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Abstract

This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and
psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across
disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward
circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a
range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders,
and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity
disorder, autism spectrum disorders, Tourette’s syndrome, conduct disorder/oppositional defiant disorder), and
genetic syndromes (i.e., Fragile X syndrome, Prader–Willi syndrome, Williams syndrome, Angelman syndrome, and
Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on
the dopamine system in these disorders. This review concludes with methodological considerations for future
research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved
intervention strategies.
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Introduction
Despite the categorical nosology of the Diagnostic and
Statistical Manual of Mental Disorders (DSM) [1], dif-
ferent neurodevelopmental and psychiatric disorders
share phenotypic features, etiologies, and aberrant
neurobiological processes. Indeed, there are multiple
examples of distinct disorders that are characterized by
common pathophysiological mechanisms. For example,
anxiety disorders and mood disorders share hyperactive
amygdala responses to negatively valenced stimuli [2,3]
and schizophrenia and post-traumatic stress disorder are
both characterized by prefrontal dysfunction during
tasks that require sustained attention [4,5]. Such overlap
suggests the utility of examining common patterns of
dysregulated brain function and associated phenotypes
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reproduction in any medium, provided the or
with the ultimate goal of more accurately linking patho-
physiological processes to rationally derived and targeted
interventions.
The identification of common neurobiological deficits

across disparate neurodevelopmental and psychiatric
disorders has helped to motivate goal 1.4 of the NIMH
Strategic Plan [6], the Research Domain Criteria project
(RDoC; http://www.nimh.nih.gov/research-funding/rdoc.
shtml), which aims to foster research that uses neurosci-
ence tools to investigate constructs that cut across
traditional nosological classification boundaries [7,8].
Although optimal methodological approaches to address
these questions are still emerging, the ultimate goal of
this framework is to refine classification and develop
empirically derived approaches to treatment [9-11]. At
the heart of this approach is the search for dysfunctional
mechanistic processes shared by disorders with seem-
ingly disparate phenotypic profiles, a strategy that
represents a particular instantiation of the endophenoty-
pic approach to identifying pathophysiological disease
mechanisms [12-14].
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The functioning of reward-processing systems through
development has recently garnered increased research at-
tention in both nonclinical [15,16] and clinical [17-19] con-
texts, and the functioning of so-called ‘positive valence
systems’ has been proposed as one of the five domains rele-
vant to the NIMH RDoC project [6]. Given the focus of this
thematic issue on reward processing in autism specifically,
the purpose of this review is to place dysfunctional reward
processing in autism within the larger context of emerging
evidence that reward-circuitry dysfunction may be present
in multiple distinct disorders, and may thus represent a
common target for treatments of these disorders.
In this review, we summarize preclinical models and

clinical research addressing reward-circuitry dysfunction in
a range of neurodevelopmental and psychiatric disorders
and genetic syndromes. Specifically, we focus on the func-
tional output of ascending mesolimbic dopamine (DA)
projections systems, referred to broadly in this review as
‘reward-processing’ systems. In its fundamental unit, the
mesolimbic DA pathway consists of a population of DA-
containing neurons in the ventral tegmental area (VTA)
that project to neurons in the nucleus accumbens (NAc);
however, these VTA neurons also extend projections into
the amygdala, the bed nucleus of the stria terminalis, the
lateral septal area, and the lateral hypothalamus
Figure 1 Schematic illustration of the DA pathways and circuitry that
containing neurons in the ventral tegmental area (VTA)/substantia nigra (SN
the cortex (mesocortical pathway; yellow) and caudate putamen (nigrostria
levels in part due to steady-state inhibitory firing from the ventral pallidum
cortex, amygdala, and hippocampus, that synapse on striatal targets, includ
projections (red) to the ventral pallidum that suppress ventral pallidum inh
tegmental area DA neurons. Note: Placement of structures is only approxim
projections; Glu, glutamatergic projections; Hipp, hippocampus; Put, putam
from Treadway and Zald [19].)
(collectively, these connections comprise the entire meso-
limbic DA system). The processes subserved by these sys-
tems have been referred to by multiple names in the research
literature, including ‘motivation’ [20], ‘goal-directed behaviors’
[21], ‘incentive salience’ [22], and simply ‘drive’ [23]. Further-
more, it is clear that these DA systems affect not only reward
processing, but a number of related functions, including pun-
ishment [24], decision-making [25,26], cognition [27], reward
prediction [28,29], and reward valuation [30-32].

Organization and criterion for disorders included in this
review
This review is organized as follows. First, we briefly out-
line the neurobiology of the reward system and discuss
potential molecular and cellular mechanisms underlying
dysregulated reward-pathway functions. Next, animal
models of neurodevelopmental and psychiatric disorders
that involve dysregulated reward systems are reviewed,
followed by a review of clinical studies of reward-
circuitry function within multiple disorders, with a
particular emphasis on functional neuroimaging studies
and molecular-imaging studies that address striatal DA
transmission. We first present psychiatric disorders
(i.e., substance-use disorders, affective disorders,
eating disorders, and obsessive–compulsive disorder
regulate dopamine (DA) release in the human brain. The DA-
) project to the nucleus accumbens (mesolimbic pathway; orange), to
tal pathway; purple). DA neuron firing rates are maintained at tonic
. Excitatory glutamatergic fibers (green) project from the prefrontal
ing the nucleus accumbens (NAc). The NAc sends GABAergic
ibition of the VTA, thereby facilitating phasic burst firing of ventral
ate. Amyg, amygdala; Caud, caudate; DA, dopamine; GABA, GABAergic
en; VP, ventral pallidum. (Figure and legend adapted with permission
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(OCD)), then neurodevelopmental disorders (i.e.,
schizophrenia, attention deficit/hyperactivity dis-
order (ADHD), autism spectrum disorders (ASDs),
Tourette’s syndrome (TS), and conduct disorder/op-
positional defiant disorder (CD/ODD)), and finally
genetic syndromes (Fragile X syndrome (FXS), Prader–
Willi syndrome (PWS), Williams syndrome (WS), Angel-
man syndrome (AS), and Rett syndrome (RS)). For all
disorders, we emphasize how phenotypic expression of
disparate symptoms may be interpreted within the con-
text of reward-processing deficits. We also include brief
summaries of effective pharmacologic treatments for
each disorder affecting DA function. We conclude with
suggestions for directions for future research aimed at
treatment of reward-system dysfunction. To constrain the
scope of this review, we have considered only disorders
primarily considered as psychiatric and neurodevelopmen-
tal disorders and genetic syndromes. We therefore have
not included disorders such as Huntington’s disease and
Parkinson’s disease that are both considered to be neuro-
degenerative diseases coded as Axis III conditions in the
DSM (‘general medical conditions’) and that are typically
listed as an associated feature of an Axis I condition [1].
Although this review focuses primarily on DA trans-

mission in the mesolimbic pathway, multiple other brain
neurotransmitter systems are crucially involved in re-
ward processing. For example, pharmacological studies
in rodents indicate that distinct serotonin-receptor sub-
types expressed both within and outside the mesolimbic
system can modulate responses to either natural rewards
or drugs of abuse [33]. Whereas norepinephrine has
been traditionally associated with stress responses, both
DA and norepinephrine are released in an opposing
manner in the bed nucleus of the stria terminalis, in
response to either aversive or rewarding taste stimuli,
indicating interplay in these chemical systems [34].
Endogenous opioids, including endorphins, enkephalins,
and dynorphins, can modulate DA transmission in the
mesolimbic pathway [35]. Substance-abuse studies have
shown that alcohol, which promotes gamma-aminobutyric
acid (GABA)A receptor function, may inhibit GABAergic
terminals in the VTA and hence disinhibit these DA
neurons, thereby facilitating mesolimbic reward-pathway
transmission [36]. Abusive opiates such as heroin func-
tion similarly, but in an indirect manner: they inhibit
GABAergic interneurons in the VTA, which disinhibits
VTA DA neurons and thus enables activation of the
reward pathway. These observations highlight the
importance of GABA transmission in the VTA for re-
ward processing. Finally, synaptic transmission in the
NAc relies on glutamatergic inputs from multiple areas,
and glutamate can induce modifications in dendritic
morphology, ionotropic glutamate receptors, and the in-
duction of synaptic plasticity in the NAc, implicating
glutamatergic transmission in coordinating reward pro-
cessing [37,38]. These examples indicate that processing
of rewarding information involves a complex crosstalk
between the DA mesolimbic system and other neuro-
transmitters, and that interdependency probably occurs
across multiple systems and circuits. To simplify this
considerable complexity, we aim in this review to
summarize the importance of animal models and clin-
ical findings in addressing dysfunction in systems medi-
ating reward processing (broadly defined) by focusing
on striatal DA responses to rewarding stimuli.

Brain reward circuitry
Responses to rewards are mediated primarily by the
ascending mesolimbic DA system that is highly similar be-
tween humans and other animals (Figure 1 shows struc-
tures that will be discussed as part of the mesolimbic DA
system) [39]. Although the terms ‘reinforcement,’ and ‘re-
ward’ are often used interchangeably, these terms have
discrete behavioral definitions, and describe largely dis-
tinct neurobiological processes. Indeed, there are multiple
constructs mediated by the mesolimbic system, and at
least four such systems have been described in depth in
numerous seminal reviews [39-43]: 1) reward motivation,
also termed anticipation (typically subsuming what is col-
loquially described as ‘wanting,’) refers to processes that fa-
cilitate anticipation of reward and approach behaviors
towards biologically relevant goals, including reward valu-
ation, willingness to expend effort to obtain rewards, re-
ward prediction, and reward-based decision-making [44];
2) reward outcome (or the hedonic responses widely re-
ferred to as ‘liking’ or ‘pleasure’) includes both consumma-
tory behaviors during reward obtainment and the
processes associated with regulation of such behaviors
[45]; 3) reward learning includes reward processes that
shape the experience-dependent learning that guides fu-
ture behaviors [46]; and 4) reward-related habitual behav-
ior reflects those processes that are initiated based on
reward feedback, but that persist even in the absence of
such feedback [47,48].
The neurobiological bases of reward-processing beha-

viors are well understood in animal contexts [41,49-51],
and cognitive affective neuroscience techniques have
facilitated the investigation of reward circuits in human
clinical contexts [52,53]. The mapping of brain-reward
regions began with the seminal discovery that animals
are willing to work to obtain electrical stimulation to
mesolimbic brain regions [54]. Subsequent research
showed that activity of DA neurons within mesolimbic
pathways that project from the VTA to the NAc serve to
reinforce responses to both primary rewards (for ex-
ample, food) and secondary rewards (for example,
money) [55]. Reward information is processed via a
limbic cortico-striatal-thalamic circuit that interdigitates
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with the mesolimbic DA pathway [56,57], and the NAc
serves as a DA-gated mediator for information passing
from the limbic system to the cortex [58]. This tract is
composed of projections from A10 cells in the VTA to
cells in limbic areas, including the NAc, the amygdala,
the olfactory tubercle, and the septum [59]. This tract
has been linked to primary rewards, secondary rewards,
and emotional processes, and is part of the limbic-
striatal-pallidal circuit that is involved in motivated be-
havior [60].
Primary DA centers in the mammalian brain are located

in two mesencephalon structures: the substantia nigra and
VTA. These distinct brain nuclei contain DA-synthesizing
neurons that project to the NAc (mesolimbic pathway),
the cortex (mesocortical pathway), and the caudate puta-
men (nigrostriatal pathway). The central node within the
mesolimbic DA reward system is the NAc within the ven-
tral striatum. The NAc, along with the extended amyg-
dala, mediates reward-based drive and motivation [61,62],
and receives afferents from a number of limbic regions,
including the medial and orbital frontal cortices, the
hippocampus, and the amygdala [62]. Of particular rele-
vance to reward-based processes is the ventromedial shell
of the NAc (the core region regulates cognition and motor
control) [63], that serves as an interface between limbic
and motor circuits, translating emotions into actions [64].
For this reason, as will be reviewed below, most animal
models and clinical neuroimaging studies on reward-
related processes focus on functioning of the NAc, and of
related afferent and efferent projection regions within the
striatum and frontal lobes.

Mechanisms of neurotransmission in the mesolimbic reward
pathway
The molecular and cellular mechanisms that facilitate
neurotransmission in the mesolimbic DA reward pathway
involve the cellular elements modulating synaptic DA
neurotransmission, including neurotransmitters, transpor-
ters, receptors, G proteins, second-messenger-generating
enzymes, ion channels, and immediate early response
genes that regulate neuronal functions (Figure 2) [65-67].
Afferents from the VTA of the mesolimbic DA system
project outward, and primarily terminate onto the MSNs,
which are the principal cell type in the NAc, and produce
and secrete GABA, the main inhibitory neurotransmitter
used in the CNS. These MSNs are also the main projec-
tion or output neurons of the NAc.
Neurotransmission within the mesolimbic pathway

begins with an action potential that is generated in VTA
neurons, resulting in the presynaptic release of DA.
Neurotransmission of the DA signal to MSNs in the
NAc is mediated by binding to specific DA receptors.
These DA receptors are part of the Gprotein-coupled
receptor superfamily, and upon binding DA, activate
heterotrimeric G proteins (Golf/Gs or Gi/o) that in turn
regulate the activity of effector proteins such as ion
channels, or the enzyme adenylyl cyclase that produces
the second messenger cAMP [65]. Five distinct DA
receptors (D1 to D5) can mediate neurotransmission,
and are coupled positively to activation of adenylyl
cyclase (D1 and D5 receptors) or negatively to inhibition
of adenylyl cyclase (D2, D3, D4). Consequently, MSNs
that express D1-like receptors become activated by DA,
resulting in an increase in cAMP synthesis, whereas
MSNs that express D2-like receptors respond to DA by
decreasing cAMP synthesis. cAMP in turn activates
protein kinase A, that phosphorylates target proteins
resulting in modulation of neuronal activity, gene
expression, and target-protein functions. The response
to DA in this neuronal pathway is terminated by re-
uptake of DA into the presynaptic neuron terminals,
which is controlled by the DA transporter (DAT). In
addition, the enzymes monoamine oxidase (MAO) and
catechol-o-methyltransferase (COMT) can regulate DA
levels by breaking down DA to the metabolites homova-
nillic acid or 3-methoxytyramine (3-MT), respectively.
Given its anatomical organization, the NAc is con-

sidered a limbic–motor interface [68] translating in-
formation about rewards into appropriate behavioral
responses to obtain these rewards. The major effect of
DA transmission is to modulate the sensitivity of NAc
MSNs to other types of input. For example, DA mod-
ulates the sensitivity of MSNs to excitatory glutama-
tergic projections from pre-frontal and limbic regions,
and thereby modulates firing activity of NAc neurons
[35,69]. The result of DA transmission on NAc neur-
onal firing is largely determined by the types of DA
receptors expressed in post-synaptic MSNs. Although
the precise causal link between DA release and NAc
cell firing is unclear, D1 and D2 receptors are gener-
ally considered to exert opposite effects at the cellular
level, with D1-like receptor-expressing cells respond-
ing to DA with excitatory increases in firing activity,
and D2-like receptor-expressing cells responding with
decreased firing activity. However, in the context of
DA release in the brain, a cooperative interplay be-
tween NAc neurons that encode reward information
probably occurs. For example, DA increases spike fir-
ing in MSNs, requiring coactivation of both D1 and
D2 receptors [70]. Furthermore, transmission of DA
to the NAc occurs with the same temporal resolution
as NAc neuron-patterned cell firing, and this DA re-
lease and firing are coincident during goal-directed
actions in rodents [71]. In addition, the frequency of
firing activity of VTA neurons may be a key compo-
nent in modulating the mesolimbic reward pathway
and encoding reward information. Studies using chan-
nel rhodopsin to precisely control VTA neuron firing



