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Inverse probability of treatment-weighted
competing risks analysis: an application on
long-term risk of urinary adverse events
after prostate cancer treatments
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Abstract

Background: To illustrate the 10-year risks of urinary adverse events (UAEs) among men diagnosed with prostate
cancer and treated with different types of therapy, accounting for the competing risk of death.

Methods: Prostate cancer is the second most common malignancy among adult males in the United States. Few
studies have reported the long-term post-treatment risk of UAEs and those that have, have not appropriately
accounted for competing deaths. This paper conducts an inverse probability of treatment (IPT) weighted competing
risks analysis to estimate the effects of different prostate cancer treatments on the risk of UAE, using a matched-cohort
of prostate cancer/non-cancer control patients from the Surveillance, Epidemiology and End Results (SEER) Medicare
database.

Results: Study dataset included men age 66 years or older that are 83% white and had a median follow-up time
of 4.14 years. Patients that underwent combination radical prostatectomy and external beam radiotherapy experienced the
highest risk of UAE (IPT-weighted competing risks: HR 3.65 with 95% CI (3.28, 4.07); 10-yr. cumulative incidence = 36.5%).

Conclusions: Findings suggest that IPT-weighted competing risks analysis provides an accurate estimator of the
cumulative incidence of UAE taking into account the competing deaths as well as measured confounding bias.

Keywords: Prostate cancer, Survival analysis, Competing risks, Prostate cancer, Inverse probability weighting,
Confounding bias, Urinary adverse events

Background
Prostate cancer is the second leading cause of death in
men living in the United States with about 220,800 new
cases diagnosed in 2015 as estimated by the American
Cancer Society [1]. Based on 2011 data from SEER, the
prevalence of prostate cancer in the United States was
estimated to be 2,707,821 cases. Cancer diagnosis local-
ized to the prostate gland usually indicates a better
chance of survival compared to finding of regional or
distant cancer spread. Prostate-specific antigen (PSA)
screening has led to earlier detection of prostate cancer

such that 81% of patients are diagnosed at the localized
stage and the 5-year survival approaches 100% [2].
Significant medical and clinical emphasis is placed on

prostate cancer diagnosis and treatment such as radi-
ation therapy or surgery [3–5]. However, limited infor-
mation is available to patients and physicians regarding
subsequent urinary adverse events (UAEs) for different
treatment options and their combinations. Examples of
UAEs include urethral blockage due to scar tissue and
bladder bleeding due to radiation damage. Knowing the
risk of such events in advance can help patients and
providers select the right treatment. In Jarosek et al., the
authors conducted a matched-cohort design to compare
differences in long-term severe UAEs post-treatment for
prostate cancer patients compared to non-cancer
controls using inverse probability of treatment (IPT)

* Correspondence: cbolch@ufl.edu
1University of Minnesota, Twin Cities Campus, 3 Morrill Hall, 100 Church St.
S.E, Minneapolis, MN 55455, USA
3Present address: 5055 SW 9th Lane, Gainesville, FL 32607, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Bolch et al. BMC Medical Research Methodology  (2017) 17:93 
DOI 10.1186/s12874-017-0367-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210592414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-017-0367-8&domain=pdf
http://orcid.org/0000-0002-9797-6557
mailto:cbolch@ufl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


weighted Cox proportional hazard models to estimate
the hazard ratio of severe UAEs [6]. Prostate cancer
treatment options included: external beam radiotherapy,
brachytherapy, radical prostatectomy, cryotherapy, and
the combinations brachytherapy + external beam radio-
therapy and radical prostatectomy + external beam
radiotherapy.
Numerous articles have compared various competing

