
 
Strains and Growing Conditions 
 
 
Strains (Table 1) were grown in complete medium with a glucose carbon source at 32 

°C.  Homologous recombination was used to tag kinetochore proteins with GFP or RFP. With 

the exception of Cse4 and Ndc80, all kinetochore proteins were tagged at the C-terminus. Cells 

were grown to mid-log phase and re-suspended in synthetic media + 2% glucose immediately 

prior to imaging. 

 

Table 1. List of strains and plasmids used in study 
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Strain Genotype Source 

YEF473A trp1Δ 63 leu2Δ ura3-52 his3Δ 200 lys2-8 Δ 1 K.Bloom 

PH499A ura3-52, lys2-801, ade2-101, his3Δ200, leu2Δ1, trp1Δ63 Phil Hieter 

YBM536 PH499 + ndc10 K556R, K651R, K652R, K7799R-GFP::HIS Phil Hieter 

YPH1820 YBM1820 Cep3-GFP:HIS3 Phil Hieter 

pRB920 cut 2xGFP-Cse4:TRP1 R. Baker 

pKS390 pFA6a-mCherry:kanMX6 K. Bloom 

pKS391 pFA6a-mCherry:natMX6 K. Bloom 

DCY1100 YEF473A + 2xGFP-Cse4:TRP1 K. Bloom 

DCY1101 DCY1100 + Ame1-mCherry:KANr K. Bloom 

DCY1102 DCY1100 + Mtw1-mCherry:KANr  K. Bloom 

DCY1038 KBY7999 + 2xGFP-Cse4:TRP1 K. Bloom 

DCY1045 DCY1038 + Dsn1-cerulean:NATr K. Bloom 

DCY1110 YBM536 + Ame1-mCherry:NATr K. Bloom 

DCY1111 YPH1820 + Ame1-mCherry:NATr K. Bloom 

DCY1115 (cen3(3.8)) + Ame1-mCherry:NATr K. Bloom 

DCY1116 (cen15(1.8)) + Ame1-mCherry:NATr K. Bloom 

DCY1118 DCY1100 + Nnf1-mCherry:NATr  K. Bloom 

DCY1136 DCY1100 + Ctf19-mCherry:KANr K. Bloom 

DCY1141 DCY1100 + Chl4-mCherry:KANr K. Bloom 

KBY6326 DCY1100 + Slk19-mCherry:NATr K. Bloom 

KBY7040 YEF473A + Ndc80-tdTomato:NATr  K. Bloom 

KBY7042 KBY9345.1 + Cyc1-GFP-Ndc80:NATr K. Bloom 

KBY7043 KBY7042 + Spc24-tdTomato:KANr  K. Bloom 

KBY7999 YEF473A + Spc29-RFP:Hb K. Bloom 

KBY8745 KBY7999 + Ame1-GFP: KANr  K. Bloom 

KBY9345 YEF473A + Cyc1-GFP-Ndc80:NATr  K. Bloom 

KBY9453 KBY7999 + Ndc80-tdTomato:NATr  K. Bloom 

KBY9496 KBY7999 + Cse4-2xGFP:TRP1 K. Bloom 
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KBY8116 KBY7999 + Ndc80-GFP:KANr  K. Bloom 

KBY9075 KBY7999 + Nuf2-GFP:URA3  K. Bloom 

 
 
Imaging 
 
 
To determine kinetochore protein axial positions, population images of strains containing Cse4 

(GFP) and kinetochore components (RFP) were imaged at room temperature (25°C) using an 

Eclipse E600FN microscope (Nikon) with a 100× Plan Apo TIRF 1.45 NA objective (Nikon) 

and ImagEM EM-CCD digital camera (Hamamatsu) with a custom Lumencor LED illumination 

system (Lumencor Inc.) using MetaMorph 7.7 imaging software (Molecular Devices). To 

characterize kinetochore component focus shape, strains containing spindle pole body proteins 

(Spc29-RFP) and kinetochore components (GFP) were imaged at room temperature (25°C) on a 

Nikon TE2000, widefield, 100X 1.4 NA Orca II with MetaMorph software. Each acquisition was 

a 7-step Z-stack with a 300-nm step size in the GFP, RFP, and Trans channels. 