Figure 2 Schematic illustration of cellular mechanisms of neurotransmission in the mesolimbic dopamine (DA) reward pathway. Shown
is a synapse between a ventral tegmental area DA neuron axon terminal and a medium spiny neuron (MSN) in the nucleus accumbens (NAc) in
the ventral striatum. Transmission begins with an action potential that arrives to the terminal, inducing synaptic vesicle fusion and release of DA.
The release of DA into the NAc stimulates various populations of MSNs, whose response to the transmitter depends on the types of DA receptors
they express. DA stimulation of neurons containing D1 or D5 receptors (so-called D1-like receptors) results in activation of heterotrimeric Golf/Gs
proteins, which activate the enzyme adenylyl cyclase, resulting in the synthesis of the second messenger cAMP. In contrast to this mechanism,
DA stimulation of MSNs that express D2, D3 or D4 (or D2-like receptors) activate sheterotrimeric Gi/Go proteins, which inhibit adenylyl cyclase
activity to decrease cAMP. The level of intracellular cAMP controls the activation of protein kinase A, which regulates additional signaling
molecules including dopamine- and cAMP-regulated neuronal phosphoprotein of 32 kDa (DARPP-32) and the transcription factor cAMP response
element binding (CREB) protein, both of which can modulate gene expression and additional cellular responses. The response to DA is generally
terminated when DA is removed from the synapse by reuptake via the DA transporter (DAT). After reuptake, the transmitter can be repackaged
into synaptic vesicles or may be degraded by the enzyme monoamine oxidase, resulting in the DA metabolite homovanillic acid. In addition, the
enzyme catechol-o-methyltransferase (COMT) may also control DA levels by breaking down DA to 3-methoxytyramine (3-MT), AC, adenylyl
cyclase; ATP; adensosine triphosphate; cAMP; cyclic adenosine monophosphate; HVA, homovanillic acid; MAO, monoamine oxidase; VTA, ventral
tegmental area.
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activity suggest that phasic, but not tonic, activation
of VTA neurons is sufficient to drive behavioral con-
ditioning to rewards and elicit DA transients [72], and
thus indicates the likely importance of the frequency
of VTA neuron firing activity.

Potential molecular and cellular mechanisms underlying
dysregulated reward systems
Disruption of molecular, cellular, or circuitry mechan-
isms that are essential for the reward system may, in
theory, result in aberrant reward-system function. Al-
though a primary (or even common) molecular mech-
anism for dysregulating the reward system has yet to be
identified, we briefly consider in the following section
some of the potential molecules and mechanisms that
may underlie abnormal reward processing.
Because the major neurotransmitter mediating

mesolimbic transmission is DA, alterations in the
synthesis, release, or reuptake of DA may result in an
abnormally functioning reward system. Amphetamines
and cocaine mediate their effects in the mesolimbic
pathway by increasing the release of DA. Cocaine and
amphetamines, both of which directly interact with
the DAT, exert their effects, at least in part, by block-
ing (in the case of cocaine) or reversing the direction
of (in the case of amphetamine) this transporter, result-
ing in increased synaptic DA [73]. Indeed, chronic
administration of cocaine upregulates striatal DAT ex-
pression in rhesus monkeys, an effect that persists for
more than 30 days after cocaine withdrawal [74].
Increased DA-transporter expression has also been
shown in post-mortem analyses of brain tissue from
human subjects addicted to cocaine [75]. Such studies
indicate that alterations in DAT expression or function
can result in an altered reward system in response to
drugs of abuse.
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Similarly, alteration in the expression or regulation of
DA receptors would also be expected to dysregulate
reward-system functions. Altered DA receptor function
could involve increased or decreased receptor expression
or signaling responsiveness to DA thereby altering the
reward system. For example, the DA hypothesis of
schizophrenia suggests that excess mesolimbic DA levels
may be pro-psychotic, and involve alterations in the ac-
tivity of striatal D2 receptors, which are the major site of
action for typical antipsychotic medications [76]. There
is clear evidence of dysregulated striatal DA function in
schizophrenia [77], and a meta-analysis of multiple stud-
ies indicated a significant increase in striatal D2 recep-
tors in patients with schizophrenia who were not on
medication [78]. Studies have also suggested an
increased affinity of D2 receptors for DA in schizophre-
nia, which may produce D2 receptor supersensitivity in
the NAc, contributing to psychosis [79]. In an interest-
ing animal model correlate to these studies, transient
overexpression of D2 receptors in the striatum of mice
resulted in deficits in prefrontal working memory, re-
sembling some of the features of human schizophrenia
[80]. Studies such as these indicate that alterations in
DA receptor expression (or function) can result in a dys-
functional reward system.
Molecules that are activated downstream of DA re-

ceptor signaling in the NAc also play important roles
in mediating reward responses and changes in their
function may also dysregulate the reward system.
These molecules include the heterotrimeric G proteins
activated by DA receptors and also the adenylyl
cyclases. Interestingly, genetic knockout of adenylyl
cyclase type 5 in mice prevents the reward response to
opioids such as morphine [81]. Further down in the
DA signaling pathway of MSNs is the DA- and
cAMP-regulated phosphoprotein of 32 kDa (DARPP-
32) (Figure 2). DARPP-32 is activated by D1 receptor
cAMP signaling in the NAc by protein kinase A phos-
phorylation, that regulates the activity of protein phos-
phatase (PP)-1 [82]. Phosphorylated DARPP-32, by
inhibiting PP-1, acts in a combined manner with other
protein kinases to increase the level of phosphorylation
of various downstream effector proteins, and modula-
tion of protein phosphorylation by DA is thought to
play an important role in drug reward. DARPP-32 may
thereby influence the long-term neuronal adaptations
associated with natural rewards or with rewards from
drugs of abuse [83,84]. Support for this concept is pro-
vided in genetic models in mice lacking the DARPP-32
gene, which results in decreased responses to cocaine
in conditioned place preference behaviors [85]. There-
fore, alterations in DARPP-32, PP-1, and the phospho-
proteins that these regulate in MSNs, may dysregulate
the reward pathway.
Two transcription factors, ΔFosB and cAMP response
element binding protein (CREB), are activated by DA re-
ceptor signaling in the NAc, and both are important
mediators of reward responses because they control the
expression of numerous genes. One of the most dra-
matic examples of protein expression induction is in the
transcription factor ΔFosB, a Fos family protein, which
accumulates in the NAc after chronic exposure to drugs
of abuse, including alcohol, amphetamine, cannabinoids,
cocaine, nicotine, opiates, and phencyclidine [86,87].
Overexpression of ΔFosB in the NAc increases behav-
ioral responses to cocaine, opiates, sucrose and wheel-
running, including increased incentive drive for these
rewards. Conversely, blockade of ΔFosB function in the
NAc by overexpression of a dominant negative antagon-
ist causes the opposite effects [88].
CREB is another transcription factor that is directly

activated by protein kinase A in response to DA signal-
ing in the NAc. Activation of CREB seems to produce
similar behavioral responses to rewarding stimuli: in nu-
merous experimental systems, increased CREB activity
in the NAc is negatively related to behavioral responses
to cocaine, opiates, and alcohol [86,88-90]. CREB is also
induced in the NAc by natural rewards (such as
sucrose), and similarly reduces an animal's sensitivity to
the rewarding effects of sucrose [89]. Therefore, any
changes in the activation and induction of CREB, ΔFosB,
(and probably many other transcription factors) would
be expected to regulate or dysregulate the reward system.
Finally, although the molecules highlighted here are

clearly involved in DA mesolimbic transmission and re-
ward responses, this represents only a brief overview
and readers are encouraged to see other recent reviews
of this topic [86,91-93].

Considerations for animal models that focus on
reward-system function
Animal models, particularly those using rodents, have
provided key mechanistic insights that have elucidated
the neurobiology of the brain reward system. Although
animal models cannot recapitulate the entire spectrum
of phenotypes apparent in clinical presentations of ill-
ness, they provide powerful approaches for experimental
studies using various environmental, genetic, pharmaco-
logical, and biological manipulations. With regard to
studying behavior, a high degree of experimental control
can be achieved by precisely controlling the animal's life
experiences, environment, diet, and history of drug ex-
posure, enabling inferences to be made concerning the
causality of effects seen in experimental studies. How-
ever, for complex psychiatric disorders with largely un-
known genetic etiologies, environmental insults, specific
pathologies, or biomarkers, the building of animal mod-
els with high construct validity has not yet been possible
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[94]. With this limitation in mind, an alternative strategy
has been to develop mouse genetic models (for example,
knockout or transgenic mice) of psychiatric disorders
with relevant behavioral phenotypes (face validity) that
are responsive to pharmacotherapies that are clinically
effective (predictive validity).

Considerations for clinical studies that focus on
reward-system function
Primary rewards are vital to gene propagation, and thus
responses to such stimuli have been shaped by evolution
to elicit approach-oriented behaviors. These stimuli
include food and sexual behavior (given that sustenance
and procreation are crucial for the survival of a species
[95,96]), and social interactions with conspecifics [39,97].
Nonclinical human neuroimaging studies indicate that
the mesolimbic DA response to primary rewards may
operate similarly in humans in response to more ab-
stract, or secondary, rewards such as monetary incen-
tives [98-100]. Recent evidence suggests a common
‘neural currency’ for coding monetary and primary
(for example, food) rewards [101]. Thus, most clinical
studies investigating responses to rewards have used
monetary incentives as a proxy for primary rewards,
because money is adaptable to the research environ-
ment, may be parametrically scaled, may be won or
lost, and may be delivered at precise intervals.
It should be noted that few of the preclinical and clin-

ical studies reviewed here involve longitudinal data col-
lection, and it is difficult to make any inferences about
the developmental nature of reward-processing systems
in the disorders reviewed. In this regard, although our
goal is to propose a possible common framework for
conceptualizing a range of seemingly disparate pheno-
types and possibly to ultimately identify novel biological
markers and influence nosological classification, infer-
ences about etiology must be appropriately cautious in
the context of largely cross-sectional data.

Psychiatric disorders
Substance-use disorders
Perhaps the greatest convergence of empirical evidence
supporting reward-network dysfunction in psychiatry
emanates from research on substance-use disorders [102].
The 12-month prevalence estimates for substance-use
and abuse disorder are about 3.8% [103]. Contemporary
theories addressing the pathophysiology of substance-
use disorders highlight altered motivational states, cog-
nitive control, inhibitory function, and decision-making,
mediated in large part by dysfunctional output of meso-
limbic and mesocortical brain systems [104-107].
Although the scope of this review is constrained to a
consideration of reward processes, rather than to related
constructs such as inhibition and impulsivity, it should
be noted that the ‘impulsivity hypothesis’ of addiction
vulnerability stresses shared neurobiology and patterns
of heritance between risk for addiction disorders and
conduct disorder [108], including evidence of interge-
nerational transmission of both alcoholism risk and im-
pulsivity in large-scale twin studies [109], and common
patterns of enhanced behavioral sensitivities to reward
stimuli [110] and risky decisions [111,112].
The rewarding effects of drugs of abuse derive in large

part from the sizeable increases in extracellular DA in
limbic regions, and in the NAc in particular, during drug
use [113,114]. In addition, drug-induced increases in
striatal DA have been linked with subjective feelings of
euphoria [115,116]. The firing of DA cells that accom-
panies drug use encodes a number of reward properties,
including reward expectancy [117], reward learning
[118], and the consolidation of contextual memories
[119]. All of these processes are believed to contribute
to the intense motivation to attain drugs of abuse [120].
It has been proposed that the crucial mechanism for

the development of addiction is drug-induced activation
of DA transmission in the mesolimbic pathway, also
referred to as the ‘dopamine hypothesis of addiction’
[121-123]. To better understand the neurobiology of
drug abuse and addiction in humans, several animal
models have been developed to investigate different
aspects of drug addiction [122,124]. Among these, the
models that incorporate self-administration of drugs are
thought to best capture the human condition because
animals voluntarily seek drugs and because drugs that
are self-administered by animals correspond well with
those that have abuse potential in humans.

Preclinical models From mechanistic neurobiological
and behavioral studies in rodents, it has become clear
that the mesolimbic pathway is a key component for
the rewarding effect of drugs of abuse, and is essential
for behaviors related to drug reward, salience, and
motivation [122]. For example, using rodent models,
researchers have determined that nearly all psycho-
active drugs of abuse (for example, cocaine, ampheta-
mines, alcohol, opiates, cannabinoids, nicotine) induce
alterations in the transmission of DA within the
mesolimbic pathway, with most of these drugs in-
creasing extracellular concentrations of DA [122].
Studies using an in vivo microdialysis technique,
which measures minute changes in brain neurotrans-
mitter levels in the behaving animal, have shown that
drugs of abuse can increase tonic DA concentrations
in the NAc. In addition, studies using fast-scanning
cyclic voltammetry, which can detect the level of DA
release in the intact brain on a timescale of seconds,
have shown an increased frequency of spontaneous
phasic DA signals in the NAc in response to
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cannabinoids and nicotine in awake, behaving animals
[125,126], and also temporally distinct DA signals in
response to cocaine [127].
Dopamine neurotransmission is strongly implicated in

the reinforcement of self-administering drugs or elec-
trical stimulation in animals. The seminal animal re-
search by Olds and Milner [54] provided the initial
foundation for our modern understanding of brain-
reward mechanisms. In those pioneering studies, rats
were given the ability to self-administer electrical stimu-
lation to various brain regions including the mesolimbic
pathway. The rats persistently and repeatedly chose to
stimulate the VTA mesolimbic DA pathway (but not
other brain areas), often to the exclusion of other beha-
viors. Behavioral studies in rodents also indicate that DA
is essential for the self-administration of drugs of abuse
for which the mesolimbic pathway has been identified as
a crucial substrate [114,128]. Drug self-administration is
the ‘gold standard’ of animal models of drug abuse
[122,129]. In the typical drug self-administration proced-
ure, animals obtain a drug by performing a simple be-
havior (such as pressing a lever), and animals will readily
self-administer the same drugs that are abused by
humans [130].
The importance of mesolimbic DA transmission to

drug self-administration is supported by pharmaco-
logical and lesion studies. Direct DA receptor agonists
can mimic the effects of substances of abuse, and these
agonists are self-administered both systemically and lo-
cally into the NAc in rats and monkeys [131-133]. By
contrast, DA receptor antagonists administered system-
ically increase the rate of operant responding for cocaine
in animals [134-136]. In addition, lesion or inactivation
of the mesolimbic DA system in the VTA [137,138] or
in the NAc [139-143] decreases cocaine, amphetamine,
heroin, and nicotine self-administration in rats. These
findings indicate the crucial importance of the mesolim-
bic DA system in drug-taking.

