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Abstract: 

Bitcoin arises recent years as a most successful and widely used cryptocurrency. Though it was 

first invented as a decentralized currency, Bitcoin has become more and more popular as a 

financial asset with a market capitalization of around $117 billion, as increasing number of 

investors and portfolio managers start to invest in and trade it. In this paper, we are interested in 

finding out the future course of Bitcoin prices and returns and examining the predictive power of 

the ARMA- GARCH model. The paper uses Python and R environment to analyze and model 

financial time series. The first part covers the preliminary analysis of the daily closing prices and 

returns of Bitcoin, and also the stationarity of the return series. The second part intends to fit an 

appropriate ARMA-GARCH model. The last part focuses on using fitted model to predict future 

returns and prices of Bitcoin and compare it to our validation dataset.  

 

1.  Background 

Bitcoin is a cryptocurrency first introduced by Nakamoto in his paper “Bitcoin: A Peer-to-Peer 

Electronic Cash System” in 2008[1]. A cryptocurrency can be defined as “a virtual coinage 

system that functions much like a standard currency, enabling users to provide virtual payment 

for goods and services free of a central trusted authority” [2]. Three unique features of 

cryptocurrencies are that they are fully decentralized and depend on cryptographic protocols, or 

extremely complex code systems that encrypt sensitive data transfers to secure their units of 

exchange, and also control the finite supply. Bitcoin is the first widely used and traded 

cryptocurrency since 2009, when the Bitcoin software started to be available to the public and 

mining- the process of which new bitcoins can be created and transactions can be recorded and 

verified on the blockchain- begins. As Bitcoin becomes increasingly popular, and the idea of 
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decentralized and encrypted currencies catch on, more rival, alternative cryptocurrencies appear. 

But Bitcoin remains the most successful and widely accepted cryptocurrency with a market cap 

at $117 billion, representing about 45% of the total estimated cryptocurrency capitalization at 

present (coinmarketcap.com accessed on Mar 30th 2018). 

 

A few studies have already been conducted on the financial and statistical characteristics of 

Bitcoin. One group of economists has been focusing on price discovery in the Bitcoin market, for 

example, Brandvold et al. [3] and Bouoiyour et al. [4] reveal some lead-lag relationship between 

Bitcoin prices, transactions use, and investors’ attractiveness. Other studies also show that 

Bitcoin price is subject to unique factors which are substantially different from those affecting 

conventional, financial assets, such as internet search [5], information on google trends, and 

word-of-mouth information on social media.[6] In fact, as Bitcoin is mainly used and viewed as 

an asset rather than a currency [7], and the Bitcoin market is currently highly speculative, and 

more volatile and susceptible to speculative bubbles than other currencies [8][9]. Moreover, the 

presence of long memory and persistent volatility [10] justifies the application of GARCH-type 

models. 

The purpose of this paper is to utilize time series techniques to predict the future returns and 

prices of Bitcoin. At the same time, we want to examine the effectiveness of the popular ARMA- 

GARCH model in economics and financial world. As Bitcoin gradually has had a place in the 

financial markets and in portfolio management [11], time series analysis is a useful tool to study 

the characteristics of Bitcoin prices and returns, and extract meaningful statistics in order to 

predict future values of the series.  
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2. Data 

The data used to fit the model are the daily closing prices of Bitcoin from July 18th, 2010 ( as the 

earliest data available) to Jan 30th, 2018, which corresponds to a total of 2754 observations. We 

save the data from Jan 31st, 2018 to March 31st, 2018 to perform validation latter. The data is 

compiled from Bitstamp, the largest Bitcoin exchange, and covers a daily database denominated 

in US dollar, which is the main currency against which Bitcoin is the most traded. We calculate 

the log-returns by taking the natural logarithm of the ratio of two consecutive prices, as a good 

approximation of daily percentage changes in prices.  

Fig. 1 -Fig.4 illustrate the Bitcoin daily closing prices and daily returns.  
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3.  Preliminary analysis and results 

3.1 Descriptive Statistics 

Since its introduction in 2009, the value of Bitcoin grew rapidly and its price achieved all time 

high: $19, 340 at the end of 2017. However, it recently has been traded lower to $6,000 to 

$7,000 range in the past month. Table 1 reports the descriptive statistics of the returns of Bitcoin, 

with the maximum daily return in the sample being 0.4246, the minimum being -0.4915, an 

extremely high volatility for a financial asset. The mean return is 0.0043, with a quite high 
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standard deviation of 0.0588. The result of the Jarque-Bera statistic indicates the departure from 

normality. The returns are also negatively skewed, while the excess kurtosis suggests evidence of 

a leptokurtic distribution. 

