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Abstract 

 As a result of increasing interests in discovering single nucleotide polymorphisms (SNPs) 

associated complex diseases and high cost of existing sequencing technology, genotype 

imputation is developed as a statistical method to overcome the limitations of current sequencing 

technology and to increase the power of the association method of Genome-Wide Association 

Studies (GWAS). In this paper, genotype imputation is conducted on Tianjin sample with two 

reference panels; the 1000 Genomes reference panel and the TOPMed reference panel. First, pre-

imputation quality control is applied to remove individuals or genetic markers that may induce 

high error rates when conducting imputation. Principal component analysis was conducted to 

show the East Asian ancestry of the sample. Using Minimac3, imputation was performed on a 

sample of 437 individuals with 499,148 genetic variants after haplotype inference with Eagle 

software from Illumina 660W. Approximately 47 million and 88 million genetic variants were 

imputed using 1000G and TOPMed reference panels respectively. The estimated squared 

Pearson's correlation (R2) was used to determine which of the imputed SNPs passed the post-

imputation quality control. Approximately 9.5 million imputed SNPs from the 1000G reference 

panel and 11 million imputed SNPs from the TOPMed reference panel exceeded the R2 

threshold. To assess imputation quality, imputation was again performed on the original 437 

individuals, but with 5% of the directly genotyped genetic variants randomly masked. The 

imputed variants for chromosomes 1, 11, and 21 were selected to calculate the true squared 

Pearson's correlation; and the masking results for the two reference panels were compared to 

determine which reference panel is more suited for this sample. Overall, the imputation provides 

an accurate set of genetic markers that can be used in the downstream GWAS analysis to explore 

SNPs associated with lung cancer.   
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Introduction 

        The National Human Genome Research Institute (NHGRI) Catalog of Published 

Genome-Wide Association Studies (GWAS) is a publicly available catalog, which encompasses 

3,420 publications of 62,652 unique Single Nucleotide Polymorphisms (SNPs) that are 

associated with complex diseases or other specific traits  (Welter et al. 2014; Burdett et al. 2018). 

Many of the discoveries were conducted with genotype imputation, a crucial statistical technique 

that uses haplotype patterns from genotyped reference panels to accurately predict genetic 

markers of a study sample after sequencing a small amount of genotypes on a commercial array 

(Li et al. 2009). 

         One may wonder the intention for using this type of “incomplete” information instead of 

sequencing the whole genome of every individual in the sample to test for association (Li et al. 

2009). The cost and time required to conduct whole genome sequencing of a sample with 

thousand(s) of individuals is currently unfeasible. The first human genome sequence was 

conducted with Sanger DNA sequencing, developed in 1977 and costed 0.5-1 billion dollars 

(Reuter et al. 2015; Sanger et al. 1977). In the last 40 years, much advancement has been made 

with ‘next generation’ DNA sequencing (NGS) - supplanted Sanger sequencing with reduction in 

cost and time required to sequence DNA and RNA (Shendure et al. 2017; Spiliopoulou et al. 

2017). Although sequencing technologies have improved speed, cost, and quality over the last 

several decades, the error rate remains between 0.5%-1.0% errors per raw base, which is 

considerably high (Li et al. 2011). However, such limitations of DNA sequencing can be 

resolved with genotype imputation. 

         Genotype Imputation is a fast, cost-effective, and highly developed technique that can 

accurately estimate unobserved genotypes, or genotype probabilities from a densely 
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characterized reference panel (Howie et al. 2009; Howie et al, 2011; Howie et al. 2012). This 

technique can also be used to increase power of GWAS analyses, allowing researchers to 

conduct meta-analysis of GWAS and analyze the results from multiple studies that depend on 

different genotyping platforms (Browning et al. 2009; Howie et al. 2011; Li et al. 2010; Welter 

et al. 2014). 