Clinical studies There is a confluence of clinical evi-
dence that substance-use disorders are characterized by
relative hyperactivation of mesolimbic regions in response
to drug cues (that is, increased reward motivation). This
pattern is evident across various subtypes of substance-
abuse disorders, suggesting the central involvement of
striatal regions encoding reward prediction and/or an-
ticipation in substance-abuse disorders. Wexler and col-
leagues [144] presented cocaine-addicted subjects with
videotapes containing cocaine-associated cues, and
reported relatively increased anterior cingulate cortex
(ACC) activation during the presentation of the cocaine
cues, despite decreased overall frontal lobe activation.
Further, these effects were evident even in the absence
of self-reported cravings, suggesting that brain-imaging
effects did not simply recapitulate experiential responses
to the cocaine cues “Buhler and colleagues” [145] assessed
anticipatory responses to cues predicting cigarette and
monetary rewards in nicotine-dependent smokers and
non-dependent occasional smokers. The non-dependent
group showed relatively increased mesocorticolimbic
reactivity to stimuli predicting monetary reward com-
pared with stimuli predicting cigarette rewards, and
subsequently spent relatively more effort to obtain
money relative to cigarettes. By contrast, the nicotine-
dependent group showed equivalent responses to both
categories of reward cues, and anticipatory mesocorti-
colimbic activation predicted subsequent motivation to
obtain both rewards, suggesting an imbalance in reward
motivation in response to drug-predicting cues relative
to monetary cues in those with nicotine dependence.
Myrick and colleagues [146] reported that activation in
the NAc, anterior cingulate, and left orbitofrontal cor-
tex in response to alcohol images predicted cravings in
alcoholics. Oberlin and colleagues [147] reported that
the magnitude of striatal activation to alcohol cues (the
odors of the preferred alcohol drink) in heavy drinkers
was modulated by antisocial trait density. Finally, Filbey
and colleagues [148] showed that regular marijuana
users who abstained from use for 72 hours were charac-
terized by relatively increased reward-circuitry activity,
including the VTA, thalamus, ACC, insula, and amyg-
dala, in response to tactile marijuana cues. These stud-
ies reflect the overall pattern of data in a range of
substance-abuse disorders, which shows relatively
increased mesolimbic activation in response to drug
cues, accompanied by increased states of reward motiv-
ation in response to these cues [148].
In contrast to the hyperactive responses of reward cir-

cuitry to drug-related cues, there is evidence that
substance-use disorders are alternatively characterized
by a reduced motivation for non-drug rewards [106]. As
a number of researchers have described [106,149],
substance-use disorders are typically accompanied by
decreased reward motivation for typical and non-
pathological rewards, a phenomenon that has been vari-
ously termed ‘motivational toxicity’ [150] and ‘reward-
deficiency syndrome’ [151]. For example, Asensio and
collegues [152] reported hypoactivation of the dorsal
and ventral striatum and the dorsomedial pre-frontal
cortex when cocaine addicts viewed pleasant images not
linked to substance cues. Gilman and Hommer [153]
reported subjective hypoarousal to normative positive
images in alcohol-dependent participants. Bühler and
collegues [154] reported mesocorticolimbic hypoactiva-
tion during monetary-reward motivation in nicotine-
dependent participants, which predicted motivation to
obtain rewards. Andrews and colleagues [155] reported
decreased NAc activation to monetary-reward outcome
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that predicted family history of alcoholism. In a study
using multi-modal psychophysiological measurements,
Lubman and colleagues [156] reported decreased
arousal ratings and physiological measures of reward
motivation to pleasant pictures relative to drug-cue
images in opiate-dependent participants. Luo and col-
leagues [157] found relatively decreased right ventral
striatal activation during the anticipation of delayed
relative to immediate monetary rewards in cigarette
smokers (that is, decreased reward motivation for delayed
monetary rewards). However, Jia et al. [158] reported that
treatment-seeking adults with cocaine dependence were
characterized by striatal hyperactivation during monetary-
reward outcome and that striatal activation during reward
motivation predicted treatment outcome.
Attenuated motivation for non-drug rewards has also

been reported in younger populations at risk for sub-
stance abuse. Schneider and colleagues [159] found that
adolescents with risky substance- use patterns had
reduced striatal activity relative to low-risk adolescents
during monetary-reward motivation [17][ Similarly,
Peters and colleagues [160] reported reduced ventral
striatal responses during the anticipation of food reward
in adolescent smokers. Notably, Andrews and collea-
gues [155] found this effect in family members of those
with substance abuse, suggesting that this pattern may
be evident even in the absence of the direct effects of
repeated drug use on the brain. Overall, these studies
highlight that the effects of altered mesolimbic function
in substance-use disorders may be characterized not
only by increased reward motivation for substance-
related stimuli, but also by decreased reward motivation
for natural rewards (but there are exceptions [161]),
which may lead to increased drug-seeking behaviors. In
this regard, Koob and Le Moal [162] described an allo-
static mechanism through which the reward system
may become desensitized with repeated exposure to ad-
dictive drugs, due to gradual modulation of an organ-
ism’s ‘set point’ of responsivity to external rewards.
Molecular-imaging studies of substance-use disorders

have focused on imaging the D2 post-synaptic receptor
[106,163]. There are multiple lines of evidence that cocaine
dependence is associated with a decrease in D2 receptor
binding [164-167], a pattern that seems to persist after dis-
ease remission [165]. Decreases in D2 receptor binding
have also been found in heroin addiction [168], alcohol de-
pendence [169,170], methamphetamine abuse [171,172],
prompting a number of researchers to posit that low D2 re-
ceptor availability may serve as a biomarker for substance
abuse, potentially reflecting an altered sensitivity to various
rewards [173-175]. Although these molecular-imaging
studies suggest decreased reward motivation in addiction
that is consistent with the ‘reward-deficiency syndrome’
hypothesis of addiction, functional brain-activation studies
paint a less consistent picture, probably due to variability
in samples, task demands, patient characteristics, and un-
known effects of a history of addictive behavior on func-
tional responses to reward stimuli. Future research that
combines molecular and functional imaging approaches
will be necessary to elucidate the causes and consequences
of altered reward processing in substance-use disorders in
at-risk individuals [176].

Dopaminergic treatments A number of agents that
modulate functional output of DA systems are effective
first-line treatments for substance-use disorders [177].
Modafinil is a non-amphetamine stimulant with DA and
glutamatergic effects, and with moderate effectiveness
for the treatment of cocaine dependence [178] and pos-
sibly methamphetamine dependence [179]. Bupropion is
a DA and norepinephrine reuptake inhibitor that is an
effective treatment to promote smoking cessation [180].
Dextroamphetamine causes release of DA (as well as
norepinephrine and serotonin) and is an effective treat-
ment for amphetamine abuse [181]. Finally, risperidone,
a D2-receptor antagonist, has shown promise for the
treatment of methamphetamine abuse [182], and aripi-
prizole, a partial D2 agonist is a promising treatment for
amphetamine abuse [183].

Affective disorders
Unipolar major depressive disorder (MDD) is associated
with significant psychosocial and medical morbidity and
mortality [184-186], and has an estimated lifetime preva-
lence of 14.6% [187]. Anhedonia, the decreased response
to pleasurable stimuli, is a defining symptom of the dis-
order to the extent that MDD may be diagnosed even in
the absence of depressed mood if anhedonia and other
secondary symptoms are present [1]. Anhedonia is also a
central feature of a number of neurobiological theories
of depression that posit that deficits in emotional and
motivational responses to appetitive stimuli are core fea-
tures of the disorder [188], and the anhedonic endophe-
notype of MDD is perhaps the most well supported [10].

Preclinical models Because anhedonia is a defining
symptom of affective disorders, animal models of hedonic
deficits have been addressed in preclinical models of
affective disorders. Chronic mild stress has been reported
to induce an anhedonic-like state in rodents,that resem-
bles the affective disorder phenotypes in humans [189]. In
particular, Willner and colleagues originally reported that
chronic and sequential exposure of rats or mice to a mild
stress regimen caused decreases in responsiveness to
rewards [190,191], commonly reported as a decrease in
the consumption of and preference for sucrose solu-
tions, and a decrease in the rewarding properties of
pharmacological and natural rewards in the place
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preference behavioral paradigm [189,192-194]. The
chronic stress paradigm is considered to have a
greater etiological relevance and face validity in
mimicking MDD than other animal models, and
therefore has become one of the most widely used
preclinical paradigms of affective disorders [195].
Chronic mild stress causes significant reductions in
absolute and relative sucrose intake in rats, that is
associated with a decrease in striatal DA activity,
and is reversed after chronic antidepressant adminis-
tration with imipramine [196]. Decreased DA release
to the NAc has been shown to occur after exposure
to chronic repeated or an unavoidable stress regimen
in rats [189,197,198], suggesting that stress signifi-
cantly reduces mesolimbic DA transmission in ro-
dent models. Altered DA function may also be
related to changes in D1 receptors, which have been
shown to alter functional output in the rat limbic
system after chronic unpredictable stress [199]. Therefore,
stress-induced neurochemical changes, including
decreased DA activity in the mesolimbic pathway, con-
tributes to decreased natural reward (sucrose)-seeking
in this animal model of affective disorders.

Clinical studies: unipolar major depressive disorder
Reward-system dysfunction in MDD is well established
[200-202]. Behavioral studies have reliably found that
individuals with MDD show a blunted response to a
range of rewarding stimuli [203-205]. Reward learning
has also been found to be impaired in MDD [206], and
this impairment is correlated with the severity of anhe-
donic symptoms [207]. Additionally, the severity of MDD
has been found to correlate strongly with the magnitude
of the rewarding effects of administration of oral D-
amphetamine, which increases DA availability [208],
and anhedonic symptoms in the general population pre-
dict rewarded effort-based decision-making [209].
Functional neuroimaging studies in MDD have con-

sistently indicated hypoactivation in reward-processing
regions, including the dorsal and ventral striatum [210-
214] and a host of other reward structures, including
the medial prefrontal cortex [215,216], the pregenual
and subgenual anterior cingulate, and the medial frontal
gyrus [217,218].
Reduced mesolimbic activity in MDD has been found

during reward anticipation and outcomes in both adults
and children [210,219-227] and during reward learning
[206]. For example, Smoski et al. [228] reported that
during a gambling task, outpatients with unipolar MDD
had reduced striatal activation during reward selection,
reward anticipation, and reward feedback (but see Knut-
son et al. [229] for a report of intact striatal function but
increased ACC activation in depression during reward
anticipation). In a follow-up study, Dichter and
colleagues [230] reported that when these same patients
were treated with behavior-oriented psychotherapy
designed to increase interactions with potentially
rewarding situations, striatal regions showed increased
functioning during reward anticipation, similar to results
of Forbes et al. [231]. Finally, there is also evidence that
reward-network function shows greater impairment in
MDD while patients are processing pleasant images rela-
tive to monetary rewards [232].
Altered reward-network responsivity may also be char-

acteristic of individuals with a history of MDD but without
significant current symptoms, suggesting that anhedonia
may represent a trait marker of MDD vulnerability, inde-
pendent of current MDD state [233,234]. McCabe et al.
[235] found decreased ventral striatal activation during re-
ward outcome in response to the sight and flavor of choc-
olate in euthymic individuals with a history of depression,
and Dichter and colleagues [236] reported reward-
network hyperactivation during reward anticipation and
hypoactivation during reward outcomes in individuals
with remitted unipolar MDD. Although studying patients
with remitted depression is not sufficient to establish
reward-processing deficit as a trait marker of depression,
given that the effect of past illness and treatments on
brain function may not be conclusively excluded, it is
nevertheless a necessary initial step to identify this disease
trait. It also has the advantage of mitigating the potential
confounding effects of current mood state, illness severity,
non-specific effects of chronic illness and stress, and
effects of psychotropic medication usage [237,238]. Thus,
examining linkages between brain function and a history
of MDD holds the promise of ultimately aiding in the
identification of trait-like endophenotypic vulnerability
markers predictive of MDD onset before clinically impair-
ing symptoms appear.
Further converging evidence of the crucial role that

reward-network functioning plays in MDD is found in
literature documenting the remarkable consistency with
which antidepressant response is predicted by pretreat-
ment functioning of the ACC. The ACC plays a central
role in processing positively valenced emotions [239]
and other rewards [240], and in coding value representa-
tions of anticipated rewards [241], as shown in studies of
sleep deprivation [242-245], psychopharmacological
intervention [246-250], cognitive behavioral therapy
[251,252] and a combined approach of therapy and psy-
chopharmacological intervention [231].
Given the linkages between anhedonia, unipolar MDD,

and mesolimbic dysfunction, and the prevalence of an-
hedonia in a number of other Axis I disorders, including
bipolar disorder, schizophrenia, and post-traumatic
stress disorder, an area of neglected study is the direct
comparison between MDD and these other conditions.
A notable exception is a study by Lawrence et al. [253],
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in which euthymic and depressed patients with bipolar
disorder and patients with unipolar depression viewed
faces with varying emotional intensities. Whereas the bi-
polar group was characterized by differential ventral stri-
atal responses to nearly all emotion categories, the
unipolar group was characterized by blunted response to
happy but not sad stimuli, suggesting that diminished re-
ward outcome to pleasant stimuli may uniquely
characterize unipolar MDD relative to bipolar MDD. Fu-
ture three-group studies comparing MDD with other
disorders characterized by anhedonia are needed to dis-
tinguish similarities and differences between these con-
ditions with respect to processing reward stimuli.
Molecular-imaging studies of unipolar depression have

reported decreased monoamine signaling, which is con-
sistent with functional brain-imaging data suggestive of
altered reward processing [254]. In addition to a sub-
stantial body of literature on positron emission tomog-
raphy (PET) addressing serotonin (5-HT)2 receptor
density in depression [255,256], DAT-binding potential
has received considerable attention. Dunlop and Nemer-
off [200] summarized the literature to date addressing
molecular-imaging studies of DA signaling in MDD.
These studies have indicated increased D2 receptor bind-
ing in the basal ganglia [257], striatum [258,259], and
putamen [260], whereas other studies have reported
lower [261] or no difference [259,262,263] in striatal D2

transporter binding potential.