 

 
Image Analysis 

 
Custom software written with MatLAB R2017 was used to extract the location of kinetochore 

foci from microscope images. Brightest regions for GFP and RFP spots were manually selected, 

and a 7x7 pixel region was automatically applied to the surrounding area. Centroids of 

kinetochore foci were mathematically determined using “brightest pixel” and Gaussian fitting 

methods. 

 
To map kinetochore protein position along the spindle (x-axis), we use the centromere specific 

nucleosome variant Cse4 as a fiducial. The x-axis is defined by rotating the GFP channel until 
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the brightest pixel for one Cse4 focus is horizontal to the brightest pixel for the opposite Cse4 

focus. The RFP channel representing the tagged kinetochore proteins is then rotated by the same 

degree. Cse4 is set at 0, and measurements are made relative to this position. Pixel measurements 

are converted to distance based on pixel size (64.8 nm). To account for spindle tilt, cells with 

kinetochores at opposite poles differing by more than 600 nm in Z were excluded. Position 

analysis was limited to metaphase cells by imposing limits of 200-1200 nm for RFP-RFP and 

GFP-GFP focus distances. Methods for x-position analysis are further outlined in Figure 1. 

 
To determine the extension of the foci produced by kinetochore proteins perpendicular to the 

spindle (y-axis), spindle pole bodies are used as a fiducial. The RFP channel is rotated until the 

brightest pixel for one spindle pole body) is horizontal to the brightest pixel for the opposite 

Cse4 focus. Once the spindle is aligned, the spindle poles are set at 0,0, and the GFP channel 

representing the kinetochore proteins is rotated by the same degree. The full width at half 

maximum (FWHM) of the one-dimensional Gaussian distribution fitted to each GFP focus is 

determined to measure extension in y. Methods for FWHM determination are outlined in Figure 

2. 
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Figure 1. Outline of methods used to determine x-position of 
kinetochore proteins along the spindle axis. 
 

 

Figure 2. Outline of methods used to determine FWHM of 
kinetochore proteins perpendicular to the spindle axis. 
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RESULTS 
 
 
Nanometer localization of kinetochore components  
 
 
During metaphase, kinetochores from sister chromatids are bioriented and appear as two separate 

foci along the mitotic spindle axis. Each spot represents a cluster of 16 kinetochore copies, with 

one kinetochore per spindle microtubule. Two-color, pairwise imaging was performed on 

populations of metaphase cells to determine the spatial organization of individual kinetochore 

proteins. We compared different kinetochore components labeled with RFP to Cse4 labeled with 

two molecules of GFP. This Cse4-GFP double fusion fully complements a Cse4 null mutation 

(Baker et al. 2013, Lawrimore et al. 2011, Wisneiski et al. 2015). Custom software was used to 

manually select centroids of spots and extract positional information from the image. 

Measurements were determined along the axis extending between Cse4 spots at opposite poles, 

which roughly approximates the orientation of the spindle axis. For some kinetochore proteins, 

position was determined relative to Ame1 (RFP), which is within 2-4 nm of Cse4 (Figure 1). In 

this case, the kinetochore protein in question was labeled with GFP.  

 
Two methods of centroid localization were employed in this study: “brightest pixel” picking and 

Gaussian fitting. Statistically, the brightest pixel is most likely to occur at the center of a 

Gaussian distribution. Therefore, it can be used to approximate the average location of the 

labeled kinetochore components. Because this method is less stringent than Gaussian fitting, we 

can acquire a larger sample size. We confirmed the accuracy of the brightest-pixel method by 

comparing the axial distance of Ndc80, a rod-like outer kinetochore protein, relative to Cse4 and 

the outer kinetochore protein Spc24 to it’s known length of 57 nm. Our results for the two 

methods differ by less than 3 nm from one another in all cases except for N-Ndc80 (RFP) and C-
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Spc24 (GFP). Our protein-protein distances confirm previously reported measurements, giving 

further support for our method (Joglekar et al. 2009; Hasse et al. 2013). The consistency between 

the two methods in this study and our ability to reproduce results from prior studies indicate that 

“brightest pixel” selection of centroids is accurate compared to Gaussian fitting.  

