
University of North Carolina at Chapel Hill

Honors Thesis

Some Context-free Languages and Their
Associated Dynamical Systems

Author:
Landon James

Supervisor:
Dr. Karl Petersen

Approved:

April 10, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210593695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

1. Introduction

This paper focuses on certain context-free dynamical systems within the frame-
work of symbolic dynamics and formal language theory. Our main results include
using a block counting method to calculate the entropy of the Dyck languages,
applying the Chomsky-Schützenberger theorem to the Łukasiewicz language, dis-
covering the structure of winning strategies for a combinatorial game involving the
Dyck languages, and showing how to construct positive entropy minimal subshifts
whose winning strategies are worth studying. These main results are supplemented
with an overview of some features of formal languages and symbolic dynamics.

We begin by introducing some notation that will be used throughout the pa-
per and then review some properties of formal languages, specifically focusing on
context-free languages and their canonical example, the Dyck languages. This is
followed by a historical look at Donald Knuth’s presentation of parenthesis lan-
guages [11], an early precursor of the Dyck languages. Then two context-free
languages, the Dyck and Łukasiewicz languages, are defined and shown to be, in
a sense, equivalent. We state the Chomsky-Schützenberger theorem, which shows
that there is a strong connection between the Dyck languages and all other context-
free languages, and show how this works for the Łukasiewicz example, following
the proof by Dexter Kozen [12]. Several combinatorial properties of the Dyck lan-
guages are reviewed and their entropy is calculated, an endeavor motivated by a
paper of Tom Meyerovitch [16]. We finish by looking at combinatorial games that
can be played with subshifts as defined by Salo and Törmä [19]. We show that the
winning shift for any Dyck language is the golden mean shift and raise the question
of finding the winning strategies for positive entropy minimal subshifts. As a first
step in this problem, we construct explicitly a positive entropy minimal subshift,
following the exposition by Downarowicz [2].

2. Background and Notation

An alphabet is a set of symbols and generally denoted by Σ. The Kleene closure
of an alphabet or language is the set of all finite strings over the alphabet, including
the empty string ε, and is denoted Σ∗. A language over an alphabet is a subset of
the Kleene closure of the alphabet, L ⊂ Σ∗. For a string w we will denote its length
by |w|. The entropy of a language L is defined as h(L) = limn→∞ log(|Ln|)/n, where
Ln is the set of words of length n in the language. This measures the exponential
growth rate of the number of words in the language. For a set of strings D and
string w we define wD (or Dw) as the set of all elements in D with w left (or right)
concatenated. Similarly if W is a set of strings, then WD (or DW) is the set of all
elements of D with all elements of W left (or right) concatenated.

The Chomsky Hierarchy organizes languages by the computing ability of the
formal machines required to generate a language or recognize its members. Every
level in the hierarchy contains all levels below it. The levels in the hierarchy are

2

the following:

regular ⊂ context-free ⊂ context-sensitive ⊂ recursively enumerable.

In this paper we will be concerned mostly with context-free languages, but regular
languages will also appear, so we give a short overview of related notation.

Regular languages are defined by regular expressions. If E is a regular expres-
sion, then it generates a language L(E). Regular expressions and the languages that
they generate can be defined recursively using concatenation, Kleene closure, and
the operator + as follows [6].

Basis:
1) ε and ∅ are regular expressions, with L(ε) = {ε} and L(∅) = ∅
2) Any symbol a in the alphabet in question is a regular expression with

L(a) = {a}
3) A variable E representing a regular language is a regular expression.

Induction: Assume that E and F are regular expressions. Then
1) EF is a regular expression, with L(EF) = L(E)L(F)
2) E∗ is a regular expression, with L(E∗) = (L(E))∗

3) E + F is a regular expression, with L(E + F) = L(E) ∪ L(F).

An expression for any regular language can be constructed from these building
blocks.

Context-free languages are produced by context-free grammars, which are 4-
tuples of the form G = (V,Σ, P, S). In this formulation

• V is a set of non-terminal symbols (or variables)
• Σ is a set of terminal symbols known as the alphabet
• P is a finite set of relations r : V → (V ∪ Σ)∗ know as production rules
• S ∈ V is the start symbol that begins all productions.

For brevity, we will sometimes lump together several productions with the same
non-terminal on the left-hand side by separating the right-hand sides by bars. Thus
the two productions P → Q and P → R become P → Q | R. For u, v ∈ (V ∪ Σ)∗,
we say that u yields v or u →∗ v if we can arrive at v from u by applying a finite
number of production rules. We define the language generated by the grammar to
be L(G) = {v ∈ Σ∗ : S →∗ v}. Two grammars G and G′ are said to be equivalent if
L(G) = L(G′).

Sometimes it will be useful to require that our productions be of a certain form.
If all productions p are of the form p = A → BC or p = A → a for some
non-terminals A, B,C and terminals a, then we say that it is in Chomsky normal
form (often abbreviated CNF). Every context-free grammar can be transformed to
Chomsky normal form in a deterministic way while maintaing the same language
[6]. Another useful form is called Greibach Normal Form. In this all produc-
tions are of the form p = A → aA1A2 · · · An or p = S → ε for non-terminals

3

A, A1, · · · An, terminals a, and start symbol S . Again every context-free grammar
can be transformed into a grammar in Greibach Normal Form with the same asso-
ciated language [5].

The set of context-free languages is closed under several set-theoretic opera-
tions. These operations are union, concatenation, Kleene closure, and intersec-
tion with a regular language [6]. The set of context-free languages is not, in gen-
eral, closed under intersection and set complementation. Some of these closure
properties are quite easy to see. Take two distinct context-free gramars G1 =

(V1,Σ1, P1, S 1) and G2 = (V2,Σ2, P2, S 2). For union we create a new grammar
G3 = (V1 ∪ V2,Σ1 ∪ Σ2, P3, S 3), where P3 = P1 ∪ P2 ∪ {S 3 → S 1 | S 2}. Then
L(G3) = L(G1) ∪ L(G2). For concatenation we perform a similar construction, but
with the new production rule S 3 → S 1S 2, giving L(G3) = L(G1)L(G2). To con-
struct a grammar for the Kleene closure of L(G1) we change the grammar only by
adding the new start symbol S 3 and the production S 3 → S 3S 1. The intersection
of context-free and regular languages will be mentioned later.

For a given context-free grammar G consider a string x ∈ L(G). Define P∗x as
the set of sequences of productions in G that lead from the start symbol S to x. If
card(P∗x) = 1 for all x ∈ L(G), then we say that the grammar G is unambiguous.
If for some x it is the case that card(P∗x) > 1, then the grammar G is said to be
ambiguous. If no grammar for a specific context-free language is unambiguous,
we call that language inherently ambiguous. There do exist inherently ambiguous
languages, such as the union of {anbmcmdn | n,m > 0} and {anbncmdm | n,m > 0}.
It is proved in [6] that no word in the subset {anbncndn | n > 0} can have a unique
sequence of productions leading to it from S .

It is interesting to note that the problem of determining whether a context-free
language is ambiguous is algorithmically undecidable. This means that there are
no algorithms which always lead to a correct yes-no answer for all instances of
this problem. Given two context-free grammars G1 and G2 over the same alphabet,
the problems of determining whether L(G1) = L(G2), L(G1) ⊂ L(G2), or L(G1) ∩
L(G2) = ∅ are all also undecidable.

Each class of languages in the Chomsky Hierarchy has an associated class of
abstract machines that produce or recognize its members. The machines related
to regular languages are known as finite-state automata (sometimes simply called
finite automata). A finite-state automaton is a finite set of states with a transi-
tion function. When presented at the designated start state with a string, the au-
tomaton will, based on the string and the transition function, tell you whether
the string is in the language. More formally, a finite-state automaton is a 5-tuple
M = (Q,Σ, δ, S , F) in which

• Q is a finite set of machine states
• Σ is the alphabet of the input strings
• δ is a mapping from Q × Σ→ Q known as the transition function
• S ∈ Q is the start state

4

• F ⊆ Q is the set of states in which the machine accepts.