Clinical studies: bipolar disorder Bipolar disorder is a
mood disorder characterized by one or more episodes of
mania, defined as abnormally increased energy levels,
cognition, and mood [1], and has an estimated lifetime
prevalence estimate of around 1% [264]. Mania has been
conceptualized as a tendency to show heightened re-
sponse to positive emotions and rewards [265], along
with excessive goal pursuit and unrealistically high ex-
pectancy of success. It has been suggested that these
symptoms may reflect upregulation of the mesolimbic
DA system in bipolar disorder [266]. Behavioral studies
of response to rewards in bipolar disorder indicate
deficits in behavioral adaptation to changing reward con-
tingencies [267] and prolonged elevation of mood in re-
sponse to monetary reward in euthymic patients with
bipolar disorder [268]. Reward motivation is also atypical
in individuals with bipolar disorder, as shown by a self-
report measure of reward responsivity [269] and in eye-
tracking studies of monetary gains and losses [270].
Although functional MRI studies have identified pre-

frontal dysfunction in bipolar disorder and manic psych-
osis, evidence for abnormalities in reward-related neural
network function in mania is scarce [271-275]. Although
several studies have suggested alterations in the shape
[276], size [277,278] and function [274] of the basal
ganglia in bipolar disorder, there are only three pub-
lished functional neuroimaging research studies addres-
sing responses to rewards in bipolar disorder. Abler et al.
[279] reported decreased NAc activation during
monetary-reward outcome, a pattern that was not evi-
dent in a group of patients with schizophrenia scanned
using the same paradigm. Lawrence and colleagues
[253] reported increased ventral striatal and ventral pre-
frontal cortical responses to mildly happy facial expres-
sions in bipolar disorder. Finally, Jogia and colleagues
[280] reported relative ACC hyperactivation during re-
ward processing in bipolar disorder. The paucity of
functional brain-imaging research on reward processing
in bipolar disorder is striking, given the increasing rec-
ognition of reward-system dysfunction in the related
conditions of unipolar MDD and schizophrenia, and the
conceptual linkages between the symptoms of mania
and functions of striatal DA that have been suggested
for nearly 20 years [281].
Molecular-imaging studies of striatal DAT availability

in bipolar disorder generally suggest increased functional
DA throughput (but Suhara et al. reported an exception
[282]). Amsterdam and Newberg [283] reported higher
striatal DAT binding in the right posterior putamen and
left caudate in a small number of patients with bipolar
disorder; Chang and colleagues [284] reported that
unmedicated euthymic subjects with bipolar disorder
had significantly relatively higher whole striatal DAT
binding; and Anand and colleagues [285] reported rela-
tively lower DAT availability in the dorsal caudate nu-
cleus (DCN) bilaterally. There is also evidence that the
presence of psychosis may moderate patterns of DA re-
ceptor binding. Specifically, striatal D2 receptor signaling
seems to be greater in psychotic patients with bipolar
disorder [286,287], whereas no differences in D2 avail-
ability were found between non-psychotic patients with
bipolar disorder and controls [288,289].

Dopaminergic treatments Bupropion, a DA and nor-
epinephrine reuptake inhibitor, is an effective antidepres-
sant [290] that seems to specifically increase feelings of
positive affect [291]. Other examples of DA agents ef-
fective in the treatment of MDD include the selective
D2/D3 receptor agonists pramipexole [292] and piribedil
[293] the catechol-O-methyltransferase inhibitor tolca-
pone, [294], and the preferential presynaptic DA antag-
onist amisulpride, [295]. Particularly relevant in the
present context are previous reports [290,296,297] that
although both DA and non-DA agents can be used to
effectively treat mood disorders, DA agents generally
have superior effects on symptoms of anhedonia, specif-
ically when compared with non-DA agents [19,298-300].
Tremblay and colleagues [226] reported that depressed
patients had relatively greater increases in striatal and
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orbitofrontal cortex activation in response to emo-
tional pictures after administration of dextroamphetamine
(a stimulant associated with increased DA release). This
highlights the crucial role that the selection of reward-
relevant outcome measures will have for studies addres-
sing the efficacy of DA agents in the treatment of mood
disorders.
Eating disorders
Preclinical models
Feeding is a complex process that involves a sensory re-
sponse to the sight and smell of food, previous feeding
experiences, satiety signals elicited by ingestion, and hor-
monal signals related to energy balance. DA release in
specific brain regions is associated with pleasurable and
rewarding events, and the mesolimbic system is thought
to reward positive aspects of feeding. Some of the most
elegant and informative studies clarifying the involve-
ment of DA in feeding and other neurobiological func-
tions come from the studies of Palmiter and colleagues.
Zhou and Palmiter [301] developed a DA-deficient
mouse by genetically deleting tyrosine hydroxylase, the
key enzyme required for the synthesis of L-3,4-dihydrox-
yphenylalanine (L-DOPA), the chemical precursor of
catecholamines. These DA-deficient mice cannot make
DA, and are born normal but fail to thrive, have
decreased food intake, gradually become hypoactive and
hypophagic, and die at 3 weeks of age [301]. However,
intervention and treatment of the mice with L-DOPA to
restore striatal DA levels to 10% of the levels in normal
mice is sufficient to elicit normal feeding behavior and
animal survival [302]. Moreover, restoration of tyrosine
hydroxylase gene expression using gene therapy was able
rescue the deficient feeding behavior in these DA-
deficient mice [303]. Using gene therapy to enable DA
production within only the caudate putamen restored
mouse feeding on regular chow diet, and also normal
nest-building behavior, whereas restoration of DA pro-
duction into the NAc only restored the exploratory be-
havior [304].
A salient result from these animal studies is that DA

transduction in the central or lateral regions of the caud-
ate putamen was sufficient to permanently rescue mice
from the starvation that would occur inevitably without
daily L-DOPA injections. However, restoration of DA
into the NAc in these studies was not sufficient to res-
cue normal feeding behavior, but this may have been
due to an inability to anatomically restore gene expres-
sion throughout the entire NAc [304]. Interestingly,
when the DA-deficient mice are crossed with obese lep-
tin (Ob/Ob)-deficient mice, the lack of DA blocked the
increased feeding behavior normally present in the leptin
(Ob/Ob)-deficient mice [305]. Taken together, the DA-
deficient mouse studies indicate the essential require-
ment of DA for normal feeding behavior and survival.
In addition, there is extensive experimental evidence in

animal contexts supporting a role for the mesolimbic re-
ward pathway on appetitive and motivational behaviors
[306,307]. Mesolimboic DA release is associated with most
pleasurable or rewarding events, and food is one type of
reward that is often used during the training of animals.
There is an increase in DA release (measured in awake,
behaving animals by microdialysis or by fastscanning cyc-
lic voltammetry) in the NAc in response to unexpected
food rewards or stimuli that predict food rewards [72,308-
310]. Moreover, drugs that enhance operant responding
for such food rewards, such as amphetamine, are most ef-
fective when administered into the NAc, whereas DA re-
ceptor antagonists administered into the NAc block the
stimulant effects [57,311]. Pharmacological control of the
output from the NAc shell can also have profound effects
on food consumption [312,313], as does surgical or chem-
ical lesion of the nigrostriatal or mesolimbic DA pathways.
These results suggest that DA release in the striatum is
required to integrate relevant signals for sustained feeding
[301,314,315]. These studies emphasize the importance
of DA transmission and the mesolimbic reward pathway
for food consumption, feeding behavior, and food
rewards in animal models.

Bulimia nervosa Bulimia nervosa (BN) is an eating dis-
order characterized by recurrent binge eating followed
by compensatory behaviors. It typically has its onset dur-
ing adolescence, has an estimated prevalence of 1-2%, is
more common in females, and is characterized by,
among other features, impulse-control dysregulation
[1,316]. There is high comorbidity between BN and sub-
stance abuse, and there is a considerable body of data
suggesting that disturbed appetitive behaviors for food
in BN may reflect a dysregulation of reward mechanisms
that is common to both BN and substance-abuse disor-
ders [317]. Indeed, early hallmark preclinical studies by
Hoebel and colleagues [318] highlighted commonalities
between BN and addiction disorders in terms of neuro-
biology, psychopharmacology, neurochemistry, and be-
havior [319]. Binge eating has also been suggested to
serve an emotion regulatory function, and thus has
many qualities of reward-mediated behaviors [320].

Clinical studies There has been a small handful of func-
tional neuroimaging studies of response to rewards in
BN, with a wide range of rewarding stimuli presented. It
is important to note that functional brain imaging stud-
ies in eating disorders have the methodological challenge
of confounds associated with nutritional imbalances in
affected individuals. One way to overcome this is to
focus on individuals who are recovered from these
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disorders at the time of scanning, but it is important to
note that such an approach may minimize the extent of
brain responsivity differences that would characterize
individuals meeting current criteria for this disorder.
Several studies have reported reduced reward motivation

for food rewards in eating disorders. Joos and colleagues
[321] found reduced activation of the ACC in individuals
with concurrent BN during the presentation of visual food
cues, and Bohon and Stice [322] reported trends towards
decreased right insular cortex activation to the anticipated
receipt of chocolate milkshake solution and in the right
posterior and dorsal insula in response to milkshake con-
sumption in women with BN. Other studies have found
atypical responses during reward outcome for monetary
and food rewards. Wagner and colleagues [323] reported
that women who had recovered from BN had equivalent
DCN responses to monetary-reward outcomes, whereas
CN responses in the control group were specifically linked
to monetary gains relative to losses. Frank and colleagues
[324] reported decreased ACC reward outcome responses
to the blinded administration of glucose in participants
who had recovered from bulimia. By contrast, Uher and
colleagues [325] reported increased activation of the ACC,
orbitofrontal cortex, occipital cortex, and cerebellum in re-
sponse to food rewards in patients with bulimia; however,
they did find hypoactivity in the lateral prefrontal cortex in
patients with BN when compared with controls.
Several studies have included different patient groups

relevant to eating disorders, allowing for identification of
brain imaging patterns specific to different types of eat-
ing disorders. Schienle and colleagues [326] examined
reward outcome by presenting food images to over-
weight and normal-weight controls, overweight indivi-
duals with binge-eating disorder, and normal-weight
individuals with BN. These authors reported increased
medial orbital frontal cortex activation in the binge-
eating disordered group, and greater cingulate cortex
and insula activation in the bulimic group, relative to all
other groups. Brooks et al. [327] compared neural
responses to food-reward outcomes in individuals with
BN and with anorexia nervosa (AN), and found that
individuals with BN had relatively greater activation in
the dorsolateral prefrontal cortex, the insular cortex, and
the pre-central gyrus. These studies compliment candi-
date genetic behavior investigations in BN that have
reported altered allelic frequencies for the DAT gene
[328] and DA receptor genes [329,330] in individuals
with bulimia.
Molecular-imaging data addressing striatal DA func-

tion in BN are lacking. In the only preliminary study to
be published, Tauscher and colleagues [331] reported a
15% reduction in striatal DAT availability in BN, al-
though the study included only sub-threshold cases and
an unmatched control group.
Dopaminergic treatments
Only fluoxetine, which primarily affects serotonin, is
approved by the US FDA for the treatment for BN [332].
Of the numerous trials of the effects of psychopharma-
cologic agents for the treatment of BN, none has been
primarily a DA agent [333].

Anorexia nervosa AN is characterized by extremely low
body weight, distorted body image, and fear of gaining
weight, with an estimated prevalence of 0.7% [1,316].
Watson and colleagues [334] outlined a framework de-
lineating linkages between AN and reward-processing
deficits. Their model stressed the highly social nature of
eating, the overlapping reward circuitry of gustatory and
social stimuli [335,336], and the tendency of individuals
with AN to deprive themselves of pleasure. Additionally,
Zucker and colleagues [337] described commonalities
between AN and ASD in social and interpersonal
impairments, suggesting that impaired social function
and social motivation may be a novel framework to
conceptualize core deficits of AN.

Clinical studies
Individuals with AN report a heightened response to
both punishment and reward outcome, even in the ab-
sence of clinically significant symptoms of anxiety or de-
pression [338]. Fladung and colleagues [339] assessed
responses to images depicting a female body with under-
weight, normal-weight, and overweight canonical whole-
body features. They reported higher ventral striatal acti-
vation during processing of underweight images com-
pared with normal-weight images in women with acute
AN, but the reverse pattern in the control group. Joos
and colleagues [340] also reported hyper-reactive
reward-outcome responses in anorexia during the pro-
cessing of food-reward images.
A small handful of studies have directly compared re-

ward responses in AN and bulimia. Wagner and collea-
gues [341] reported increased CN activation to monetary-
reward outcomes in women recovered from anorexia, and
relatively equivalent CN responses to monetary gains and
losses (a strongly similar pattern of results to that found
by Wagner et al. in bulimia in [323]), suggesting possible
similarities in reward-circuitry response in AN and buli-
mia. Uher and colleagues [325] also found similar brain-
activation patterns in individuals with AN and bulimia,
with both groups showing hyperactivation relative to
controls in areas relevant to reward processing, includ-
ing the ACC and the orbitofrontal cortex.
However, other studies have emphasized brain-activation

differences during reward outcome between anorexia
and bulimia. Brooks and colleagues [327] found that in
response to food-reward outcomes, individuals with
anorexia had greater activation of the dorsolateral
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prefrontal cortex, the cerebellum, and the right pre-
cuneus relative to controls. They also had greater activa-
tion of the caudate, superior temporal gyrus, right in-
sula, and supplementary motor area, and greater
deactivation in the parietal lobe and dorsal posterior
cingulate cortex relative to those with bulimia. It should
be noted that this study did not include a non-food-
reward condition, a design feature that would be neces-
sary to assess the functional integrity of brain-reward
systems to different classes of rewards.
Interestingly, individuals at risk for an eating disorder

(that is, those with higher dietary restraint) have
enhanced anticipatory responses to food rewards in the
orbitofrontal cortex and the dorsolateral prefrontal cor-
tex [342], suggesting that hyperactive functioning of an-
ticipatory reward processing may be a risk factor for
eating disorders. Complimenting these functional mag-
netic resonance imaging (fMRI) studies is a report of
higher 11 C-raclopride binding potential in the ventral
striatum in women who were recovered from AN, sug-
gesting that DA activity is enhanced in this population
[343], and significant relations between multiple DRD2

polymorphisms and AN [344].

Dopaminergic treatments Psychopharmacologic treat-
ments for AN have yielded only moderate success, and
the majority of treatments are antidepressants that act
primarily on non-DA systems [333]. A small number
of double-blind trials have evaluated the effects of anti-
psychotics, with essentially non-significant effects
[345-347].