 
On average, the outer kinetochore protein Ndc80 (C-terminally labeled) is 26-29 nm from Cse4 

(toward the microtubule). The middle kinetochore MIND complex (Mtw1, Nnf1, Dsn1) is ~13-

20 nm from the Cse4 nucleosome (toward the microtubule). The inner kinetochore complex 

CBF3 (Cep3, Ndc10) is ~1-10 nm from Cse4. The inner kinetochore complex COMA (Ame1) is 

within 1-4 nm of Cse4 (toward the pericentromere). The inner centromere protein, Slk19 is 14-17 

nm from Cse4 (toward the pericentromere.) DNA in the pericentromere, represented by 8.8 and 

6.8-kb LacO/LacI-GFP arrays, is 99 and 53 nm away from Cse4, respectively (Figure 31, Table 

2).  
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Figure 3. Average metaphase locations of DNA (8.8, 6.8-kb LacO/LacI-GFP array) and kinetochore proteins 
(Slk19, Cep3, Ame1, Ndc10, Nnf1, Dsn1, Mtw1, Ndc80) along the Cse4-Cse4 axis (n= 78 for Ndc80, n=~200 for 
others). DNA/proteins whose position was determined relative to Ame1 (RFP) are denoted with an asterisk. Each 
red box represents the difference between the average distances measured using brightest-pixel and Gaussian fitting 
methods. Protein names are labeled at the line corresponding to the distance acquired using Gaussian fitting. (Cooke 
and Drysdale, unpublished.) 
 
Table 2. Raw position data for kinetochore proteins along the inner kinetochore axis (Cse4-Cse4 or Ame1-Ame1, x-
axis) and mean distance between Cse4 (GFP) and kinetochore protein (RFP) foci determined using brightest pixel 
(BP) and Gaussian fitting centroid determination methods. Cells fit with a Gaussian for centroid determination 
represent a subset of those for which BP method was used. Negative values indicate positions on the MT side of 
Cse4 or Ame1. RFP-GFP distances are determined by taking the absolute values of position measurements. 
Numbers of cells used for BP method are between 100-300, with the exception of the strain containing N-Ndc80 and 
C-Spc24. 
 

RFP GFP Method n 
Mean  
x-position (nm) STD (nm) 

Mean RFP-
GFP 
distance (nm) STD (nm) 

Ame1 Cen3 (3.8) BP 212 96.7770 96.2706 109.6746 81.1952  
  Gaussian 57 99.2945 92.0368 108.7433 80.4361  

Ame1 
Cen15 
(1.8)  BP 179 53.6141 92.8861 86.1189 63.7206  

  Gaussian  111 53.7198 89.7948 82.4906 64.0984  
Ame1 Ndc10 BP 200 -1.8548 70.9117 54.5949 45.1258  
  Gaussian 39 -2.4465 47.0174 31.7369 34.3954  
Ame1 Cep3 BP 181 9.3010 77.9731 60.9371 49.3237 

  
Gaussian 18 11.7759 38.0423 27.4896 28.1765 

Dsn1 Cse4 BP 224 -19.6763 62.5296 48.4556 44.0496 

  
Gaussian  122 -20.3900 43.2502 36.6611 30.5716 

Ame1 Cse4 BP 172 4.4423 62.3717 47.2885 40.7529 
  Gaussian 80 1.2095 39.1846 28.7643 26.4397 
Mtw1 Cse4 BP 133 -15.0765 54.1906 41.6191 37.6878 
  Gaussian 120 -18.5278 36.8174 31.4320 26.5597 
C-Nnf1 Cse4 BP 110 -17.3079 76.3839 61.8698 47.6847 

  
Gaussian 26 -13.1923 43.5081 33.2730 30.3739 

C-Slk19 Cse4 BP 290 16.5674 75.4072 60.4478 47.9073 

  
Gaussian 162 14.2663 61.5573 45.8023 43.3960 

C-Spc24 N-Ndc80 BP 78 47.2387 57.6011 60.7298 42.9228 

  
Gaussian 64 57.0025 34.3290 58.8171 31.0641 

C-Ndc80 Cse4 BP 124 -29.2838 59.7482 50.6987 42.9313 

  
Gaussian 101 -26.4643 40.3034 40.7146 25.6412 

 
 