Given a string s = s1s2 . . . sn, the automaton begins in state S and then transitions
to the state δ(S , s1) = S 1. Repeating this for the rest of the characters, we say that a
string has been accepted by the machine if δ(S n−1, sn) ∈ F. That is, if the machine
finishes in the set of accepting states then input string s is in the language defined
by the automaton.

Machines in the class associated with context-free languages are known as push-
down automata. A pushdown automaton is a finite-state automaton that has access
to a stack onto which it can push symbols that can be read later. The automaton
transitions between states through a transition function that takes in the current
state, the current input, and the symbol on top of the stack, then returns the new
state and possibly manipulates the stack. More formally, a pushdown automaton
can be defined as a 7-tuple M = (Q,Σ,Γ, δ, S ,Z, F) in which

• Q is a finite set of machine states
• Σ is the alphabet of the input strings
• Γ is the set of symbols that can be placed on the stack
• δ is a mapping from Q × Σ × Γ→ Q × Γ∗ known as the transition function
• S ∈ Q is the start state
• Z ∈ Γ is the symbol initially on the stack
• F ⊆ Q is the set of states in which the machine accepts.

Given a string s = s1s2 . . . sn, the automaton begins in state S with symbol Z on
the stack and then, if δ(S , s1,Z) = (S 1,Z1), the machine transitions to state S 1 and
pushes symbol Z1 onto the stack. Repeating this for the rest of the characters, we
say that a string has been accepted by the machine if δ(S n−1, sn,Zn−1) = (S n,Zn),
and S n ∈ F. That is, if the machine finishes in the set of accepting states then the
input string s is in the language defined by the automaton. These pushdown au-
tomata represent an intermediate level of computational power above simple finite-
state automata and below the well-known Turing Machines.

When confronted with a language we will sometimes want to test whether or not
it is context-free or regular. Some useful tools for doing this are known as pumping
lemmas.

Theorem 2.1 (The Pumping Lemma for Regular Languages). Let L be a regular
language. Then there exists an integer p ≥ 1, known as the pumping length, such
that every string s ∈ L with |s| ≥ p may be written as s = xyz, with x, y, z obeying
the following properties:

1) |y| ≥ 1
2) |xy| ≤ p
3) xynz ∈ L for all n ≥ 0.

Proof. The proof is based on the structure of a finite automaton F that accepts
the language. Set p equal to the number of states in this machine. Let s ∈ L

5

with |s| ≥ p. Let q0 be the start state of the machine. Let q1, . . . qp be the next
p states visited as the string s is followed. Since F has only p states, at least one
of these must be repeated. Call this state r. Let qi = q j = r. The substring of s
corresponding to the path qi+1, . . . , q j will be called y. The sections of s preceding
and following y will be called x and z, respectively. Since we can transition from
state qi directly to q j+1, the string xy0z is in the language. We could also repeat the
cycle qi, . . . , q j as many times as we wish, so xynz is in the language for all n. If
i = 0 (implying x = ε), or j = |s| − 1 (implying z = ε), then the justification is
similar, but we begin or end with the cycle. �

Theorem 2.2 (The Pumping Lemma for Context-Free Languages). Let L be a
context-free language. Then there exists an integer p ≥ 1 such that every string
s ∈ L with |s| ≥ p may be written as s = uvxyz, with u, v, x, y, z obeying the
following properties:

1) |vxy| ≤ p
2) |vy| ≥ p
3) uvnxynz ∈ L for all n ≥ 0.

The use of the pumping lemmas is limited by giving only a necessary, but not
sufficient, condition for a language being regular or context-free. For instance, we
can use the pumping lemma for context-free languages to prove that a language is
not context-free, but some non-context-free languages also meet the requirements.
A further result, known as the Myhill-Nerode Theorem, fully characterizes the reg-
ular languages, while a result known as Ogden’s Lemma strengths the context-free
pumping lemma but still doesn’t give a full characterization.

Given a language L and an alphabet Σ, the extractive extension E(L) = {w ∈
Σ∗ : ∃ z = xwy ∈ L such that x, y ∈ Σ∗} is the original language together with
all substrings of words in the language. This property is useful when studying
the subshifts associated with these languages, since we often want the language
to be closed under a shift operation. Using the work from Kim Johnson’s thesis
[9], for a context-free language L, a grammar defining E(L) can be constructed as
follows, showing that the extractive extension of a context-free language is also
context-free. Given a context-free grammar G = (V,Σ, P, S) in CNF, define E(G) =

(V ′,Σ, P′, S) with V ′ = V ∪ {Al, Ar, A′ | A ∈ V}; and if P contains the productions

6

A→ BC and D→ t, then P′ contains the following:

A→ B | C | BrCl

Al → Bl | B′Cl

Ar → Cr | BrC′

A′ → B′C′

D→ t
Dr → t
Dl → t

D′ → t.

3. Parenthesis Grammars

We begin our exploration of context-free languages by looking at the subset of
the context-free grammars known as parenthesis grammars, focusing on results by
Knuth [11]. Since the practical purpose of parentheses is to contain things, we
consider grammars and languages containing parentheses and also other terminal
symbols. The other terminal symbols can be thought of as the “real” symbols
meant to be contained by the sets of parentheses. A parenthesis grammar is a
context-free grammar of the form G = (V,Σ, P, S) where Σ contains at least one
pair of parentheses denoted α and β, and all productions are of the form A → αθβ
where θ ∈ (V \ {α, β})∗ [11]. Knuth notes that grammars containing multiple pairs
of parentheses can be dealt with in a similar fashion but omits the details. A lan-
guage generated by one of these grammars is called a parenthesis language. The
additional requirements on the structure of these languages allow us to overcome
some of the difficulties faced when working with other context-free languages.
Specifically, we will show that one can algorithmically test whether a given gram-
mar produces a parenthesis language, and, if it does, we can generate a parenthesis
grammar for that language.

We first introduce some helpful terminology and notation borrowed from Don-
ald Knuth [11]. The functions content c(θ) and deficiency d(θ) are defined for any
θ ∈ Σ∗. They are defined first for symbols by:

c(x) =

1, if x = α
0, if x ∈ Σ \ {α, β}
−1, if x = β

d(x) =

0, if x = α
0, if x ∈ Σ \ {α, β}
1, if x = β

with c(ε) = d(ε) = 0, and then extended to strings by c(θx) = c(θ) + c(x), and
d(θx) = max(d(θ), d(x) − c(θ)). We say that a string θ is balanced if c(θ) = 0.

The symbols x, y in the string αxθyω are called associates if θy is balanced. A
language L is called balanced if all of its strings are balanced, and it is said to
have bounded associates if there exists a constant m such that θ ∈ L and x = θi
implies that x has no more than m associates. We say that a grammar is completely
qualified if, for all non-terminals A, there exist numbers c(A) and d(A) such that

7

if A →∗ θ then c(θ) = c(A) and d(θ) = d(A). A completely qualified grammar in
which c(A) = d(A) = 0 for all non-terminals A is called a balanced grammar.

To prove the main result of Knuth’s paper [11], we will need several preliminary
theorems and lemmas. These will be provided without proof, as they involve long,
complicated constructions that are not needed to understand the main result.

Theorem 3.1 ([11], Th. 1). If G = (V,Σ, P, S) is a context-free grammar, then there
is an algorithm which determines whether or not L(G) is balanced.

Theorem 3.2 ([11], Th. 3). Let G = (V,Σ, P, S) be a context-free grammar for
which L(G) is balanced and has bounded associates. Then it is possible to con-
struct algorithmically an equivalent balanced grammar from G.

Lemma 3.3 ([11], Lem. 3). Let G = (V,Σ, P, S) be a parenthesis grammar. Then
L(G) is balanced and has bounded associates.