         Genotype imputation has led to the discoveries of thousands of SNP-trait associations, 

which have substantially impacted human health. Researchers and doctors will have a deeper 

understanding of genetically-associated diseases, thus enabling them to develop better methods 

to detect, treat, and prevent diseases (Genome-Wide Association Studies 2015). Genetics 

researchers have claimed that genotype imputation is a necessary tool used in GWAS to 

accurately impute the unobserved genotypes, and the research goal is to implement genotype 

imputation on a sample of 437 Tianjin women with 499,257 variants and evaluate the results of 

the genotype imputation using 1) estimated R-square hat and 2) 5% masking process of the 

genotyped genetic variants.  

Materials and Method 

 A sample of 445 participants from Tianjin, China is genotyped using Illumina 660 SNP 

array. A total of 560,525 genetic markers were genotyped and may be used to conduct genotype 

imputation in order to assess the SNPs-lung cancer association. 1000 Genomes reference panel 

and TOPMed reference panel were used to complete the imputation process. 

 

M.1 Pre-imputation Quality Control  
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        Pre-imputation quality control is conducted on both sample and marker level to remove 

individuals or markers that may induce high error rates when performing imputation. It is 

assumed that the removal of a small sample of genotyped data will not significantly affect the 

overall power of the study. However, it should be noted that the removal of any SNP could lead 

to an overlooked SNPs-trait association even though the genotype imputation can recover the 

removed SNPs. 

 
 First, sample-level quality control was performed based on the following three criteria: 1) 

call rate, 2) gender checking, and 3) relatedness. With regards to call rate, individuals with more 

than 10% missing genotypes were removed. Then the individuals with discordant sex 

information using the X chromosome from the genotype data were identified and removed from 

further analysis. Lastly, individuals in a sample are expected to be unrelated from each other to 

ensure no genotypes are over-represented and to keep a fair reflection of the allele frequency of 

the sample. In this case, assessment is conducted on the degree of shared alleles between pairs of 

individuals. The maximum relatedness between any pair of individuals is the third degree 

relative; thus, one individual is removed from each pair when pairs are third-degree relative or 

less. 

 
        After the removal of individuals who did not pass the sample level quality control, 

performance on marker-level quality control was conducted to identify any genetic variants that 

may induce bias. The criteria for sample level quality control are genotypes 1) with an excessive 

missing genotype, or 2) show a significant deviation from Hardy-Weinberg equilibrium (HWE), 

or 3) with a very low minor allele frequency. Markers with a call rate less than 95% are removed 

from further study. Markers with an extensive deviation from HWE suggest genotype calling 
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error, thus markers with a p-value threshold < 10-6 are removed. Lastly, SNPs with minor allele 

frequency (MAF) <0.5% are removed. Although the goal of quality control is to produce more 

accurate imputed genotypes, genotyping errors can still persist after pre-imputation quality 

control. Both sample-level and marker level pre-imputation quality control was conducted using 

plink program v.190 (Chang et al. 2015).  

 
M.2 Principal Component Analysis (PCA) 

 After the removal of individuals and markers that may have particularly high error rates, 

a joint PCA, sample combined with the 1000 Genomes (1000G) reference panel, was conducted 

to identify the ancestry of the sample and discern outliers using the smartpca program of the 

EIGENSOFT software package v. 6.1.4 (Patterson et al. 2006). PCA is a mathematical method 

that reduces large sets of potentially correlated variables to a number of uncorrelated variables, 

which are called principal components (Reich, David, et al). The first principle component 

accounts for the greatest variability in the data, while the succeeding principle components 

account for the remaining variability (Reich, David, et al). 

         Using plink v.190, a pruned subset of markers based on correlation between genotype 

allele counts are extracted from the sample that are in approximate linkage equilibrium with each 

other.  When the correlation between any pair of SNPs within a 50 kilobase window is > 0.1, 

then the SNP is labeled and pruned from the current window. Once no such pairs were retained, 

the window is shifted across the 5kb at a time. After the production of a subset of markers that 

are in approximate linkage equilibrium, the alleles of the sample were ensured to be coded on the 

same strand as the 1000G reference panel by using plink v.190 to flip it. Then, the shared SNPs 

between the Tianjin sample and 1000G were extracted using vcftools with SNPs from different 
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chromosomes merged into one dataset. SNPs with missing call rate over 10% were filtered from 

the merged dataset. SMARTpca is used to generate the principle components for each individual, 

and the first two principal components are plotted to display the ancestry of the sample. 