 

 

3.2 Check Stationarity  

Before modeling time index data, we need to check the stationarity, as a lot of statistical and 

econometric methods are based on stationarity.  Based on the results of the Augmented Dickey–

Fuller (ADF) tests as shown in Table 2, we fail to accept the null hypothesis of a unit root for the 

returns, and, hence, stationarity is guaranteed for the log-return series of Bitcoin.  

 

 

4. Methodology  

4.1 Some Stylized Facts About Volatility in Financial Data 
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One common observation we get out of the economic and financial data is volatility clustering. 

Suppose we have noticed that recent daily returns have been unusually volatile. We might expect 

that tomorrow’s return is also more variable than usual. We can also observe that the squared 

returns of an asset are usually positively auto-correlated, i.e. if an asset price made a big move 

yesterday, it is more likely to make a big move today. With economic and financial data, time-

varying volatility is more common than constant volatility, and accurate modeling of time-

varying volatility is of great importance. 

 

4.2  Justifications for ARMA-GARCH model 

In our case, we have already known from the excess kurtosis that an obvious fat tails displayed in 

our series, a typical evidence of heteroskedastic effects as clustering of volatility. We can also 

observe from the squared log-return. Fig.5 illustrates that the squared returns appear to fluctuate 

around a constant level, but exhibit volatility clustering. Large changes in the squared returns 

tend to cluster together, and small changes tend to cluster together, which also indicates that the 

series exhibits conditional heteroscedasticity.  

 

It is even more clear, if we plot the sample autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of squared log-return, as shown in Fig.6 and Fig.7.  
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The sample ACF and PACF show significant autocorrelation in the squared log-return series. 

Then, a Ljung-Box Q-test can more formally assess autocorrelation. 

 

Table 3. Results of Ljung-Box Q-test 
   
lag    p-value      Q  c-value rejectH0 
1 0.0000 2756.729 2.706 TRUE 
2 0.0000 5513.13 4.605 TRUE 
3 0.0000 8267.938             6.251 TRUE 
4 0.0000 11021.165             7.779 TRUE 
5 0.0000 13232.577             9.236 TRUE 
6 0.0000 15435.093           10.645 TRUE 
7 0.0000 17628.810            12.017 TRUE 
8 0.0000 19823.069           13.362 TRUE 
9 0.0000 22008.538            14.684 TRUE 
10 0.0000  24194.156  15.987 TRUE 
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11 0.0000 26379.902  17.275 TRUE 
12 0.0000 28561.907 18.549 TRUE 
13 0.0000 30740.143  19.812 TRUE 
14 0.0000 32914.629 21.064 TRUE 
15 0.0000 35076.471 22.307 TRUE 
16 0.0000 37238.845  23.542 TRUE 
     

 
As illustrated in the ACF and PACF plot of squared returns and the results of Ljung-Box test, 

there is clearly autocorrelation present. The model we are going to look at will attempt to capture 

the autocorrelation of squared returns, clustering volatility, as well as the heteroscedasticity. The 

significance of the lags in both the ACF and PACF indicate we need both AR and MA 

components for our model. As we know that ARMA models are used to model the conditional 

mean of the process given past information, which however, assumes the conditional variance 

given the past is constant. ARMA model alone fails to capture the volatility clustering behavior. 

Thus, we will use GARCH process that has become widely used in econometrics and finance, to 

correct the heavy tails and model the randomly varying volatility in Bitcoin’s return.  

 

We describe the mean equation of the log-return series 𝑟" by the process 

    𝑟" = 𝐸(𝑟"|𝑟"'(, 𝑟"'*,… ) +	𝜀" , 

where 𝐸(𝑟"|𝑟"'(, 𝑟"'*, … ) denotes the conditional expectation operator. 𝜀" denotes the 

innovations or residuals of the log-return series with zero mean, and plays the role of the 

unpredictable part of the time series, generated from a GARCH process. We first model the 

mean equation as an ARMA process.  

 

4.3 ARMA process 

Recall that the ARMA(m, n) process of autoregressive order of m, and moving average order n 

can be described as:  
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𝑟" = 𝜇 +1𝑎3𝑟"'3

4

35(

+1𝑏7𝜀"'7

8

75(

+ 	𝜀" 

With mean 𝜇, autoregressive coefficients 𝑎3, and moving average coefficients 𝑏7.   

 

To choose the best order(m, n) , we try out different combinations and select the one with the 

lowest AIC and BIC in Python.  Table 4 illustrates ARMA(2,1) performs best, and shows the 

estimated coefficients results for ARMA(2,1).  