risks analysis versus standard Cox proportional hazard
regression, the correct calculation of cumulative inci-
dence functions, and example applications to clinical re-
search studies [7–9]. Bekaert et al. developed a marginal
structural subdistribution hazard model to accommodate
high dimensional and time-varying confounders and
modeled the cumulative incidence function of ICU death
[10]. The estimation of the standardized risk difference
and ratio using inverse probability weights with the cu-
mulative incidence function was explained in Cole et al.
focusing on the effect of injection drug use on the risk
of acquired immunodeficiency syndrome (AIDS) after
initiation of antiretroviral therapy [11]. In observational
research, confounding bias is a central concern and in-
verse probability (IP) weighting is commonly used to
control for such bias due to measured variables [12, 13].
However, to the best of our knowledge, no one has con-
sidered IP-weighted competing risks analysis to account
for confounding bias and competing events simultan-
eously for the estimation of the cumulative incidence of
UAE [14, 15]. One obstacle is the lack of appreciation
for the benefit of competing risks analysis in combin-
ation with IP weighting.
The use of competing risks analysis is used within the

field of medicine due to its ability to correctly estimate
the probability of failure from multiple competing causes
rather than just one cause of interest [15–19]. In a com-
peting risks analysis, the data used is the observed time
to failure and an indicator of the type of competing risk
events that occurred for each individual subject [20]. In
Jarosek et al., the main event of interest was the inci-
dence of the first post-treatment UAE, while death was
considered as a censored event. Jarosek and colleagues
adjusted confounding bias using IP weighting, but did
not consider IP-weighted competing risks analysis. The
use of IP-weighted competing risks analysis will enable
the estimation of the cumulative incidence of UAEs
adjusting for confounding bias and competing death,
and thus providing a more accurate estimate of UAE
disease burden [7, 8, 21, 22]. Due to recent develop-
ments in statistical software, one can easily implement
IP-weighted competing risks analysis using PROC
PHREG in SAS version 9.4 TS1M2 (SAS Institute, Inc.,
Cary, NC, USA).
In this article, we re-analyze the prostate cancer SEER-

Medicare dataset in Jarosek et al. using IPT-weighted

competing risks analysis taking into account the compet-
ing event of death and adjusting for confounding bias.
We will also use a hypothetical example (see Additional
file 1: Appendix A) to illustrate the detailed calculations
of the various methods and highlight the differences be-
tween the multiple methods for estimating the cumula-
tive incidence function [23].

Study sample
The dataset of a matched cohort of elderly men diag-
nosed with non-metastatic prostate cancer and men
without cancer was defined in the article by Jarosek et
al. Specifically, the cases were selected from the SEER
cancer registry data that can be linked to the Medicare
claims database to provide information regarding long-
term follow-up data for UAEs. The control individuals
were drawn from 193,150 elderly men without cancer in
the 5% sample of Medicare beneficiaries residing in the
SEER areas between 1992 and 2007. The final cohort of
elderly men (≥66 years) diagnosed with prostate cancer
was 100,874 patients and the final control cohort of men
without prostate cancer was 144,816 patients [6]. We ex-
cluded men who did not receive treatment for prostate
cancer as a possible control group because it is a hetero-
geneous group (very healthy men that decide to not treat
their cancer or very unhealthy men that will die of
something else before prostate cancer, so, they decide
not to treat it). In addition, it is very difficult to account
for “selection by indication” bias and make any ge-
neralizations using this group as controls. The number
of prostate cancer patients that received each treatment
are as follows: 44,318 patients received external beam
radiotherapy; 14,259 patients received brachytherapy;
11,835 patients received brachytherapy and external
beam radiotherapy; 26,790 patients received radical
prostatectomy; 1557 patients received radical prostatec-
tomy and external beam radiotherapy; 2115 patients re-
ceived cryotherapy.
All treatments were essentially done one time with

