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ABSTRACT 

 The performance of dye sensitized solar cells depends on the properties and interactions 

of three fundamental components: the semiconductor, chromophore, and electrolyte. 

Performance dependence on electrolyte cation species has not been well studied in p-type 

systems. The effects of these species in n-type systems are significant, producing large shifts in 

semiconductor flat band potential, charge transfer kinetics, and open circuit voltage. Modifying 

the spectator cation has been shown to increase open circuit voltage by over 50% in two common 

electrolyte systems. A champion open circuit voltage of 351 mV has been achieved, representing 

a record for the chromophore employed. Our results indicate that applying this knowledge to any 

p-type dye sensitized solar cell system can yield improvements in important device metrics. 

 

INTRODUCTION 

Dye-sensitized solar cells (DSSCs) are a low-cost alternative to traditional solar cells 

which have received considerable attention since the initial reporting by Grätzel in 1991.1 The 

basic components of a DSSC are a semiconductor, a chromophore, and an electrolyte. Upon 

illumination, the chromophore is excited and is subsequently either reduced (p-type) or oxidized 
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(n-type) by the semiconductor – typically a metal oxide. NiO and TiO2 are common choices for 

p- and n-type devices, respectively.2-6 Upon relaxation, the chromophore reacts with a redox-

active species in the electrolyte which in turn reacts with a counter electrode, completing the 

circuit. To improve device performance, each of the fundamental components must be 

optimized.  While research in n-type DSSCs has examined all of these components in depth,5, 7-12  

p-type DSSC studies have prioritized the semiconductor and chromophore.6, 13-16 It is 

hypothesized that this has contributed to the poor performance of p-DSSCs in relation to their n-

type counterparts. This work serves to improve the understanding of the electrolyte in p-DSSCs 

by examining the impact of spectator metal cations in p-DSSC electrolytes in an effort to 

increase the performance of such devices.  

As spectators to the redox reactions occurring in the electrolyte, cation species are easily 

overlooked when optimizing electrolyte composition. However, cations in solution are known to 

have significant impact in TiO2 n-DSSCs.7, 8, 17-19 The cations are able to adsorb to electrode 

surfaces20, inducing a dipole. This dipole alters the charge equilibrium at the semiconductor-

electrolyte interface, causing a shift in the flat band potential (VFB) of that semiconductor21 as the 

Fermi level reaches a new equilibrium. In an ideal case, the open circuit voltage (VOC) of a 

DSSC depends on the potential difference between the Nernstian potential of the redox couple 

and the Fermi level of the semiconductor.21 Therefore the VOC can be increased by increasing 

that difference, either by changing the redox couple or shifting the semiconductor Fermi level 

(Figure 1). Altering the cation in solution, then, offers a straightforward method for increasing 

device VOC. 

One of the most common electrolyte systems in both p- and n-DSSCs is the Z960 

electrolyte utilizing an I-/I3
- redox couple.22 Conveniently, the I-/I3

- redox couple’s Nernstian 



potential is accessible for both n- and p-DSSCs.22 However, these two systems operate in 

reverse, with the n-DSSC’s Fermi level lying above the I-/I3
- Nernstian potential and the p-

DSSC’s below.22 One of the most prominent alternatives to I-/I3
- is the CoII/III couple. Previous 

studies have demonstrated the promise of this system23, 24 and its simplicity minimizes the 

variables in the experiments. The electrolyte is composed of a perchlorate salt and tris(4,4’-di-

tert-butyl-2,2’-dipyridyl) cobalt (II/III) perchlorate – abbreviated as Co(dtb)II/III – dissolved in 

propylene carbonate. Li+, Mg2+, and Al3+ were selected to test cation effects in the I-/I3
- system as 

their iodide salts were readily available. In the Co(dtb)II/III system, in addition to the previously 

mentioned cations Na+, Sr2+, and Ca2+ were used, as this would allow for an examination of ionic 

radius effects and the perchlorate salts were more versatile in electrochemical measurements. A 

positive charge near the surface will induce a dipole which stabilizes electronic energies, 

lowering the Fermi level. Therefore, a p-DSSC favors an increase in VFB and an n-DSSC favors 

a decrease in VFB. A device with higher charged cations in solution would then be expected to 

have a larger VOC. Nickel oxide will be used as the p-type semiconductor in this study as it is a 

ubiquitous material for p-DSSCs. The chromophore selected is Dyenamo FP01 (P1), a common 

organic chromophore used in NiO DSSCs.15 



 

Figure 1. Depiction of Fermi energy shifts as cations of increasing charge are adsorbed to the 

surface. 