Lemma 3.4 ([11], Lem. 5). Let G = (V,Σ, P, S) be a context-free grammar for
which L(G) is balanced. It is possible to algorithmically construct a completely
qualified grammar G′ = (V ′,Σ, P′, S ′) such that L(G′) = L(G).

Lemma 3.5 ([11], Lem. 6). Let G = (V,Σ, P, S) be a balanced grammar for which
L(G) is balanced and has bounded associates. Then it is possible to construct
algorithmically an equivalent parenthesis grammar G′ from G.

With these results in mind we will prove the main result of [11], Theorem 3.6.

Theorem 3.6 ([11], Th. 4). A context-free language is a parenthesis language if
and only if it is balanced and has bounded associates. If G = (V,Σ, P, S) is a
context-free grammar, there is an algorithm which determines whether or not L(G)
is a parenthesis language; and if L(G) is a parenthesis language, an equivalent
parenthesis grammar G′ = (V ′,Σ, P′, S) can be constructed effectively from G.

Proof. We prove the if and only if statement first. Lemma 3.3 tells us that, for a
parenthesis grammar G, L(G) is balanced and has bounded associates. To prove the
converse, note that if we are given a balanced language with bounded associates
then we can use Theorem 3.2 and Lemma 3.5 to construct a parenthesis grammar
that generates the same language as G.

Now we consider the decision problem of algorithmically determining whether
or not L(G) is a parenthesis language. Theorem 3.1 tells us that we can determine
whether L(G) is balanced. If it is, we may then continue and use Lemma 3.4 to
construct a completely qualified grammar, G′ such that L(G′) = L(G). At this
point we still do not know whether L(G) has bounded associates. We need to
apply Theorem 3.2, which is valid only for languages that are balanced and have
bounded associates. Luckily, the algorithm used in the proof of Theorem 3.2 fails
if the language does not have bounded associates. So we apply Theorem 3.2 to
G′ and receive a new balanced grammar G′′ or a failure. Applying Lemma 3.5 to
G′′ gives us a another grammar G′′′ which is a parenthesis grammar. Thus there

8

exists an algorithm that begins with a context-free grammar G and either returns an
equivalent parenthesis grammar or fails and tells us that L(G) is not a parenthesis
language. �

We will now mention a theorem (without proof) and several corollaries about
the set-theoretic properties of parenthesis languages. The operator ∆ is defined as
A∆B = (A \ B) ∪ (B \ A) and commonly known as the exclusive or operation.

Theorem 3.7 ([11], Th. 5). If L1 and L2 are parenthesis languages, then so is
L1 \ L2, and it is possible to algorithmically construct a parenthesis grammar G
such that L(G) = L1 \ L2.

Corollary 3.8 ([11], Cor. 1). The set of parenthesis languages is closed under finite
intersections.

Proof. Recall that the set of context-free languages is closed under finite unions.
So we have L1 ∩ L2 = L1 ∪ L2 \ (((L1 ∪ L2) \ L1) ∪ ((L1 ∪ L2) \ L2)). �

Corollary 3.9 ([11], Cor. 2). If G1 and G2 are parenthesis grammars, then there is
an algorithm to decide whether L(G1) = L(G2).

Proof. We can construct a parenthesis grammar for L(G1) \L(G2) by Theorem 3.7.
It is easy to test algorithmically whether the language produced by this grammar is
empty. �

Corollary 3.10 ([11], Cor. 3). The complement of a parenthesis language is context-
free.

Corollary 3.11 ([11], Cor. 4). If G1 is any context-free grammar and G2 is a paren-
thesis grammar, then there exists an algorithm to test whether L(G1) ⊂ L(G2).

Proof. Since L(G2) is a parenthesis language, by Theorem 3.6, it must be balanced
and have bounded associates. Then any subset of L(G2) must also obey these rules.
Again by Theorem 3.6, We can test L(G1) for these properties. If L(G1) is balanced
and has bounded associates, it must be a parenthesis language. We can then test
whether or not L(G1) \ L(G2) is empty. If it is, then L(G1) ⊂ L(G2). �

4. The Dyck Language and the Łukasiewicz Language

We will now consider another subset of the context-free languages known as the
Dyck languages. The Dyck languages are a subset of the parenthesis languages,
as will become apparent when they are defined. For m ≥ 1 define the alphabet as
Σm = {αi : 1 ≤ i ≤ m} ∪ {βi : 1 ≤ i ≤ m} (with the subscript omitted when its
value is made obvious by the context). Σm can be thought of as a collection of types
of parentheses of various levels. In this interpretation, αi’s and βi’s, respectively,
represent opening and closing parentheses of level i. We want the language we
study over these letters to reflect this interpretation. Thus the Dyck language may
be thought of as the set of all strings of parentheses that can be used to group a

9

mathematical expression in a valid way. With this definition in mind we begin our
formalization of this language.

The well-balanced m-Dyck language is generated by the grammar

G = ({S },Σm, P, S),

with the set of productions P defined as follows:

S → S S | αiS βi | ε (1 ≤ i ≤ m).

This structure is easy to see intuitively, since in each production we either create
a pair of parentheses, or place the seeds of two non-nested parenthetical structures
beside each other (S S).

The preceding grammar can be converted to one in Chomsky normal form with
an equivalent language using an algorithm given by Hopcroft and Ullman [6]. The
algorithm gives the following productions, with new start symbol S 0, and adding
new non-terminals {S x : x ∈ Σm}:

S 0 → S | ε
S → S S | AiS βi | AiBi (1 ≤ i ≤ m)

S βi → S Bi (1 ≤ i ≤ m)
Ai → αi (1 ≤ i ≤ m)
Bi → βi (1 ≤ i ≤ m).

The production S 0 → S | ε is not in standard Chomsky normal form, but this is
allowed to keep ε in the language. Although this appears much more complicated
than the original set of productions, its only significant change is splitting up the
production S → αiS βi. Now, for example, we have the productions S → AiS βi and
S βi → S Bi, which, after concurrent applications, produce the non-terminal string
AiS Bi. This split gives productions fulfilling the requirements of Chomsky normal
form.

At certain points it will be helpful to view the Dyck languages in more algebraic
terms. The following notation is borrowed from Meyerovitch [16].

A monoid is a set Σ with an associative binary operation and an identity element.
Defining the associative binary operation · on Σ∗ to be concatenation makes Σ∗ into
a monoid. In the following, taking something modulo the monoid means repeatedly
scanning the string from left to right, and applying the given rules until there are
no longer any rules that may be applied. For an initial string s and monoid M, the
resulting string is denoted s (mod M). Let M be the monoid over the set Σ∗m∪{0, 1}
generated by the following rules:

1) αi · βi = ε = 1 (mod M), i = 1, . . . ,m
2) αi · β j = 0 (mod M), i , j
3) 1 · 1 = 1 (mod M)
4) x · 0 = 0 (mod M) for all x ∈ M.

10

The m-Dyck language is defined as Dm = {l ∈ Σ∗ | l . 0 (mod M)}. The
well-balanced m-Dyck language is Dw

m = {l ∈ Σ∗ | l ≡ 1 (mod M)}. We will speak
of Dm more often, since it is the extractive extension of the well-balaned m-Dyck
language and is therefore more suitable for study in dynamical systems. To see this
note that any string in Dm can be extended, by concatenating parentheses on the
left and right sides, to a well-balanced string. So every element of Dm is a substring
of an element of the well balanced Dyck language Dw

m.

We can now define the one and two-sided subshifts associated with the Dyck
language:

X+
m = {y ∈ ΣN : yr, . . . yl ∈ Dm for all 0 ≤ r ≤ l < ∞}

Xm = {x ∈ ΣZ : xr, . . . xl ∈ Dm for all −∞ < r ≤ l < ∞}.

We will also study a context-free language over the alphabet {a0, a1} called the
Łukasiewicz language, generally denoted Ł = L(({S }, {a0, a1}, P, S)), with the set
of productions P as follows:

S → a0S S | a1.

