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Abstract 

Using satellite-based land cover data for Ethiopia, I examine the relationship between 
travel costs and the spatial allocation of economic activity. In analyzing a cross-section of land 
cover data for all of Ethiopia in 2005/2006, I find that proximity to market is positively 
associated with land being devoted to agriculture, when controlling for soil quality and climatic 
factors. Additionally, I examine the change in land cover associated with the construction of the 
Addis Ababa-Adama expressway, using panel data on land cover in a 40-km buffer of the 
expressway for 2009 and 2016. I find that proximity to the expressway increases the likelihood 
of a transition in land cover type, both into and out of agriculture. On average, the expressway 
reduced the likelihood of agricultural land cover for land parcels within an inner buffer of the 
expressway in the period after it opened.  This study contributes to previous literature by 
employing high spatial resolution GIS data that has not been previously applied to studies of 
economic geography, by examining data from the African continent – where little empirical 
work on transportation infrastructure and land cover change has been done –, and by using a 
comprehensive measure of market access to assess transportation costs.  
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1. Introduction 

Roads and other transportation infrastructure affect land use through their impact on 

reducing transportation costs. When firms and commuters make a decision about where to live or 

locate their operations, they face tradeoffs between land rents and the cost of transportation to 

market, among other factors. At a given distance to market, transportation is so expensive that it 

becomes unprofitable to operate or live in an area (von Thünen, 1826; Alonso, 1964). Therefore, 

reducing transportation costs expands economic activity by increasing market access (Donaldson 

& Hornbeck, 2016). This paper uses empirical methods to examine the effect of transportation 

infrastructure on the spatial distribution of land cover types. Land cover reflects land use and 

thus the forms of economic activity that are taking place in a given area; for instance, agricultural 

activity can be identified by observing the location and extent of farmland. In this paper, I use 

Ethiopian data to study whether road construction and upgrading leads to a greater allocation of 

land to agriculture versus other uses (vegetation, urban or industrialized area), and the magnitude 

of this effect.  

Historically, most of the literature discussing the effect of transportation infrastructure on 

the spatial distribution of economic activity has been theoretical in nature. However, the number 

of empirical studies in this area is expanding. Recent contributions consider suburbanization in 

the United States (Baum-Snow, 2007), trade and income in India (Donaldson, forthcoming), 

GDP in peripheral regions in China (Faber, 2014), and the size of the eighteenth-century 

American agricultural sector (Donaldson & Hornbeck, 2016). My paper adds to this literature by 

examining data from the African continent, where little empirical work has been done, and by 

using remotely-sensed land cover data to measure economic activity. 
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Ethiopia makes an interesting case-study on the economic effects of transportation 

infrastructure because of its geography, level of development, and ongoing expansion of the 

transport infrastructure network. A circular rural country with a core primate city, Addis Ababa, 

Ethiopia closely resembles the “Isolated State” developed in von Thünen’s early model of 

agricultural land. Lacking a domestic coastline, Ethiopian goods destined for export are 

transported to ports in Djibouti, usually through Addis Ababa. Thus, the country is an ideal place 

to empirically test established theories of economic geography. Additionally, Ethiopia is a rural, 

fast-growing country going through a period of significant investment in transportation, making 

it a suitable location for a study on the impact of road construction and upgrading on the 

allocation of land to different economic activities.  

Few studies make use of new satellite-based data to analyze land use change associated 

with transportation infrastructure. Remotely-sensed land cover data is advantageous because it is 

available at relatively high spatial and temporal resolutions over a wide geographic area, 

allowing changes in land use over time to be observed in detail. Over the last decade, satellite 

imagery has become more publically accessible and new algorithms and improved processing 

power have made it possible to extract increasing amounts of data. In this paper, I employ 

satellite data to classify land cover across Ethiopia and track changes in land cover and 

associated land use over time, in the proximity of newly built or upgraded roads.  

 This paper answers the question of how road construction affects the spatial distribution 

of economic activity by studying the location of land devoted to vegetation, agriculture or urban 

area in Ethiopia. In the first part of the paper, I use Ethiopia-wide road network data for 2004 and 

land cover data for 2005/2006 to examine in the cross-section the distribution of land cover types 

in Ethiopia by distance to roads and to market along the road network. Then, I use panel data to 
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explore in detail the changes in land cover before and after the construction a specific segment of 

road network, the Addis Ababa-Adama Expressway opened in September 2015. I compare the 

changes in land cover within an inner buffer of the expressway as compared to land in an outer 

buffer of the same expressway. This allows me to employ a difference-in-difference approach to 

estimating the causal effect of transportation infrastructure on economic activity as measured by 

land cover.  

 The paper is structured as follows: Section 2 describes the background in Ethiopia and 

policy applications of this research. Section 3 discusses the relevant literature. Section 4 presents 

the theoretical model. Section 5 presents the empirical model. Section 6 describes the data 

collection. Section 7 presents the data and descriptive statistics. Section 8 discusses the results. 

Section 9 concludes.  

 

2. Background 

Based on theory about the positive relationship between reduced transportation costs and 

economic growth, many countries and development agencies have pursued an infrastructure-

centered approach to development that includes massive road network expansions, including 

China and Ethiopia (Fourie et al., 2015). Since launching the Road Sector Development Program 

(RSDP) in 1997, Ethiopia has increased the length of its federal and regional road network 

(asphalt and gravel roads) from 26,500 km to 63,604 km in 2015 (Ethiopian Development 

Research Institute, 2011; Federal Republic of Ethiopia, 2016). Including all-weather woreda 

roads, Ethiopia’s total road network reached 110,414 km in 2015, more than double the length in 

2010 and resulting in a decrease in the average time to reach the nearest all weather road from 

3.7 hours to 1.7 hours (Federal Republic of Ethiopia, 2016). In Ethiopia’s Second Growth and 



Ariana Vaisey 7 

	
  

Transportation Plan (GTP II), the country plans to further increase the all-weather road length to 

220,000 in 2019/2020 (Federal Republic of Ethiopia, 2015). In this paper, I provide empirical 

evidence that rigorously evaluate the impacts of transport infrastructure on economic activity in 

Ethiopia, as measured through land cover and how it changes over time. 

 

3. Literature Review 

 A large body of theoretical literature examines the relationship between transportation 

infrastructure and economic activity. The theoretical literature establishes a tradeoff between 

transportation costs and land rents, which influences the spatial allocation of economic activity 

depending on the relative costs of transportation associated with land uses. Additionally, 

empirical literature supports the hypothesis that a decline in transportation costs leads to an 

increase in economic activity, including the area of agricultural land. 

The model used in this study is based in Johann H. von Thünen’s model of agricultural 

land use, published in his 1826 treatise The Isolated State, which founded the field of spatial 

economics and continues to play a central role in urban theory. Von Thünen imagined a 

featureless plane with a town at the center supplied by farmers in surrounding fields, who 

cultivate crops that only differ in yield per acre and transportation costs. Land rents decline with 

distance from the city center, so farmers face a tradeoff between land rent and transportation 

costs. “Bid-rent” curves define the rent farmers are willing to pay for land to grow each type of 

crop at a given distance from town, and form the rent gradient. At the outermost edge of 

cultivation, land rents fall to zero.  

Following a resurgence of interest in spatial economics, later theoretical work extended 

von Thünen’s model and expanded the field of economic geography. Alonso (1964), Muth 
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(1969), and Mills (1972) developed a monocentric city model wherein workers commuting to a 

sole center face a tradeoff between the price of housing and transportation. This applies von 

Thünen’s theory to economic activities other than agriculture. In my model, I will consider the 

effect of transportation costs on the margins between vegetation, agricultural, and urban land 

cover/use. 

Krugman (1991) sought to explain the formation of a town or city itself in his seminal 

paper on new economic geography. Using a simple two-region model, Krugman proposed that 

the interaction of economies of scale and transportation costs can cause manufacturing activity to 

start to concentrate in one region and induce a positive feedback loop that generates further 

divergence in types of economic activity between regions – creating agglomeration. In my paper, 

I do not seek to explain the formation of urban centers such as Addis Ababa. However, 

Krugman’s analysis affirms the premise that transportation costs are important for the spatial 

allocation of economic activity. Krugman’s model also helps to explain the patterns of land 

cover/use observed in Ethiopia, as will be discussed in the results section.  

Eaton and Kortum (2002) develop a Ricardian model of international trade that 

incorporates a role for geography, including transportation costs, as a barrier to trade. This 

approach provides a framework to simultaneously confront the role of geography and technology 

in economic activity. Donaldson and Hornbeck (2016) use an Eaton-Kortum model to measure 

market access and its impact on agricultural land values in the United States, as discussed later in 

this literature review. This methodology also motivates own calculation of market access.  

Economic theory has been applied to a number of empirical studies on the economic 

effects of transportation infrastructure, though relatively few focus on land use. Chomitz and 

Gray (1996), Nelson and Hellerstein (1997), Pfaff (1999) estimate the effect of rural road 
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construction on deforestation using von Thünen-type models where land operators allocate land 

use to maximize expected net benefits from output. Following an iceberg model of transportation 

costs, they assume the value of agricultural output declines with distance to market. Reducing 

distance to market then increases the potential rent from agriculture and promotes the expansion 

of farming activity. Using data from Belize, Mexico, and Brazil the authors find that road 

construction causes the conversion of forest to agriculture (Chomitz and Gray, 1996; Nelson and 

Hellerstein, 1997; Pfaff, 1999). As in my analysis, these authors rely on GIS methods using 

satellite data to classify land cover types. I add to this literature by using a much larger sample 

area – the whole of Ethiopia – (previous studies use pixel-level data only for a small, regional 

sample area or else aggregates data to the county level). I am able to do this in part because of 

new satellite data available, such as the European Space Agency’s GlobCover project that began 

in 2005 and provides land cover data for the whole world.  

Donaldson and Hornbeck (2016) use a general equilibrium model from trade theory to 

estimate the impact of railroad construction in nineteenth-century America on agricultural land 

value through increased market access. The authors link half of the estimated increase in 

agricultural land value to agricultural extensification. Drawing from Donaldson and Hornbeck 

(2016), I consider market access as an explanatory variable for land use. This adds to previous 

literature on land cover change that only considers road densities or distance to the nearest road, 

village, or capital (Chomitz and Gray, 1996; Nelson and Hellerstein, 1997; Pfaff, 1999). 

Existing studies on transportation infrastructure expansion in Ethiopia focus on poverty 

reduction and business growth as measures of economic activity. Dercon, Hoddinott and 

Woldehanna (2012) find that reducing the distance on the road network to the nearest small town 

by 12km lowers poverty by 35-percent, using a longitudinal dataset collected between 1994 and 
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2009 in Ethiopia. Shiferaw et al. (2015) estimated that a 1-percent reduction in travel time to 

major commercial destinations in Ethiopia increases the size of new entrants by 3-percent, using 

cross-sectional data on firms and transportation networks. My study is different in that it draws 

from data points covering an entire area, not just towns and cities, and allowing the impact of 

transportation infrastructure on peripheral areas to be included. Also, my study looks specifically 

at effects on agricultural activity, which has not been studied previously in Ethiopia to my 

knowledge. The vast majority of Ethiopians earn their livelihood from agriculture and 

agricultural products drive Ethiopian GDP (Lavers, 2012), making this an important sector to 

understand and analyze in a development context.  