 

RESULTS AND DISCUSSION 

To confirm the stated effects of ions on the semiconductor’s energetics, Mott-Schottky 

analysis was performed. Mott-Schottky analysis is an AC impedance technique which measures 

the capacitance of the working electrode as a function of applied bias at a fixed AC frequency. 

Capacitance of a film is linked to the VFB through the Mott-Schottky equation (Eq. 1). 

Equation 1. 𝐶−2 =
2

𝜀𝜀0𝐴2𝑒𝑁𝐴
(𝑉 − 𝑉𝐹𝐵 −

𝑘𝐵𝑇

𝑒
) 

Where C is capacitance, V is potential, kB is Boltzmann’s constant, A is the area of the electrode, 

e is the fundamental charge of an electron, T is temperature in Kelvin, ε is the dielectric constant 

of the solution, and ε0 is the dielectric constant of free space. The inverse square of the 

capacitance can be plotted against the applied potential to extract VFB. When C-2 = 0, V = VFB + 

kT/e. Mott-Schottky analysis is most accurate for planar films and thus the trend extracted for the 

mesoporous films used in this work is more important to consider than the values of VFB.25 Mott-



Schottky analysis was performed in solutions with different dissolved perchlorate salts using a 

three-electrode cell using a Ag/AgCl reference electrode, NiO working electrode and Pt mesh 

counter. The linear region was fit to Eq. 1. VFB is observed to increase with increasing ionic 

charge (Figure 2A), consistent with reports on TiO2 cation effects8,7,18. Li+ is observed to have a 

VFB of -0.25 V vs Ag/AgCl and Na+ has a more negative VFB of -0.30 V vs Ag/AgCl while alkali 

earth ions (Sr2+, Ca2+, Mg2+) have much more positive VFBs ranging from -0.16 V to 0.21 V vs 

Ag/AgCl. The most highly charged ion studied, Al3+, has the most positive VFB at 0.72 V vs 

Ag/AgCl. As predicted, VFB increases with the increasing charge density of the cation in 

solution.  

This observation has useful implications for the composition of p-DSSC electrolytes. It is 

common for p-DSSCs to adopt the same electrolyte as n-DSSCs which typically have Li+ in 

solution as Li+ has favorable energetics for an n-DSSC. However, Figure 1 indicates Li+ is a poor 

option for p-type systems due to its low flat band potential. Ignoring this effect limits the 

potential of p-DSSCs. In fact, Li+ has the lowest observed VFB of any ion besides Na+. A p-

DSSC favors a very positive shift in VFB, which Figure 1 suggests Mg2+ and Al3+ provide. 

However, ion charge alone is not the only variable to consider. The size of the ion is also 

observed to affect the VFB. As ion size increases, charge density decreases. A lower electric field 

would then be experienced at the surface, resulting in a smaller induced dipole and reduced band 

bending, observed in Figure 1 as a decrease in VFB. An estimate of the strength of the electric 

field experienced by the semiconductor can be calculated by treating the ion as a point charge 

and assuming the ionic radius is the distance between the charge and the surface. Ionic radii are 

sourced from literature.26 Comparing the calculated field strength to the VFB (Figure 2) a similar 

trend is observed, implying electric field strength is an important factor in predicting VFB. 



 

Figure 2. (A) Mott-Schottky curves of mesoporous NiO films in 0.1 M X(ClO4)n in acetonitrile 

where X is the cation of interest and n varies as appropriate to balance charge. Capacitance 

values are normalized for ease of viewing. From this, (B) flat band potential values are extracted 

and compared to electric field strength of cations. 