 
M.3 Strand-Flip  

 SNPs were genotyped with microarray on either the forward or reverse strand. Strand-flip 

was conducted to ensure the SNPs from the study sample and the reference panels are coded to 

the same allele to improve imputation accuracy. Non-ambiguous SNPs, which are SNPs that are 

not A/T or C/G, are easier to detect. When more than two individuals in the sample study have 

genotyped on a different strand compared to the reference panel, plink v.1.90 is used to flip the 

SNPs. The frequencies of the minor alleles for each data are computed to compare to that of the 

alleles in the reference panels in order to identify the variants that need to be flipped. For 

ambiguous SNP with MAF >0.55 in sample study but <0.45 in reference, they would be flipped 

using plink v.1.90. However, if an ambiguous SNP with MAF of 0.45 to 0.55, then the SNP is 

not flipped due to the uncertainty.  

M.4 Pre-phasing and Imputation 

 This study uses Eagle v.2.3.5 (Loh et al. 2016) for pre-phasing with 1000G as the 

reference panel. This step is included to discern markers that are located on the same 

chromosomes. Then Minimac3 v.2.0.1 (Das et al. 2016) is used to perform imputation. 

M.5 Post Imputation Quality Control  

 To assess which of the imputed SNPs can be used for further analysis, the squared 

Pearson’s correlation (R-square) between directly genotyped genotypes and imputed genotypes 

is estimated and used. Due to lack of availability of true genotypes, R2 value is estimated by 
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comparing the variance of the imputed allele counts to the theoretical expectation of the variance 

of allele counts using Hardy-Weinberg equilibrium. For genetic variants that are poorly imputed, 

the variability will be much less than that of the theoretical expectation, thus leading to a low R2 

value. An R2 threshold of 0.30 will be used and all variants with R2 value above 0.30 are then 

used to calculate the average R2.  If the average is above 0.80, then the threshold used suggests 

that the majority of the bad imputed SNPs have been removed from the overall imputed sample. 

However, when the average R2 value is below 0.80, then the original threshold of 0.30 will be 

raised by 0.10 each time until the average R2 value is above 0.80. It is expected that 70% of the 

badly imputed SNPs will be removed with this method of evaluation. 

 
M.6 Post Imputation Quality Assessment 

         Since the R2 value is estimated without having the true genotypes, then it is uncertain 

how valid the imputations were on this study sample. To validate the quality of the imputation on 

this Tianjin sample study, R2 values between imputed genotypes and true genotypes are 

calculated by randomly removing 5% of the directly genotyped SNPs from the dataset. Then the 

remaining 95% of the directly genotyped genetic variants are again used to conduct imputation 

with Minimac3. To ensure at least some genetic variants with low minor allele frequency (MAF) 

would be included in the evaluation process, masking 5% of the directly genotyped variants was 

conducted 10 times and evaluated altogether. With this method, the imputation quality is 

evaluated by calculating the true squared Pearson's correlation of the 5% removed genotypes. 

Ten samples of imputed genetic variants of three chromosomes (1, 11, and 21) of distinctively 

different sizes were selected to assess the imputation quality of this sample. 

 
Result 
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R.1 Pre-imputation Quality Control Results  

 For sample-level quality control, the three standards are call rate, gender-checking, and 

relatedness of the sample. All 455 individuals have less than 10% missing rate. In this study, 

only female participants are of interest; therefore, two male participants and one ambiguous sex 

participant based on (table 1). Sexuality is inferred with F estimates, which is an indicator of sex 

call. Female participants should have a F- estimate of < 0.2 and male participants have a F-

estimate of > 0.8. 

Table 1: Individuals with Ambiguous Sex  

Individual 

ID 

Pedigree Sex SNP Sex

  

Predicted 

Sex 

Status F estimate 

TGS095013 Female 0 Unknown Problem 0.4199 

TGS024524 Female 1 Male Problem 0.9997 

TGS072771 Female 1 Male Problem 1.000 

 

 Lastly, sample relatedness checking using pairwise IBD (identity by descent) estimate 

was used to determine individuals who appear to be more related than expected in a random 

sample. The probability of sharing 0, 1, or 2 alleles IBD for any two individuals is estimated to 

calculate PI-HAT. A threshold of PI-HAT ≤ 0.125, equate to a 3rd degree or less relatedness. 