 

4. Theoretical Model 

The theoretical model in this paper is based on von Thünen’s model (1826) and 

applications of the von Thünen model to deforestation by Chomitz and Gray (1996). Von 

Thünen imagined an “Isolated State” where profit-maximizing farmers transport their goods 

across land directly to a central city. This simplistic model in fact bears out very well in the 

Ethiopian context. Ethiopia is a rural country, where 85 percent of the population depends 

primarily on smallholder agriculture produced through household labor (Lavers, 2012). The 

small surplus of crops feeds the urban population, and few agricultural goods are exported in 

significant proportion (Lavers, 2012).1 This is in part due to high transportation costs to Djibouti 

(Ethiopia is landlocked), which make exports often unprofitable (Dercon & Vargas Hill, 2009). 

Ethiopia’s capital, Addis Ababa, is located in the geographic center of circular-shaped Ethiopia 
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and has a population 12 times the second-largest city, making it a quintessential primate city 

(Wubneh, 2013). I am thus confortable using a model that tracks von Thünen closely.  

Following von Thünen (1826) and Chomitz and Gray (1996), I assume that each parcel of 

land has a potential for rent attached (the market value of output minus transportation costs). 

Land users will devote land to the activity that gives the highest rent. Beyond a certain distance 

from the city, any economic activity becomes unprofitable because of rising transportation costs 

and the land is left undisturbed as natural vegetation. The derivation below follows that of 

Chomitz and Gray (1996).  

From Chomitz and Gray (1996), the return to a certain land use is the rent 𝑅!", given by 

(1) 𝑅!" =   𝑃!"𝑄!"(𝑃!" ,𝐶!")   − 𝐶!"𝑋!"(𝑃!" ,𝐶!"), 

where 𝑃!" is the output price, 𝑄!" is the quantity of output, 𝐶!" is a vector of input costs, and 𝑋!" 

is a vector of inputs quantities, all for land use 𝑘 at parcel location 𝑖. A land parcel is allocated to 

land use 𝑘 if this use gives the highest rent compared to all alternatives for that parcel: 

 𝑅!"   >   𝑅!!  for all ℎ ≠ 𝑖. 

In my model, I consider three possible types of land uses: idle (natural vegetation), agriculture, 

and built-up/urban area.  

I do not have data on location-specific prices and costs, since they are unobserved. 

Therefore, I use a reduced-form model that takes observed determinants of price and productivity 

as inputs. Following von Thünen (1826) and Chomitz and Gray (1996), I assume that spatial 

differences in farm-gate prices are only due to differences in transportation costs to market, 𝐷!. 

(2) 𝑃!" = exp  [γ!! + γ!!𝐷!] 

𝐶!" = exp  [δ!! + δ!!𝐷!], 
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Using an iceberg model of transportation costs, I expect that output prices fall as access costs 

increase (γ!! < 0). Here, we can think of output prices as those received by the land owner when 

they sell their product to a truck driver at the land parcel location. The truck driver receives the 

same price for all goods at the central market, so offers land owners less money for goods 

produced at greater distances to market, in order to make up for transportation costs. The model 

structure is based on an assumption of monopolistic competition.  

Also, I expect that input costs rise (δ!! > 0) when land is devoted to a marketed output, 

so that idle land could have zero access cost.  

I use a Cobb-Douglas production function for output per unit of land that includes parcel-

specific geophysical factors 𝐺!" , such as soil quality and average rainfall, that effect land 

productivity, from Chomitz and Gray (1996): 

(3) 𝑄!" = 𝐺!"𝑋!"!!         [0 < 𝛽! < 1] 

𝐺!" =   𝜆!!𝐺!!!!"𝐺!!!!! …𝐺!"!!"          

 From equation (3), we have the demand for 𝑋: 

(4) 
𝑋!" =

𝐶!"
𝑃!"𝐺!"𝛽!

!/[!!!!]

 

 Then, combining equations (1), (3), and (4): 

(5) 𝑅!" =   𝑃!"𝑄!" − 𝐶!"𝑋!" = 𝑃!"𝐺!"𝑋!"!! − 𝐶!"𝑋!" = 𝑋!"[𝑃!"𝐺!"𝑋!"!!!! − 𝐶!"]  

𝑅!" = 𝐶!"
!!

!!!! 𝑃!"𝐺!"𝛽!
!

!!!!
(!!!!)
!!

  

 Thus, we see from the above equation that rent increases as output prices 𝑃  increase and 

decreases as input costs 𝐶 increase, as expected.   

 If we substitute in the equations in (2) and take logs of the variables, we get: 
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(6) ln 𝑅!" = 𝛼!! +   𝛼!!𝐷! + 𝛼!!𝑙𝑛(𝑔!!)+⋯+ 𝛼(!!!)!𝑙𝑛(𝑔!")+ 𝜀!" 

where, as before, 𝐷! represents distance to market along the road network and 𝑔!!… 𝑔!" 

represent geophysical characteristics of the land parcel 𝑖.  

For agricultural activity, I expect the coefficients on distance to be negative and the 

coefficients on geophysical characteristics that increase productivity to be positive (Chomitz and 

Gray, 1996). This is because it is more profitable to produce crops in areas with lower 

transportation costs (higher farm-gate prices) and where agricultural productivity is higher. For 

urban areas, I expect the same negative coefficient on distance but a smaller positive coefficient 

on the geophysical characteristics, since the land is not farmed but proximity to agricultural areas 

that supply the town is important to support the town’s population.  

 

5. Empirical Model  

I estimate the effect of roads on the allocation of land in Ethiopia using two empirical 

models based on the theoretical framework described in the previous section. The first section a 

is cross-sectional study, using data for all of Ethiopia in 2005/2006, and the second part is a 

panel study that examines changes in land cover types before and after the construction of an 

expressway, in the area surrounding the expressway.  

 In the first part of the paper, I estimate the probability of devoting parcel 𝑖 to land use 𝑘 

using a multinomial logit model. I use a multinomial logit model because I am interested in the 

probabilities associated with three possible discrete land cover outcomes: vegetation 

(uncultivated land), agriculture, and urban area. I assume that expansions in the extent of 

agricultural and urban area indicate increases in economic activity, and thus economic growth. It 

is important to note that my model does not account for increases in productivity (e.g. 



Ariana Vaisey 14 

	
  

agricultural intensification), since this is not possible to measure using my dataset derived from 

satellite imagery. As discussed in later in my data section, because of the small number of 

observations of urban area and likely under-estimation of this land cover type, I focus my 

analysis on the transition from vegetation to urban area.   

Logistic models require the assumption that the error terms are independent and 

identically distributed (𝜀!"~  𝑖𝑖𝑑)  and follow a particular function form. The model is specified 

by the following equation: 

 

 

(7) 

𝑃𝑟 𝑖 = 𝑘 ! =   
exp  [ln  (𝑅!")!]
exp  [! ln  (𝑅!")!]

 

𝑃𝑟 𝑖 = 𝑘 ! =   
exp  [𝜎!!" +   𝜎!!𝐷!" + 𝜎!!𝑙𝑛(𝑂!") + 𝜎!!𝑙𝑛(𝐻!") + 𝜎!!𝑙𝑛(𝑅!") + 𝜎!!𝑙𝑛(𝐴!")+  𝜎!!𝑙𝑛(𝑁!")  ]
exp  [! 𝜎!!" +   𝜎!!𝐷!𝑡 + 𝜎!!𝑙𝑛(𝑂!") + 𝜎!!𝑙𝑛(𝐻!") + 𝜎!!"𝑙𝑛(𝑅!") + 𝜎!!𝑙𝑛(𝐴!")+  𝜎!!𝑙𝑛(𝑁!")]

 

where 𝐷 represents distance to market (I use a variety of measures, described in the data section), 

𝐶 represents the organic carbon content of the soil, 𝐻 represents the acidity (pH) of the soil and 

𝑅 represents the long-term average annual precipitation at the land parcel, 𝐴 represents latitude, 

and 𝑁 represents longitude (for rationale on the choice of controls, see below). I classify land 

according to three potential uses: vegetation (uncultivated land), agriculture, and urban area. As 

described by the theoretical model, the land user devotes the land at time 𝑡 to the highest rent 

available in period 𝑡. 

 This model assumes that the construction or roads is exogenous to agricultural land use, 

which is potentially a very strong assumption. In cases where roads are installed to curry political 

favor, the assumption may hold true (Chomitz and Gray, 1996). However, if roads are 

purposefully placed in more agriculturally suitable areas and the determinants of the suitability 

are unobserved, the model may overstate the effect of distance to market on the probability of 

agricultural land use, for instance. I hope to reduce this potential bias by including soil quality 
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indicators: organic carbon content and pH. These are together the best simple indicators of the 

health status of soil (Nachtergaele et al., 2009). Moderate to high amounts of organic carbon are 

associated with fertile soils, and acid to neutral soils are the best pH conditions for nutrient 

availability and suitable for most crops (Nachtergaele et al., 2009). Additionally, I include a 

variable for long-term average annual rainfall since Ethiopia is a drought-prone country and lack 

of available water is a main constraint on the ability to grow crops. I also include controls for 

latitude and longitude, and fixed effects for administrative region (zones).  

In the second part of this study, I analyze the land-use change associated with the 

construction of specific segments of road. Using panel data (compared to cross-sectional data in 

the first section of the paper) helps to isolate the effects of road construction on land use 

decisions by allowing me to control for unobserved time-invariant variables.  

I use difference-in-differences to estimate the effect of road construction and upgrading 

on agricultural land cover/use. As a treatment group, I use the land cover in an inner buffer of the 

newly-constructed Addis Ababa-Adama expressway. My control group is an outer buffer of the 

road.  In September 2015, the Ethiopian government opened the Addis Ababa-Adama 

expressway, the country’s first expressway and toll road. The six-lane expressway connects 

Ethiopia’s two biggest cities – with link roads to major towns along the road – using advanced 

technologies new to Ethiopia, such as traffic cameras and variable message signs, together with 

interchanges, overpasses and underpasses. The expressway reduced travel time between Addis 

Ababa and Adama to 40 minutes from around two hours using the previous paved road 

(Embassy of Ethiopia in Belgium, 2014).  