 

Electrochemical impedance spectroscopy (EIS) was used to determine the impact of 

different cations on interfacial charge transfer. EIS has become an increasingly powerful 

technique for characterizing DSSCs, and several significant parameters have been quantified 

using this technique including charge transfer resistances and recombination resistances.27,28 An 

equivalent circuit representing a modified double Randles cell (Figure S1) was used to model 

each device. Nyquist plots are useful for identifying the charge transfer processes present in a 

system. Nyquist plots were constructed for each device and a representative plot is displayed in 

Figure 3A. There are two distinct semicircles, indicating there are two charge transfer regimes of 

significance. The size of these semicircles varies with applied bias. The large dependence of the 

larger semicircle on applied bias indicates it is linked to the semiconductor interface as the 

behavior of the Pt counter is unlikely to be significantly altered by a change in potential. Charge 



transfer resistance (RCT) and hole lifetime (τ) at the NiO interface were extracted and plotted as a 

function of applied bias (Figure 3B). These parameters decrease in all systems as bias is 

increased due to the increase in hole concentration. The values of RCT and τ vary significantly as 

the cation is changed (Table 1), more so even than applied bias. 

Bode plots were constructed for each device at VOC (Figure 3C). The first set of devices 

analyzed used a Z960-like electrolyte previously reported6,29  utilizing the I-/I3
- couple. 

Electrolytes had the same composition with the exception of cation identity. The Bode plots for 

the I-/I3
- couple ions have peaks in two distinct frequency ranges. The dependence of these peaks 

on light intensity was examined to assist in assigning them to processes in the device (Figure 

S2). The peak at lower frequencies is attributed to charge transfer at the NiO-chromophore-

electrolyte interface while the peak at higher frequencies is attributed to the Pt-electrolyte charge 

transfer. Recombination losses occur at the NiO interface and so the charge transfer resistance is 

attributed to recombination processes.27 The MgI2 electrolyte has a significantly larger peak in 

the Pt range, indicating more capacitive character. Light intensity testing indicates the NiO 

charge transfer peak is present in the MgI2 plot at higher frequency, but is obscured by the Pt 

peak (Figure S2). This shift to a higher frequency region is indicative of a shorter hole lifetime, 

but the charge transfer resistance at this interface is 150Ω higher than that of the LiI device, 

suggesting recombination is a slower process at the NiO interface. The high-frequency peak in 

the MgI2 plot is significantly more capacitive than the LiI plot, demonstrating that spectator 

cations have considerable influence over charge transfer kinetics. The NiO peak in AlI3 has also 

shifted to a higher frequency but without a corresponding increase in charge transfer resistance at 

the NiO interface. In fact, the resistance decreases by 50Ω. Charges are freer to recombine in the 

AlI3 electrolyte, contributing to its lower performance.  



The Co(dtb)II/III devices were also characterized using EIS. Bode plots at device VOC were 

again constructed (Figure 3D). Peaks in the Pt region observed in the iodide devices are again 

much more capacitive, which may be due to the increased charge transfer resistance as discussed 

previously, but the electrolytes differ to an extent that a direct comparison is difficult. Using the 

equivalent circuit model charge transfer resistances and hole lifetimes can again be extracted for 

analysis. Hole lifetimes are observed to increase with increasing ion charge in the Co(dtb)II/III 

devices but does not appear to appreciably trend with charge density. Calculated hole lifetimes in 

the iodide devices were on the order of milliseconds but the Co(dtb)II/III devices had values on 

the order of seconds. The mesoporous nature is most likely hindering the accuracy of these 

values, but as previously stated, the trend is of greater importance. Charge transfer resistances 

are considerably higher in the Co(dtb)II/III devices and have much more variation than what was 

observed in the iodide devices, ranging from a few hundred ohms in NaCo to a few thousand 

ohms in MgCo. These two observations indicate a much lower rate of recombination at the NiO 

interface. Charge separation is then more effective and charges can more efficiently move 

through the cell. The increased charge transfer resistance may also indicate increased difficulty 

in charge injection by the chromophore which is observed in the JV curves as a lower current 

density. Al3+ has a very large feature at low frequency, indicating a drastic change in the 

capacitance of the device due to a spectator cation. EIS analysis has revealed that ions present in 

solution have considerable effects on charge transfer kinetics in addition to altering the band 

bending of the semiconductor. 