This grammar can be converted to an equivalent one in Chomsky normal form,
which has the following productions:

S → A0U | a1

U → S S
A0 → a0.

5. The Łukasiewicz Language is Equivalent to Dw
1 a1

Recall that the Łukasiewicz language Ł, over the alphabet {a0, a1} and with start
symbol S is defined by the productions S → a0S S | a1. The Dyck language Dw

1
with one type of parentheses can be formed from the productions S → a0S a1S | ε,
interpreting a0 and a1 as left and right parentheses, respectively. We will show that
Ł = Dw

1 a1 by first giving inductive definitions of the languages and then show-
ing that Ł and Dw

1 a1 satisfy the same inductive structure. These inductive defini-
tions are really just ways of rewriting context-free grammars in set notation. Note
that the results about parenthesis grammars from Knuth [11] can be applied here,
namely since Ł and Dw

1 are parenthesis grammars this equality could be established
algorithmically.

To illustrate the idea of inductively defining a set we use the example of the
Łukasiewicz language. The set associated with it can be defined as Ł = a0ŁŁ∪ a1.
The elements in this set are a1 and anything that can be made by replacing the Ł’s
in a0ŁŁ with elements already known to be in the set. The first element (besides
a1) that can be made in this way is a0a1a1. This is followed by the three elements
a0a0a1a1a0a1a1, a0a0a1a1a1, and a0a1a0a1a1. These are made by replacing both

11

Ł’s with a0a1a1, replacing the first with a0a1a1 and the second with a1, and replac-
ing the first with a1 and the second with a0a1a1 respectively. The set Ł consists
of all words that can be constructed following this procedure. More precisely, one
may define Ł1 = {a1} and, for n > 1, Łn = a0Łn−1Łn−1 ∪ Łn−1. Then Ł = ∪∞n=1Łn.

Theorem 5.1. Let D be defined by the recursive equation D = a0Da1D∪{ε}. Then
a string is in D if and only if it can be formed by the productions S → a0S a1S | ε,
and therefore D = Dw

1 , and Dw
1 = a0Dw

1 a1Dw
1 ∪ ε.

Proof. First the backwards direction. If d is a string formed from the starting sym-
bol S , then it is either ε or of the form a0xa1y, where x and y are strings also formed
from S . This means that d is a string of the same form as the strings in D and thus
must be in D itself.

In the other direction, if d ∈ D, then we argue inductively on the length of d. If
d is of length 0, then d = ε and it can be formed from S . Assuming that this is true
for all strings of length less than or equal to n− 1, we show that it is true for d with
length n. d ∈ D implies that d = a0xa1y for x, y ∈ D. This implies that x and y
have length less than n, and by our inductive hypothesis they can be formed from
S . So d can be formed from S . �

We can give a similar inductive definition for the Łukasiewicz language.

Theorem 5.2. Let L be the set defined by the recursive equation L = a0LL ∪ a1.
A string is in L if and only if it can be formed by the productions S → a0S S | a1,
and therefore L = Ł, and Ł = a0ŁŁ ∪ a1.

Proof. Similar to the proof for D and Dw
1 . �

Theorem 5.3. Ł = Dw
1 a1.

Proof. Note that

Dw
1 = a0Dw

1 a1Dw
1 ∪ {ε} and

Dw
1 a1 = (a0Dw

1 a1Dw
1 ∪ {ε}) a1

= a0Dw
1 a1Dw

1 a1 ∪ {a1}.

This shows that Ł and Dw
1 a1 satisfy the same inductive definitions, and thus they

contain the same words. This means that Ł = Dw
1 a1, because languages are identi-

cal exactly when they contain the same words. �

It is interesting to note that although Ł and Dw
1 have similar languages, they dif-

fer in one important property. Dw
1 is closed under concatenation; but since each

element of Ł has an extra a1 appended to the end, it is not closed under concatena-
tion.

12

6. The Chomsky-Schützenberger Theorem Applied to the Łukasiewicz Language

The Chomsky-Schützenberger theorem shows that context-free languages have
an important relationship with the Dyck languages. In fact, every context-free lan-
guage is a sort of coding of the intersection of a Dyck language and a regular lan-
guage. Recall that a Dyck language is over an alphabet Σm of symbols interpreted
as opening and closing parentheses of various levels. The following definition is
important in the discussion of this result.

Definition: Let L1 and L2 be languages. A homomorphism from L1 to L2 is an
onto mapping h : L1 → L2 such that h(f g) = h(f)h(g) for all f and g in L1.

Theorem 6.1 (Chomsky-Schützenberger Theorem [12]). A language A over an
alphabet ∆ is context-free if and only if there exist m ≥ 0, a regular language R,
and a homomorphism h : Σ∗m → ∆∗ such that A = h(Dm ∩ R).

Note that we cannot in general say that the mapping h is an isomorphism. If a
grammar G that generates a context-free language is ambiguous (contains multiple
sequences of productions that can lead to the same final string), then there will be
multiple strings in Dn ∩ R that map to the same string in L(G). This will be made
explicit in the construction that follows.

We illustrate the theorem with an example based on the Łukasiewicz language,
Ł, over the alphabet ∆ = {a0, a1}. In the example we will find m, and construct R
and h, so that Ł = h(Dm ∩ R). The following construction is based on a proof of
the Chomsky-Schützenberger theorem by Dexter Kozen [12].

Let G = ({S ,U, A0},∆, P, S) be the above CNF-grammar generating Ł so that P
consists of the following productions:

S → A0U | a1

U → S S
A0 → a0.

Note that this grammar is indeed in Chomsky normal form, since every production
is of the form A → BC or A → a. We now define the sets Γ = {α1p, β1p, α2p, β2p :
p ∈ P}, and P′ = {p′ : p ∈ P} containing the productions

p′ =

{
A→ α1pBβ1pα2pCβ2p if p = A→ BC
A→ α1pβ1pα2pβ2p if p = A→ a

Since there are two types of parentheses introduced for each production and card(P) =

4 for the Łukasiewicz language, Γ contains eight types of parentheses and D8 ⊂ Γ∗.
Let G′ = ({S ,U, A0},Γ, P′, S).

This construction is designed to allow us to encode sequences of productions
from G. Our new language L(G′) does this by creating two pairs of parentheses for
each production in G. Since the productions in G′ introduce these pairs as terminal
symbols at every step, the sequence of productions used to reach the final string is
recorded in the string itself. Every production in G′ is associated with a production

13

in G, so every string in L(G′) encodes a sequence of productions from G. Suppose
that applying our homomorphism, h : L(G′) → L(G), to an element g′ ∈ L(G′)
gives h(g′) = g. If g′ is reached by following the sequence of productions s′ ∈ P′∗,
then g is the string in L(G) reached by following the sequence of productions s ∈ P∗

such that s′i = p′ implies si = p.

The rules in P′ make it obvious that L(G′) ⊂ D8, so, to apply the theorem
in the case of this example we need to find a regular language that characterizes
the properties of L(G′) that are not shared by all members of D8. The following
observations hold for all strings in L(G′):

1) Every β1p is immediately followed by a α2p
2) No β2p is immediately followed by a α1 or α2 of any type
3) If p = A → BC, then every α1p is immediately followed by α1q for some

q ∈ P with left-hand side B, and every α2p is followed by α1r for some
r ∈ P with left-hand side C

4) If p = A→ a, then every α1p is followed by a β1p and every α2p by a β2p.

We will show that each of 1) − 4) can be described by a regular expression, and
hence that R = {x ∈ Γ∗ : x satisfies 1) − 4)} is a regular language. We will give
a regular expression and a deterministic finite automaton to formalize each of the
above observations, 1) − 4). The intersection of these subsets will give the subset
of Γ∗ that obeys rules 1) − 4). Since the set of regular languages is closed under
intersection [6], the language R will also be regular.