sometime between therapies for combination treatments.
The survival time to UAE for cases is time since prostate
cancer treatment to UAE. All controls were assigned
pseudo-diagnosis dates as defined in Jaorsek et al. [6].
The survival time to UAE for controls is time since
pseudo-diagnosis date to UAE. The prognostic variables
in the dataset used for the propensity weighting include
the variables of age, race, comorbidity, zip code income
and education level, region of SEER registry, year of the
treatment, and presence of baseline UAEs [6]. All
competing risks models with or without propensity-
weighting were adjusted for the covariates of age,
comorbidity, and baseline UAE to account for potential
residual confounding using the same adjustment covari-
ates as in the article by Jarosek et al. [6].
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Methods
Survival analysis and competing risks
Clinical researchers use the Kaplan-Meier (KM) sur-
vival probability estimator when survival analysis is
appropriate for clinical outcomes. The survival function
is the probability of an individual surviving beyond time
t (experiencing the event after time t). It is defined as
S(t) = P(T > t). Let tj denote the distinct ordered event
times, and dj be the number of events and nj be the
number at risk at time tj. The KM estimator of the survival

function SKM(x) is defined as 1 if t < t1 and
Q

tj≤t
1− dj

nj

� �
if

t ≥ t1 [15]. The probability of failure is the probability
that an individual experiences an event before time t,
defined as F(t) = 1− S(t) = P(X ≤ t). The KM estima-
tor of the failure function FKM(t) is commonly defined
as 1 − SKM(t) [8].
In the presence of competing events when multiple

causes of failure are possible, the naïve KM estimator
by censoring competing events does not correctly es-
timate the cumulative incidence function (CIF) for
the events of interest (referred to as the KM CIF esti-
mator) [7, 8, 21]. The naïve KM estimator does not
correctly estimate the CIF, because the number of
subjects that experience the competing events influ-
ences the number of subjects that can actually experi-
ence the outcome of interest. For example, say the
event of interest for a study sample is the first inci-
dent of AIDS diagnosis and the competing event is
death. Therefore, the cause-specific hazard function
for the first incident of AIDS diagnosis is influenced
by the competing event of death in terms of a de-
crease in the number of subjects that are at risk for
an AIDS diagnosis rather than just being censored
due to lost to follow-up [24]. The cumulative inci-
dence function of cause k, Ik (t), is defined by the
probability P(T ≤ t, D = k) of failing from cause k be-
fore time t. It can be expressed in terms of the

cause-specific hazard as Ik (t) =
R t
0 λ xð ÞS xð Þdx , where

λk (t) is the cause-specific hazard function and S (t)
is the survival probability of an individual surviving
any cause of event beyond time t. Appropriately ac-
counting for the competing events, the estimation of
unweighted and inverse probability of treatment
(IPT)-weighted cumulative incidence functions (referred
to as the competing risks CIF estimator) are presented in
Additional file 2: Appendix B. A hypothetical example
is presented in Additional file 1: Appendix A to illus-
trate the difference between the naïve KM CIF and
the competing risks CIF estimators, and between the
unweighted and IPT-weighted competing risks CIF es-
timators. Additional file 3: Appendix C presents de-
tailed SAS code used to perform these various
statistical methods.

Confounding bias and inverse probability of treatment
weighting
In clinical observational studies, a goal of the study is
often to compare a treatment group with a control
group to understand the impact of the treatment on an
event of interest. However, the treatment and control
groups may not be comparable without randomization.
Therefore, demographic and other characteristics may
differ by the treatment groups. When there are differ-
ences in the treatment groups by factors that are prog-
nostic for the event of interest, any naïve comparison of
the treatment groups may not provide a consistent esti-
mator of the actual (or “causal”) effect of the treatment
[13, 25]. To minimize the potential for confounding bias
within observational studies, an appropriate study design
should be considered to measure and adjust for known
and suspected confounding variables [26].
There are several competing approaches to account

for measured confounding. One may conduct an IPT-
weighted analysis, propensity score adjustment, or
outcome-model adjustment. We will concentrate on the
first, and defer discussion of relative merits of this ap-
proach to the conclusion. For each subject within the
study sample, a weight is assigned based on the inverse
of the probability of the subject’s actual treatment. For
example, in the SEER-Medicare dataset, weights were
assigned based on the inverse of the probability of the
patient being treated by a specific strategy conditional
on the patient’s cancer diagnosis and demographics. In
the calculation of the weights, a generalized logistic re-
gression model (or other generalized linear models) is fit
to estimate the probabilities of being treated [13, 27].
The method of deriving the weights within the dataset