I estimate the proportion of the land devoted to agriculture as a function of being in an 

inner buffer of the expressway, the treatment variable: 
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(8) 𝑃𝑟 𝑖 = 𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 ! =   1/[1+ exp  (−(  𝜎! +   𝜎!𝑇𝑟𝑒𝑎𝑡! + 𝜎!𝑃𝑜𝑠𝑡! +   𝜎!(𝑇𝑟𝑒𝑎𝑡! ∗

𝑃𝑜𝑠𝑡!)+ 𝜎!(𝐴𝑟𝑒𝑎! ∗ 𝑃𝑜𝑠𝑡!)+ 𝜎!𝑆𝑜𝑖𝑙! + 𝜎!(𝑆𝑜𝑖𝑙! ∗ 𝑇𝑟𝑒𝑎𝑡!)+ 𝜎!(𝑆𝑜𝑖𝑙! ∗ 𝑃𝑜𝑠𝑡!)+

𝜎!(𝑆𝑜𝑖𝑙! ∗ 𝑇𝑟𝑒𝑎𝑡! ∗ 𝑃𝑜𝑠𝑡!)+ 𝜀!"))]  

where  𝑇𝑟𝑒𝑎𝑡! is a dummy for if the land parcel 𝑖 is in the treatment group, 𝑃𝑜𝑠𝑡! is a post-

treatment dummy, 𝐴𝑟𝑒𝑎! captures the percent of agriculture in a 2.5-kilometer buffer of land 

parcel 𝑖, and 𝑆𝑜𝑖𝑙! represents the soil quality of land parcel 𝑖.  The treatment group is the area of 

land within an inner buffer (20km) of the Addis Ababa-Adama expressway and the control group 

is the area of land within an outer buffer (40km) of the planned Addis-Ababa-Adama 

expressway, excluding land in the inner buffer. 

 The average treatment effect on the treated (ATT) at the time of treatment is defined by: 

(9) 𝜏 𝑇𝑟𝑒𝑎𝑡! = 1,𝑃𝑜𝑠𝑡! = 1

=   𝐸 𝑌! 𝑇𝑟𝑒𝑎𝑡! = 1,𝑃𝑜𝑠𝑡! = 1, 𝑆𝑜𝑖𝑙! ,𝐴𝑟𝑒𝑎!

−   𝐸 𝑌! 𝑇𝑟𝑒𝑎𝑡! = 1,𝑃𝑜𝑠𝑡! = 1, 𝑆𝑜𝑖𝑙! ,𝐴𝑟𝑒𝑎!  

 where 𝑌!  and 𝑌! are the potential outcomes with and without treatment, respectively. In this 

case, the outcome 𝑌 indicates whether a land parcel is devoted to agriculture. Therefore,  

𝑃𝑟 𝑖 = 𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 !  is the same as 𝐸[𝑌!"].  

The key assumption in a difference-in-difference estimation is that the outcome in the 

treatment and control group would follow the same time trend in the absence of treatment (the 

parallel trends assumption). Therefore, in this specification, I assume that the change in land 

cover in the outer buffer represents the counterfactual change in the inner buffer if no 

expressway was built, controlling for the soil quality and the concentration of neighboring 

agricultural activity. This is potentially a strong assumption: if the route of the expressway was 

chosen based on endogenous factors that affect the trend in land cover transitions, then the 
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assumption may be violated. Additionally, the assumption may be violated if a shock unrelated 

to the expressway occurs that effects land cover in the treatment and control groups differently 

(for instance, a localized drought or a policy change in one administrative region but not others).  

I minimize the risk of these violations of the parallel trends assumption through how I select 

the treatment and control groups and through control variables. Since land parcels in the control 

group are within 20-km of those in treatment group, this enhances the similarities between the 

two groups. Since I only look at the area within 40-km of one segment of road, climactic factors 

(rain, temperature, etc.) are likely relatively constant across both groups. Also, by including 

variables 𝐴𝑟𝑒𝑎! and 𝑆𝑜𝑖𝑙!, I allow land cover in areas with a higher concentration of agriculture 

and better soil quality to change at a different rate over the period of observation. Therefore, I 

control for differences in these two variables between the treatment and control groups that 

would effect the rate of transition in land cover types during the period of observation.  

 

6. Data 

To estimate equations (7) and (8), I collect data on land cover classification, distance to 

market, and geophysical characteristics for land parcels in Ethiopia. All data sources are 

described in detail in the sections that follow.  

Both estimations rely on land cover classification to generate the dependent variable.  One of 

the major challenge in using remotely-sensed land cover data is the uncertainty involved in 

classification and inconsistency of classification schemes between datasets (Russel, 2014). In the 

first part of my paper, I get around the problem of non-comparability of class definitions by 

restricting my analysis to a cross-section, using only one dataset. In the second portion, I perform 

my own land cover classification, which allows me to use a consistent methodology between 
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years. However, there is still the issue of classification inaccuracy. I mitigate this issue by 

aggregating land cover classes to broad categories where there is less scope for error. For the 

remaining error, I assume that it is random and so will not affect my estimation.  

 

6.1 Cross Sectional Data 

In part (1) of the study, my unit of observation is every land parcel (1-km square cell) in 

Ethiopia. For each observation, I collect data on land cover classification and two measures of 

distance to market: distance to roads and market access taking into account transportation costs. I 

also collect data on geophysical characteristics of each observation: elevation, soil quality, 

latitude and longitude, and administrative region.  

6.1.1 Land cover classification 

For my dependent variable in part (1), I use data on land cover processed by the European 

Space Agency (the ESA). The ESA developed a global land cover dataset using 300-m 

resolution data from the ENVISAT satellite mission covering the period December 2004 to June 

2006, as part of its GlobCover initiative. The project classified land cover according to the UN 

Land Cover Classification System (LCCS) scheme, with 22 global classes, using a combination 

of supervised and unsupervised classification methods (Bicheron et al., 2008). Validation of the 

dataset using stratified random sampling of 3167 points generated an overall area-weighted 

accuracy rating of 67.1% (Bicheron et al., 2008). This level is similar to the accuracy of other 

global land cover datasets, such as the USGS-produced IGBP with a total accuracy of 66.9% or 

the ESA-produced GLC 2000 with 68.6% accuracy (Russel, 2014).  

The land covering Ethiopia is divided into sixteen different land cover classes. These 

encompass types of natural vegetation (shrubs and woodland), different percentages of 
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agricultural activity. There is only one class for urban areas, defined as more than 50-percent 

built-up. Because of their small spatial extent, urban areas are classified with lower accuracy and 

tend to be underestimated (Bicheron et al., 2008).  

For the bulk of my analysis, I aggregate the data to three classes: vegetation, agriculture 

(more than 50-percent), and urban area (more than 50-percent). This is because I am interested in 

categories of land cover that represent distinct economic activities: idle (no) activity, agricultural 

activity and industrial activity. I also combine measures of agricultural area in order for the 

definition of agricultural area to be comparable with the urban category. I exclude water bodies, 

since these cannot be allocated to agriculture or urban area. 

6.1.2 Distance to market 

My independent variable, distance to market, is derived from road network data coming 

from the Ethiopia Road Authority (ERA). The ESA road network, surveyed in 2004, is divided 

into four classes of roads: unknown, rural gravel, unpaved, and paved. I aggregate these into two 

classes: unpaved and paved, adding the unknown roads to the unpaved category. Using 

Geographic Information System (GIS) software, I calculate the Euclidian distance (as the crow 

flies) to each category of road, and cost distance along the road network. Cost distance takes into 

account travel times across different types of terrain and the method of calculation is described in 

more detail later in this section.  

Following the approach of Donaldson and Hornbeck (2016), I compute a measure of 

market access using transportation costs along the road network. For every land parcel 𝑖 (cell in 

my dataset), I calculate market access by summing the population of Ethiopian cities weighted 

by the transportation costs to access that city: 



Ariana Vaisey 20 

	
  

(9) MA! =   
𝑃𝑜𝑝!
𝑑𝑖𝑠𝑡!"!

 

where 𝑃𝑜𝑝! is the population city 𝑐 and 𝑑𝑖𝑠𝑡!" is the distance from land parcel 𝑖 to city 𝑐. I use 

two measures of distance: Euclidian distance (as the crow flies) and cost distance. 

 To measure cost distance, I create a grid of transportation costs for the entire Ethiopian 

landscape. I assume a travel speed of 35km/hour on paved roads and 10km/hour on unpaved 

roads (Roberts et al., 2012). For terrain that does not include any type of road, I assume a travel 

speed of 5km/hour. For each cell in my grid of Ethiopia, I then assign a travel cost: 

(10) TravelCost! =   
1

𝑇𝑟𝑎𝑣𝑒𝑙𝑆𝑝𝑒𝑒𝑑!
 

Using Geographic Information Systems (GIS) software, I calculate the least-cost path from each 

land parcel 𝑖 to city 𝑐, based on the travel costs assigned to each cell in the grid of Ethiopia. The 

path is calculated using tools in the ArcGIS software package which are based on Dijkstra’s 

shortest-path algorithm. Given differences in terrain, the least-cost path is not necessarily the 

shortest in terms of distance. The cost of this optimal path is then input as the distance measure 

in equation (8) and I refer to it as “cost distance”.  

 The city location and population data comes from the United Nations Office for the 

Coordination of Humanitarian Affairs (OCHA) in Ethiopia, accessed through the Humanitarian 

Data Exchange. I use two datasets: one of cities, towns and villages (2016), and one with woreda 

(third-level administrative district) populations from the 2007 Ethiopian census. Using satellite-

derived night-time light data for 2005, I ranked the size of 2,841 Ethiopian cities and towns 

based on light intensity within a 5-km buffer of the municipality. Then, I keep the largest city or 

town in each of 780 woreda, and assign to that city or town the population of the woreda. I 

restrict my analysis to cities and towns with visible night-time light because these are more 
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urbanized, dense centers. In constructing a measure of market access, I am interested in the 

distance to these centers because they are the largest markets for the buying and selling of goods. 

The primary reason for using woreda rather than city or town population data is because I 

do not have access to Ethiopian city or town population data. However, I also contend that 

woreda populations represent a reasonable approximation of the market size of a given city or 

town (the number of people consuming goods and services in the vicinity of the center).  

In summary, I end up with four measures of distance to market: Euclidian distance to any 

road, Euclidian distance to a paved road, and two measures of market access. My market access 

measures, calculated from equation (9), are a sum over the populations of 181 woreda, weighted 

by either the Euclidian or cost distance to reach the largest city or town in that woreda. 

6.1.3 Geophysical characteristics 

As specified in (7), I add controls for soil quality, average annual precipitation, elevation, 

longitude and latitude, and administrative region. The soil quality data (soil organic carbon 

content and pH) comes from the Harmonized World Soil Database (HWSD), a compilation of 

data from different sources published in 2009 by a consortium of international organizations. 

HWSD is published at a 30 arc-second (1-kilometer) resolution. Data for Ethiopia in the HWSD 

comes from the SOTWIS database by the International Soil Reference and Information Center 

(ISRIC). While the soil quality data is not collected in the same year as the land cover data, I 

assume that the distribution of soil quality stays constant over time.  

Data for average annual precipitation is taken from the Long-Term Annual Rainfall 

dataset covering the years 1901-2005, published by Harvest Choice (2011).  