Characterization of inner kinetochore focus shape shows anisotropy of Ame1 and Cse4 
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We imaged strains labeled with kinetochore proteins in GFP and spindle pole bodies (Spc29) in 

RFP for kinetochore focus size measurements. FWHM Measurements were made perpendicular 

to the axis defined by the spindle pole bodies (y-axis). The foci produced by Ndc80 and Nuf2 

have a FWHM of ~375 nm in y. Ame1, a subunit of the inner kinetochore complex COMA, has 

a FWHM of 405 nm in y, and the centromere specific nucleosome Cse4 has a FWHM of 417 nm 

in y. The inner kinetochore components Ame1 and Cse4 show a more extended focus in y than 

the microtubule-bound, outer kinetochore components Ndc80 and Nuf2. The common fiducial 

used for this analysis, the spindle pole body component Spc29, has a consistent spot distribution 

in y across different strains, giving confidence to our method (Table 3). These FWHM values are 

mapped on top of probability density distribution maps that show the location of the brightest 

pixel measurements relative to the spindle pole body. Visually, the maps recapitulate our 

measurements, becoming physically more spread out moving away from the microtubule (Figure 

4). 

 
GFP RFP GFP Mean 

FWHM (nm) 
RFP Mean 

FWHM (nm) n 

N-Ndc80 Spc29 375.34752 308.6424 126 
C-Ndc80 Spc29 378.89208 309.62736 130 
N-Nuf2 Spc29 374.9652 293.1228 198 
C-Ame1 Spc29 404.40384 295.04736 60 
C-Cse4 Spc29 (CFP) 417.96648 256.40712 84 

 
Table 3. Full width half max (FWHM) in y of Gaussian distribution applied to brightest pixel of foci corresponding 
to kinetochore components. The foci produced by Spc29 have a consistent size across different strains, with the 
exception of the strain containing Cse4, which has Spc29 labeled with CFP. Perpendicular to the spindle axis, the 
foci produced by Ame1 are extended on average ~30 nm more than the foci produced by the outer kinetochore 
components Ndc80 and Nuf2. Cse4 is extended more than ~45 nm than the outer kinetochore components. Totals 
represent number of individual foci examined, or 2 foci per cell (Hasse and Drysdale, unpublished). 
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Figure 4. Probability density maps and FWHM values of outer kinetochore proteins Nuf2 and Ndc80 and inner 
kinetochore components Ame1 and Cse4 relative to the spindle pole body. The location of the spindle pole bodies is 
indicated by the blue dots. 
 
 
Polymer models of the pericentromere simulate inner kinetochore spatial and dynamic 
features 
 
 
The nature of the chromatin substrate must be incorporated into our understanding of inner 

kinetochore structure and function. We assume that the innermost complex of the kinetochore, 

COMA, is directly bound to DNA. Therefore, chromatin dynamics should have a direct impact 

on the distribution of COMA in vivo. We model the motion of the pericentromere using 

ChromoShake, a polymer dynamics simulator. The program subjects a string of beads linked by 

springs and hinges to Brownian motion in order to explore possible thermodynamic states 

(Lawrimore et al., 2016). Each bead is 10 nm in diameter and corresponds to roughly 30 bp of B-

form DNA. The model accurately represents centromere dynamics in budding yeast mitosis 

(Lawrimore et al., 2016).  