began by modeling the propensity of a diagnosis of pros-
tate cancer using the variables of age, race, comorbidity,
zip code income and education level, type of SEER regis-
try, year of the treatment, and presence of baseline
UAEs. Second, to account for the variables associated
with treatment selection among cases with cancer, we
modeled the propensity of receiving treatment with clin-
ical T-stage, grade, and the covariates from the previous
model. The IPT weight was defined as the stabilized in-
verse probability of cancer diagnosis for control subjects,
and as the product of the stabilized inverse probability
of cancer diagnosis and the stabilized inverse probability
of receiving treatment for cases [6]. There was trunca-
tion at the 99th percentile of the weights to prevent
sparse data (weights can be between 0 and infinity so
weights that were extreme outliers were deleted) [6, 27].
Overall, the IPT weight adjusted for the imbalance
within the treatment and control groups among the
baseline and demographic characteristics so that subjects
who were least like the others in their treatment group
were given higher weighting.
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Statistical analysis
Time to the first event of UAE (event of interest), cen-
soring events (radiation, chemotherapy, and/or surgery),
or death (competing event) was defined in days mea-
sured from the first claim date of treatment. Stabilized
IPT weights to account for confounding bias were calcu-
lated by Jarosek et al. given differences in patient and
tumor characteristics within each treatment group [6].
IPT-weighted competing risks analysis estimated the
hazard ratio of UAEs in general for each treatment
group. The cause-specific hazard ratio for UAE was esti-
mated with a 95% confidence interval and the estimated
10-year cumulative incidence of UAE for each compet-
ing risks model was also calculated. All statistical ana-
lyses were performed using SAS v9.4 TS1M2 (SAS
Institute, Inc., Cary, NC, USA).
To help the reader understand the changes in the haz-

ard ratios with the addition of IPT weighting and com-
peting risks analysis, we first compared (no statistical
test was used to detect differences) the results of the
IPT-weighted competing risks analysis to the un-
weighted competing risks analysis. Then we compared
the results from the un-weighted Cox models to the
IPT-weighted Cox models. The hazard ratio of UAE
from the IPT-weighted competing risks analysis was
compared to the hazard ratio estimated from the com-
peting risks analysis without IPT weighting. In addition,
the hazard ratios of UAEs by un-weighted and IPT-
weighted competing risks analysis were compared to the
results of the un-weighted and IPT-weighted Cox pro-
portional hazard models estimated by Jarosek et al.
(Table 2 of Jarosek et al.).
Death rates among the total cohort were not uniform

across all treatment groups. The difference in death
rates by prostate cancer treatment provides justification
for competing risks analysis because the occurrence of
the event types (UAE, death, and censoring events) are
mutually exclusive [28]. A standard KM curve was esti-
mated for the death rate by treatment group where any
UAE events were censored and the event of interest
was death.

Results
Figure 1 displays the survival probability versus time by
days to death for each prostate cancer treatment group.
The figure shows the survival probability of death by
days to event for each prostate cancer treatment group
using a Propensity-weighted Cox proportional hazards
model with death as the event of interest and all other
events as censored observations. The difference in death
rates by prostate cancer treatments provides justification
for the IPT-weighted competing risks analysis because
death precludes observing any urinary adverse events
(i.e. mutually exclusive events). The number of death

events for each treatment group is shown in Table 1.
The treatment group that experienced the highest num-
ber of deaths was external beam radiotherapy with a
23.7% death rate. The death rate among the control
group (men aged greater than or equal to 66 years old
without cancer) was 31.0%. Thus, the 10-yr. cumulative
incidence of death was highest in the control group
followed by the external beam radiotherapy group and
the cryotherapy group.
The results of the two Cox proportional hazard

models adjusted using the inverse probability weighting
and without inverse probability weighting from Jarosek
et al. are provided as reference in Table 2. The interpret-
ation of those models and discussion of the results are
found in the article as well.
The 10-yr. competing risks cumulative incidence of a