Neurodevelopmental disorders
Schizophrenia
Schizophrenia is a complex and debilitating disorder that
typically emerges in late adolescence and early adulthood,
and is characterized by hallucinations and delusions (posi-
tive symptoms), social withdrawal, alogia, and flat affect
(negative symptoms), and cognitive disabilities [1], and
has an estimated lifetime prevalence of 1% [348]. Anhedo-
nia has been hypothesized to be a core feature of schizo-
phrenia [349-351], and it has been suggested that
individuals with high levels of social anhedonia are more
likely to develop schizophrenia-spectrum disorders [352],
although the link between anhedonia and the so-called
schizophrenia prodrome has not been firmly established
[353]. The centrality of incentive motivation deficits to
schizophrenia is suggested by the long-standing hypoth-
eses regarding the role of DA disturbances in the patho-
physiology of the disorder [354-356].

Preclinical models The DA hypothesis of schizophrenia
suggests that excess DA transmission may be pro-
psychotic, and originally gained support from
pharmacological evidence that drugs that decrease DA
activity (for example,, the phenothiazine neuroleptics)
are antipsychotic, whereas drugs that promote DA activ-
ity (for example,, amphetamines) are psychotomimetic
[76,357]. Indeed, the medications that have proven suc-
cessful for treating schizophrenia/psychosis are drugs
that primarily antagonize D2 receptors [76,358]; how-
ever, most clinically effective antipsychotics also exhibit
a myriad of other actions that contribute to both thera-
peutic and side-effect profiles [359,360].
Current models of schizophrenia suggest that the dis-

order is due to both common and rare gene mutations,
copy-number variations, and possibly epigenetic factors
[361], all of which can affect multiple brain neurotrans-
mitter systems and multiple risk genes [362-364]. Using
pharmacological and genetic approaches, animal models
have been developed for schizophrenia, which manipu-
late or alter mesolimbic DA transmission as a means to
understand the disease and/or test therapeutic strategies.
In rodent models, hyperlocomotive behaviors and dis-

ruptions in the pre-pulse inhibition (PPI) response (a
measure of sensorimotor gating) are generally viewed as
being psychotomimetic, as both hyperlocomotion and
disrupted PPI can be normalized and attenuated by anti-
psychotic medications [365]. However, no current behav-
ioral paradigms truly capture the positive symptoms of
schizophrenia (such as hallucinations and delusions). PPI
is a cross-species measure that refers to the ability of a
non-startling ‘pre-stimulus’ to inhibit the response to a
startling stimulus [366]. There have been numerous
reports of PPI deficits in patients with schizophrenia
[367,368]; however, exactly which endophenotype in
schizophrenia is manifested as disrupted PPI remains
debated [365]. Swerdlow and colleagues [368] persua-
sively suggested that PPI deficits are a useful psycho-
physiological outcome for basic studies in humans and
animals to probe neural circuitry and as a pharmaco-
logical screen. Indeed, PPI testing is commonly used in
screening for potential antipsychotic drugs that act via
antagonism of mesolimbic DA transmission. Studies in
mice have indicated that administration of direct-acting
DA agonists (such as apomorphine) and indirect DA ago-
nists (such as cocaine) to mice disrupt PPI primarily via
D1 receptors [369], whereas D2 receptors seem to modu-
late amphetamine-induced PPI deficits [370]. By contrast,
both apomorphine-induced and amphetamine-induced
PPI disruptions in rats are blocked by DA D2 antagonists
[366]. In addition, normalizing PPI deficits in rodent
models has enabled drug discovery for potential anti-
psychotic medications [371], some of which have proven
successful in treating schizophrenia [368,372].
Mice lacking the DAT gene display markedly increased

levels of DA in the mesolimbic system and striatum
[373], that results in hyperlocomoter behaviors [373,374]
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and also deficits in PPI [375,376]. The DAT knockout
mice phenotypes resemble amphetamine-like effects, and
both hyperlocomotion and PPI deficits can be reversed
with either D1 or D2 receptor antagonists [376], the atyp-
ical antipsychotics clozapine and quetiapine [377], various
antidepressant drugs, and monoamine transporter inhibi-
tors [378]. Thus, the DAT knockout mouse may be a use-
ful animal model for predicting the efficacy of novel drugs
for disorders such as schizophrenia that are characterized
by a dysregulated limbic DA system.
In alignment with the DA hypothesis of schizophrenia,

an increased level of striatal D2 receptors has been seen
in patients with schizophrenia who are not on medica-
tion [78], which may result in D2 receptor supersensitiv-
ity in the ventral striatum contributing to psychosis [79].
Kellendonk et al. [80] attempted to model this D2 recep-
tor elevation in genetically engineered mice, in which
they transiently and selectively overexpressed D2 recep-
tors in the striatum including in the caudate putamen,
the NAc, and olfactory tubercle. It was found that 30%
of striatal MSNs overexpressed these engineered recep-
tors, thereby elevating the D2 receptor level to about
15% higher than that of normal mice. To study the be-
havioral consequences of D2 receptor upregulation in
the striatum, the mice were analyzed using a battery of
behavioral tasks, and were shown to have several abnor-
mal cognitive phenotypes, including working-memory
deficits, reversal-learning impairment and decreased
social interactions. In a follow-up study, Li and collea-
gues [379] reported that this D2 receptor overexpression
in the striatum causes an increase in the firing activity of
layer V cortical pyramidal neurons, and also a decrease
in both the frequency and amplitude of spontaneous in-
hibitory post-synaptic currents, indicating reduced in-
hibitory transmission in the prefrontal cortex. Taken
together, the mouse model suggests that overexpression
of D2 receptors (similar to that seen in some individuals
with schizophrenia) will alter striatal MSN activity,
resulting in dysregulated GABA transmission and inhibi-
tory activity in the cortex [380]. Because a core symptom
of schizophrenia is cognitive impairment (for example,
deficits in working memory, attention, executive
function), this mouse model may provide a link explain-
ing how altered mesostriatal and mesolimbic DA recep-
tors and DA transmission can alter cognitive processes
in the frontal cortex, possibly by dysregulating circuit
pathways that link connectivity between the striatum
and pre-frontal cortex [381]. The reader is referred to
other seminal reviews of schizophrenia animal models
that highlight altered DA and reward-pathway transmis-
sion [382-385].

Clinical studies Patterns of responses to rewards by
patients with schizophrenia are complex. Patients report
normal intrapsychic emotional experience, but commu-
nicate symptoms of anhedonia during structured inter-
view [386]. Individuals with schizophrenia show
diminished positive and negative emotions in response
to emotional movie clips [387], food [388], and social
exchange [389-391], even when taking medication [388].
However, individuals with schizophrenia also report
similar or heightened subjective emotional experience
[392], including in response to movie clips [393],
pictures [394], food [395], and even odors [396].
In contrast to the mixed self-report and interview pro-

files of hedonic capacity in schizophrenia, psychophysio-
logical studies of patients with schizophrenia indicate
comparable or more exaggerated facial responsivity to
positive and negative stimuli, assessed via facial electro-
myography [397,398], skin conductance [399,400], and
affective modulation of the startle eyeblink response
[401,402]. These lines of evidence suggest that schizo-
phrenia is characterized by deficits in the expression of
pleasant emotions but not in the experiential or physio-
logical components of emotions [390].
Studies that have differentiated between reward motiv-

ation and reward outcome in schizophrenia have found
mixed results. Although some studies have found that
individuals with schizophrenia are impaired during
reward motivation and outcome [403-407], others have
not found a selective impairment in reward motivation
[386,408]. This discrepancy may be attributable to differ-
ent levels of symptom severity in the patients sampled,
as there is some evidence that the severity of clinical
symptoms is correlated with reward motivation and out-
come processing in schizophrenia [386,403].
Behavioral studies of reward learning have reported

that sensitivity to reward is intact in schizophrenia, but
deficits are evident in rapid reward learning on the basis
of trial-to-trial feedback, such as reversal learning, and
in reward-related decision-making [406,409-413]. How-
ever, reward learning may be typical in schizophrenia
over longer learning trials [410], and in individuals with
less severe symptoms [414]. Overall, however, studies of
reward learning in individuals with schizophrenia are
consistent with the framework that patients with schizo-
phrenia have intact hedonic responses but impaired mo-
tivation and reward representation, leading to a failure
to motivate their behavior for rewards [415].
Neuroimaging studies of responses to rewards in schizo-

phrenia generally suggest decreased NAc activation during
monetary-reward anticipation (but see [416]for an excep-
tion) in both patients taking medication and patients not
taking medication [417-420]. However, there is also
evidence that these effects may be mediated by the
predictability or certainty of rewards, as individuals with
schizophrenia have reduced activation of the ventral
striatum to unexpected reward outcomes, but have
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enhanced responses to expected rewards [421]. There is
also evidence of inverse relations between negative symp-
toms and NAc activation during reward anticipation
[416,420,422] and between lateral PFC activation during
reward outcomes [420]. Waltz et al. [406] used computer
simulations to show that the reward-processing deficits in
schizophrenia are consistent with impaired functioning of
DA. A handful of studies also suggest that striatal
responses during monetary anticipation in schizophrenia
are partially normalized by the antipsychotic, olanzapine
[279,417,423] but not by other antipsychotics [418], sug-
gesting that this neural signature may be a state, rather
than trait, marker of schizophrenia. Finally, Grimm and
colleagues [424] reported reduced striatal activation in
schizophrenia to food cues when medication dose and
weight were used as covariates, highlighting a possible
mechanism underlying weight gain in schizophrenia.
Molecular-imaging evidence indicates dysregulated

striatal DA function in schizophrenia [77]. A meta-
analysis of 17 studies found significant elevation of stri-
atal D2 receptors in patients with schizophrenia who
were not being treated with medication, although no
consistent clinical correlates of this pattern were evident
[78]. Studies have also suggested an increased affinity of
D2 receptors for DA in schizophrenia, that may produce
a D2 receptor supersensitivity in the NAc contributing
to psychosis [79]. Additionally, a PET study found higher
synaptic DA concentrations in the ventral striatum in
schizophrenia [425].

Dopaminergic treatments First-line treatments for
schizophrenia include DA D2 receptor antagonist agents
that primarily treat so-called positive symptoms. First-
generation compounds, such as chlorpromazine and
haloperidol, work primarily as D2 receptor antagonists
[358]. Second-generation, or ‘atypical,’ antipsychotics,
such as clozapine (which has affinity for D2 and D4

receptors [426]), risperidone, olanzapine, and quetiapine,
primarily affect DA and 5-HT systems, but with mark-
edly reduced extrapyramidal side effects [427]. Finally,
third-generation antipsychotics, such as aripiprizole, are
partial D2 receptor agonists with high affinity and low
intrinsic activity, and these drugs may act as ‘DA stabili-
zers’ because of their ability to stabilize, rather than sim-
ply upregulate or downregulate functional output of DA
systems [428].

Attention-deficit hyperactivity disorder
ADHD is characterized by symptoms of inattention,
hyperactivity, or impulsivity that produce impairment
in cognitive, behavioral, and interpersonal domains [1]
Although for many years ADHD was believed to be a
disorder of childhood and adolescence, it is now
recognized to occur also in adulthood [120].ADHD
affects approximately 8 to 9% of school-aged children
and 4 to 5% of adults [429-431]. ADHD is character-
ized by symptoms of age-inappropriate inattention,
impulsiveness, and hyperactivity [1]. It disrupts aca-
demic and social development, and is associated with
considerable psychiatric comorbidity [432], including
impaired academic, occupational, and social function-
ing, increased rates of substance abuse and traffic acci-
dents, and persistent neuropsychological impairments
[433-436].
Dysregulated reward processing has been proposed as

a central mechanism in prevailing theoretical models of
ADHD [437,438]. The ‘DA transfer deficit’ theory of
ADHD highlights altered phasic DA responses to cues
that predict rewards, resulting in decreased conditioning
to reward cues, blunted reward anticipation, weaker in-
fluence of rewards on behavior, and ultimately poorer
behavioral control [438,439]. This model explains not
only empirical brain-imaging data of reward processing
in ADHD (reviewed below) but also the consequences of
these processes on motivated behaviors.
Clinical genetics studies have indicated that multiple

genes are important in the development of ADHD. Re-
cent meta-analyses of candidate gene association studies
have found consistent evidence of significant associa-
tions between ADHD and polymorphisms in several
candidate genes that are almost exclusively involved in
the regulation of dopaminergic and serotonergic trans-
mission (including the dopamine transporter (DAT1)
gene, the dopamine D4 receptor (DRD4) gene, the dopa-
mine D5 receptor (DRD5) gene, the serotonin trans-
porter (5-HTT) gene, the 5-hydroxytryptamine receptor
1B (HTR1B) gene, and synaptosomal-associated protein
25 (SNAP25) [440,441]. Among these, perhaps the most
commonly replicated risk gene associations were
reported for DAT1 and DRD4; however, even for these
genes, substantial population heterogeneity is seen in
ADHD.

Preclinical models Animal models of ADHD are
expected to show phenomenological similarities to the
clinical condition and mimic aspects of the three core
symptoms of the disorder; that is, hyperactivity, impul-
sivity, and impaired sustained attention [442]. In
addition, proof of predictive validity of ADHD animal
models often includes evidence of improved behavioral
outcome after treatment with effective ADHD therapeu-
tics, including stimulants such as methylphenidate and
amphetamine (reviewed below) which increase DA
transmission and levels by reuptake inhibition of
monoamine transporters.
Two commonly used ADHD rodent models are the

DAT transgenic knockout mouse model and the spon-
taneous hypertensive rat (SHR) model, both of which
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exhibit altered mesostriatal DA transmission and model
some aspects of ADHD behavior. Mice lacking DAT
have increased dopaminergic tone and represent a gen-
etic animal model in which certain endophenotypes of
ADHD can be recapitulated [443]. In DAT knockout
mice, DA is cleared very slowly from the synaptic cleft,
causing a five fold elevation of extracellular DA in the
striatum (that is, a hyperdopaminergic state). DAT
knockout mice have been suggested to model ADHD be-
cause they are hyperactive ([443,444]), have reduced ex-
tinction of responses in food reinforcement operant
tasks [445], and also have impaired learning and mem-
ory [444,446]. However, DAT knockout mice provide an
extreme model because only a mild reduction in mid-
brain DAT binding has been seen in human adolescents
with ADHD [447], and the model also does not agree
with several studies have that found increased DAT in
the striatum of children and adults in ADHD [448,449].
Nonetheless, the DAT knockout mouse provides very
useful information concerning the neurobiological con-
sequences of impaired DAT function which present as
ADHD-like behaviors.
The most widely studied rodent model of ADHD is

the inbred SHR [450]. The SHR is a convincing model
to study because these rats have been shown to display
many behavioral characteristics apparent in ADHD, in-
cluding poor performance in sustained attention tasks,
hyperactivity, impulsivity, sensitivity to delay, and
increased variation in performance of operant tasks
[451-453]. Impulsivity is seen in SHR as an inability to
inhibit a response during the extinction phase of an
operant task, and an inability to delay a response in
order to obtain a larger reward [452,454]. It seems that
the SHR exhibits these ADHD-like behaviors due to a
genetic alteration in the DAT gene. The SHR possesses a
160-bp insertion in the noncoding region upstream of
exon 3 of the DAT gene [455], which is of significance
because a variable number of tandem repeats in the
3′-untranslated region of the DAT gene has been
associated with ADHD in several family studies
[448,449,456]. DAT gene expression is transiently
reduced in the SHR midbrain during the first month
after birth, and increased in adult SHR compared with
controls [457], which results in abnormal mesostriatal
DA transmission in the rats during postnatal develop-
ment, and possibly in adulthood [458]. In addition, sev-
eral other animal models have informed ADHD
research; many of these models have implicated meso-
limbic DA transmission as a feature underlying ADHD-
like behaviors. The reader is encouraged to see other
comprehensive reviews [443,450].