R1) (Γ \ {β1p : p ∈ P} + {β1pα2p : p ∈ P})∗

S

q1

qn

β1p1

β1pn

Γ \ {β1p : p ∈ P}

α2p1

α2pn

R2) (Γ \ {β2p : p ∈ P} + {β2pβ1x, β2pβ2x : x ∈ P})∗

14

S

q1

qn

β2p1

β2pn

Γ \ {β2p : p ∈ P}
{β1x, β2x : x ∈ P}

{β1x, β2x : x ∈ P}

R3) (Γ\{α1p, α2p : p is of the form p = A→ BC}+{α1pα1q : q has left hand side B}+
{α2pα1r : r has left hand side C})∗

S

q11q12

qm1qn2

α1p1

α1pn

α2p1

α2pn

Γ \ {α1p, α2p : p = A→ BC}

{α1q : q as above}

{α1q : q as above}

{α1r : r as above}

{α1r : r as above}

R4) (Γ\{α1p, α2p : p is of the form p = A→ a}+{α1pβ1p, α2pβ2p : p is of the form p =

A→ a})∗

15

S

q11q12

qm1qn2

α1p1

α1pn

α2p1

α2pn

Γ \ {α1p, α2p : p = A→ a}

β1p1

β1pn

β2p1

β2pn

We will analyze the regular expression R1 and its associated automaton to pro-
vide some insight into how the expressions 1) − 4) were constructed. The other
automata can be explained similarly. Recall that R1 = (Γ\ {β1p : p ∈ P}+ {β1pα2p :
p ∈ P})∗. Thus R1 is the Kleene closure of the union of two languages, namely
Γ \ {β1p : p ∈ P} and {β1pα2p : p ∈ P}. The first set, Γ \ {β1p : p ∈ P}, is every-
thing in Γ less all symbols of the form β1p. This is because observation 1) places
restrictions only on what directly follows β1p’s. The second set, {β1pα2p : p ∈ P},
contains concatenated symbols of the form β1pα2p. Since observation 1) states that
every β1p must be followed by a α2p, this is allowed. Taken together the two sets
Γ \ {β1p : p ∈ P} and {β1pα2p : p ∈ P} provide all available 1-blocks and all
2-blocks beginning with β1p that obey rule 1). Taking the Kleene closure of the
union of these sets gives all strings obeying observation 1).

The automaton for R1 is based on the structure of the regular expression. The
automaton has the beginning and accepting state S . For each β1pi (of which we
assume there are n) there is a corresponding state qi. Beginning in the start state
and on the first symbol in a given string, we follow the arrows in the graph based
upon the next symbol encountered in our string. If we ever encounter a symbol for
which there is no corresponding arrow from the current node, we know the string
is not in our language. The same is true if our string is finite and we terminate in
a non-accepting state, in this case any state other than S . Beginning at S , upon
encountering any symbol in Γ \ {β1p : p ∈ P} we stay in S . When a β1pi is
encountered, we leave S and move to qi. From here we must either see a α2pi and
return to S , or terminate.

Let R = R1∩R2∩R3∩R4 be the regular language defined by the intersection of
the regular languages generated by rules 1)−4). Then L(G′) = D8∩R, since, as was
previously mentioned, L(G′) is the subset of D8 obeying the rules that define R. We
can find an automaton for this intersection by means of the following construction.
Let the automata for each of R1 − R4 be of the form Ai = (Qi,Γ, δi, S i, Fi) (1 ≤ i ≤

16

4), with Qi the set of states, Γ the alphabet, δi the transition function, S i the start
state, and Fi the set of accepting states. Then the automaton obeying all of these
rules will be

A = (
∏4

i=1Qi,Γ, δ = (δ1, δ2, δ3, δ4), (S 1, S 2, S 3, S 4),
∏4

i=1Fi)

The states are the elements of the Cartesian product of the previous automata, the
alphabet is unchanged, the transition function is a 4-tuple of the other transition
functions, the start state is the 4-tuple of the previous start states, and the accepting
states are the elements of the Cartesian product of the previous sets of accepting
states. Thus this machine models running all of the other machines at once and
will accept only when all of the other machines would have accepted.

We now need only to construct a homomorphism h : Γ∗ → ∆∗ such that Ł =

h(D8 ∩ R) . This function must take a word in L(G′), constructed by the string
of productions p′1, p′2, · · · , p′n, and recover from it the word in L(G) that would be
produced by p1, p2, · · · , pn. Since only productions of the form p = A → a insert
a terminal symbol into a string, only parentheses indexed by the corresponding
p′ should be mapped to symbols. Since the production p inserts one symbol and
p′ produces 4 parentheses, we need to map only one of these to the symbol a
associated with p. We arbitrarily choose to map α1p to a for every production of
the form p = A → a. Every other symbol (for productions of both forms) must be
mapped to ε, the empty string. This gives us the following function:

h =

{
h(α1p) = h(β1p) = h(α2p) = h(β2p) = ε if p = A→ BC
h(α1p) = a, h(β1p) = h(α2p) = h(β2p) = ε if p = A→ a.

h is extended to full strings by defining that, for a string s = s1 . . . sn, h(s) =

h(s1) . . . h(sn).

The preceding construction shows that Ł, the Łukasiewicz language, is equal
to h(L(G′)) = h(D8 ∩ R), the homomorphic image of the intersection of a Dyck
language and a regular language.

The Chomsky-Schützenberger theorem can be used to provide crude upper bounds
on the entropy of some languages. Since each language is the homomorphic image
of a the intersection of a Dyck language and a regular language, the entropy of the
Dyck language provides and upper bound.

7. CountingWords in Dyck Languages

In this section we investigate combinatorial properties of the Dyck languages.
Specifically, for each n we want to know how many words of length n are in the
language. This will allow us to compute the entropy and, through the Chomsky-
Schützenberger theorem, will give us bounds on the entropies of other context-
free languages. Krieger [13] and Krieger-Matsumoto [14] studied some regular
languages related to the Dyck languages, Inoue and Krieger [7] found the entropy
of certain subshifts of the Dyck languages, and Meyerovitch [16] found the entropy

17

for the well-balanced Dyck languages Dw
m, and we will show that the extractive

extension Dm has the same entropy.

Fix m ≥ 1 and consider the the m-Dyck language and the associated subshifts
Xm ⊂ ΣZm and X+

m ⊂ ΣNm. We will count the number of strings of each length for
several subsets of the full language and use them to calculate the entropy in the
next section.

Balanced Strings: Balanced strings must be of even length since all parentheses
must occur in pairs. We claim that there are(

2k
k

)
mk

k + 1

balanced strings of length 2k. To see this, note that C(2k, k)/(k + 1) is the kth
Catalan number and counts the total number of possible balanced strings of length
2k for one type of parentheses [1]. To move from a balanced string on one type of
parentheses to a balanced string on m types of parentheses, note that for each pair
of parentheses in a balanced string with one type of parentheses we can choose a
type from among the m available in our language. If the string is of length 2k, there
will be k pairs of parentheses and thus mk possible ways to assign the different
types.

No Balanced Substrings: Let NBm(n) be the number of m-Dyck strings of
length n with no balanced substrings. In a string with no balanced substrings all β’s
must precede all α’s, since if any α comes before a β it is either a balanced substring
or violates the monoid rule. So for a string of length n there will be mn possible
strings containing only β’s, mn possible strings with (n − 1)β’s followed by one α,
· · · , mn possible strings of all α’s. Thus we can see that NBm(n) = (n + 1)mn. We
will leave out the subscript m when the context makes it obvious we are working
with the m-Dyck Language.

One Balanced Substring: We count now the number of strings in Dm that have
exactly one balanced substring. A balanced substring must be of even length, since
all parentheses must occur in pairs. Let s be our string, ` be the length of our full
string, and n = 2k be the length of the substring we are considering. We have
the following total number of possibilities with one balanced substring of length
2 ≤ n ≤ `.

(` − n + 1)NB(` − n)
(
2k
k

)
mk

k + 1

We will explain each multiplicative term separately.