UAE without IPT weighting was highest among the radical
prostatectomy + external beam radiotherapy treatment
group followed by the brachytherapy + external beam
radiotherapy group and the radical prostatectomy group
(Table 2). All 10-yr. competing risks cumulative incidences
of UAE are lower than the 10-yr. KM cumulative inci-
dences of UAE. After taking into account IPT-weighted
competing risks analysis, the 10-yr. cumulative incidence
of UAE increased slightly for the radical prostatectomy +
external beam radiotherapy group to 36.5% compared to
the competing risks cumulative incidence of a UAE with-
out IPT weighting. However, for both IPT-weighted com-
peting risks analysis and non-weighted IPT competing
risks analysis, the radical prostatectomy + external beam
radiotherapy treatment group remained as having the
highest cumulative UAE incidence.
The cumulative risk estimated without IPT weighting

at year 10 for UAEs for the external beam radiotherapy
and brachytherapy treatment groups alone were much
smaller (16.4 and 18.1%, respectively) compared to the

Fig. 1 Product-limit survival estimates. Survival probability of death
by treatment group. EBRT = external beam radiotherapy;
BT = brachytherapy; RP = radical prostatectomy. Treatment groups: :
BT; : BT + EBRT; : Control; : Cryotherapy; : EBRT; : RP; : RP + EBRT
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brachytherapy + external beam radiotherapy and radical
prostatectomy treatment groups (25.8 and 25.6%, re-
spectively). In a similar comparison with the IPT-
weighted competing risks analysis, the 10-yr. competing
risks cumulative incidence of UAE for the external beam
radiotherapy and brachytherapy treatment groups were
14.8 and 18.3%, respectively, which are in the same way
much smaller than the brachytherapy + external beam
radiotherapy and radical prostatectomy treatment
groups (25.2 and 26.0%, respectively).
The competing risks model without IPT weighting for

the estimated time for a patient’s first UAE showed an
increased risk for all treatment groups compared to the
control group (Table 2). The treatment group, radical
prostatectomy + external beam radiotherapy, experi-
enced the largest increased risk for UAE compared to

the control group (hazard ratio [HR] 4.06 with 95% con-
fidence interval [CI]: 3.70, 4.46). The treatment group
with the lowest increased risk for a UAE compared to
the control group was the external beam radiotherapy
group (HR 1.43 with 95% CI: 1.38, 1.48).
The IPT-weighted competing risks model predicting

time to first UAE indicated increased risk of a UAE for
all treatment groups compared to the control group
(Table 2). Patients within the radical prostatectomy + ex-
ternal beam radiotherapy treatment group experienced
the highest increased risk for a UAE (HR 3.66 with 95%
CI: 3.28, 4.07). The treatment group that had the lowest
increased risk for UAE compared to the control group
was the external beam radiotherapy group (HR 1.19 with
95% CI: 1.15, 1.24). Overall, all the treatment groups ex-
perienced a higher increased risk for UAE with all

Table 2 Un-weighted and IPT-weighted Kaplan-Meier and competing risk of any urinary adverse event