Clinical studies Etiological models addressing cognitive
dysfunction in ADHD have focused on altered reward
sensitivity [18,459,460], including diminished influence
of reward on skills [460], now-versus-later decision-
making [461,462], and altered sensitivities during reward
learning [463]. Altered reward processes are mediated
via alterations in DA and other catecholamine function
in ADHD [438,464-467]. Individuals with ADHD display
a range of reward deficits, including impaired behavioral
modification to rewards [468]. A classic finding in child-
hood ADHD is hypersensitivity to reward delays (that is,
"delay aversion" [462,469-474]), which is independent of
inhibitory deficits [475] yet correlates with hyperactivity
symptom severity [476]. The ‘dynamic developmental
theory’ of ADHD put forth by Sagvolden and colleagues
[453,477] hypothesizes that downregulated frontolimbic
DA results in lower tonic DA, a steeper and shorter
delay-of reward gradient, and ultimately increased im-
pulsivity and slower extinction of impulsivity. Longer
delays between a behavior and its consequence then re-
sult in relatively reduced effects of the consequence for
exerting control over the behavior in ADHD [453,459].
Although individuals with ADHD may report enhanced

reward outcome responsivity [478], behaviorally, indivi-
duals with ADHD display a range of motivational deficits,
including impaired behavioral modification in response
to rewards [468], enhanced motivation for larger but
riskier rewards [479], and decreased motivation for
social rewards [480].
Although the majority of fMRI studies in ADHD have

focused on attentional processes, such as cognitive con-
trol and response inhibition [481-483], a smaller subset
of studies have focused on reward processing. Such stud-
ies have direct conceptual linkages to the constructs of
impulsivity and delay aversion that are core features of
the disorder. These studies have shown decreased ven-
tral striatum activation during monetary-reward antici-
pation [484-487], atypical orbitofrontal activation during
monetary-reward outcome [487,488], and decreased
DCN and amygdala activation during delayed reward
outcome [485,489]. Children with ADHD have reduced
NAc activity when anticipating monetary rewards
[18,486,487], which is seen particularly in drug-naive
children [490], in carriers of the DAT nine-repeat allele
[491], and in response to seeking gains rather than
avoiding losses [492]. This pattern is present during cues
of both immediate and delayed rewards [485]. Plichta
and colleagues [485] also found relations between stri-
atal responsivity to immediate and delayed rewards and
ADHD symptom severity. Furthermore, a negative cor-
relation between NAc activation during reward motiv-
ation for a range of rewards (monetary, verbal feedback,
and loss avoidance) and the number of reported ADHD
symptoms was found in the general population [492]. Fi-
nally, a study by Wilbertz and colleagues [493] found
decreased differentiation between high-incentive and
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low-incentive rewards in the medial orbitofrontal cortex
and in physiological arousal in patients with ADHD that
correlated with risky decision-making and delay-
discounting.
Molecular-imaging studies in ADHD suggest that

impaired frontostriatal activation to rewards in ADHD
may be linked to altered DA transmission. Ernst and col-
leagues [494] found relatively higher right midbrain ac-
cumulation of 18 F-DOPA in children with ADHD, that
was correlated with symptom severity, and a study of
children with ADHD by Volkow et al. [120] found lower
specific DA binding to DATs and to D2 and D3 receptors
in the NAc, midbrain, and left caudate, with D2 and D3

receptor binding in the NAc, midbrain, caudate, and
hypothalamus significantly related to inattention symp-
toms. A follow-up study showed that decreased DA
binding to these receptors was also correlated with lower
scores of self-reported motivation [495]. Levels of tonic
and phasic DA have also been found to be lower in indi-
viduals with ADHD [453,496] whereas the density of
DATs, which downregulate DA activity, is higher in
ADHD [448,449].
Dopaminergic treatments
Methylphenidate is the most commonly prescribed
medication for childhood ADHD, and has binding affin-
ity for both the DA and norepinephrine transporters
[497]. D-amphetamine is the major pharmacological in-
gredient in dextroamphetamine and lisdexamfetamine
dimesylate, and both are believed to exert their thera-
peutic actions by enhancing the function of noradren-
aline and DA [498]. Finally, bupropion has been used
off-label for treating ADHD, yet it has been shown to
have only very moderate efficacy for treating core
ADHD symptoms [499,500].
Obsessive–compulsive disorder
OCD has an estimated prevalence of 1 to 3% [501], and
is characterized by recurrent anxiety-provoking thoughts
or impulses (obsessions), typically followed by repetitive
ritualistic behaviors to relieve anxiety (compulsions)
[502]. Although OCD is formally classified as an anxiety
disorder, it has many phenotypic features resembling ad-
dictive behaviors, including tolerance and withdrawal-
like behaviors, suggesting linkages between core symp-
toms and reward-circuitry processes. Indeed, it has been
theorized that compulsive behaviors may persist at least
in part due to the rewarding effects of anxiety-reduction
that accompanies them [503], and that OCD should be
labeled as a disorder of behavioral addiction rather than
as an anxiety disorder in the DSM-V [504]. Although
OCD is grouped here as a psychiatric disorder (rather
than a neurodevelopmental disorder), it is important to
note that it is commonly seen in both children and
adults [505].

Preclinical models Animal models of OCD have fo-
cused on studying obsessive-like behaviors related to
grooming and repetitive movements. In mice, the neural
substrate for the stereotyped grooming sequence (whis-
ker grooming or coat grooming) lies in several brain
regions including the brain stem and the striatum [506],
where the striatum is thought to regulate the initiation
and modulation of these grooming behaviors [507].
Profiles of DAT knockout mice indicate involvement

of altered mesolimbic DA transmission in OCD. DAT
knockout mice show an overall increased level of DA
transmission, resulting in increased DA tone, hypermo-
toric activity, and overall increased movement [373].
The DAT knockout mice also have stronger and more
rigid self-grooming patterns, with mutants displaying se-
quential super-stereotypy, evidenced by having more
stereotyped and predictable self-grooming sequences
[508]. Synapse-associated protein 90/PSD-95-associated
protein (SAPAP)3 is a post-synaptic scaffolding protein
at excitatory synapses, that is expressed at high levels in
the striatum. An engineered genetic knockout of
SAPAP3 in mice increases anxiety and compulsive
grooming behaviors, leading to facial hair loss and skin
lesions [509], providing a genetic animal model for
OCD-like behaviors. SAPAP3-deficient mice have dra-
matically increased grooming bouts, and spend signifi-
cantly more time self-grooming than their genetically
normal littermates. Physiological studies indicate that the
mutant mice have multiple deficits in the excitatory
synapses of the striatal MSNs, including increased striatal
excitatory and NMDA-dependent neurotransmission.
Also related to genetic mouse models of OCD are the

Slitrk5 knockout mice. Genetic deletion of Slitrk5 in
mice also results in excessive grooming associated with
facial hair loss and skin lesions and with impaired corti-
costriatal neurotransmission [510]. Although evidence
for a direct disruption in mesolimbic transmission in
SAPAP3 and Slitrk5 knockout mice has not been
reported, the altered excitatory transmission apparent in
the striatum may also dysregulate the reward pathways.

Clinical studies Behaviorally, patients with OCD show
evidence of impaired reward learning [511] and impaired
performance on gambling tasks that predict pharmaco-
logic treatment response [512,513]. Despite the overlap
of OCD and substance-use disorders in terms of pheno-
type, neurobiology, comorbidities, and neurochemistry
[514], few empirical studies have directly assessed
reward-system integrity in OCD. Using a monetary
incentive-delay task, Jung et al. [515] found increased
frontostriatal activation during monetary-reward
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outcome, and decreased lateral prefrontal and inferior
parietal cortex activation during loss anticipation, but no
group differences during monetary-reward anticipation.
However, Figee and colleagues [516] did find relatively
decreased NAc activity during reward anticipation in
OCD, particularly in those patients with contamination
fear. Finally, Pena-Garijo and colleagues [517] found that
individuals with OCD had reduced activity in the ACC
and the CN during a reward-learning task. Clearly, more
research is needed in this area, in particular studies of
mesolimbic responses to disease-relevant stimuli and
studies of the relationships between brain function in re-
sponse to reward stimuli and treatment outcomes.
A review of PET studies by Whiteside et al. [518] indi-

cated differences in radiotracer uptake in the orbital
gyrus and the head of the CN in patients with OCD, and
a quantitative, voxel-level meta-analysis of functional
MRI findings by Menzies and colleagues [519] reported
abnormalities in the orbitofronto-striatal regions in
OCD. A recent review and meta-analysis of in vivo im-
aging studies assessing striatal DA systems in OCD
found evidence of reduced D2 receptor binding in the
neostriatum and ventral striatum, and reduced D1 stri-
atal receptor binding [520].

Dopaminergic treatments Although the most widely
prescribed agents to treat OCD are tricyclic antidepres-
sants and selective serotonin reuptake inhibitors, these
agents show a 40 to 60% inadequate response rate [521].
Recently, second-generation antipsychotic agents have
shown benefit, either alone or as adjunctive therapy.
Specifically, high-dose olanzapine [522], quetiapine
[523], and risperidone [524] have all shown at least min-
imal clinical benefit relative to placebo treatment [525].
Finally, reports that the ventral striatum is an effective
target for deep brain-stimulation treatment in OCD, par-
ticularly in patients identified as otherwise treatment-
resistant, further implicates the mesolimbic DA system
in OCD [526-528].

Autism spectrum disorders
ASDs affect up to 1% of the general population [529],
and are characterized by a triad of symptoms that
includes impaired communication, social impairments,
and restricted and repetitive behaviors and interests [1].

Preclinical models Studies aimed at modeling, in ani-
mals, the core phenotypes associated with ASDs have fo-
cused on studying social and repetitive behaviors in mice
[530-532] and pair-bonding behaviors in the prairie vole
(Microtus ochrogaster) [533,534]. Although there is no
clinical evidence supporting disordered attachment pro-
files in autism, these rodent models may provide a bridge
to define and translate the neurobiology of mammalian
social behavior into a better understanding of ASD [535].
As discussed in greater detail below, there is compelling
evidence that the mesolimbic DA pathway is altered in a
mouse model of FXS, and that DA signaling in the NAc is
important for social pair bonding in the prairie vole, sug-
gesting that altered reward processing can influence social
behaviors.
The study of social bonding in the prarie vole is one

animal model that has informed preclinical studies rele-
vant to ASDs. Prairie voles display characteristics asso-
ciated with a monogamous lifestyle, including a lack of
sexual dimorphism, biparental care of offspring, and the
formation of pair bonds between males and females
[536]. In the laboratory, male and female prairie voles
show a robust preference to pair-bond and associate
with a familiar partner, and the neurobiology and behav-
ior of this social-bonding attachment has been studied
extensively [534]. Vole pair bonds can be assessed by
testing for partner preference, a choice test in which
pair-bonded voles regularly prefer their partner to a con-
specific stranger. Several studies have indicated that
mesolimbic DA pathways regulate vole pair-bonding and
social behaviors [537]. After extended cohabitation with
a female, male voles show behaviors indicative of pair-
bond maintenance, including selective aggression to-
wards unfamiliar females. These voles also show a sig-
nificant upregulation in NAc D1-like receptors, and
blockade of these receptors abolishes the selective ag-
gression of the males toward unfamiliar females [538].
Mating between voles can facilitate partner preference
formation, and is associated with increased extracellular
DA in the NAc. This partner preference can be blocked
by microinjection of the D2 antagonist eticlopride into
the NAc (but not the prelimbic cortex), whereas the D2

agonist quinpirole can facilitate formation of vole part-
ner preferences [539]; decreasing NAc cAMP signaling
probably underlies these effects of D2 receptors [540].
Interestingly, in a comparative study of monogamous
versus promiscuous voles, the monogamous voles exhib-
ited increased mesolimbic DA release into the NAc in re-
sponse to amphetamine, suggesting increased DA release
or clearance in the monogamous species [541]. However,
when amphetamine or a selective D1 receptor agonist was
administered systemically to male voles, this interfered with
mating-induced pair bonding, and this disruption seems
dependent on D1 receptor activation [542-544]. Taken to-
gether, these prairie-vole social-bonding studies indicate
that the mesolimbic DA is essential for the social pair-bond
with D2-like receptors in the NAc.
Other neurotransmitter systems seem to converge

within the NAc to modulate and control vole social-
bonding behavior. For example, activation of cortisol-
releasing factor (CRF) receptors by microinjections of
CRF directly into the NAc accelerates partner preference
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formation in male prairie voles [545]. Oxytocin trans-
mission and oxytocin receptors in the NAc seem to
facilitate maternal behavior in female voles [546]. Fur-
thermore, prairie voles have higher densities of NAc
oxytocin receptors than is found in nonmonogamous
vole species, and blocking NAc oxytocin receptors pre-
vents partner-preference formation [547]. These studies
suggest that oxytocin facilitates affiliation and social at-
tachment [548].
Although the challenge remains to translate these

observations and mechanisms from rodents to human
autism studies [549], these animal model findings have
had a significant influence on our understanding of
mammalian social behaviors, and have generated testable
hypotheses about the reward system and underlying mo-
lecular neurobiology. The reward-system involvement in
social engagement and social-bond formation may also
have implications for understanding the core social defi-
cits characterizing ASDs [535].