The first factor (` − n + 1), denotes the number of substrings of length n in a
string of length `. To see this, consider the case for n = 3. If s = s1s2 · · · s`, we can
begin with the substring s1s2s3. Continuing this pattern we get s2s3s4, s3s4s5, and
so on until s`−2s`−1s`. There are ` − 2 values for the index of the first character,
and this equals ` − 3 + 1.

18

The second factor NB(` − n) is the total number of strings of length ` − n
with no balanced substrings. Lets say that our balanced substring occupies the
spaces sm · · · sm+n−1. The other two (possibly empty) sections of s, s1 · · · sm−1 and
sm+n · · · s`, must form a string with no balanced substrings when concatenated.
If either section contained a balanced string of its own then our assumption that
our string only has one balanced substring would be violated. If they form a bal-
anced substring when concatenated, then sm−1 and sm+n must be a matching pair of
parentheses. But this would violate our assumption that our balanced substring is
of length n, since these would increase it to length n + 2.

The third factor is simply the number of possible balanced strings of length
n = 2k, which we derived previously.

Continuing counting by restricting the number of balanced strings quickly leads
to an increase in difficulty. Explicitly counting these could be an interesting combi-
natorial problem. But to find the entropy, detailed knowledge of these cardinalities
is not necessary.

8. Entropies of Dyck Languages

Recall that the entropy of a language L is defined as h(L) = limn→∞ log |Ln|/n,
where Ln is the set of words of length n in the language. We will now calculate the
entropies of the Dyck languages by making use of the counting arguments above.

Balanced Strings: As shown in the section on counting, there are(
2k
k

)
mk

k + 1

balanced strings of length n = 2k. The exponential growth rate of the number of
balanced strings on m types of parentheses is

lim
k→∞

1
2k

log(
(
2k
k

)
mk

k + 1
) =

1
2

log m + log 2.

This can be seen using Stirling’s approximation in the form log(n!) = n log(n) −
n + O(log n).

Extractive Extension: We claim that the extractive extension of a language has
the same entropy as the original language. The only new words in the extractive
extension are substrings of words already in the language. For an alphabet of size
m, there are N(n) ≤ mn words of length n in the language. Each of these words
has n(n + 1)/2 nonempty substrings, n of length one, n− 1 of length two, on to one
substring of length n. So for each n there are less than or equal to N(n)n(n + 1)/2
distinct new strings in the extractive extension. So passing from the number, N(n),
of words of length n in the language to the number of words of length n in the
extractive extension at most multiplies N(n) by a polynomial in n, and this does
not affect the exponential growth rate.

19

The language Dm with which we are primarily concerned is the extractive ex-
tension of the well-balanced Dyck language Dw

m. Taking the results in this section
together tells us that

h(Dm) =
1
2

log m + log 2.

9. The Dyck Languages and Subshift Games

Consider a game for two players A and B. Given a finite alphabet Σ, a set of
allowed words X ⊂ Σ∗, and some ordering of moves a ∈ {A, B}∗, A and B each
place elements from the alphabet left to right, taking turns in the order designated.
A attempts to keep the created word within the set of allowed words, while B tries
to force the word out of the allowed set. We say that A has a winning strategy for a
if, no matter what B plays in his turns, A can keep all of the words generated in X.

To formalize this we use the notation from Salo and Törmä [19] to talk about
these games. A word game is a tuple (Σ, n, X), where Σ is the alphabet, n ∈ N∪{N},
and X ⊂ Σn is a set of allowed words. An ordered word game is a tuple (Σ, n, X, a),
where (Σ, n, X) is a word game and a ∈ {A, B}n. If X is a subshift and n = N we call
our games subshift games and ordered subshift games respectively.

In an ordered game G = (Σ, n, X, a), the players create a word w ∈ S n by having
player ai place one element of Σ at coordinate i of the new word. Player A wins if
w ∈ X, otherwise player B wins. We define the winning set of X as

W(X) = {a ∈ {A, B}n : A has a winning strategy for (Σ, n, X, a)}.

These winning sets are downwards closed, meaning that for any string w ∈ W(X)
we can replace any B’s in w with A’s and the resulting string will still be in W(X).
There is, interestingly, no natural bijection between a language or subshift and its
winning set. These sets don’t even necessarily have the same cardinality. There
are examples where the language of a subshift is uncountable, but its winning set
is countable [19].

For the Dyck language we will consider the game G = (Σ,N,Y, a), where Σ =

{αi | 1 ≤ i ≤ m} ∪ {βi | 1 ≤ i ≤ m} and X+
m = {y ∈ ΣN | yr, . . . yl ∈ Dm for all 0 ≤ r ≤

l < ∞}, as previously defined. We assert that the winning set of the Dyck language
is the well-known Golden Mean shift with A identified with 0 and B identified with
1. This shift allows all two-blocks except BB to appear and can be represented by
the regular expression GM = (A + BA)∗(B + ε), or by the finite automaton below.

q0 q1

B

A
A

Theorem 9.1. W(X+
m) = GM.

20

Proof. First we show that W(X+
m) ⊂ GM. If two B’s appear consecutively in our

playing order, then player B can place αp followed by βq for p , q and 1 ≤ p, q ≤
m. This removes the string from Dm and causes B to win the game. So our winning
set must be a subset of GM, since two B’s may not appear consecutively.

Now we show that GM ⊂ W(X+
m). To do this we provide a winning strategy for

A given any set of moves a ∈ GM. Player A adds symbols in such a way that there
are never any unmatched α’s, meaning that reducing the so-far accumulated string
by the monoid rules leaves no α’s. To see that this strategy always results in a win,
let turn i ≥ 1 be player A’s last turn before B plays, and let w be the string we are
constructing. We place restrictions on w1 . . .wi, and thus player A’s actions before
B’s turn. When w1 . . .wi is reduced by our monoid rule there must be no α’s (left
parentheses) remaining. If there were any they would have to occur to the right of
any β’s (right parentheses), otherwise they would have already been removed by
the monoid rule; or one would be immediately to the left of a β with which it did
not match, putting the string out of the language. The rightmost of these α’s, we
will say it is an αp, must occur at position wi. So player B taking turn i+1 can place
βq (p , q) at position wi+1 and force the string out of Dm. If there are no open α’s,
then player B can place an α or β of any level without violating our monoid rule,
since only pairs of the type αp · βq with q , p are reduced to 0 modulo the monoid.
So player A’s strategy is to leave player B with a string containing no unpaired α’s
on his turn. �

We will now review some results about the relation between shifts and their
associated winning shifts. These results are all taken from [19] with slight modifi-
cations.

Theorem 9.2 ([19], Prop. 3.4). Let Σ be an alphabet, and let X ⊂ ΣN be a subshift.
Then W(X) is also a subshift, and L(W(X)) = W(L(X)).

Theorem 9.3 ([19], Prop. 4.1). Let Σ be an alphabet and, let X ⊂ ΣY be a subshift.
If Y = Z, then W(X) = AZ if and only if X is the orbit closure of a periodic element
of ΣZ. If Y = N, then W(X) = AN if and only if card(L1(X)) = 1, i.e. X consists of
a single constant sequence.

Proof. First the case in which Y = Z. If X is periodic, then for every element
x ∈ X we know that xi is uniquely determined by x(−∞,i−1]. So player B could win
the game with a single move in any position. Thus we must have W(X) = AZ.
Conversely, we assume that W(X) = AZ. In this case only player A is allowed to
make moves, meaning that player B could win if allowed to make a single move.
This means that for every x ∈ X, and every i ∈ Z, xi is uniquely determined by
x(−∞,i−1], which is equivalent to saying that X is periodic.

For the case in which Y = N, simply note that if BAN < W(X), then only one
character can appear at the first position of any word in X. Since X is shift invariant
every character appearing in a word in X must appear as the first letter of some word
in X. This means that X must contain a single constant sequence. �

21

In the following proposition the function L−1(Y) is defined as the subshift uniquely
determined by the language Y , and we say that a subshift X is Sturmian if and only
card(Ln(X)) = n + 1 for all n ∈ N.