Control EBRT BT BT + EBRT RP RP + EBRT Cryotherapy

Subjects (n) 144,816 44,318 14,259 11,835 26,790 1557 2115

Un-weighted KMa

Event rate (n per 100 person-yr) 1.78 2.40 2.70 3.91 4.02 6.08 3.71

KM 10-yr. cumulative incidence (%) 16.1 19.7 19.8 28.4 26.6 37.8 23.4

IPT-weighted KMa

KM 10-yr. cumulative incidence (%) 17.0 17.6 20.0 27.4 27.2 36.4 19.4

HRb 1 1.114 1.428 1.969 2.442 3.194 1.56

95% CI 1.07, 1.16 1.33, 1.53 1.85, 2.10 2.34, 2.55 2.79, 3.66 1.30, 1.87

Un-weighted CR

KM 10-yr. cumulative incidence (%) 12.1 16.4 18.1 25.8 25.6 36.2 22.4

HRc 1 1.430 1.660 2.416 2.835 4.057 2.082

95% CI 1.38, 1.48 1.58, 1.74 2.31, 2.53 2.75, 2.93 3.70, 4.46 1.85, 2.35

IPT-weighted CR

KM 10-yr. cumulative incidence (%) 12.7 14.8 18.3 25.2 26.0 36.5 22.1

HRd 1 1.194 1.585 2.214 2.761 3.655 1.754

95% CI 1.15, 1.24 1.50, 1.67 2.11, 2.32 2.67, 2.86 3.28, 4.07 1.54, 1.99

Abbreviations: EBRT external beam radiotherapy, BT brachytherapy, RP radical prostatectomy, UAE urinary adverse event, KM Kaplan-Meier, CR competing risks, HR
hazard ratio, CI confidence interval
aResults from the Jarosek et al. paper for un-weighted KM and IPT-weighted KM models
bCox proportional hazard model with inverse probability weighting
cCompeting risks analysis model
dCompeting risks analysis model with inverse probability of treatment weighting

Table 1 Death rates and cumulative incidence functions stratified by treatment groupa

Control
(n = 144,816)

EBRT
(n = 44,318)

BT
(n = 14,259)

BT + EBRT
(n = 11,835)

RP
(n = 26,790)

RP + EBRT
(n = 1557)

Cryotherapy
(n = 2115)

Number of deaths (%) 44,955 (31.0) 10, 522 (23.7) 1830 (12.8) 1658 (14.0) 3365 (12.6) 162 (10.4) 192 (9.1)

KM 10-yr. CIF(%) 50.5 44.0 30.1 30.5 19.3 23.8 32.1

95% Confidence Interval for KM 10-yr. CIF 50.1, 50.9 43.1, 44.8 28.4, 31.8 28.8, 32.2 18.6, 20.1 19.8, 28.0 25.4, 39.0

Abbreviations: KM Kaplan-Meier, CR competing risks, HR hazard ratio, CI confidence interval
aEBRT external beam radiotherapy, BT brachytherapy, RP radical prostatectomy
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hazard ratios from the IPT-weighted competing risks
model being larger compared to the hazard ratio esti-
mates from the IPT-weighted Cox proportional hazards
model.

Discussion
Competing risks influences the cumulative incidence of
a UAE by removing the expected number of subjects
that die (the competing event) from the calculation of
the survival probability (KM estimate of UAE and death-
free survival). Subjects that experience the competing
event are not counted in the potential group of subjects
that could experience a UAE. Competing risks are preva-
lent in many types of clinical research where the prob-
ability of an event of interest is potentially biased due to
the presence of another event attributed either to the
nature of the disease or the treatment option.
Competing risks analysis is underused in clinical re-

search, but in particular rarely used in combination with
IPT-weighted models for survival analysis. When there
is a potential for confounding bias, IPT weighting can
take into account the probability of treatment selection
based on various factors of interest. IPT-weighted com-
peting risks analysis provides a consistent estimate of
the ratio of marginal hazards through the hazard ratio.
In addition, an IPT-weighted competing risk analysis
provides an unbiased estimate of the cumulative inci-
dence of the event of interest in the presence of compet-
ing risks, while neither a KM curve nor an IPT-weighted
KM do so. In some studies, it is possible that the con-
founding factors are not identical for all causes (i.e.,
some confounding factors might only relate to the CIF
for a particular cause). Ideally, one might incorporate
this difference in the estimation of weights and IPT-
weighted competing risks analysis. However, this can be
statistically challenging and corresponding statistical the-
ory and software remain to be developed. As a practical
solution, if the union of the confounding factors from all
causes are included in the weight estimation (and no
collider-stratification bias is induced), we obtain a con-
sistent estimate of the risks, but inclusion of unnecessary
variables may cost some statistical efficiency.
Using the matched-cohort prostate cancer dataset