Clinical studies A number of theorists have suggested
that the social-communication deficits that characterize
ASDs reflect decreased motivation to engage in recipro-
cal social behaviors in infancy and early childhood,
which may ultimately result in fewer experiences with
social sources of information [550-552]. Because chil-
dren with ASD may lack the motivation to participate in
activities in which social skills are typically forged, the
resulting relatively impoverished social environment may
further compound the social impairment caused by low
social motivation, and further negatively influence the
development of social cognition and language skills
[553,554]. Consistent with this model, very young chil-
dren with ASD display decreased orienting to social
stimuli [550,555], and atypical social orienting has been
shown to predict decreased social competence in adoles-
cents and young adults with ASDs [556]. There is also
evidence that social motivation remains impaired in
individuals with ASD despite growth in other areas of
cognitive development. For instance, older children with
ASDs report experiencing less pleasure from social
rewards [557], and social stimuli are relatively less salient
for individuals with ASD [558-560]. More generally,
individuals with ASD have been found to report lower
levels of reward responsivity [561], and behavioral stud-
ies have also found evidence for impaired reward learn-
ing in individuals with ASD [562].
However, despite the accumulating evidence for

reward-processing deficits in ASD, relatively few pub-
lished studies have assessed the neural bases of reward
processing in this population, and results of these stud-
ies are decidedly mixed. Schmitz and colleagues [563]
investigated the neural substrates of reward learning in
the context of a sustained attention task with monetary
rewards, and reported decreased activation in the left an-
terior cingulate gyrus and left midfrontal gyrus on
rewarded trials in patients with ASD. They also found that
activity in the anterior cingulate gyrus during this task was
negatively correlated with social ability, supporting the
hypothesized link between that reward-processing dys-
function and the core social impairments in ASD. Scott-
Van Zeeland and colleagues [564] investigated the neural
correlates of implicit reward learning in children with
ASDs using both social and monetary rewards. They
found diminished ventral striatal response during social-
reward outcomes and also, but to a lesser extent, with
monetary-reward outcomes. Activity within the ventral
striatum was found to predict social reciprocity within the
control group but not the ASD group. This finding is con-
sistent with previous research examining the effect of re-
ward type on task performance, which indicates that
children with ASD may be less motivated by social than
non-social rewards [480,565-568]. Dichter and colleagues
[569] recently reported results of an fMRI study of reward
anticipation and outcome using monetary and social
(faces) rewards within the context of an incentive-delay
task. The ASD group displayed bilateral amygdala hyper-
activation during face-reward anticipation and bilateral in-
sular cortex hyperactivation during face-reward outcomes.
Further, activation in the left and right amygdala during
face anticipation predicted the severity of social impair-
ments in the ASD sample.
EEG and event-related potential (ERP) studies have

largely supported these fMRI findings. Kohls and col-
leagues [570] examined responses in children with
ASDs during a rewarded go/no-go paradigm involving
social (smiling faces) and monetary rewards, using an
ERP marker of reward-system activity. In the ASD
group, they found unimpaired behavioral task per-
formance but a decreased response to reward condi-
tions that required an active response for both social
and monetary rewards A recent EEG study found evi-
dence of relatively decreased left-sided frontal EEG
activity in response to faces, a pattern suggestive of
decreased motivational approach [571,572]) By con-
trast,, Larson and colleagues [573] reported that an
ERP marker of reward processing was unimpaired in
ASD, highlighting the need for future research to
examine differential brain activation to reward gains
and losses in ASD.
Restricted and repetitive behaviors and interests are also

a core symptom of ASDs, and a number of etiologic
models of repetitive behaviors highlight that reward-
processing deficits may bias attention and exploration
towards non-social aspects of the environment [552,559].
This general behavioral tendency may ultimately lead to
the development of stereotyped movements and circum-
scribed interests that characterize ASDs [574]. To
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investigate the hypothesis that reward-processing dysfunc-
tion in ASD may contribute to the development of cir-
cumscribed interests, Dichter and colleagues [575]
conducted a fMRI study in which stimuli reflecting cir-
cumscribed interests were presented to individuals with
ASDs within the context of an incentive-delay task. The
ASD group showed decreased NAc activation during
monetary-reward anticipation, but ventromedial pre-
frontal cortex hyperactivation when viewing the circum-
scribed interest reward outcome, suggesting that ASDs
are characterized by reward-circuitry hypoactivation in re-
sponse to monetary incentives but by hyperactivation dur-
ing circumscribed interest reward outcomes.
Manipulating the consistency, immediacy, or saliency of

rewards has been a central feature of long-standing effect-
ive behavioral interventions for ASD [576-578]. Such pro-
grams are designed to scaffold reward understanding for
children with ASD to ultimately alter behavior and en-
hance learning. Even with this scaffolding, however,
reward-based interventions are not successful for all chil-
dren with ASD [579-582], and there is some evidence that
individual differences in reward motivation may predict
differences in response to treatment [580]. Such variability
suggests an urgent need to identify neurobiological mar-
kers to aid in the prediction of responses to reward-based
behavioral interventions in ASD, and to understand how
these markers may be functionally related to behaviors
relevant to treatment success.
Aberrant serotonin function has consistently been

linked to genetics, neuropharmacology, and brain me-
tabolism of individuals with ASD [583]. There are few
studies of striatal DA binding in ASD, and to date there
has been no consistent evidence of striatal DAT-binding
differences in ASD [584,585], although a recent study
with a relatively large sample found evidence of higher
DAT binding in the orbitofrontal cortex in ASD [586].
Ernst and colleagues [587] found reduced ventromedial
prefrontal cortex DA metabolism in children with ASDs,
whereas Nieminen-von Wendt and colleagues [588]
found no such evidence. A small pilot study of 13 chil-
dren with ASDs who received a 6-month course of flu-
oxetine treatment showed that good clinical responders
had a significant decrease in striatal DAT binding [589],
suggesting that studies of modulation of striatal DAT
binding may be relevant to understand potential
mechanisms of action of treatments for ASD, even when
such treatments do not primarily affect DA systems.

Dopaminergic treatments Although SSRIs have been a
promising class of agents to target repetitive behaviors
in ASD [590-594] (but inefficacy has also been reported
[595]), the only two drugs currently approved by the US
FDA for the treatment of ASDs are the second-
generation antipsychotic risperidone (a DA antagonist)
and the third-generation antipsychotic aripiprazole (a D2

partial agonist). Although both are approved for the
treatment of irritability, an associated ASD symptom,
both have shown efficacy in reducing core symptoms as
well. Specifically, randomized controlled trials of risperi-
done in individuals with ASD found significant reduc-
tions in challenging behaviors, such as irritability and
hyperactivity [596-600], and significant improvement in
core autism symptoms [601-604]. Randomized con-
trolled trials of aripiprazole have also found a decrease
in irritability and hyperactivity and decreased instances
of repetitive behaviors in children with ASD over the
course of treatment [604,605].
Other commonly used treatments for ASD include

other antipsychotic agents [606-608], psychostimulants
(for example, methylphenidate), which generally upregu-
late norepinephrine and/or DA function and reduce
hyperactivity but have a relatively poor side-effect profile
[609,610], and naltrexone, a DA modulator [607,611].

Tourette’s syndrome
TS affects 0.3 to 0.8% of the population [612], and is
characterized by motor and vocal tics (rapid, recurrent,
stereotyped motor movements or vocalizations) per-
formed in response to somatosensory or environmental
cues [1]. This defining feature of TS suggests involve-
ment of nigrostriatal DA motor control systems, and
thus it is not unexpected that striatal systems linked to
reward processing have been implicated in the disorder,
through not using tasks assessing response to rewards.

Preclinical models Animal models relevant to TS have
focused on rodent genetic models and behavioral pheno-
types such as stereotypy. The DAT knockout mouse is
one model involving hyperdopaminergia that results in
increased levels of DA in striatal brain regions, which
may model some of the motor abnormalities apparent in
TS. Excessive sequential stereotypy of behavioral pat-
terns (sequential super-stereotypy) in TS is thought to
involve dysfunction in the nigrostriatal DA systems, and
DAT knockout mice exhibit complex restricted patterns
of stereotyped movements similar to the sequential
super-stereotypy seen in TA [508]. The genetic factors
underlying TS are largely unknown; however, a rare mu-
tation in the gene SLITRK1 is associated with human TS
[613,614]. The SLITRK1 protein is a single-pass trans-
membrane protein that displays similarities to the SLIT
family of secreted ligands, which have roles in axonal re-
pulsion and dendritic patterning in neurons, but its
function and developmental expression remain largely
unknown. A SLITRK1 knockout mouse model of TS has
recently been developed. SLITRK1 knockout mice ex-
hibit increased anxiety-like behavior in the elevated
plus-maze test and neurochemical analyses identified
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increased levels of norepinephrine and its metabolite 3-
methoxy-4-hydroxyphenylglycol in the prefrontal cortex
and NAc, but DA levels were not altered [615]. Admin-
istration of clonidine, an α2-adrenergic receptor agonist
often used to treat patients with TS, attenuated the
anxiety-like behavior of SLITRK 1-deficient mice, pro-
viding predictive validity in this TS mouse model. Inter-
estingly, SLITRK 1 expression in mouse, monkey, and
human brain is developmentally regulated in the neuro-
anatomical circuits most commonly implicated in TS
[616]. In the striatum, SLITRK 1 expression is high in
striosomes/patches during early brain development but
significantly diminishes later, suggesting a possible role
in establishing corticostriatal circuitry. In addition,
SLITRK 1 expression is also restricted to striatal projec-
tion neurons of the direct pathway where it could influ-
ence striatal circuitry; however, to date, direct evidence
of SLITRK 1 knockout affecting either mesolimbic or
nigrostriatal DA pathways has not been reported.

Clinical studies The DA hypothesis of TS was originally
proposed nearly 30 years ago [617], and has been corro-
borated by post-mortem data [618]; however the identifi-
cation of an underlying DA deficit leading to
dysfunction in TS has proven to be elusive [619]. Avail-
able evidence suggests that a phasic DA imbalance, simi-
lar to that seen in schizophrenia, may help to explain
the pathophysiology of TS [619,620]. Supporting this
framework, reward learning is enhanced in people with
TS who are not on medication, and impaired in people
with TS taking DA receptor antagonists [621].
Although there are no published functional neuroima-

ging studies of response to rewards in TS, a recent fMRI
study of tic inhibition implicated the striatum and asso-
ciated dorsal frontal regions during tic suppression
[622], corroborating other evidence that the magnitude
of basal ganglia and thalamus activation during volun-
tary tic suppression correlated inversely with the severity
of tic symptoms [623]. Thus, a model has been proposed
in which frequent prefrontal activation during tic sup-
pression may produce compensatory prefrontal cortex
hypertrophy that aids in tic suppression [624,625], al-
though it is not presently clear how such basal ganglia
and prefrontal characteristics effects reward processing
in TS. Variants in the DA receptor gene DRD2 have also
been associated with genetic risk for TS [626-628], but
this finding is not consistent [629-633].
An early study of monozygotic twins discordant for TS

severity found evidence in affected twins of increased D2

receptor binding in the head of the CN, but not puta-
men, which predicted disease severity [634]. Single-
photon emission computed tomography investigations in
TS have found higher DAT binding in the right caudate
[635], the striatum [636-639], the putamen after
amphetamine challenge [640], and the basal ganglia
[641]. However, a handful of studies have found no dif-
ferences in striatal DAT binding in TS [639,642-644].

Dopaminergic treatments Tetrabenazine is commonly
used to treat hyperkinetic movement disorders, includ-
ing TS [645]. Its mechanism of action is believed to in-
volve the early metabolic degradation of monoamines, in
particular DA [646]. The classes of medications with the
most proven efficacy in treating tics are typical and atyp-
ical antipsychotics (DA receptor antagonists) including
risperidone, ziprasidone, haloperidol, pimozide, and flu-
phenazine [647].

Conduct disorder/oppositional defiant disorder
CD is defined by a behavioral pattern involving the vio-
lation of others’ rights and of societal rules along with
antisocial behaviors before the age of 18 years, and ODD
is characterized by recurrent patterns of defiant beha-
viors toward authority figures during childhood [1].
These externalizing disorders, known collectively as dis-
ruptive behavior disorders, are often comorbid, and
there is debate over whether they represent differences
in severity of symptom expression or two distinct condi-
tions [648]. Prevalence estimates for both conditions are
just over 3% [649]. Although the preponderance of func-
tional brain-imaging studies in these conditions has fo-
cused on cognitive switching and sustained attention
[650], a significant subset of studies has focused on re-
ward processing.

Clinical studies Results of functional brain-imaging
studies of response to rewards in CD/ODD are not
wholly consistent [17]. Rubia and colleagues [651]
reported reduced orbitofrontal activation during a
rewarded continuous performance task in adolescents
with CD, whereas Bjork et al. [652] reported increased
subgenual cortex activation in adolescents with external-
izing disorders during a monetary incentive-delay task.
Finally, Crowley and colleagues [653] found that adoles-
cents with CD and comorbid substance-use disorder dis-
played relative hypoactivation in the striatum and ACC
during risky decision-making for rewards.
Despite evidence that the dopaminergic system plays a

key role in aggression [654,655], only a small handful of
molecular genetic studies implicate DA candidate genes,
including DAT1, DRD2, and DRD4, in the development
of conduct problems [656-659], and no molecular-
imaging study to date has assessed striatal DA signaling
in samples with CD/ODD who are not comorbid for
other conditions.

Dopaminergic treatments Atypical antipsychotics, psy-
chostimulants, mood stabilizers, and α2 agonist agents
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are commonly used to treat CD/ODD [660]) Divalproex
was found it to be superior to placebo in treating explo-
sive temper, mood lability [661], and CD [662] in adoles-
cents. There is initial evidence in the form of open-label
or retrospective chart review studies, of the efficacy of
olanzapine, quetiapine, and aripiprazole in treating ag-
gressive behavior [663]. Risperidone was found to be
well-tolerated and superior to placebo in reducing ag-
gressive behaviors in children with CD [664-666]. Two
large controlled trials found risperidone to be superior
to placebo in ameliorating hostile and aggressive behav-
ior in lower-functioning children with disruptive behav-
ioral disorders [667,668].