Theorem 9.4 ([19], Pr. 4.2). Let Σ be an alphabet and, let X ⊂ ΣN be a subshift.
Then W(X) = L−1(A∗BA∗) ⊂ {A, B}N if and only if X is Sturmian.

Proof. In the backwards direction we prove the contrapositive. Note that the the
condition card(Ln(X)) = n + 1 for all n is equivalent to saying that for all n there
is exactly one w ∈ Ln(X) with for which there are b, b′ with b , b′ and wb,wb′ ∈
Ln+1(X). If BAkB ∈ L(W(X)) for some k then, because player B can place any
character they please, there exist u, v ∈ Lk(X) such that aub, aub′, a′vb, a′vb′ ∈
Lk+2(X) for some a, a′, b, b′ ∈ Σ. So we have that card(Ln(X)) > n + 1.

In the forward direction we also prove the contrapositive. If w,w′ ∈ Lk(X)
(w , w′) with wb,wb′,w′b,w′b′ ∈ Lk+1(X), then we can factor these as w =

ucv,w′ = u′c′v (for c, c′ ∈ Σ), implying that cvb, cvb′, c′vb, c′vb′ ∈ L(X). Since the
c, c′ and b, b′ are not equal and can be placed at either side of v, this means that
player B could be allowed to make a move at either poshtion. Thus we have that

BA|v|B ∈ W(L(X)) = L(W(X)).

�

Theorem 9.5 ([19], Prop. 5.4). For all n ∈ N and L ⊂ {0, 1}n, we have card(L) =

card(W(L)).

Proof. The proof is by induction on n. The initial case with n = 1 is trivial. If
card(L) = 1 then W(L) = {A}, and if card(L) = 2 then W(L) = {A, B}.

Now suppose that n > 1. For each c ∈ {0, 1} define Lc = {w ∈ {0, 1}n−1 : cw ∈ L}.
Then L = 0L0 ∪ 1L1, and by our induction hypothesis we know that card(W(Lc)) =

card(Lc) holds for all c ∈ {0, 1}. We will now break the proof into two cases.

First, let a ∈ W(L), and assume that a0 = A. If a[1,n−1] ∈ W(Lc), then A has a
winning strategy beginning with c that follows the strategy a[1,n−1]. Conversely, if
A has a strategy beginning with c ∈ {0, 1}, then a[1,n−1] ∈ W(Lc). Therefore

card({a ∈ W(L) : a0 = A})
= card(W(L0)) + card(W(L1)) − card(W(L0) ∩W(L1)).

Our second case assumes that a0 = B. So a[a1,n−1] ∈ W(L0)∩W(L1) since player
B could place any character in the first position. Thus we have

card({a ∈ W(L) : a0 = B}) = card(W(L0) ∩W(L1)).

22

Putting these results together with our induction hypothesis, we find that

card(W(L))
= card(W(L0)) + card(W(L1))
= card(L0) + card(L1)
= card(L).

�

Corollary 9.6 ([19], Cor. 5.5). If X is a binary subshift, then h(X) = h(W(X)).

Therefore every positive entropy subshift on a binary alphabet has a winning
subshift with the same positive entropy. In the next section we describe a method
for constructing highly repetitive subshifts with positive entropy. Because of the
complicated nature of the sequences in such subshifts, we are unable to define the
winning subshifts explicitly, but we know that they exist and have positive entropy.

10. ConstructingMinimal SubshiftsWith Positive Entropy

The work in this section improves upon Example 4.9 from the Salo and Törmä
paper, in which the authors construct a minimal subshift X for which W(X) is un-
countable. We construct a minimal subshift X for which W(X) is not only uncount-
able but has positive entropy. Using a technique described by Downarowicz [2]
and Susan Williams [22] that expands on work originally done by Jacobs-Keane
[8] and Oxtoby [17], we construct a sequence w such that

1) every block in w appears in w infinitely many times and with bounded gaps
between appearances

2) limn→∞ log Nn(w)/n > 0.

Sequences with the first property are called minimal [18]. The orbit closure of any
such sequence is a minimal topological dynamical system in the sense that it has no
proper closed invariant sets (or equivalently every orbit is dense). Since X is binary
and has positive entropy its winning shift will also have positive entropy [19, Cor.
5.5].

For this construction we use an auxiliary positive entropy subshift Y ⊂ {0, 1}N

and require sequences of numbers s = (si), s′ = (s′i) and qi = si/si−1, q′i = s′i/s′i−1
satisfying q′i < qi and limi→∞ s′i/si > 0. We also introduce the numbers ri = qi − q′i
and ti = s′i−1ri (with the convention that s′0 = 1). The construction requires a
sequence of blocks Bi such that |Bi| = ti and every word in L(Y) appears as a prefix
of some Bi. Sequences constructed in this way are known as Toeplitz sequences,
and are regularly almost periodic, meaning that for each block, the set of places
in the sequence at which the block appears contains an arithmetic progression. We
construct a sequence of infinite strings w(i) on the alphabet {0, 1, �}which converges
to a string w on the alphabet {0, 1}. The construction begins with the string w(0) =

{�}N, then proceeds in steps.

23

Step i (1 ≤ i ≤ ∞):
1) Divide w(i−1) into sections of length si, known as basic blocks.
2) Fill in the first ti lozenges in each section with block Bi. The result is

w(i) ∈ {0, 1, �}N.

Given n, for sufficiently large i the initial n-block of w(i) contains no �’s, i.e. w(i)
[1,n] ∈

{0, 1}∗, and then w(j)
[1,n] = w(i)

[1,n] for all j ≥ i. Let w = limi→∞ w(i) and X = O(w).

We now describe a specific example in which Y = {0, 1}N. The blocks Bi are
the length ti prefixes of the (i − 1)st shift of the binary Champernowne sequence.
This sequence, denoted C, is formed by concatenating all strings of each length in
lexicographic order. The sequence C is known to be normal, and an initial segment
of the sequence is 0100011011000001010011 In a more compact notation,
Bi = (σi−1(C))[0,ti−1−1]. To see that the Bi’s obey the requirement that every block
of L(Y) appears as the prefix of some Bi, consider any block x ∈ L(Y). Every block,
including x, appears infinitely often in C. Since Bi begins at position i of C, and
the Bi are of increasing length, there must be one that begins at the same place as
some appearance of x and is long enough to contain x.

The rest of our important sequences are defined as follows:

si =

i∏
n=1

(n2 + 1)

s′i =

i∏
n=1

(n2) = (i!)2

ri = qi − q′i = (i2 + 1) − i2 = 1

ti = s′i−1ri = s′i−1.

We see that these sequences obey the requirements, since qi = q′i +1,
∏∞

i=1i2/(i2+1)
converges [21, Th. 1.41]. With Mathematica, we can estimate the value of the limit
as limi→∞ s′i/si ≈ 0.27 > 0.

The first few values of each sequence used in the construction of the w(i)’s are
represented here for easy reference during the construction. (si) = 2, 10, 100, . . .
(s′i) = 1, 4, 36, . . . (ti) = 1, 1, 4, 36, . . . (Bi) = 0, 1, 0001, 00110..., . . . The initial
sequences of w(i) for i = 0, . . . , 4 are shown below.

� �

0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0
0 1 0 � 0 � 0 � 0 � 0 1 0 � 0 � 0 � 0 � 0 1 0 � 0
0 1 0 0 0 0 0 0 0 1 0 1 0 � 0 � 0 � 0 � 0 1 0 � 0
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0

This construction can be seen to lead to a minimal subshift due to its recurrent
nature. If a block first appears in step i of the construction, then it reappears with

24

a gap no larger than si. That the subshift has positive topological entropy follows
from the following proposition from Downarowicz [2]. For this proposition we
will need the concept of the density, di = (1 − s′i/si), of the basic blocks in X. The
density approximates the percentage of lozenges left in each i basic block after step
i in the construction.