 

Figure 3. (A) Nyquist plots for DSSC at various applied biases with the 0.1 M Li+ in Co(dtb)II/III 

electrolyte. Bias was increased from 0 mV to device VOC (140 mV). (B) The time constant for 

recombination and charge transfer resistance in (A) were extracted at each potential and plotted. 

Bode plots for DSSCs using the (C) I-/I3
- and (D) Co(dtb)II/III electrolytes.  

 

 

 

 

 



Table 1. Charge Transfer Parameters at the NiO Interface Extracted from EIS Measurements 

Ion/Electrolyte RCT (ohms) Time constant (ms) 

Li/I 82.82 191.5 

Mg/I 233.6 4.800 

Al/I 32.31 3.215 

Na/Co 450.8 952.9 

Li/Co 402.8 809.3 

Sr/Co 1384 2999 

Ca/Co 3279 4612 

Mg/Co 5088 3396 

Al/Co 62.32 8.712 

 

Based on electrochemical measurements, devices were fabricated to test whether the 

predicted VOC increases are observed in solar cells. Current density-voltage (JV) characterization 

was carried out for all devices under one-sun illumination. JV characterization is a fundamental 

technique for measuring the performance of a solar cell. The current of the cell is plotted as a 

function of applied bias and important device metrics can be extracted from this data with the 

non-ideal diode equation. The first set of devices tested contained the I-/I3
- electrolyte. As the 

standard Li+ ion is exchanged for Mg2+ the VOC increases substantially, evident in Figure 4 as a 

66 mV increase in VOC, a 62% improvement. Short-circuit current density (JSC) does decrease 

somewhat in the Mg2+ electrolyte, and the power conversion efficiency (PCE), a measure of the 

overall efficiency of the cell, increases by 58%. These improvements confirm the predictions 

from Figure 1 that Mg2+ is a more energetically favorable cation for p-DSSC electrolytes. Figure 

1 would then imply that Al3+ should produce an even greater Voc and perhaps increase PCE as 

well. Experiments, though, indicate that devices were negatively affected by the introduction of 

Al3+. Devices with Al3+ substituted for Li+ had negligible performance (Figure S3). Subsequent 

experiments determined Al3+ caused the chromophore to desorb from the surface (Figure S4), 

causing the device to fail. The desorption of the dye is thought to be due to the more electrophilic 



Al3+ out-competing the NiO surface for the carboxylic acid linkers of the chromophore. A 

bleaching effect was also observed as the NiO film was exposed to the Al solution, similar to 

previous reports on targeted atomic deposition.29 These reports note that too much Al on a NiO 

surface can block charge injection which is also likely affecting the performance of this device. 

While Al3+ proved problematic, Mg2+ has been shown to have significant advantages over Li+ in 

the traditional Z960-like electrolyte. 

 

Figure 4. JV curves for DSSCs under 1 sun illumination containing Li+ (orange) and Mg2+ (blue) 

in I-/I3
- electrolyte. 

 

With the effect of cations demonstrated using the I-/I3
- couple, Co(dtb)II/III based solar 

cells were characterized next. Figure 5 compares the device performance for p-DSSCs using this 

system with the same ions as in Figure 4. Average VOC in the Co(dtb)II/III Li+ devices is 97 mV 

higher than the I-/I3
- Li+ system. This increase is thought to be primarily due to the change in the 

Nernstian potential of the redox couple in solution23. While this increase is substantial, 

electrolytes containing Mg2+ and Al3+ produce devices with even higher VOCs. Mg2+ again 

improved over Li+ significantly, boosting the average VOC by 106 mV and PCE by 109% when 



comparing in the Co(dtb)II/III electrolyte. Compared to the standard Li+ Z960 system, the Mg2+ 

with the Co(dtb)II/III couple almost triples the average VOC and improves PCE by 250%. While 

the Al3+ devices still have poor JSC and PCE due to dye desorption, a champion VOC of 351 mV 

is observed and exceeds the largest VOC previously reported using this chromophore29. This was 

the highest VOC produced by any device, consistent with predictions from Figure 1. Tuning of 

the electrolyte’s energetics can thus produce dramatic improvements in device performance. The 

JSC for Mg2+ is higher than Li+ in this system, though both are lower than the Z960 system. 