Five pairs of individuals were too closely related, thus the second member of each pair is 

removed from further analysis (table2). After conducting sample level quality control, 8 

participants were removed from the sample, and 437 participants were left in the sample for 

marker level quality control (table 3).  

Table 2: Pair of Individuals who are Closely Related  
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Individual 

ID1  

Individual ID2

  

Z0  Z1 Z2 PI_HAT 

TGS083386 TGS068937  0.7604 0.1870  0.0526  0.1461 

TGS059956 TGS091499 0.6652 0.2958 0.0390 0.1869 

TGS046727 TGS002359 0.0026 0.9427 0.0547 0.5260 

TGS090327 TGS095445 0.2121  0.4232  0.3647 0.5763 

TGS086132 TGS086132 0.0018 0.9506  0.0476 0.5529 

 

Table 3: Results from Sample Level Quality Control 

Criteria # Participants Percent 

Call rate <90% 0 0.00% 

Gender Check 3 0.67% 

Relatedness 5 1.12% 

 

 In regards to marker level quality control, SNPs with a call rate of less than 95%, or an 

extreme departure from HWE (p<1X10-6), or a minor allele frequency of less than 0.005 were 

excluded from the sample. A total of 1,009 SNPs were found to have a call rate of less than 95%, 

283 SNPs were qualified as having an extreme deviation from the HWE, and 60,085 SNPs were 

excluded due to having a MAF <0.5%. A summary of the number of and the percentage of SNPs 

removed are shown in table 4. As a result, a total of 61,377 variants were removed from sample, 

and 499,148 variants passed the quality control test. 

 
Table 4: Results from Marker Level Quality Control 
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Criteria SNPs  Percent  

Call rate < 95% 1009 0.18 

Deviation from HWE 283 0.05 

MAF < 0.005 60085 10.72 

 

 As a result of quality control on both sample and marker level, the sample is left with 437 

Tianjin female individuals with 499,148 genetic variants.  

R.2 Principle Component Analysis (PCA)  

 A total of 60,182 SNPs remained for the principle component analysis after conducting 

linkage disequilibrium pruning. A joint PCA is conducted with 1000G-reference panel (figure 1). 
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Figure 1: Joint PCA of Tianjin Individual Sample with 1000G Phase 3 Reference Panel    

 

 

AFR: African; AMR: American; EAS: East Asian; EUR: European; SAS: South Asian 

 

 All the individuals of the Tianjin sample are clustering together with the East Asian 

cohort of the 1000G-reference panel. Thus the Tianjin sample has individuals of only East Asian 

descent and it can be noted that there are no outliers in this sample.  
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 By calculating the frequencies of the MAF for each SNP, 503 ambiguous and 94,849 

non-ambiguous SNPs were identified that needed to be flipped to ensure alleles from the sample 

and the 1000G reference panel are labeled consistently. For TOPMed reference panel, 453 

ambiguous and 92,834 non-ambiguous SNPs were flipped. The proportions of SNPs flipped and 

kept for 1000G and TOPMed reference panel are shown in figure 2 and 3 respectively. 

 

Figure 2: Percept of SNPs Flipped or Kept  
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Figure 3: Percent of SNPs Flipped or Kept for TOPMed Reference Panel  
 

 

 
R.4 Pre-phasing Imputation Results 

 Based on the imputation results, approximately 47 million SNPs were imputed using 

Minimac3. Rare genetics variants (SNPs with MAF of 0.0-1.0%) must surpass an R2 threshold of 

0.7 for their conditional mean of R2 value to be above 0.80. Even though majority of the imputed 

SNPs are from genetic variants with MAF of 0.0-0.2%,, only approximately 1.50% of the 

imputed SNPs passed the post-imputation quality control. Approximately 13.93% of the imputed 

SNPs with MAF of 0.2-0.5 and 23.94% of the imputed SNPs with MAF of 0.5-1.0% are 

regarded as “well imputed.” For SNPs with MAF between 1.0-3.0%, 65.74% of the imputed 

SNPs are well imputed using a threshold of 0.5. SNPs with MAF>3.0%, above 90% of the SNPs, 



Wenwen Mei  
April 2, 2019 
 

14	

are well imputed using a R2 threshold of 0.3, which is considerably great. As the MAF increases, 

the percentage of SNPs that exceed the R2 threshold also increases. In total, 9.5 million imputed 

markers passed the post imputation quality control with 1000G reference panel. 