Table 4. AIC and BIC of ARMA (m,n) 
 
Order    AIC 
(0,1) -7791.96 
(0,2) -7796.68 
(1,0) -7792.15 
(1,1) -7798.64 
(1,2) -7843.69 
(2,0) -7795.67 
(2,1) -7836.96 
(2,2) -7807.82 
 

ARMA(1,2) 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-0.487415 -0.016283 -0.002524  0.018147  0.422052  

 

Coefficient(s): 

           Estimate  Std. Error  t value   Pr(>|t|)     

ar1       -0.914004    0.019341  -47.257  < 2e-16 *** 

ma1        0.962524    0.027655   34.805  < 2e-16 *** 

ma2        0.040547    0.019782    2.050  0.04039 *   

intercept  0.008478    0.002216    3.826  0.00013 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Next, we need to check the residuals after fitting ARMA(2,1), which should be align with our 

previous discussion in 4.2, and displays heteroscedasticity, as illustrated in Fig.8-11.  
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4.4 GARCH Process 

As we already detect the autocorrelation effects in our residual/innovation series, we now need to 

apply GARCH (p,q) model in order to estimate the conditional variance going forward, using:  

𝜀" = 𝑧"𝜎" 

𝜎"* = 	𝛾𝑉= +1𝛼3

?

35(

𝜀"'3* +1𝛽3

A

75(

𝜎"'7*  

where 

𝜎"* = 	𝑉𝑎𝑟(𝜀"|𝜀"'(, 𝜀"'*, … ) 

denotes the conditional variance and 𝑧" is a noise term iid ~(0,1) . 

Three parameters (𝛾, 𝛼, 𝛽) must satisfy that 

𝛾 + 𝛼 + 𝛽 = 1 

If we introduce a new parameter 𝜔 to denote the weighted average long-term variance, where  

𝜔 = 𝛾𝑉= 

GARCH(p,q) model becomes:  
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𝜎"* = 	𝜔 +1𝛼3

?

35(

𝜀"'3* +1𝛽3

A

75(

𝜎"'7*  

The model tells us that tomorrow’s variance is a function of today’s squared innovations, today’s 

variance, and the weighted average long-term variance.  

The estimation of (𝜔, 𝛼, 𝛽) can be conducted utilizing the maximum likelihood method, which is 

an iterative process by looking for the maximum value of the sum among all sums defined as: 

1 [−ln(𝜎3*) −
𝜀3*

𝜎3*
]

I

35J
 

where N denotes the length of the innovation or residuals series {𝜀7} (j=2,…, N)  

 

To choose the best order(p, q) , we try out different combinations and make the decision based 

on Log-Likelihood, and Information Criteria. Fig.12 gives us ARMA(1,2)-GARCH(1,2) as the 

best model.  

 

Table 5. Log Likelihood and Information Criteria of ARMA(1,2)-GARCH(p,q) 
 
Model (p,q) Log-Likelihood AIC BIC HQIC 
(1,1) 5245.095 -3.8039 -3.7846 -3.7969 
(1,2) 5248.175 -3.8054 -3.7839 -3.7977 
(1,3) 5248.156  -3.8047 -3.7810 -3.7961 
(2,1) 5245.124 -3.8032 -3.7817 -3.7954 
(2,2) 5248.159 -3.8047 -3.7810 -3.7961 
(2,3) 5248.150 -3.8040 -3.7782 -3.7946 
(3,1) 5244.112  -3.8018 -3.7781 -3.7932 
(3,2) 5247.063 -3.8032 -3.7774 -3.7938 
(3,3) 5248.108  -3.8032 -3.7752 -3.7931 
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Fig 12. Full model parameters  

Mean Model: ARMA(1,2) 

Variance Model: GARCH(1,2) 

Optimal Parameters 

------------------------------------ 

        Estimate  Std. Error    t value Pr(>|t|) 

mu      0.001368    0.000090    15.2490        0 

ar1     0.965530    0.003229   299.0540        0 

ma1    -0.983092    0.000887 -1107.7277        0 

ma2     0.030457    0.000260   117.1919        0 

omega   0.000057    0.000009     6.0399        0 

alpha1  0.278171    0.019459    14.2952        0 

beta1   0.461024    0.025163    18.3215        0 

beta2   0.259804    0.020355    12.7637        0 

 

 

So far, we have successfully obtained the full ARMA(1,2)-GARCH(1,2) model: 

𝑟" = 	0.001368 + 0.965530𝑟"'( + (−0.983092)𝜀"'( + 0.030457𝜀"'* + 	𝜀" 