 
In our simulation, chromatin at the centromere is represented as rings of varying radii. The 

simulation is run through a microscope simulator to produce images that can be compared to 

experimentally obtained images. The foci produced using the microscope simulator are measured 

using the same image analysis method as the experimental images to allow us to directly match 

simulated and experimental FWHM data (Figure 5). We find that circles with radii of 127 and 

130 nm recapitulate the experimental FWHM measurements for N-Ndc80 and C-Ndc80, 
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respectively. A radius of 127 nm corresponds to Nuf2. A radius of 142 nm corresponds to Ame1, 

and a radius of 147 nm corresponds to Cse4 (Table 4). These measurements are consistent with 

the radius of a microtubule, which is known to be 125 nm. Ndc8 and Nuf2 are tightly bound to 

the microtubule, and correspond to nearly the same radius. 
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Figure 5. Chromatin dynamics simulator and corresponding microscope simulator image with rings of 16 DNA 
beads arranged in rings corresponding to 50 nm (A), 150 nm (B), and 300 nm (C) radii All images represent one half 
of a symmetric spindle. Chromatin dynamics simulator images represent starting arrangements before being 
subjected to Brownian motion. Beads labeled with magenta appear fluorescent in the microscope images. Top panel 
represents spindle end-on view, middle panel represents side on view, and lower panel is microscope simulation 
produced by fluorescently labeled beads. Microscope simulator images represent one time-step.  

 
Circle Radius (nm) Mean FWHM (nm) n 
50 292.7312288 493 
60 306.2807663 493 
70 314.8392064 490 
80 328.2387803 497 
90 337.5674121 494 
100 352.7609542 497 
110 366.958018 499 
120 382.681577 499 
130 402.9605773 500 
140 417.4179623 499 
150 439.5611626 500 
160 460.1219686 500 
170 474.7997901 500 
180 499.6775509 500 
190 515.7482014 500 
200 539.6529136 500 
210 561.1080588 500 
220 582.5750472 500 
230 602.875172 500 
240 627.4962933 500 
250 648.8479345 500 
260 672.0738617 500 
270 705.0916174 500 
280 728.2658448 500 
290 750.5365376 500 
300 776.5703655 500 

 
Table 4. Average FWHM in Y of Gaussian distribution applied to brightest pixel of foci produced by DNA loops of 
varying radii in microscope simulator images. Each simulation was performed ~500 times (Brandon Friedman, 
unpublished). 
 
 
 
DISCUSSION 
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The kinetochore couples the force of dynamic microtubules to DNA, ensuring the proper 

segregation of chromosomes during cellular division. Kinetochore protein structure and 

architecture has been closely examined at the kinetochore-MT attachment site, but the 

arrangement of individual kinetochore proteins at the DNA surface remains poorly understood 

(Cheeseman and Desai 2008; Joglekar et al. 2009, 2010; DeLuca 2011). Super-resolution 

microscopy has been used to accurately describe the 3D location of fluorescently tagged 

kinetochore proteins in dividing cells (Joglekar et al. 2009; Hasse et al. 2013.)  

 
This study contributes to our understanding of kinetochore architecture in budding yeast by 

mapping the location of the Ndc80 (Ndc80), MIND (Dsn1, Nnf1, Mtw1), COMA (Ame1), and 

CBF3 (Cep3, Ndc10) complexes, the inner centromere protein Slk-19, and pericentric DNA (8.8, 

6.8-kb LacO/LacI-GFP arrays) along the Cse4-Cse4 axis. The signal-to-noise ratio of the image 

limits the accuracy of centroid localization that can be obtained using this method. Based on 

similar studies, we can expect a precision of ~10 nm for the lowest signal-to-noise ratio 

conditions. Our axial measurements agree with those obtained in prior studies using a different 

fiducial, giving confidence to our findings (Joglekar et al. 2009). 

 
Two alternative arrangements have been proposed to describe the shape of the inner kinetochore. 

One follows a “vertical” plan of assembly, in which the kinetochore is built from the inner 

kinetochore to the outer kinetochore, beginning at Cse4 and extending to the microtubule 

(Joglekar et al. 2009) (Figure 6A/B). If the kinetochore followed such a plan, with the inner 

kinetochore attaching directly to Cse4, the displacement of single kinetochore perpendicular to 

the microtubule would not exceed ~125 nm, the diameter of a spindle microtubule. By extension, 

the displacement of the entire 16 kinetochore cluster would not exceed that of the microtubule-
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bound outer kinetochore components. A second plan proposes that the kinetochore components 

associate with H3 nucleosomes surrounding the central Cse4 nucleosome (Figure 6D). In this 

arrangement, the force from microtubules would be distributed across multiple contact points on 

the chromatin, whereas in the former arrangement the entire force transmitted by the kinetochore 

would converge on a single Cse4 nucleosome (Santaguida and Musacchio 2009).  