Theorem 10.1 ([2], Cor. 14.5). For the subshift X, constructed as above using the
subshift Y, we have

htop(X, σ) = (lim
i→∞

di)htop(Y, σ).

Proof. First note that since we fill in ti = s′i−1ri lozenges in each si-block at step i,
s′i−1/si is approximately the percentage of lozenges filled in each basic block after
step i. So the density at each step, di = (1 − s′i/si) (really (1 − s′i−1/si) would be
more appropriate, but this indexing is easier to work with and does not change the
final outcome), is the approximate percentage of unfilled lozenges in each si-length
basic block. The limit of di exists, since di = (1− s′i/si), and we know that the limit
of s′i/si exists and is positive.

Immediately after step i, each basic block of length si is filled with characters
and lozenges in exactly the same way. This leaves approximately disi = (1 −
s′i/si)si = si− s′i lozenges in each. Throughout the rest of the construction there are
always basic blocks of length si with unfilled lozenges. If Ndi si(Y) is the number of
blocks in L(Y) of length disi then there are Ndi si(Y) ways to fill the lozenges with
these blocks. To see this, note that each disi length block in Y appears in some
Bm, since all blocks in Y appear as prefixes of some Bm. The Bm blocks fill in the
remaining lozenges in the basic blocks, and so eventually place each of the disi
length blocks of Y into the lozenges of a basic block of length si.

The preceding implies that Nsi(X) = Ndi si(Y), since after step i the lozenges in
the basic blocks of length si are filled in Ndi si(Y) ways. Recall that we can find
the entropy by looking at the number of blocks of each length along a subsequence
of lengths, since limn→∞ log Nn(X)/n is known to exist (by Fekete’s Lemma on
subadditivity). Thus the topological entropy of X is calculated as follows:

htop(X, σ) = lim
i→∞

(1/si) log(Nsi(X))

= lim
i→∞

(1/si) log(Ndi si(Y))

= lim
i→∞

(di/di)(1/si) log(Ndi si(Y))

= lim
i→∞

di lim
i→∞

(1/disi) log(Ndi si(Y))

=(lim
i→∞

di) htop(Y, σ).

�

Here is a brief discussion of why we think the winning shift W(X) of the subshift
X constructed above is worth studying in detail. Recall that Salo and Törmä proved
that small or minimal subshifts have small winning shifts: W(X) = AZ if and only

25

if X is the orbit closure of a periodic element of ΣZ, and W(X) = L−1(A∗BA∗) ⊂
{A, B}N if and only if X is Sturmian. A minimal subshift that is the orbit closure of a
Toeplitz sequence is, in a sense, the next step in this hierarchy. It allows somewhat
more freedom than a Sturmian shift, but not nearly as much freedom as a shift like
{0, 1}N, since each block appears with bounded gap and in fact along an arithmetic
progression. Because of this we expect the winning shifts of such minimal binary
subshifts to have fewer constraints than periodic and Sturmian subshifts, but more
than the full shift in X, or shifts of finite type. For an X such as the one constructed
above, the B’s in elements of W(X) would have to be fairly sparse due to the almost
periodic nature of the sequences.

11. Conclusion

The work above has left some open questions. More work could be done on cal-
culating the number of words in various subsets of the Dyck languages. Another in-
teresting avenue of research would be investigating higher-dimensional analogues
of context-free languages: so instead of languages consisting of one-dimensional
arrays of characters, one considers n-dimensional arrays. Finding an analogue of
the Dyck languages in this higher-dimensional setting is not trivial, since even in
the two-dimensional case some non-arbitrary choices must be made, for example
whether to add upwards and downwards facing parentheses and whether to require
diagonals to follow the Dyck rules. Little is known about the relation between
a subshift and its winning shift. For instance, is there some useful way to de-
fine a mapping between X and W(X) for all X? Another interesting project would
be to describe explicitly the winning subshifts associated with the minimal posi-
tive entropy subshifts constructed in the final section. This would require detailed
understanding of the predictability or freedom of choice as words are formed in
languages that are simultaneously highly structured and of positive entropy.

References

[1] Richard A. Brualdi, Introductory Combinatorics, 5th ed., Pearson Prentice Hall, Upper Saddle
River, NJ, 2010. MR2655770 (2012a:05001)

[2] Tomasz Downarowicz, Survey of odometers and Toeplitz flows, Algebraic and Topological dy-
namics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 7–37, DOI
10.1090/conm/385/07188, (to appear in print). MR2180227 (2006f:37009)

[3] Roland Fischer, Sofic systems and graphs, Monatsh. Math. 80 (1975), no. 3, 179–186.
MR0407235 (53 #11018)

[4] Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine
approximation, Math. Systems Theory 1 (1967), 1–49. MR0213508 (35 #4369)

[5] Sheila A. Greibach, A new normal-form theorem for context-free phrase structure grammars.,
J. ACM 12, no. 1, 42-52.

[6] John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley Publishing Co., Reading, Mass., 1979. Addison-Wesley Series
in Computer Science. MR645539 (83j:68002)

[7] Kokoro Inoue and Wolfgang Krieger, Excluding words from Dyck shifts, ArXiv e-prints (2013),
available at 1305.4720.

26

[8] Konrad Jacobs and Michael Keane, 0 − 1-sequences of Toeplitz type, Z. Wahrscheinlichkeits-
theorie und Verw. Gebiete 13 (1969), 123–131. MR0255766 (41 #426)

[9] Kim Johnson, Beta-shift Dynamical Systems and Their Associated Languages, Ph.D. Thesis,
University of North Carolina at Chapel Hill, 1999.

[10] J. Justesen, Information rate and source coding of context-free languages, Topics in informa-
tion theory (Second Colloq., Keszthely, 1975), North-Holland, Amsterdam, 1977, pp. 357–368.
Colloq. Math. Soc. János Bolyai, Vol. 16. MR0464723 (57 #4647)

[11] Donald Knuth, A characterization of parenthesis languages, Information and Control 11
(1967), 269–289.

[12] Dexter C. Kozen, Automata and Computability, Undergraduate Texts in Computer Science,
Springer-Verlag, New York, 1997. MR1633052 (99j:68001)

[13] Wolfgang Krieger, On the uniqueness of the equilibrium state, Math. Systems Theory 8
(1974/75), no. 2, 97–104. MR0399412 (53 #3256)

[14] Wolfgang Krieger and Kengo Matsumoto, Zeta functions and topological entropy of the
Markov-Dyck shifts, Münster J. Math. 4 (2011), 171–183. MR2869260 (2012j:37025)

[15] Werner Kuich, On the entropy of context-free languages, Information and Control 16 (1970),
173–200. MR0269447 (42 #4343)

[16] Tom Meyerovitch, Tail invariant measures of the Dyck shift, Israel J. Math. 163 (2008), 61–83,
DOI 10.1007/s11856-008-0004-7. MR2391124 (2009a:37016)

[17] John C. Oxtoby, Transitive points in a family of minimal sets, Measure theory and its appli-
cations (Sherbrooke, Que., 1982), Lecture Notes in Math., vol. 1033, Springer, Berlin, 1983,
pp. 258–262, DOI 10.1007/BFb0099862, (to appear in print). MR729540 (85h:28018)

[18] Karl Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cam-
bridge University Press, Cambridge, 1989. Corrected reprint of the 1983 original. MR1073173
(92c:28010)

[19] Ville Salo and Ilkka Törmä, Playing with subshifts, Fundamenta Informaticae (2013).
[20] Ludwig Staiger, The entropy of Łukasiewicz languages, Theor. Inform. Appl. 39 (2005), no. 4,

621–639, DOI 10.1051/ita:2005032. MR2172142 (2006h:68100)
[21] E. C. Titchmarsh, Theory of Functions, Science Press, Peking, 1964 (English). MR0197687

(33 #5850)
[22] Susan Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw.

Gebiete 67 (1984), no. 1, 95–107, DOI 10.1007/BF00534085. MR756807 (86k:54062)