𝜀" = 𝑧"𝜎", 𝑧"~𝑖𝑖𝑑(0,1) 

𝜎"* = 		0.000057 + 0.278171	𝜀"'(* + 	0.461024𝜎"'(* + 0.259804𝜎"'**  

 

And here is the residual plot we get from our fitting our model: 
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5. Forecasting 

5.1 Validation Dataset 

After obtaining the fitted ARMA-GARCH model, we are curious about how the model would 

perform in predicting the future prices of Bitcoin.  Here we load the saved validation dataset, i.e.  

the daily closing prices for Bitcoin from Jan 31st, 2010 to March 31st, 2018, and calculate the 

daily log-returns during such period. 
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5.2 Forecasting results 

Using the methodology we describe earlier and resulted ARMA(1,2)-GARCH(1,2) model, we 

are able to forecast the future prices (from 2010-07-18 to 2018-01-30) for Bitcoin. The graphs 

below illustrate the median value of predicted prices resulted from 500 simulations.  
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Compared with the actual prices, our model can roughly predict the ups and downs of Bitcoin’s 

return/price movement. However, it fails to capture the high volatility of the daily return/price 

and thus gives a prediction around a rather constant level relative to the actual return/price. We 

can also use a numeric measurement to judge how well our model performs across time: 

𝑀𝑆𝑃𝐸 =
1
𝑀 1(𝑃4" − 𝑋")*

^

45(

 

where MSPE stands for “Mean Squared Prediction Error”; M stands for the number of 

simulations; 𝑃4" stands for the prediction return/price at time t for simulation m; 𝑋" stands for 

the actual return/price at time t. 
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We can follow the same procedure to fit different models on different datasets. For example, the 

following two pairs of graphs report the best models resulting from different sets of data used. If 

we use the closing price of Bitcoin from 2017-1-1 to 2018-3-30, which corresponds to the period 

when Bitcoin starts to draw public attention and become popular among investors, the best 

possible model is ARMA(2,5)-GARCH(1,3). The following graphs show the prediction result 

and also the MSPE for returns and prices.  
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We can tell that ARMA(2,5)-GARCH(1,3) fails to predict the both the level and trend of future 

Bitcoin price. That means for our case using a more recent dataset doesn’t improve our results of 

prediction of Bitcoin price. However, it does better than ARMA(1,2)-GARCH(1,2) model in 

forecasting the future volatility in returns, especially for a longer period, by comparing the 

MSPE of ARMA(2,5)-GARCH(1,3) with that of ARMA(1,2)-GARCH(1,2). 

 

6. Conclusions  

GARCH modeling builds on advances in the understanding and modeling of volatility. It takes 

into account excess kurtosis (i.e. fat tail behavior) and volatility clustering, two important 
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characteristics of financial time series, which are also observable in the Bitcoin case. It’s 

theoretically able to provide accurate forecasts of variances and covariances of returns through 

modeling time-varying conditional variances. As a consequence, GARCH models have become 

quite popular in diverse fields as risk management, portfolio management and asset allocation, 

option pricing, foreign exchange, and the term structure of interest rates.[12] 

 

In this paper, we intend to predict the future prices of Bitcoin, one of the most widely used and 

traded cryptocurrency, and study the predictive power of ARMA-GARCH model on the Bitcoin 

return/price series. From the predicted results, we have realized that although GARCH models 

are useful across a wide range of financial and economical applications, they are not a quite 

effective and suitable model candidate in studying the Bitcoin return/price series. One of the 

main reasons is that GARCH models are parametric specifications that operate best under 

relatively stable market conditions[13]. Although GARCH is explicitly designed to model time-

varying conditional variances, GARCH models often fail to capture highly irregular phenomena, 

including wild market fluctuations (e.g., crashes and subsequent rebounds), and other highly 

unanticipated events that can lead to significant structural change, which are exactly what has 

been going on in the Bitcoin market recently. Events and factors such as the recent 

announcement by Google, that it will put a ban on all cryptocurrency related ads, the collapsed 

cryptocurrency exchange Mt. Gox, increasingly hostile regulatory climate in China, increased 

regulatory scrutiny of ICOs, banks are also putting more and more pressure on the market by 

barring their customers from purchasing cryptocurrencies using their plastic cards, all 

contributed towards uncertainty, geopolitical risks, and wild fluctuations in the Bitcoin market. 

For future studies, it is possible for us to further explore different types of GARCH-type models 
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such as asymmetric GARCH, EGARCH, TGARCH, etc. hopefully to capture the characteristics 

of the Bitcoin series, and make a better prediction.  
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