Mean elevation and the standard deviation of the elevation in each cell comes from the 

Global Multi-Resolution Terrain Elevation Data (GMTED), available at 30, 15, and 7.5 arc-
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second resolutions (U.S. Geological Survey and National Geo-Spatial Intelligence Agency, 

2010). I download the data at the 30 arc-second resolution to maintain consistency with the 

HWSD resolution.  

I resample all of my raster data files to the 1-kilometer resolution of the HWSD. Then, I 

project each layer using an Azimuthal Equidistant projection in order to preserve accuracy of 

distance measurement. Using GIS software, I assign each cell a value for latitude and longitude 

and use a spatial join to assign the cell to its respective zone (the second-level administrative 

division in Ethiopia, of which 68 exist). 

Each unit of observation is one pixel taken from a unique 1-km x 1-km cell, with the 

attributes of each layer associated.  

 

6.2 Expressway Data 

In the second part of my analysis, I use data on land cover and road location. I collect the 

geo-coordinates of the Addis Ababa-Adama expressway from the Ethiopian Transportation 

Authority (ERA, 2016). Then, I use Landsat program imagery to classify land cover in a 40-km 

buffer of the expressway (USGS, 2009; USGS, 2016). I look at two periods: 2009, before 

construction began on the expressway, and 2016, after the expressway opened to traffic. For each 

year, I select the available Landsat image with the least cloud cover in order to minimize the 

quantity of missing data.  

To classify Landsat imagery into distinct land cover categories, I use ISODOATA 

unsupervised classification methods in ENVI image analysis software. For each image, I divide 

the land cover into fifteen categories based on reflectance values of the surface. Then, I use 

visual inspection and reference to Google Maps to assign each category to agriculture or non-
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agriculture. I exclude land cover that is cloud (less than 10% of the observations) or water. I do 

not disaggregate the non-agricultural land into types (e.g. vegetation and urban area) due to the 

limitations of my classification method. There is not a large enough difference in surface 

reflectance values between urban land cover and other non-agriculture types for me to 

distinguish between them.  

I expect that the quantity of agriculture in the region surrounding a land parcel will impact 

the probability of transforming from agriculture to something else. Therefore, to control for this 

effect, I also calculate using GIS software the percentage of land parcels devoted to agriculture in 

2009 in a 2.5 km buffer of each observation.  

 

7. Descriptive statistics 

7.1 Cross Section 

The descriptive statistics for the main variables are shown in Tables 1-3. The sample consists 

of 1,232,351 one kilometer square cells that cover the entire area of Ethiopia.   

The land cover classifications are disaggregated in Table 2. As shown, very little land is 

assigned to urban area in the ESA dataset. This is expected because Ethiopia is a primarily rural 

country. However, a contributing factor is also the fact that the smaller spatial extent of urban 

area introduces higher classification error, leading to underestimation (Bicheron et al., 2008). For 

this reason, my analysis focuses on the transition between vegetation (forest, shrubland, and 

grassland) and agricultural land cover. 
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7.2 Expressway 

The descriptive statistics for land cover classification in 2009 and 2016 are shown in Table 4. 

The sample consists of 487,551 140x140m cells in a 40-km buffer of the Addis Ababa-Adama 

expressway. I have excluded any cells missing a land cover classification in one or both years 

because of cloud cover, which obscures the image. Figure 5 shows the classified images of land 

cover in both 2009 and 2016, with cloud cover a bigger problem in 2009 but still covering less 

than 10 percent of the image.    

As shown in the Table 4, the majority of land parcels in both 2009 and 2016 are devoted to 

agriculture. However, a higher percentage of land is devoted to agriculture in 2009 versus 2016 

(79 percent versus 68 percent). Approximately 66 percent of land devoted to non-agriculture in 

2009 transitions to agriculture in 2016 while 15 percent of land that was agriculture in 2009 

transitions to non-agriculture.  

As acknowledged before, there is a degree of error in land cover classification. Since I cannot 

physically inspect the land in order to verify and improve my classifications (ground-truthing), 

the risk of error is increased. Additionally, the two images that I use (for 2009 and 2016) come 

from different Landsat satellite images – Landsat 8 and Landsat 5, which may affect the 

detection of surface reflectance and my classification. Therefore, I do not want to over-interpret 

the fact that a decline in agriculture is observed between the two periods, since part this result 

may be due to classification error. However, assuming that the error is random, I can still 

accurately estimate the impact of my treatment variable (the expressway) on land use change 

between agriculture and non-agriculture by looking at the spatial distribution of land cover 

transitions.  
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 Descriptive statistics in Table 5 divide observations by their distance to the expressway 

(within or outside a 20-km buffer). The table shows that land within the inner buffer of the 

expressway is more likely to be agriculture in both 2009 and 2016, as compared to land outside 

the inner buffer. Additionally, land closer to the expressway experiences a higher frequency of 

transitions in both directions – from non-agriculture to agriculture and vice versa – during the 

period of observation. I will explore these relationships further in my estimation, and offer 

possible explanations.  

 

8. Results and Discussion 

The estimation of 𝛽 is based on equations (7) and (8). Using data on land cover for the whole 

of Ethiopia in 2005/2006 and for the change in land cover in a 40-km buffer of the Addis Ababa-

Adama expressway after the expressway was built, between 2009 and 2016, I examine the effect 

of distance to road/market on the probability of devoting a land parcel to agriculture.  

 

8.1 Cross Section 

In my first estimation, I analyze a cross section of Ethiopia as a whole. I report the results 

from a multinomial logit model in Tables 6-9, where the largest category (21% of observations), 

Mosaic forest or shrubland (50-70%)/grassland (20-50%), is assigned as the base category. The 

estimated coefficients in Table 6-9 represent the change in the log-odds of a given land cover 

category relative to the base category for a one-unit change in the variable of interest, holding all 

other variables constant. Of most interest are the coefficients on the distance variables (distance 

to road or Addis Ababa and market access).  
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Interpreting the results, we see a strong negative effect of an increase in distance to capital or 

roads on the log-odds of urban area relative to the base category. Additionally, we see a smaller 

negative effect of an increase in distance to capital or road on the log-odds agricultural land 

classes relative to the base category. All estimations show a positive effect of market access on 

the log-odds of urban area and agricultural land classes relative to the base category. Again, the 

effect is stronger for urban areas.  

Some categories with smaller numbers of observations shown outsized effects (for instance, 

the largest effects in all models, either positive or negative, are on regularly flooded broadleaf 

forest, for which there are only 50 observations). I expect that part of the reason for such a strong 

effect on this category is because flooded broadleaf forest is heavily concentrated in regions 

close to road networks and market for climactic reasons. Controls in the model for soil quality, 

elevation, and latitude and longitude are not fully accounting for climactic factors. Thus, in 

subsequent estimations, I add a factor variable for 68 administrative zones, in order to control for 

unobserved characteristics of regions that will affect the prevalence of different land cover types. 

In addition, I aggregate vegetation and agriculture categories, which reduces the problems posed 

by small, localized land use categories.  

Estimated marginal effects from the logit model are shown in Table 7. My main interest is in 

the margins between different economic activities (idle land, agricultural activity, and urban 

service or manufacturing). I focus on the margin between vegetation and agriculture because of 

the small percentage of urban area in my sample (less than 0.01%) and the systematic 

underestimation of urban area due to limitations of the classification methods used by the ESA 

(Bicheron et al., 2008). 
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The results in Table 11 show statistically significant negative effects of distance to Addis 

Ababa and positive effects of market access on the probability of devoting a land parcel to 

agriculture across multiple specifications.  The effect on log Euclidian distance to the Addis 

Ababa shows that a one-percent increase in distance to the capital results in an 12-percent 

decline in the probability of a land parcel being devoted to agriculture, on average. A one percent 

increase in cost-distance to Addis Ababa leads to an average 15-percent decline in the probability 

of agricultural land cover. Finally, a one-percent increase in market access is associated with an 

average 5-percent increase in the probability of agricultural activity. Note that these are marginal 

effects taken at the mean – as shown in Figure 8, the marginal effects vary depending on the 

value of the explanatory variable (and tend to be largest near the mean). However, the signs of 

the effects are the same and the effects remain statistically significant across all values. The 

results are consistent with the theory developed by von Thünen, which predicts an increase in 

agricultural land area at the margins when transportation costs decline.  

The estimation results also show an insignificant positive effect of distance to road on 

probability of agricultural land cover. This suggests that distance to a road matters less than the 

travel costs to market along the road. Therefore, roads are not important in and of themselves, 

but in how they reduce travel time to population centers. This result is notable because it is 

contrary to the result from prior literature focused on the central and South America, which 

found statistically significant negative effects of distance to road on the probability of agriculture  

(Nelson and Hellerstein, 1997; Pfaff, 1999). A possible reason for the discrepancy is that 

differences in the types of terrain and vegetation in Ethiopia versus central Mexico and the 

Brazilian Amazon mean lower travel times in Ethiopia in the absence of roads, so roads make 

less of a difference to transportation costs. Additionally, roads in Ethiopia might encourage non-
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agricultural economic activities nearby, such as residential or industrial uses that are not picked 

up by the ESA classification system. It is out of the scope of this paper to test these hypotheses.  

The interaction terms that include Euclidian distance to Addis Ababa and another 

explanatory variable reveal how distance to the capital influences the magnitude of the reported 

effects. The estimated results in Table 11 show a positive coefficient on the interaction between 

log Euclidian distance to Addis Ababa and log cost-distance to Addis Ababa. So, at larger 

distances from Addis Ababa, the effect from an increase in the cost of distance to market is 

larger. Additionally, the coefficient on the interaction term between log market access and log 

Euclidian distance to Addis is negative, showing that the effect of an increase in market access is 

weaker at greater distances from the capital.  

These results can be explained in several ways. First of all, when travel costs are higher, they 

matter more to the profitability of farming. Therefore, for land parcels further away from Addis 

Ababa (the largest market), travel costs may be more likely to make the difference between 

whether agriculture is a profitable or unprofitable land use.  

Additionally, closer to Addis Ababa, there are likely more alternative land uses to 

agriculture, so that reductions in travel costs may promote expansion in economic activities other 

than agriculture. This can be explained by the benefits of agglomeration described in Krugman 

(1991): given larger existing manufacturing and service sectors close to Addis Ababa, the 

benefits of economies of scale make areas near the capital more attractive for additional 

manufacturing and service activities. Therefore, agriculture would tend to concentrate in more 

rural areas where alternative economic activities are less viable.  

Additionally, both the OLS and probit specifications that include the cost distance to Addis 

Ababa and the Euclidian distance to Addis Ababa as explanatory variables show a positive effect 



Ariana Vaisey 29 

	
  

of Euclidian distance on agricultural land use. This is opposite of the effect found when 

Euclidian distance to Addis Ababa is included on its own. Therefore, separating the effect of 

distance on increasing the cost of travel to the capital, land farther away from the Addis Ababa is 

more likely agricultural. As with the direction of the coefficient on the interaction terms with 

Euclidian distance to Addis Ababa, this result can be explained by the benefits of agglomeration 

(Krugman, 1991) – a concentration of secondary and tertiary industries near the capital offer 

more economic alternatives to agriculture that reduce likelihood of farming regardless of the 

road network.  