Changing cation species in the electrolyte to favor p-DSSC energetics improved VOC by over 

50% in two entirely different electrolytes. 

 

Figure 5. JV curves for DSSCs under 1 sun illumination containing Li+ (orange), Mg2+ (blue), 

and Al3+ (violet) in Co(dtb)II/III electrolyte. 

Using the information from the previous experiments, the relevance of ionic radius was 

also examined. Ionic radius has been shown to affect the VFB (Figure 2) so a similar trend was 

expected in the VOC. JV curves were collected for these devices. As predicted, VOC is observed to 

increase with decreasing atomic radius (Figure 6A and B). However, the effect is small relative 

to the difference between ions of dissimilar charge. Li+ has an average VOC of 203±16 mV and 

Na+ has an average VOC of 192±10 mV for an average difference of 9 mV. The +2 ions behave 



similarly with Sr2+’s average VOC of 286±7 mV, Ca2+’s 298±11, and Mg2+’s 315±21. The 

difference between the averages is within the error, though champion devices show a clearer 

trend. Na+ and Ca2+ have similar ionic radii26 but Ca2+ has an average VOC 106 mV higher. The 

evidence suggests ionic charge is a much more significant factor than ionic radius for metal 

cations. However, knowing ion radius affects the potential opens the door to a degree of tuning 

in the VOC of a DSSC through the electrolyte. 

Device performance metrics were summarized for comparison. Ions were arranged from 

largest and least charged to smallest and most charged in their respective electrolytes. While no 

clear trend is evident for PCE, JSC, or fill factor, a trend is visible in Voc. As cations become 

smaller and more positively charged, the VOC increases, consistent with predictions (Figure 6C).  

 

Table 2. Summary of Solar Cell Performance for All Devices 

Device 

(cation/electrolyte) 

JSC 

(mA/cm2) 

VOC (mV) 

Fill Factor 

(%) 

Power Conversion 

Efficiency (%) 

Li/I 1.07 ± 0.26 106 ± 9 31.4 ± 0.8 0.036 ± 0.010 

Mg/I 0.92 ± 0.15 172 ± 3 36.0 ± 0.8 0.057 ± 0.008 

Na/Co 0.77 ± 0.04 192 ± 10 28.0 ± 0.3 0.042 ± 0.004 

Li/Co 0.76 ± 0.02 203 ± 16 28.1 ± 0.3 0.043 ± 0.002 

Sr/Co 0.84 ± 0.07 286 ± 7 27.6 ± 2.3 0.066 ± 0.006 

Ca/Co 0.64 ± 0.07 298± 11 26.6 ± 4.21 0.052 ± 0.017 

Mg/Co 0.85 ± 0.14 315 ± 21 33.8 ± 2.4 0.091 ± 0.016 

Al/Co 0.04 ± 0.01 314± 26 44.8 ± 2.8 0.005 ± 0.003 

 



 

Figure 6. JV curves for Co(dtb)II/III DSSCs. Effect of ionic radius on (A) singly and (B) doubly 

charged ions is examined. Graphical depiction of the effect of cations and redox couple on (C) 

VOC, PCE, (D) JSC, and fill factor. 

CONCLUSIONS AND SUMMARY 

Cations in electrolyte solutions have been demonstrated to have significant effects on 

device energetics. Spectator cations induce a dipole on the semiconductor surface, alter charge 

transfer kinetics, and change the performance metrics of solar cells. This analysis has revealed 

the standard Li+ ion used in the field to be inferior to other choices, most notably Mg2+. Selecting 

the most favorable option has been demonstrated to yield great improvements in performance. 



The effects were consistent between two entirely different electrolytes. Additionally, considering 

the energetics of both the redox couple and the cations produced devices which had almost three-

fold increases in VOC and PCE. Impedance measurements also show the cations can radically 

alter the lifetime of charges and the resistance of charge transfer between interfaces. It is then 

essential for spectator cations to be considered when designing p-type DSSC electrolytes. 