 

 

Figure 6. A.) Vertical kinetochore model with outer kinetochore protein showing Ndc80 labeled 
with GFP and B.) Vertical kinetochore model with inner kinetochore protein Ame1 labeled with 
GFP. C.) Slanted kinetochore model with centromeric DNA biasing inner kinetochore proteins 
away from the spindle axis. D.) Horizontal kinetochore model with inner kinetochore proteins 
uniformly splayed out on the face of the chromatin. Only the most radially displaced protein is 
labeled in all of these scenarios because only this protein would need to be skewed in such a way 
as to reproduce our FWHM results. 
 

We attempt to distinguish between these two arrangements by extending our analysis in the 

direction perpendicular to the spindle axis. By comparing the FWHM in y of foci produced by 
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outer and inner kinetochore components, we find that the inner kinetochore is more extended 

perpendicular to the spindle axis than the outer kinetochore, recapitulating earlier findings 

(Hasse et al. 2013). This result is consistent with the second plan, in which the kinetochore flares 

out on the surface of the DNA and forms multiple attachments around Cse4. We complement our 

experimental microscopy findings with measurements from a simulator that explores different 

conformations of pericentric DNA. This simulation allows us to test how different inner 

kinetochore organizations combine with chromatin dynamics to produce images in a light 

microscope. We find that a series of rings with radii increasing by ~20 nm from the microtubule 

to the inner kinetochore recapitulate our experimental kinetochore foci when the simulation is 

fed through a microscope simulator.  

 
Because we examine clusters of 16 kinetochores, we can only make conclusions about the 

structural qualities of individual kinetochores that would be reflected in the shape of the entire 

cluster. Another conformation that would explain our anisotropy and position findings would 

have all 16 kinetochores pointing at an angle away from the spindle axis (Figure 6C). Increased 

protein copy number at the centromere could also explain the extended foci, though it would 

have to be accounted by an alternative mechanism than the deletions that disrupt the observed 

anisotropy of Cse4 (Hasse et al. 2013). Using a chromatin simulation that equilibrates to the 

favored entropic state, we can test these conformations against what we observe in the 

microscope. This allows us to build intuition around how the thermodynamics and organization 

of chromatin combine with inner kinetochore architecture. 

 
We plan to further test our hypothesis that the inner kinetochore flares out on the surface of the 

chromatin by examining how simulations of different possible inner kinetochore arrangements, 
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as well as increased protein copy number, combine with experimental position and FWHM 

information. In addition, this model provides a way for us to link large-scale changes in 

chromatin dynamics to small-scale changes in kinetochore architecture at the centromere. The 

same polymer dynamics simulator has been used previously to demonstrate that radial loops of 

chromatin generated by cohesion and condensin along the spindle axis generate tension in the 

pericentromere (Lawrimore et al. 2015). Other work has shown that Sgo1 and Bub1 are 

necessary to maintain the anisotropy observed in Ame1 and Cse4 (Hasse et al. 2012). Deletions 

in either of these proteins reduce tension in the pericentromere, indicating a possible connection 

between tension and kinetochore architecture. Such a tension-dependent structural change would 

also provide a mechanism by which the cell could possibly “sense” whether proper DNA 

attachment had been achieved and thus help regulate the spindle checkpoint.  

 
 
 
CONCLUSIONS 
 
 
We provide a map of kinetochore proteins relative to the Cse4 nucleosome along the spindle 

axis. In addition, we demonstrate that experimental kinetochore protein position and focus 

distribution can be recapitulated by simulated microscope images from a chromatin dynamics 

simulator. This finding provides a method for testing different chromatin configurations and 

conditions in silico against protein-protein distances and focus distributions observed in vivo. By 

allowing us to estimate where COMA interacts with DNA surrounding the Cse4 nucleosome, we 

hope to use this approach to explain the observed anisotropy of the inner kinetochore proteins, 

Ame1 and Cse4, relative to the outer kinetochore proteins, Ndc80 and Nuf2.  
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