The coefficients on the control variables conform to expectation. Higher precipitation and 

soil quality have positive and significant effects on the likelihood of a land parcel being devoted 

to agriculture. Meanwhile, greater variation in elevation has a negative effect on the likelihood of 

agricultural land cover.  

 

8.2 Expressway 

In the second part, I estimate equation (8). Across all specifications, the results displayed in 

Table 12 show a statistically significant negative average treatment effect on the treated. That is, 

being in the treatment group (within an inner 20-km buffer of the expressway) is associated with 

a lower probability of agricultural land cover. Additionally, across groups, land parcels with 

higher soil quality and a higher neighboring concentration of agricultural activity are associated 

with a lower probability of agricultural land cover in the second (treatment) period.  

These results are counterintuitive, and contradict the initial theory. However, they are 

consistent with the results from the cross-section that found positive, if insignificant, effects of 

an increase in distance to road on probability of agriculture. Additionally, when I re-estimate the 
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cross-section using only land parcels within the 40-km buffer of the Addis Ababa-Adama 

expressway, I find that proximity to the capital and market access are negatively associated with 

agriculture. These are opposite effects from when the model is estimated using the whole sample 

of land parcels covering all of Ethiopia. This suggests that there is something unique about the 

land surrounding the expressway. A discussion of possible reasons for the unexpected results, 

including why land in near the expressway may respond differently to changes in transportation 

costs than other land in Ethiopia, follows.  

As mentioned in the analysis of the cross-section, one possible explanation for these results is 

that agricultural land close to new roads (such as the expressway) is being transformed into 

residential or industrial uses. Table 6 disaggregates percentage of agriculture by second-level 

administrative region, and shows that the administrative region containing the core of Addis 

Ababa is assigned to 28-percent agriculture in 2009 and 25-percent agriculture in 2016. 

Therefore, likely some urban/industrial area is being captured in the non-agriculture category, 

which would influence the results. Perhaps there is a higher benefit to proximity to roads for 

urban/industrial land versus agricultural land and therefore agricultural land in close proximity to 

roads is converted to other uses after road construction.  

Additionally, the section of road and the surrounding land chosen for this analysis is unique 

in several respects. The road is the only expressway in the country and connects the country’s 

two largest cities, meaning that urban/industrial economic activity is more concentrated in this 

part of the country than in more rural regions. As shown in the cross section, Euclidian distance 

to Addis Ababa (the capital city which is included within the 40-km buffer of the expressway) is 

associated with smaller positive effects of market access on probability of agriculture and 

smaller negative effects of cost distance to market on probability of agriculture. As already 
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discussed, the estimating the logit model for the cross-section using only land parcels within a 

40-km buffer of the expressway produces results with the opposite sign as when using the entire 

sample. Therefore, the estimate treatment effect of road construction on agricultural land cover 

may be unique to the area of analysis and not generally applicable across Ethiopia.  

Finally, Euclidian distance to road may be a poor measure of transportation costs to market, 

the true variable of interest. In the case of the expressway, distance to the road does not take into 

account where are the entry points onto the expressway or changes that may have occurred over 

the observation period in roads that connect to the expressway or other cities in the region. This 

means that being within an inner buffer of the expressway may not be a good indicator of 

treatment, if treatment is meant to measure a decline in transportation costs.  

The results in Table 12 are only related to the change in the probability of agricultural land 

cover, and do not take into account which transitions are taking place. There four possible (non) 

transitions over the period: staying agriculture, staying non-agriculture, transitioning from 

agriculture to non-agriculture, and transitioning from non-agriculture to agriculture. In Table 13, 

I divide land parcels by their original classification in 2009, and look at how being in the 

treatment or control group affects the probability of transition. As shown in the table, proximity 

to the expressway results in a higher probability of transition both into and out of agriculture. 

Therefore, treatment is associated with changes in land cover/use, but not solely in one direction 

and overall out of agriculture.  

Von Thünen’s theory of agricultural land use, the basis for this paper, can be applied to these 

results. Von Thünen proposed that landholders maximize profits by allocating land to the most 

cost-effective product, balancing land costs (higher nearer to market) and transportation costs 

(lower nearer to market). This means that vegetables would be grown closer to the city center 
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than grain because of faster spoiling. While Von Thünen’s theory assumes that agriculture is the 

only economic activity outside of the city and that soil quality and climate are consistent 

everywhere, this is evidently not true in our real-life sample of land surrounding the Addis 

Ababa-Adama expressway. Therefore, a reduction in transportation costs changes the balance of 

costs and benefits for different land uses – why we see transitions in land use near the 

expressway –, but does not mean a transition towards agricultural activity in all cases.  

The direction of the transition in land cover will depend on the relative value/cost of soil 

quality, transportation, and other unobserved factors to different land uses. Thus, reducing 

transportation costs can cause both an absolute increase in economic activity and a change in the 

allocation of different types of economic activity across space, whether towards agriculture or 

other uses. In this case, we see an increase in land cover transitions in proximity of the new 

Addis Ababa-Adama expressway and an overall decline in agricultural activity.  

Why do we see this result? Firstly, the estimation results may be due to the unique character 

of land near the expressway. A re-analysis of the cross-section using only land parcels within 40-

km of the expressway shows that proximity to Addis Ababa and market access are negatively 

associated with agricultural land cover, the opposite effect found when using the full sample. 

Likely the already highly urbanized nature of the land in this region impacts the response of 

landholders to declining transportation costs. We may be seeing an increase in urban/industrial 

activity after construction of the expressway that cannot be disaggregated from other non-

agricultural land cover types using the methodology in this paper. Additionally, it is possible that 

my treatment variable is not well defined, and that proximity to the expressway is not a good 

indicator of declining transportation costs, the treatment of interest.  
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9. Conclusion 

This study has shown that agriculture tends to be concentrated in regions with more access to 

market. Using a cross-section of land cover in Ethiopia in 2005/2006, I show that agricultural 

land use is more likely in areas with better access to market, after controlling for soil quality, 

elevation, latitude and longitude, Euclidian distance to the capital, and administrative zone. 

Additionally, I show that the effect of changes in cost distance is stronger for land further away 

from the primate capital city (Addis Ababa). Unlike previous studies, I do not find a significant 

effect on only distance to roads, ignoring market access.  

Using panel data on land cover in a buffer of the Addis Ababa-Adama expressway, I show 

that proximity to the expressway increases the likelihood of transitions both into and out of 

agriculture. Additionally, I found a negative average treatment effect on land parcels within an 

inner buffer of the expressway during the treatment period (after the construction of the 

expressway). Proximity to the expressway is therefore associated with a decline in agricultural 

activity compared to with land parcels farther away from the new expressway. A re-analysis of 

the estimation from the cross-section using only the land parcels in within 40-km of the future 

expressway shows a negative effect of proximity to Addis Ababa and market access on 

probability of agricultural land cover. This confirming that a decline in transportation costs in 

this part of the country does not increase agricultural land cover on average.  

The results indicate that reducing transportation costs/increasing market access can play an 

important role in spurring economic activity, including an expansion in agricultural land use. 

However, the effect is not the same everywhere: reducing travel costs to more rural areas – those 

farther away from the densely-populated capital region in Ethiopia – has a greater effect on 

expanding agricultural activity, as measured through land cover.  While roads are an important 
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means to reduce travel costs, I find that proximity to them, without taking into account other 

measures of market access, is in fact associated with a decline in agricultural land use. This 

effect is perhaps because of increases in urban/industrial activities near roads, or because of other 

unobserved factors.  

This study adds to the literature by using a new measure of market access that takes into 

account cost-distance to all major markets, and by looking at a wider geographic area (the whole 

of Ethiopia) than previous studies. I demonstrate the feasibility of using newly-available 

satellite-derived land cover data, such as the European Space Agency dataset, to evaluate 

changes in the spatial allocation of economic activity. Additionally, I show that reducing 

transportation costs through road construction can be an effective way to grow Ethiopia’s 

economy by spurring agricultural activity. However, effects of road construction on agricultural 

activity may not be the same across the entire country. Additionally, satellite data is most useful 

for analyzing changes in agricultural land cover, since urban/industrial land cover is difficult to 

classify and therefore typically under-estimated.   

While the focus of this study is on Ethiopia, the same empirical results could be present in 

other primarily rural countries experiencing a significant road network expansion. An area of 

further research would be to compare the economic benefits of increasing agricultural and other 

types of economic activities with the costs of road construction.  

Limitations of this study include the systematic underestimation of urban area classified from 

satellite imagery and lack of data due to the time-intensive nature of land cover classification 

when no pre-classified imagery is available. Future studies should enhance the accuracy of 

classification by ground-truthing and/or interviews with people local to the area. In addition, 
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future studies should compare land cover change after the construction of roads in both urban 

and rural areas, in order to determine if different responses occur.  
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11. Appendix A: Tables 
 

Table 1: Descriptive statistics, 2005/2006 Ethiopia cross section 
Variable Obs Mean Std. Dev. Min Max 
Land cover 1,147,556 

  
1 3 

Cost distance to capital 1,232,351 3.17E+08 1.99E+08 0 1.19E+09 
Euclidian distance to capital  1,012,216 387823.8 146565 0 737151.3 
Euclidian distance to road 1,176,008 13619.51 15902.84 0 124084.6 
Market access  1,232,170 7.13E-09 3.07e-087 9.60E-11 2.93E-06 
long run avg precipitation 1,232,351 816.4738 426.4613 126 1800 
elevation stdev 1,232,351 14.32354 15.59316 0 256 
elevation mean 1,232,351 1223.103 696.0951 -150 4338 
topsoil organic carbon 1,220,520 0.9264244 0.7332208 0.17 33.87 
Difference from pH =7 1,223,524 0.7433856 0.5245469 0 2.7 
latitude 1,232,351 1032491 319945.43 98842.7 1772843 
longitude 1,232,351 4378724 342087.4 3649582 5302582 