 
Table 5: Summary Statistics of Imputation Quality of Tianjin Sample for 1000G Reference 
Sample 
MAF (%) R2 

Threshold 

Total # of Markers # (%) of 

Markers Exceed 

Threshold 

Conditional 

Mean of R2 

0.0-0.2  0.7 33079479 497590 (1.50) 0.83606 

0.2-0.5 0.7 3482744 485011  (13.93) 0.84368 

0.5-1.0 0.7 1649738 394908 (23.94) 0.86016 

1.0-3.0 0.5 1710217 1124244 (65.74) 0.80638 

3.0-5.0 0.3 725647 680812 (93.82) 0.83116 

5.0-50.0 0.3 6461606 6337304 (98.08) 0.92243 

  Total # of QC+ 

Markers 

9,519,869  

 

 Using TOPMed reference panel, approximately 88 million SNPs were successfully 

imputed with minimac3. Imputed SNPs with MAF of <1.0% have to exceed the R2 threshold of 

0.5 for average R2 to exceed 0.80. 2.11% of the imputed SNPs with MAF of <0.20%, 49.20% of 

the imputed SNPs with MAF of 0.20-0.50%, and 53.56% of the imputed SNPs with MAF of 

0.50-1.0% surpassed the R2 threshold. For SNPs with MAF of 1.0-3.0%, a R2 threshold of 0.50 is 

necessary for the conditional mean of R2 to exceed 0.80. Lastly, for SNPs with MAF >3.0%, 

88% and 96% of the imputed SNPs in MAF categories 3.0-5.0% and 5.0-50.0%, respectively, 
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passed the post-imputation quality control. Similar pattern is observed using TOPMed reference 

panel, in which as the MAF increases, higher percentage of the imputed SNPs are regarded as 

“well-imputed.” Overall, almost 11 million imputed markers passed the post imputation quality 

control with TOPMed reference panel. 

 
Table 6: Summary Statistics of Imputation Quality of Tianjin Sample for TOPMED reference 
Panel  

MAF 
(%) 

R2 
Threshold 

Total # of 
Markers 

# (%) of Markers Exceed 
Threshold 

Conditional Mean 
of R2 

0.0-0.2 0.6 75,794,901 1,592,902 (2.11) 0.81146 

0.2-0.5 0.6 2,796,008 1,375,570  (49.20) 0.80785 

0.5-1.0 0.6 1,429,111 765,436 (53.56) 0.81472 

1.0-3.0 0.5 1,749,929 1,152,142 (65.84) 0.82849 

3.0-5.0 0.3 704,748 624,162 (88.57) 0.82145 

5.0-50.0 0.3 5,587,541 5,395,434 (96.56) 0.89315 

    Total # of QC+ 
Markers 

10,905,646   

  
R.5 Evaluation of Imputation with 5% masked 

To see how well Minimac3 recovers the 5% masked SNPs from the sample, R was used to create 

qqplots using two variables -the average dosage R2 and the percentage of badly imputed SNPs 

removed.  

 

Figure 4: True Average Dosage R2 for chromosomes 1, 11, 21 with 1000 Genomes Reference 
Panel  



Wenwen Mei  
April 2, 2019 
 

16	

 
 
 With 1000G reference panel, figure 4, it can be observed that genetic variants with MAF 

of <0.2% have an average dosage R2 less than 0.10 despite removing 90% of all the bad SNPs. 