from Jarosek et al., the addition of the un-weighted and
IPT-weighted competing risks analysis was provided for
comparison to the Cox proportional hazard models to
demonstrate the difference in 10-yr. cumulative inci-
dence estimates for UAE as well as the risk of UAE for
each treatment group compared to the control group.
The death rate was much higher among the control
group than the cancer treatment group. This is counter-
intuitive but may be due to a bias to screen healthy men
for prostate cancer and not to screen unhealthy men.

To investigate the comparison between the hazard ratios
for the IPT-weighted Cox proportional hazards model and
the IPT-weighted competing risks model, a Cox proportional
hazards model was constructed with death as the event of
interest and all other events including a UAE event were
censored. A hazard ratio was calculated for each treatment
group compared to the control group (results not shown).
For all treatment groups, there was a decreased risk for
death compared to the control group. The reasoning for this
may be a combination of: 1. how the control group of non-
cancer elderly men was assigned pseudo diagnosis dates to
correctly assign the appropriate number of control subjects
for each diagnosis month and 2. the fact that prostate cancer
patients who were treated may be a bit healthier than some
prostate cancer patients who were not treated. Because the
control group was the reference population, the analyses that
did not account for competing risks of death significantly
underestimated the hazard ratio of UAEs. Overall, men with
prostate cancer need to understand that any survival benefit
of treatment will also come with the tradeoff of possible long
term sequelae. Our current analysis provides a higher, and
perhaps more accurate, estimate of the hazard ratio of UAEs
among men treated for prostate cancer.
There are limitations of this secondary data analysis.

These include the inability to calculate standard error
estimates and consequently 95% confidence intervals for
the 10-yr. cumulative incidence of UAE for all model es-
timates. The use of PROC PHREG can compute stand-
ard errors through the option cif = _all_. However, the
memory required to compute a standard error for each
cumulative incidence estimate without re-calculating the
standardized inverse probability weight for each observa-
tion was too much for the computing power given the
resources allocated for this analysis (Windows Base SAS,
8GB memory, and Intel Pentium processor). Future re-
search should look into alternative methods to calculate
the standard error using nonparametric methods such as
bootstrapping. Jarosek et al. provides the limitations of
the generalizability of the results to prostate cancer pa-
tients receiving treatment.

Conclusions
In clinical cancer research, IPT-weighted competing risks
analysis should be used to account for differences in treat-
ments and the competing risk of an event such as death.
This type of analysis allows for accurate and unbiased esti-
mates of the cumulative incidence and risk of the event of
interest. This paper illustrated how to understand the 10-
year risks of UAEs among men diagnosed with prostate
cancer that were treated with various therapies taking into
account the competing risk of death. Furthermore, this
paper presents a tutorial for clinicians and non-statistical
researchers to facilitate their own application of IPT-
weighted competing risks analysis.
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Additional files

Additional file 1: Appendix A: The Estimation of Cumulative Incidence
Function. This appendix provides the equations for estimating the
un-weighted and weighted cumulative incidence functions. (PDF 356 kb)

Additional file 2: Appendix B: A Hypothetical Example. This example of
10 patients illustrates the detailed calculations of the various methods
(Competing Risks, Kaplan Meir, un-weighted and weighted methods).
Also, the differences between the multiple methods for estimating the
cumulative incidence function are highlighted. (PDF 240 kb)

Additional file 3: Appendix C: SAS Code. This appendix provides the
SAS code to perform the various analysis methods in Appendix B as well
as the paper: un-weighted Kaplan Meir, weighted Kaplan Meir, un-weighted
Competing Risks, weighted Competing Risks, and IPT-weighted Competing
Risks. (PDF 93 kb)
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