 
Note: land cover is classified into three categories (0=vegetation, 1=agriculture, 3=urban). Water bodies are excluded.  
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Table 2: Distribution of land cover by all classes, 2005/2006 Ethiopia cross section 
Land Cover Frequency Percent 
Rainfed croplands 30,162 2.45 
Mosaic cropland (50-70%)/vegetation (20-50%) 209,492 17 
Mosaic vegetation (50-70%)/cropland (20-50%) 181,674 14.74 
Closed to open >15% broadleaved evergreen or semi-deciduous forest (>5m) 13,673 1.11 
Open (15-40%) broadleaved deciduous for 57,424 4.66 
Mosaic forest or shrubland (50-70%)/grassland (20-50%) 258,933 21.01 
Mosaic grassland (50-70%)/forest or shrubland (20-50%) 3,074 0.25 
Closed to open (>15%) shrubland (<5m) 172,517 14 
Closed to open (>15%) herbaceous vegetation 67,332 5.46 
Sparse (<15%) vegetation 153,220 12.43 
Closed to open (>15%) broadleaved forest regularly flooded 50 0 
Closed to open (>15%) grassland or woody vegetation on regularly flooded or 
waterlogged soil 2,503 0.2 
Urban >50% 137 0.01 
Bare areas 74,429 6.04 
Water bodies 7,731 0.63 
Total 1,232,351 100 
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Table 3: Distribution of land cover by aggregated class, 2005/2006 Ethiopia cross section 
Land Cover Frequency Percent 
Vegetation 890,464 77.6 
Cropland 256,951 22.39 
Urban Area 141 0.01 
  1,147,556 100 

 
Note: Urban area represents >50% urban and cropland represents >50% crops. Vegetation encompasses all other 
categories except for water bodies, which are excluded.  
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Table 4: Descriptive statistics, expressway 
Variable Observations Mean Min Max 
Agriculture in 2009 487,551 0.7852 0 1 
Agriculture in 2016 487,551 0.6767 0 1 
  If agriculture in 2009 157,606 0.6566 0 1 
  If non-agriculture in 2009 329,945 0.1534 0 1 
Agriculture concentration 863,368 0.6873 0 1 
Ideal topsoil pH 975,102 0.8094 0 1 
Within 20km of expressway 975,102 0.389 0 1 

 
Note: This table shows descriptive statistics on land cover and distance to road for land parcels within a 40km buffer of 
the Addis Ababa-Adama expressway. Agriculture concentration calculates the percentage of land parcels devoted to 
agriculture in 2009 within a 2.5-km buffer of every observation. All other variables are dummies.  
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Table 5: Descriptive statistics by distance to road, expressway 
Variable Observations Mean Min Max 
Outside 20-km buffer of expressway 
Agriculture in 2009 297,904 0.7151	
   0 1 
Agriculture in 2016 297,904 0.6467 0 1 
  If agriculture in 2009 33,112 0.399 0 1 
  If non-agriculture in 2009 275,094 0.1742 0 1 
Agriculture concentration 269,575 0.6637 0 1 
Ideal topsoil pH 595,808 0.7524 0 1 
 
Within 20km of expressway 
Agriculture in 2016 189,647 0.7239 0 1 
  If agriculture in 2009 189,647 0.7877 0 1 
  If non-agriculture in 2009 52,355 0.6882 0 1 
Agriculture concentration 137,292 0.1744 0 1 
Ideal topsoil pH 340,172 0.7454 0 1 
Within 20km of expressway 379,294 0.8989 0 1 

 
Note: This table shows descriptive statistics on land cover and distance to road for land parcels within a 40km buffer of 
the Addis Ababa-Adama expressway, divided by distance to expressway. Agriculture concentration calculates the 
percentage of land parcels devoted to agriculture in 2009 within a 2.5-km buffer of every observation. All other variables 
are dummies.  
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Table 6: Agriculture in 2009 and 2016 by administrative region, expressway 
Administrative 

zone Observations Mean 2009 Mean 2016 Min Max 

13647 1,265 0.2751 0.253 0 1 
13648 165 0.1758 0.103 0 1 
13649 4,046 0.5974 0.6518 0 1 
13650 11,793 0.6617 0.6984 0 1 
13651 2,279 0.2694 0.5401 0 1 
13652 1,723 0.2879 0.379 0 1 
13653 4,657 0.6951 0.3769 0 1 
13663 13,514 0.7612 0.8886 0 1 
13677 64,994 0.7873 0.8816 0 1 
13681 277,851 0.7192 0.805 0 1 
13685 39,507 0.4588 0.6982 0 1 
12687 65,757 0.541 0.7209 0 1 

 
Note: See figure for 7 for a map of administrative regions within a 40-km buffer of the expressway. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 7: Multinomial logit estimates, Euclidian distance to capital as explanatory variable of land classification 
 

  coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se 

Land Class Rainfed 
croplands 

Mosaic cropland 
(50-
70%)/vegetation 
(20-50%) 

Mosaic 
vegetation 
(50-
70%)/cropland 
(20-50%) 

Closed to 
open >15% 
broadleaved 
evergreen or 
semi-
deciduous 
forest (>5m) 

Open (15-40%) 
broadleaved 
deciduous 
forest/woodland 
(>5m) 

Mosaic forest 
or shrubland 
(50-
70%)/grassland 
(20-50%) 

Mosaic 
grassland 
(50-
70%)/forest 
or 
shrubland 
(20-50%) 

Closed to 
open 
(>15%) 
shrubland 
(<5m) 

Closed to 
open 
(>15%) 
herbaceous 
vegetation 

Sparse 
(<15%) 
vegetation 

Closed to 
open (>15%) 
broadleaved 
forest 
regularly 
flooded 

Closed to 
open 
(>15%) 
grassland or 
woody 
vegetation 
on regularly 
flooded or 
waterlogged 
soil 

Urban 
>50% Bare areas Water 

bodies 

log Euclidian distance to 
capital (km) -1.3057*** -0.3986*** 1.0201*** 0.7505*** 0.1835*** (dropped) -0.1261*** 0.1791*** -2.7291*** 0.4209*** -23.3441*** -5.9141*** -6.2141*** -2.4736*** -1.0331*** 

 (0.0129) (0.0092) (0.0152) (0.0339) (0.0155)  (0.0432) (0.0103) (0.0177) (0.0338) (2.0251) (0.0792) (0.2852) (0.0182) (0.0355) 
longterm annual precip 
1901-2005 (km) -0.4585*** 3.2916*** 4.3160*** 6.4938*** 4.7105***  2.3410*** 3.4219*** -7.3769*** -4.1004*** 16.7542*** -2.6280*** 1.1634 -6.1768*** 3.4758*** 

 (0.0364) (0.0200) (0.0248) (0.0548) (0.0313)  (0.1208) (0.0203) (0.0811) (0.0722) (2.6036) (0.1569) (3.0658) (0.0861) (0.1125) 

elevation std -0.0254*** -0.0117*** -0.0072*** 0.0136*** 0.0117***  0.0336*** -0.0009*** -0.0099*** -0.0596*** 0.0471 -0.4324*** -0.1470*** 0.0012** -1.6166*** 

 (0.0005) (0.0002) (0.0002) (0.0005) (0.0003)  (0.0007) (0.0002) (0.0005) (0.0008) (0.0477) (0.0342) (0.0374) (0.0005) (0.0596) 

elevation mean (100m) 0.1047*** 0.0349*** 0.0557*** 0.0309*** -0.1329***  0.1383*** -0.0512*** -0.1790*** -0.0904*** -3.9333*** -0.8463*** -0.3210*** -0.2216*** 0.0007 

 (0.0013) (0.0009) (0.0009) (0.0024) (0.0017)  (0.0039) (0.0009) (0.0021) (0.0024) (0.3221) (0.0155) (0.1018) (0.0024) (0.0056) 

ideal topsoil pH 0.0997*** 0.3846*** -0.2232*** 0.3055*** 0.2165***  0.1995*** 0.2081*** -0.3891*** -0.2085*** -1.6105* 0.0205 0.0694 -0.2014*** -2.9908*** 

 (0.0152) (0.0077) (0.0077) (0.0188) (0.0110)  (0.0415) (0.0074) (0.0138) (0.0135) (0.8341) (0.0450) (0.2533) (0.0132) (0.0489) 

Constant 11.3532*** 2.1887*** -10.7390*** -5.7229*** -3.7845***   -3.0499***  -13.8452***  54.0737***  15.1240***  

 (0.2740) (0.1520) (0.2012) (0.5865) (0.2299)   (0.1469)  (0.4054)  (0.8098)  (0.4395)  
o._cons      (dropped) -9.6033***  13.9732***  559.9576***  -75.5933***  6.7170*** 

       (0.9333)  (0.4180)  (92.7753)  (12.6222)  (0.6827) 

Number of observations 1,012,215 

    

note:  .01 - ***; .05 - **; .1 - *; 
                

Note: The dependent variable is a categorical variable representing sixteen types of land cover, with the largest category selected as the comparison group: mosaic 
forest or shrubland (50-70%)/grassland (20-50%). The explanatory variable is log Euclidian distance to capital. The model controls for precipitation, soil quality 
and elevation (shown) and latitude and longitude (not shown).   
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Table 8: Multinomial logit estimates, cost distance to capital as explanatory variable of land classification 

  coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se 

Land Class Rainfed 
croplands 

Mosaic cropland 
(50-
70%)/vegetation 
(20-50%) 

Mosaic 
vegetation 
(50-
70%)/cropland 
(20-50%) 

Closed to 
open >15% 
broadleaved 
evergreen or 
semi-
deciduous 
forest (>5m) 

Open (15-40%) 
broadleaved 
deciduous 
forest/woodland 
(>5m) 

Mosaic forest 
or shrubland 
(50-
70%)/grassland 
(20-50%) 

Mosaic 
grassland 
(50-
70%)/forest 
or shrubland 
(20-50%) 

Closed to 
open 
(>15%) 
shrubland 
(<5m) 

Closed to 
open 
(>15%) 
herbaceous 
vegetation 

Sparse 
(<15%) 
vegetation 

Closed to 
open (>15%) 
broadleaved 
forest 
regularly 
flooded 

Closed to 
open 
(>15%) 
grassland or 
woody 
vegetation 
on regularly 
flooded or 
waterlogged 
soil 

Urban 
>50% Bare areas Water 

bodies 

log cost distance to capital -1.9033*** -1.7919*** -0.8148*** -0.2199*** -0.2562*** (dropped) -0.8073*** -0.6730*** -2.2230*** -0.9221*** 67.6332*** -6.8924*** -3.0515*** -3.1523*** -5.6442*** 

 (0.0318) (0.0173) (0.0167) (0.0448) (0.0261)  (0.0806) (0.0173) (0.0396) (0.0352) (10.1042) (0.1377) (0.5422) (0.0384) (0.1125) 
log Euclidian distance to 
capital (km) 0.5575*** 1.4102*** 1.9654*** 0.8211*** 0.3758***  0.5909*** 0.9216*** -0.5438*** 1.4388*** -97.2959*** 0.8835*** -2.5444*** 0.7601*** 4.5382*** 

 (0.0314) (0.0170) (0.0218) (0.0510) (0.0281)  (0.0832) (0.0182) (0.0430) (0.0475) (11.5265) (0.1842) (0.5517) (0.0428) (0.1184) 
log distance to nearest 
road*log Euclidian distance 
to Addis 

-0.0171*** -0.0358*** -0.0206*** 0.0351*** 0.0255***  0.0305*** -0.0209*** 0.0362*** -0.0053*** -0.3831*** 0.0122*** -0.1789*** 0.0500*** 0.0686*** 