Similarly, most SNPs with MAF of 0.2-0.5% did not have the average dosage R2 above 0.80 

after removing a considerable amount of badly imputed SNPs. However, for SNPs with MAF of 

> 0.5%, almost all imputed SNPs from the three chromosomes have an average dosage R-square 

of greater than 0.80 without the removal of any SNPs, indicating that approximately 100% of the 
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imputed SNPs are "well-imputed". Figure 4 suggests that genotype imputation with 1000G 

reference panel can recover a considerable amount of genetic variants, thus imputation quality is 

good for such study sample.  

  



Wenwen Mei  
April 2, 2019 
 

18	

Figure 5:True Average Dosage R2 for chromosomes 1, 11, 21 with TOPMED Reference Panel  

 
 With TOPMed reference panel, a similar pattern is observed. The average dosage R2 is 

very low for genetic variants with MAF of <0.2%. For SNPs with MAF of 0.2-0.5%, 

chromosomes showed an unusual pattern of decreasing in R2 value after the removal of 50% of 

the poorly imputed SNPs, indicating there was some noise in the computation. SNPs with MAF 

of > 0.5% showed a strong recovery since all the imputed SNPs from the three chromosomes 

have an average dosage R2 of greater than 0.80 without the removal of any SNPs, indicating that 
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approximately 100% of the imputed SNPs were recovered through imputation. Figure 5 indicates 

that TOPMed reference panel can also provide a good prediction as to the genetic variants for 

this study sample.   
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Figure 6:Comparing 1000G Reference Panel with TOPMED Reference Panel using 5% Masking 
Process 
 

 
 Figure 6 is combining the masking results of the three chromosomes, 1, 11, and 21 using 

two different reference panels. There is not a considerable difference in using either panels in 

different MAF categories, although TOPMed performed slightly better in the MAF category of 

0.2-0.5%. Overall, the difference between the two reference panels is miniscule and both are 

useful for conducting imputation. 
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Discussion 
         With genotype imputation, approximately 47 million and 88 million genetic variants were 

imputed with 1000G and TOPMed reference panel, respectively. However, only approximately 

9.5 million from 1000G and 11 million from TOPMed of the imputed genetic variants qualify as 

“well-imputed” and can be used in further analysis. It should be noted that even though the 

majority of the imputed SNPs were SNPs with MAF<0.2% and only approximately 2% of the 

imputed SNPs in that category passed the post imputation quality control, the percentage of 

“well-imputed” SNPs increases with increasing MAF. Thus, imputation is more difficult with 

rare variants, which is also verified with the 5% masking process. All genetic variants in the 

category of 0.0-0.2% did not recover using either of the reference panels. While approximately 

50% of the genetic variants were recovered in the 0.2-0.5% category, almost all genetic variants 

with MAF >0.5% were recovered. Thus, even though genotype imputation may not have reached 

high accuracy for rare genetic variants, imputation is still highly accurate for variants greater 

than 1%. Despite the large number of imputed SNPs that did not pass quality control, it is still 

valid to conclude that genotype imputation is a highly accurate statistical tool since it was able to 

recover most of the masked SNPs using Minimac3. Thus the imputation accuracy for this sample 

study is still high.  

 Instead of simply just using the originally ~500,000 directly genotyped genotypes to 

conduct association between the SNPs and lung cancer, researchers can use at least 10 million 

SNPs to seek association with imputation. Of the 10 million SNPs, approximately 95% of the 

genetic variants are imputed with statistical software. Therefore, it is important to conclude the 

significance and advantages of this statistical method.  
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 One limitation of this study is the study sample size. With only 499,148 genetic variants 

available to conduct imputation, it was limiting the accuracy of rare SNPs; therefore, limiting the 

number of imputed genetic variants that could be used to assess association with lung cancer. 

Additionally, even though TOPMed reference panel imputed more genetic variants that can be 

used for further analysis, it is still difficult to assess whether TOPMed reference panel 

outperforms 1000G reference panel. With a larger sample size, the comparison between the two 

reference panels can be done more vividly.  

         With genotype imputation for study samples, instead of using only 499,148 SNPs to 

identify SNPs that are associated with lung cancer, researchers can now use at least 10 million 

SNPs to detect SNPs associated with lung cancer of non-female nonsmokers. The additional 9.5 

million genetic variants can not only facilitate meta-analysis but also increase statistical power in 

conducting association tests.    
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