EXPERIMENTAL 

Materials and Reagents 

Acetonitrile (99.6%), iodine (>99.99%), lithium iodide (99.9%), lithium perchlorate 

(>95.0%), calcium perchlorate tetrahydrate (99%), magnesium iodide (98%), magnesium 

perchlorate (ACS reagent grade), aluminum iodide (>95%), aluminum perchlorate nonahydrate 

(98%), α-terpineol (anhydrous), and ethyl cellulose (300 cP viscosity) were all purchased from 

Sigma-Aldrich. Strontium perchlorate trihydrate (98%) and anhydrous sodium perchlorate 

(>98%) were purchased from Alfa Aesar. Absolute ethanol was purchased from Fisher 

Scientific. NiO nanoparticles (product #28N-0801) were purchased from Inframat Advanced 

Materials. 1,3-dimethylimidazolium iodide and 25 μm thick Surlyn polymer was purchased from 

Solaronix. P1 chromophore was purchased from Dynamo. All chemicals were used as received. 

Fluorine-doped tin oxide (FTO) glass (TEC 15 Ω·cm2) was purchased from Hartford glass and 

cleaned with typical organic solvents and sonication. 

Tris(4,4’-di-tert-butyl-2,2’-dipyridyl) cobalt (II/III) perchlorate was synthesized 

according to previously published methods.30 

NiO Paste Preparation 

 NiO spin coating paste was prepared using a literature method with Inframat NiO 

nanoparticles and standard homogenization techniques.31 



Electrolyte Preparation 

 Iodide electrolytes were prepared by dissolving solid I2 in acetonitrile to produce a 5 mM 

solution. A tenfold excess of an iodide salt (LiI, MgI2, or AlI3) was then added to yield a solution 

that is 5 mM in iodine and 50 mM in the salt. The dissolution of AlI3 in acetonitrile is very 

exothermic so it must be added slowly and the glassware was placed in an ice bath. It also reacts 

vigorously with water so great care must be taken to avoid contact with water.  

 Co(dtb)II/III solutions were prepared by dissolving 0.1 mmol Co(dtb)II and 0.1 mmol 

Co(dtb)III in 1 mL propylene carbonate to produce a solution 0.1 M in both Co(dtb)II and 

Co(dtb)III. The perchlorate salt of interest was then added to produce a 0.1 M solution. Note that 

the perchlorate salts would degrade the electrolyte over time so they must be prepared on the 

same day as testing. Perchlorate salts are powerful oxidizers and have been known to be 

explosive so they should be handled with care. 

Solar Cell Fabrication 

 NiO paste was applied to FTO glass via spin-coating. Films were then annealed in a 

humidity-controlled furnace at 450 °C for 40 minutes. Annealed films were submerged in a 0.3 

mM solution of P1 dye for 1 hour. Platinum counter electrodes were fabricated by drop-casting 5 

mM chloroplatinic acid solution in isopropanol on FTO glass with a sandblasted hole. The 

alcohol was allowed to evaporate and then films were annealed at 380 °C for 30 minutes. DSSCs 

were sandwiched with 25 µm thick Surlyn polymer gasket using a heating apparatus. 

Sandwiched devices were vacuum-backfilled with electrolyte and then sealed with Surlyn and 

microscope coverslip. 

Solar Cell Characterization 



 Devices were illuminated using a Newport Oriel 94021A solar simulator calibrated to 

AM 1.5 with a certified reference Newport 91150 V solar cell before each use. Electrochemical 

measurement was performed with a Keithley 2636A SourceMeter. 

Electrochemical Analysis 

 NiO electrodes were prepared as previously stated. Exposed FTO was masked with 

Kapton tape. Mott-Schottky tests were performed using a CH Instruments 604 E potentiostat at 

100 Hz utilizing a Ag/AgCl reference electrode, NiO working electrode, and Pt mesh counter.  

 Electrochemical impedance spectroscopy was performed using a Gamry PCI4-G750-

51087 potentiostat. Devices were illuminated using a Newport Oriel 91191-1000 solar simulator 

calibrated to AM 1.5.  
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