 (0.0015) (0.0007) (0.0007) (0.0021) (0.0011)  (0.0041) (0.0006) (0.0012) (0.0009) (0.0395) (0.0038) (0.0361) (0.0011) (0.0041) 
longterm annual precip 1901-
2005 (km) 0.0581 3.7298*** 4.7644*** 7.0176*** 4.9501***  2.8754*** 3.7709*** -6.8785*** -3.6692*** 6.3859*** -0.8475*** -3.0352 -5.2055*** 3.8423*** 

 (0.0386) (0.0208) (0.0265) (0.0561) (0.0320)  (0.1256) (0.0213) (0.0771) (0.0762) (1.5763) (0.1996) (2.8119) (0.0769) (0.1159) 

elevation std -0.0212*** -0.0068*** -0.0053*** 0.0116*** 0.0104***  0.0338*** 0.0005** -0.0083*** -0.0570*** 0.0997*** -0.3457*** -0.0802*** 0.0026*** -1.4763*** 

 (0.0006) (0.0003) (0.0003) (0.0005) (0.0003)  (0.0008) (0.0002) (0.0006) (0.0008) (0.0292) (0.0309) (0.0299) (0.0005) (0.0595) 

elevation mean (100m) 0.0629*** -0.0125*** 0.0266*** 0.0225*** -0.1243***  0.1129*** -0.0774*** -0.2160*** -0.1272*** -11.7633*** -1.0139*** -0.1851** -0.2659*** -0.0733*** 

 (0.0014) (0.0009) (0.0010) (0.0024) (0.0018)  (0.0037) (0.0010) (0.0024) (0.0029) (1.1040) (0.0198) (0.0760) (0.0027) (0.0063) 

ideal topsoil pH -0.0746*** 0.2091*** -0.3443*** 0.2622*** 0.1944***  0.1091** 0.1116*** -0.5488*** -0.2925*** -1.3929** -0.4095*** -0.1819 -0.3856*** -3.1694*** 

 (0.0161) (0.0081) (0.0081) (0.0202) (0.0114)  (0.0431) (0.0078) (0.0142) (0.0143) (0.6531) (0.0448) (0.3229) (0.0136) (0.0495) 

Constant 10.6161*** 1.2185*** -13.4796*** -6.9541*** -3.9182***   -4.6977***  -15.8004***  49.6585***  16.5321***  

 (0.2871) (0.1608) (0.2127) (0.5659) (0.2319)   (0.1529)  (0.4286)  (1.0765)  (0.3379)  
o._cons      (dropped) -10.4104***  15.9246***  520.4494***  -58.4392***  10.8948*** 

       (0.9578)  (0.3724)  (47.3131)  (10.1595)  (0.7041) 

Number of observations 949,436 

    

note:  .01 - ***; .05 - **; .1 - *; 
                

Note: The dependent variable is a categorical variable representing sixteen types of land cover, with the largest category selected as the comparison group: mosaic 
forest or shrubland (50-70%)/grassland (20-50%). The explanatory variable is log cost distance to capital. The model controls for precipitation, soil quality and 
elevation (shown) and latitude and longitude (not shown).   
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Table 9: Multinomial estimates, Euclidian distance to road as explanatory variable of land classification 
 

  coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se 

Land Class Rainfed 
croplands 

Mosaic cropland 
(50-
70%)/vegetation 
(20-50%) 

Mosaic 
vegetation 
(50-
70%)/cropland 
(20-50%) 

Closed to 
open >15% 
broadleaved 
evergreen or 
semi-
deciduous 
forest (>5m) 

Open (15-40%) 
broadleaved 
deciduous 
forest/woodland 
(>5m) 

Mosaic forest 
or shrubland 
(50-
70%)/grassland 
(20-50%) 

Mosaic 
grassland 
(50-
70%)/forest 
or shrubland 
(20-50%) 

Closed to 
open 
(>15%) 
shrubland 
(<5m) 

Closed to 
open 
(>15%) 
herbaceous 
vegetation 

Sparse 
(<15%) 
vegetation 

Closed to 
open (>15%) 
broadleaved 
forest 
regularly 
flooded 

Closed to 
open 
(>15%) 
grassland or 
woody 
vegetation 
on regularly 
flooded or 
waterlogged 
soil 

Urban 
>50% Bare areas Water 

bodies 

log Euclidian distance to 
road (km) 3.6343*** 3.2258*** 1.3232*** 2.9574*** 2.5024*** (dropped) 2.6969*** 2.3807*** 3.8104*** 1.7323*** -96.8919*** 7.7214*** 8.6257*** 5.5475*** 10.3366*** 

 (0.0734) (0.0437) (0.0452) (0.1238) (0.0617)  (0.2085) (0.0415) (0.0794) (0.0813) (13.3510) (0.2536) (1.2461) (0.0860) (0.2773) 
log Euclidian distance to 
capital (km) -0.6040*** 0.2961*** 1.4377*** 1.1501*** 0.5618***  0.2946*** 0.6925*** -2.0517*** 0.7883*** -27.3514*** -4.4446*** -4.5872*** -1.2648*** 1.0853*** 

 (0.0160) (0.0101) (0.0180) (0.0437) (0.0204)  (0.0612) (0.0122) (0.0236) (0.0440) (3.3468) (0.0947) (0.3469) (0.0290) (0.0864) 

log cost distance to Addis*log 
Euclidian distance to Addis -0.4934*** -0.4508*** -0.1830*** -0.3426*** -0.2890***  -0.3187*** -0.3141*** -0.4578*** -0.2216*** 11.6276*** -1.0150*** -1.4609*** -0.6736*** -1.3144*** 

 (0.0096) (0.0056) (0.0056) (0.0158) (0.0077)  (0.0273) (0.0051) (0.0097) (0.0096) (1.6188) (0.0319) (0.2310) (0.0105) (0.0347) 
longterm annual precip 1901-
2005 (km) -0.3193*** 3.4514*** 4.5771*** 6.6955*** 4.7755***  2.6297*** 3.6087*** -7.4637*** -3.9325*** 12.7669*** -2.3027*** -1.2363 -6.0020*** 3.1992*** 

 (0.0377) (0.0205) (0.0261) (0.0555) (0.0314)  (0.1256) (0.0209) (0.0800) (0.0764) (0.8683) (0.1687) (2.7913) (0.0818) (0.1104) 

elevation std -0.0237*** -0.0092*** -0.0064*** 0.0110*** 0.0093***  0.0321*** -0.0008*** -0.0117*** -0.0598*** 0.0753 -0.3718*** -0.0898*** -0.0007 -1.4732*** 

 (0.0006) (0.0003) (0.0003) (0.0005) (0.0003)  (0.0008) (0.0002) (0.0006) (0.0008) (0.0675) (0.0330) (0.0310) (0.0005) (0.0605) 

elevation mean (100m) 0.0781*** 0.0032*** 0.0386*** 0.0267*** -0.1243***  0.1203*** -0.0715*** -0.1808*** -0.1077*** -6.6287*** -0.8634*** -0.2245*** -0.2282*** -0.0177*** 

 (0.0014) (0.0009) (0.0010) (0.0025) (0.0018)  (0.0036) (0.0010) (0.0023) (0.0027) (0.8638) (0.0178) (0.0818) (0.0025) (0.0057) 

ideal topsoil pH -0.0409** 0.2509*** -0.3303*** 0.2035*** 0.1425***  0.0954** 0.0871*** -0.5176*** -0.2796*** -1.4496** -0.2603*** -0.3689 -0.3488*** -3.0378*** 

 (0.0161) (0.0081) (0.0081) (0.0200) (0.0114)  (0.0431) (0.0078) (0.0142) (0.0140) (0.6919) (0.0467) (0.3138) (0.0136) (0.0487) 

Constant 4.9171*** -4.2054*** -15.5780*** -9.9967*** -7.2524***   -8.2014***  -17.7161***  43.0325***  7.3370***  

 (0.2898) (0.1569) (0.2243) (0.6191) (0.2528)   (0.1596)  (0.4674)  (0.9349)  (0.3831)  
o._cons      (dropped) -14.0042***  10.3192***  459.2591***  -78.9016***  -7.9151*** 

       (0.9992)  (0.3704)  (56.5711)  (11.6881)  (0.9060) 

Number of observations 949,436 

    

note:  .01 - ***; .05 - **; .1 - *; 

                
Note: The dependent variable is a categorical variable representing sixteen types of land cover, with the largest category selected as the comparison group: mosaic 
forest or shrubland (50-70%)/grassland (20-50%). The explanatory variable is Euclidian distance to road. The model controls for precipitation, soil quality and 
elevation (shown) and latitude and longitude (not shown).   
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Table 10: Multinomial logit estimates, Market access as explanatory variable of land classification 
 

  coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se 

Land Class Rainfed 
croplands 

Mosaic 
cropland (50-
70%)/vegetation 
(20-50%) 

Mosaic 
vegetation 
(50-
70%)/cropland 
(20-50%) 

Closed to 
open >15% 
broadleaved 
evergreen 
or semi-
deciduous 
forest 
(>5m) 

Open (15-40%) 
broadleaved 
deciduous 
forest/woodland 
(>5m) 

Mosaic forest 
or shrubland 
(50-
70%)/grassland 
(20-50%) 

Mosaic 
grassland 
(50-
70%)/forest 
or shrubland 
(20-50%) 

Closed to 
open 
(>15%) 
shrubland 
(<5m) 

Closed to 
open 
(>15%) 
herbaceous 
vegetation 

Sparse 
(<15%) 
vegetation 

Closed to 
open (>15%) 
broadleaved 
forest 
regularly 
flooded 

Closed to 
open 
(>15%) 
grassland or 
woody 
vegetation 
on regularly 
flooded or 
waterlogged 
soil 

Urban 
>50% Bare areas Water 

bodies 

log market access 0.6928*** 0.5779*** 0.4357*** 0.2533*** 0.3106*** (dropped) 0.5958*** 0.2654*** 0.5748*** 0.8707*** -54.0692*** 1.8175*** 1.7335*** 0.6750*** 1.5844*** 

 (0.0155) (0.0104) (0.0111) (0.0281) (0.0183)  (0.0520) (0.0113) (0.0231) (0.0204) (8.3919) (0.0421) (0.1327) (0.0227) (0.0338) 

log Euclidian distance to 
capital (km) -0.8576*** 0.0460*** 1.4321*** 0.7680*** 0.2774***  0.1146** 0.4396*** -2.4963*** 1.1407*** -66.3339*** -4.3963*** -5.0234*** -2.1549*** 0.0910** 

 (0.0148) (0.0102) (0.0168) (0.0349) (0.0181)  (0.0473) (0.0118) (0.0223) (0.0378) (5.8380) (0.0976) (0.3020) (0.0226) (0.0417) 

log market access*log 
Euclidian to Addis 0.0503*** 0.0834*** 0.0353*** -0.0559*** -0.0467***  -0.0677*** 0.0438*** -0.0311*** 0.0016 0.6050*** 0.0432*** 0.3155*** -0.0328*** 0.0010 

 (0.0028) (0.0013) (0.0013) (0.0040) (0.0020)  (0.0086) (0.0012) (0.0020) (0.0015) (0.0500) (0.0056) (0.0644) (0.0019) (0.0053) 

longterm annual precip 
1901-2005 (km) -0.0462 3.6055*** 4.6891*** 6.9044*** 4.8851***  2.7960*** 3.7005*** -7.4056*** -3.3519*** 15.4827*** -2.0079*** -2.7650 -6.1166*** 3.4779*** 

 (0.0391) (0.0211) (0.0260) (0.0560) (0.0319)  (0.1263) (0.0214) (0.0818) (0.0755) (1.3525) (0.1493) (2.5624) (0.0869) (0.1139) 

elevation std -0.0219*** -0.0079*** -0.0058*** 0.0118*** 0.0105***  0.0336*** -0.0000 -0.0103*** -0.0583*** 0.0788*** -0.3811*** -0.0849*** 0.0010** -1.5762*** 

 (0.0006) (0.0003) (0.0003) (0.0005) (0.0003)  (0.0008) (0.0002) (0.0005) (0.0008) (0.0300) (0.0341) (0.0299) (0.0005) (0.0605) 

elevation mean (100m) 0.0577*** -0.0136*** 0.0227*** 0.0186*** -0.1303***  0.1109*** -0.0790*** -0.1993*** -0.1489*** -9.0362*** -0.9211*** -0.2518*** -0.2473*** -0.0625*** 

 (0.0015) (0.0010) (0.0010) (0.0025) (0.0019)  (0.0037) (0.0011) (0.0025) (0.0028) (0.7094) (0.0172) (0.0695) (0.0029) (0.0060) 

ideal topsoil pH -0.0254 0.2597*** -0.3353*** 0.2559*** 0.1974***  0.1268*** 0.1259*** -0.4522*** -0.2751*** -1.2634 -0.1982*** -0.0329 -0.2617*** -3.2338*** 

 (0.0161) (0.0081) (0.0081) (0.0199) (0.0115)  (0.0432) (0.0078) (0.0141) (0.0139) (0.7945) (0.0478) (0.3248) (0.0135) (0.0511) 

Constant 8.7978*** -0.2699* -14.1895*** -7.0492*** -3.8803***   -5.3151***  -18.7335***  47.2034***  15.4715***  

 (0.2941) (0.1613) (0.2131) (0.5643) (0.2315)   (0.1536)  (0.4278)  (0.9349)  (0.4324)  

o._cons      (dropped) -10.6462***  14.9901***  598.9548***  -75.9837***  4.0852*** 

       (0.9692)  (0.4185)  (48.6330)  (9.4955)  (0.7245) 

Number of observations 949,369 

    

note:  .01 - ***; .05 - **; .1 - *; 

                
Note: The dependent variable is a categorical variable representing sixteen types of land cover, with the largest category selected as the comparison group: mosaic 
forest or shrubland (50-70%)/grassland (20-50%). The explanatory variable is market access. The model controls for precipitation, soil quality and elevation 
(shown) and latitude and longitude (not shown).   
 



Table 11: Logit marginal effect estimates for the effect of distance to road/market on probability of agricultural 
land cover 

 (1) (2) (3) (4) 
  coef/se coef/se coef/se coef/se 
log Euclidian distance to 
capital (km) -0.117*** 0.011*** -0.107*** -0.087*** 

 (0.002) (0.003) (0.003) (0.003) 
log cost distance to capital  -0.147***   
  (0.002)   
log cost distance to Addis*log 
Euclidian distance to Addis  0.010***   

  (0.003)   
log Euclidian distance to road 
(km)   -0.015***  

   (0.005)  
log distance to nearest 
road*log Euclidian distance 
to Addis   0.005  

   (0.006)  
log market access    0.053*** 

    (0.001) 
log market access*log 
Euclidian to Addis    -0.026*** 

    (0.001) 
longterm annual precip 1901-
2005 (km) 0.110*** 0.080*** 0.103*** 0.078*** 

 (0.003) (0.003) (0.003) (0.003) 
elevation std -0.001*** -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) 
elevation mean (100m) 0.008*** 0.004*** 0.005*** 0.004*** 

 (0.000) (0.000) (0.000) (0.000) 
ideal topsoil pH 0.019*** 0.011*** 0.015*** 0.014*** 

 (0.001) (0.001) (0.001) (0.001) 
Number of observations 929,918 869,330 869,330 869,265 
          
note:  .01 - ***; .05 - **; .1 - *; 

     
Note: This table shows the probit marginal effect estimates of land cover type with respect to five estimates of distance to 
road or market. The dependent variable in all models is a binary variable for vegetation or agriculture (0=vegetation, 
1=agriculture). The explanatory variable is distance to road or market, through five different measures as shown in the 
table. Models 2-4 all include an interaction term with the Euclidian distance to the capital (Addis Ababa), the explanatory 
variable in model 1. Additionally, all regressions include administrative zone fixed effects and controls for elevation, soil 
quality, precipitation, and latitude and longitude. The marginal effects for the interaction term are calculated using the 
algorithm derived in Ai and Norton (2003).  
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Table 12: Logit marginal effect estimates for difference-in-difference model 
 

 (1) (1) (1) 
  coef/se coef/se coef/se 
Post 0.217*** 0.380*** 0.399*** 

 (0.002) (0.004) (0.005) 
Post*Treatment -0.519*** -0.437*** -0.343** 

 (0.011) (0.011) (0.012) 
Post*Soil pH  -0.163*** -0.170*** 

  (0.003) (0.003) 
Post*Agricultural 
area   -0.011*** 

   (0.003) 
Number of 
observations 308184 308184 262208 

        
note:  .01 - ***; .05 - **; .1 - *; 

  
Note: This table represents the change in agriculture from 2009 (pre-expressway) to 2016 (post-expressway) comparing 
treatment and control groups of land parcels. The interaction term Post*Treatment measures the difference-in-difference 
between the two groups. The treated land parcels are those within an inner (20-km) buffer of the expressway and the 
control land parcels are those within an outer (40-km) buffer of the expressway. I allow the trend in quantity of 
agricultural land cover to vary with treatment, the quality of the soil based on pH (soil pH is a dummy for good or bad 
quality soil), and the nearby concentration of agriculture (percentage of agricultural land parcels in a 2.5-km buffer of 
each observation/land parcel).  
 
The model used is a logit model with fixed effects, so it controls for constant heterogeneity.  Marginal effects for 
difference-difference estimators are calculated using the algorithm derived in Puhani (2012). All other marginal effects for 
interaction terms are calculated using the algorithm derived in Ai and Norton (2003).  
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Table 13: Logit marginal effect estimates for the effect of distance to the expressway on probability of 
transitioning land cover type 2009 to 2016 
 

 (1) (2) 
  coef/se coef/se 
Treat 0.042*** 0.013*** 

 (0.002) (0.001) 
Soil pH 0.145*** 0.121*** 

 -0.003 (0.002) 
Agricultural 
area 0.072*** -0.087*** 

 (0.003) (0.001) 
Number of 
observations 135,782 295,902 

      
note:  .01 - ***; .05 - **; .1 - *; 

  

Note: The first specification, (1), examines the probability of transition from non-agriculture to agriculture over the period 
2009 (pre-expressway) to 2016 (post-expressway). The second specification, (2), examines the probability of transition 
from agriculture to non-agriculture over the same period. Soil pH is a dummy variable for good (1) or bad (0) quality soil, 
based on pH level. Agricultural area is a variable that measures the percentage of agricultural land parcels in a 2.5-km 
buffer of each observation/land parcel.  
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Table 14: Logit marginal effect estimates for the effect of distance to road/market on probability of 
agricultural land cover for land parcels within 40-km of the Addis-Ababa Adama expressway 

 (1) (2) (3) (4) 
  coef/se coef/se coef/se coef/se 
log Euclidian distance to 
capital (km) 0.128*** 0.083** 0.108*** 0.093*** 

 (0.025) (0.033) (0.029) (0.030) 
log cost distance to capital  0.006   
  (0.021)   
log cost distance to 
Addis*log Euclidian 
distance to Addis  0.002   

  (-0.008)   
log Euclidian distance to 
road (km)   0.190***  

   (0.054)  
log distance to nearest 
road*log Euclidian 
distance to Addis   -0.086*  

   (0.046)  
log market access    0.003 

    (0.012) 
log market access*log 
Euclidian to Addis    0.002 

    (0.010) 
longterm annual precip 
1901-2005 (km) -0.647*** -0.672*** -0.688*** -0.678*** 

 (0.074) (0.080) (0.080) (0.080) 
elevation std -0.004*** -0.004*** -0.004*** -0.004*** 

 (0.001) (0.001) (0.001) (0.001) 
elevation mean (100m) 0.059*** 0.060*** 0.060*** 0.061*** 

 (0.003) (0.003) (0.003) (0.003) 
ideal topsoil pH 0.068*** 0.078*** 0.071*** 0.078*** 

 (0.012) (0.013) (0.013) (0.013) 
Number of observations 10,774 9,124 9,124 9,117 
          
note:  .01 - ***; .05 - **; .1 - 
*; 

     
Note: This table shows the probit marginal effect estimates of land cover type with respect to five estimates of distance to 
road or market. The dependent variable in all models is a binary variable for vegetation or agriculture (0=vegetation, 
1=agriculture). The explanatory variable is distance to road or market, through five different measures as shown in the 
table. Models 2-4 all include an interaction term with the Euclidian distance to the capital (Addis Ababa), the explanatory 
variable in model 1. Additionally, all regressions include administrative zone fixed effects and controls for precipitation, 
elevation, soil quality, latitude, and longitude. The marginal effects for the interaction term are calculated using the 
algorithm derived in Ai and Norton (2003).  
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12. Appendix B: Figures 

Figure 1: Ethiopia road network 2005 (ESA) 
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Figure 2: Ethiopia travel cost raster 
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Figure 3: Ethiopian woreda and major cities and towns 
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Figure 4: Cost distance to Addis Ababa 
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Figure 4: Logit average marginal effects of explanatory variables on probability of agricultural land 
cover for different specifications 
 

     
 

    
 
 Note: All specifications have agricultural land cover as the dependent variable and include controls for administrative 
region, precipitation, elevation, soil quality, latitude, and longitude. Except for the specification where Euclidian distance 
to capital is the explanatory variable of interest, this variable is also included as a control.  
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Figure 5: Land cover classification in 2009 and 2016 within 40-km buffer of expressway 

 
Year = 2009 
 

 
Year = 2016 
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Figure 6: Road network and major cities in a 40-km buffer of the Addis Ababa-Adama expressway 
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Figure 7: Second-level administrative units in a 40-km buffer of the Addis Ababa-Adama expressway 

 
 
	
  

 