Genetic syndromes
Prader-Willi syndrome
PWS is characterized by infantile hypotonia, mental re-
tardation, short stature, hypogonadism, hyperphagia and
early-onset morbid obesity [669]. It has an estimated
prevalence of 1 in 10,000 to 1 in 30,000 births [670]. Ap-
proximately 70% of cases are due to a genetic deletion on
chromosome 15 (15q11–13), 25% of cases are due to a
maternal uniparental disomy of chromosome 15, and the
remaining cases result from imprinting defects [671,672].
Although to date there are no preclinical models of PWS
that clearly implicate the mesolimbic reward system, a
linkage between PWS and reward-processing deficits is
suggested by hyperphagia (abnormally increased appetite
for and consumption of food) and the high incidence of
obesity in affected individuals. PWS is the most commonly
recognized genetic cause of childhood obesity, and obesity
is the primary basis of morbidity and mortality for indivi-
duals with the syndrome. If given access, individuals with
PWS will consume three to six times as much food as
individuals without the syndrome, and show delayed meal
termination, and earlier return of hunger after a previous
meal [673,674]. Children with PWS show enhanced be-
havioral responses to food cues, which do not diminish
after receiving a favorite food [675], suggesting that the in-
centive salience of food is heightened in this population,
and that this heightened motivation is not diminished
with satiation [676]. Appetite disturbance in PWS has
been attributed to the hypothalamic dysfunction that char-
acterizes the disorder, which also causes growth-hormone
deficiency, hypogonadism, and temperature dysregulation
[677].
The enhanced response to food that characterized

PWS suggests that the brain reward-circuitry response
to food may be hyperactive. Indeed, several research
groups have found greater activation in the ventromedial
prefrontal cortex, amygdala, and orbitofrontal cortex
during reward anticipation for food cues in PWS. Miller
and colleagues [678] presented images of food, animals,
and tools, and found that participants with PWS had
relatively greater ventromedial prefrontal cortex activa-
tion to food compared with controls. Holsen and collea-
gues [679] scanned participants with PWS while they
viewed images of food and animals, both before and
after eating a standard meal. They found a group × time
interaction, reflecting the increased activation in orbito-
frontal cortex, medial prefrontal cortex, and insula at
post-meal relative to pre-meal in the PWS groups that
was not evident in the control group. Dimitropoulos and
Schultz [680] reported increased activation in the hypo-
thalamus and orbitofrontal cortex in PWS during high-
calorie versus low-calorie food-reward outcomes.
These initial studies suggest that the hyperphagia in

PWS may indeed be mediated by hyperactivation in
brain-reward networks to food-related stimuli (but
Hinton et al. [681] failed to replicate this finding). In
support of these findings, Shapira and colleagues [682]
showed that in patients with PWS that there was a tem-
poral delay in response to glucose ingestion in the
resting-state activity of a distributed network implicated
in the regulation of hunger and satiation, namely the
hypothalamus, insular cortex, ventral basal ganglia, and
ventromedial prefrontal cortex.
To date there are no published molecular-imaging

studies addressing striatal DA binding in PWS, and the
first-line pharmacologic treatment for PWS is growth-
hormone therapy, which does not regulate DA function.

Williams syndrome
WS (also known as Williams–Beuren syndrome), with a
prevalence of about 1 in 7,500 [683], is a neurodevelop-
mental condition caused by a hemizygous microdeletion
on chromosome 7q11.23, and is characterized by hyper-
sociality and being overly empathic [684,685]. Although
to date there are no preclinical models of WS that
clearly implicate the mesolimbic reward system, the
highly social phenotype of WS suggests a poorly modu-
lated reward-system response to social cues.
There are currently three models of social function in

WS: 1) heightened drive towards non-specific social
interaction (for example, social interactions with stran-
gers) [686,687], 2) heightened emotional responsiveness
[685], and 3) social fearlessness [688]. Only two func-
tional brain-imaging studies to date to have provided
insight into reward processing in WS by assessing
responses to happy and fearful faces. One such study
found relations between amygdala responses to fearful
faces specifically, and symptoms of social approach of
strangers [689], supportive of the social fearlessness
model. Another study found that individuals with WS
show reduced amygdala activity in response to sad faces
and comparable activity in the orbitofrontal cortex for
happy and sad faces, whereas TS individuals show a
heightened orbitofrontal cortex response to sad faces
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[690]. However, both of these studies did not report
responses to the happy-face conditions. In this regard, it
is currently unknown if the phenotype of hypersociality
in WS reflects a hyperactive neurobiological response to
social rewards specifically, or if such behavior is but one
exemplar of indiscriminant heightened approach beha-
viors to a wider range of social-emotional stimuli.
There are no published studies of striatal DAT func-

tion in WS. WS is typically treated by anxiolytic and
antipsychotic agents, but to date there are no systematic
data on efficacy of DA agents to treat WS [691].

Angelman syndrome AS is characterized by intellectual
disability, epilepsy, impaired coordination, and absence
of speech [692]. However, individuals with AS also com-
monly exhibit a characteristic happy demeanor with
prominent smiling, non-specific laughing, a general ex-
uberance [693], and an attraction to water and certain
types of paper and plastics [694], suggesting that the
reward-system function may be a candidate system for
study in this syndrome [695]. The syndrome is caused
by mutations or deletions of the maternal copy of the
gene Ube3a, an E3 ubquitin ligase enzyme that is
involved in targeting proteins for degradation in cells.
Although empirical evidence for altered reward-system
function in individuals with AS is lacking, animal models
suggest there may be some involvement. In elegant gen-
etic studies using the fruit-fly Drosophila, overexpression
or genetic knockout of the Drosophila homolog of
Ube3a respectively increased or decreased DA levels, po-
tentially due to changes in the expression of tetrahydro-
biopterin, the rate-limiting cofactor in monoamine
synthesis in flies [696]. In addition, in a mouse model of
AS, genetic loss of the Ube3a gene resulted in a loss of
DA neurons in the substantia nigra [697], which may
contribute to mechanisms that cause ataxia and motor
deficits apparent in the mouse model of the disease. The
severe developmental delay that characterizes the syn-
drome renders functional neuroimaging research
challenging, and to date there are no functional brain-
imaging data on responses to rewards or molecular
brain-imaging studies in AS.

Rett syndrome RS predominantly affects females and is
caused by mutations in the gene encoding the methyl-
CpG binding protein (MeCP)2, a transcriptional repres-
sor involved in DNA remodeling and regulation of gene
expression. In RS. both loss of function and gain in
MeCP2 gene dosage lead to similar neurological pheno-
types [698]. MeCP2 mutations result in a number of
pathologies including microencephaly, general growth
retardation, motor clumsiness, ataxia, and autistic fea-
tures, including social withdrawal, loss of language, and
stereotypy [699].
Preclinical models Although a connection between
dysregulated mesolimbic DA reward systems and RS is
not currently clear, several studies indicate altered DA
levels and changes in the closely related nigrostriatal DA
pathways in mouse models. It has been suggested that
MeCP2 protein normally functions in the NAc to limit
the rewarding properties of psychostimulants, and that
psychostimulant or DA receptor-induced phosphoryl-
ation of MeCP2 may be involved in the rewarding prop-
erties of drugs of abuse such as amphetamines [700]. In
an engineered MeCP2-deficient mouse model, a postna-
tal reduction of DA and its metabolite homovanillic acid
was seen in the caudate putamen [701,702], suggesting
that MAO and/or COMT levels might be impaired. Loss
of MeCP2 also compromises the nigrostriatal DA path-
way in mice, where the number of DA-synthesizing neu-
rons is significantly decreased in the substantia nigra of
RS model mice [701]. In addition, the DA neurons in
the substantia nigra of MECP2 mutant mice have a
decreased capacitance, total dendritic length, and resting
membrane conductance as early as 4 weeks after birth,
well before overt neurodevelopmental symptoms are
seen in the mouse model [703]. These studies suggest
that nigrostriatal DA deficits may underlie the origin of
motor dysfunctions in RS. Although further studies are
required, there may also be similar deficits in the closely
associated mesolimbic pathway in RS model mice.

Clinical studies Because of the profound cognitive
impairment associated with RS [699], there are no
functional brain-imaging studies of individuals with
this condition because of the cognitive demands of
the functional brain-imaging environment. Molecular-
imaging studies have indicated increased D2 receptor
binding in the caudate and putamen [704], and in the
striatum as a whole [705]. No DA agents are first-line
treatments for RS.

Fragile X syndrome
FXS is the most common inherited cause of intellectual
disability, occurring in 1 in 4,000 males and 1 in 8,000
females [706], and is caused by a mutation of the FMR1
gene on the long arm of the X chromosome(locus
Xq27.3; [707]). The FMR1 full mutation affects cogni-
tion, adaptive behavior, social abilities, and motor skills
[708]. Specific areas of cognitive weaknesses include
communication, mathematics, visual-spatial processing,
executive function, and memory [709-711].

Preclinical models Fragile X model mice have been
developed that encode an engineered mutation in the
FMR1 gene [712], recapitulating the human mutation,
resulting in an absence of FMR1 expression. To identify
potentially related neurochemical mechanisms affected
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by this mutation, Fulks and colleagues [713] used fast-
scanning cyclic voltammetry to measure electrically
evoked DA release in striatal brain slices. In adult mice,
a decrease in stimulated extracellular DA release and re-
uptake was seen in FMR1 mutant mice, which was also
associated with decreased repetitive movements/stereo-
typy. FMR1 has been suggested as important for DA sig-
naling in both the prefrontal cortex and striatum, where
it may interact with G protein–coupled receptor kinase
2, which regulates DA receptor signaling cascades [714].
In studies of FMR1 mutant mice, Zhuo and colleagues
reported that cortical and striatal neurons from the mu-
tant mice exhibit abnormal D1 receptor signaling and
disrupted synaptic plasticity in response to D1 receptor
activation. Remarkably, these neuronal deficits could be
rescued by restoring the FMR1 gene to the mutant neu-
rons [715]. FMR1 is also suggested to be important for
D1 receptor-mediated synthesis of SAPAP3 in prefrontal
cortex neurons; SAPAP3 is a post-synaptic neuronal
scaffolding protein that regulates glutamate receptor
trafficking and function [716]. Together, these studies in-
dicate that FMR1 mutant mice have dysregulated striatal
DA transmission and pre-frontal DA receptor function,
and that these changes may contribute to the mechan-
isms underlying FXS.

Clinical studies No functional brain-imaging studies to
date have assessed responses to rewarding stimuli in
FXS. Rather, given that individuals with FXS display so-
cial impairments that may be similar to those seen in
ASD [717,718], it is not surprising that functional brain-
imaging studies of FXS have focused almost exclusively
on responses to social stimuli. To the extent that, in
neurotypical development, social stimuli such as faces
are rewarding [719], these studies may indirectly address
the integrity of reward-circuitry function in FXS, al-
though future studies designed to investigate striatal re-
sponse to other rewards in FXS are needed.
Garret and colleagues [720] reported relatively

decreased activation of the fusiform gyrus and superior
temporal sulcus and increased right insula activation to
images of faces in FXS. The authors suggested that these
results may reflect anxiety provoked by the face stimuli.
Watson, Hoeft, Garrett et al. [721] showed this same
stimulus set to boys with FXS, and replicated the finding
of greater insula activation (although on the left side) to
direct gaze. Holsen et al. [722] reported decreased cin-
gulate and left insula activation in individuals with FXS
in response to images of familiar fearful faces and in-
verse relations between social anxiety and activation in a
number of regions, including a cluster in the left inferior
frontal gyrus near the insula. These authors speculated
that social anxiety in FXS has a cascading effect on mul-
tiple aspects of cognition. Finally, Dalton et al. [723]
compared responses in groups with FXS and with autism
during the processing of emotional faces, and found that
in response to faces, the FXS group had higher activa-
tion in the right insula (among other regions) compared
with both the autism and control groups, a finding that
the authors suggested may be linked to social anxiety.
The only published molecular-imaging study of striatal

DAT binding is a small investigation of four patients
with parkinsonism carrying the FXS permutation, which
found initial evidence of decreased striatal binding [724].
However, there is evidence that DA functioning may be
atypical in FXS, as shown by high rates of comorbidity
with tremor disorders [725], higher blink rates [726],
and emerging preclinical models [714].

Dopaminergic treatments Children and adults with
FXS are regularly prescribed stimulants, antidepressants,
anticonvulsants, and antipsychotics [727-729]. Psychosti-
mulants are the most often prescribed psychoactive medi-
cation to treat FXS [730], with initial randomized
controlled trial data of response to methylphenidate and
dextroamphetamine suggesting moderate response rates
on attention and social skills [731]. Preliminary studies of
aripiprazole in FXS have also found evidence for an im-
provement in clinical symptoms and irritability [732,733].

Conclusions
The central tenet of this review is that multiple neurode-
velopmental and psychiatric disorders and genetic syn-
dromes share a common neurobiological characteristic,
namely, altered functional output of striatal DA systems
mediating the processing of rewards. This framework
suggests the need for new methods of phenotypic assess-
ment that cut across traditional symptom-based surveys
developed to assess functioning based on traditional,
category-based classification systems such as DSM [1]
and the International Classification of Diseases [734].
Given that a significant portion of the disorders
reviewed here respond favorably to treatment by psycho-
pharmacologic agents that primarily affect DA systems,
investigations of reward-circuitry functioning in psycho-
pathology may have direct relevance not only for etio-
logical models of disease mechanisms, but for the
potential mechanisms of effective interventions and the
development of treatment agents. Although treatment
effects do not necessarily indicate pathophysiological eti-
ologies, the efficacy of dopaminergic agents represents
supportive preliminary evidence of a potential common
etiology in a number of conditions.
However, we recognize that the one-to-one linking of

mesolimbic DA function with reward response is clearly
overly simplistic [45]. The mesolimbic DA system repre-
sents only one component of a very complex and inte-
grated set of circuits, and although DA is clearly a
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crucial neurotransmitter in the reward-processing sys-
tem, non-DA systems clearly also modulate reward re-
sponsibility [19,735]. Additionally, there are multiple
brain regions not addressed in this review that contrib-
ute to reward processing, including the subthalamic nu-
cleus and ventral pallidum, the subiculum, the lateral
habenula, and the extended amygdala [736,737]. Add-
itionally, multiple non-DA compounds have shown
efficacy in improving reward responses, such as agents
that affect glutamate circuits involved in regulating
monoamine systems [19]. Consequently, the purpose of
this review is to serve as a starting point for consider-
ation of DA-mediated reward-system dysfunction as a
potential common etiologic factor in a range of condi-
tions. Future research aimed at understanding linkages
between disease phenotype, reward function, and treat-
ment response will clearly have to consider other inter-
acting systems and neurotransmitters.
A host of unanswered questions remain about how

ascending DA projections and their forebrain targets con-
tribute to aspects of reward processing [738,739]. For ex-
ample, even within the context of DA systems, it is not
clear whether increased and decreased reward-oriented
motivation is a result of decreased or increased sensitiv-
ities of DA and associated systems [735,740]. Moreover,
the striatum and associated DA systems play a prominent
role in processing aversive stimuli and processing rewards
[741,742]. Hence, the present review is intended to high-
light initial evidence of the relevance of DA reward to neu-
rodevelopmental and psychiatric disorders, but clearly
future studies are needed to address other brain circuits,
neurotransmitters, and motivating stimuli.
Another limitation of this line of research is that the ma-

jority of clinical studies summarized in this review assessed
responses to standardized rewards, such as money or
standard picture sets. This approach relies on the implicit
assumption that standardized stimulus sets are a reason-
able proxy for individual-specific stimuli. In the realm of
nonclinical cognitive neuroscience, this assumption seems
to be valid [97]; however, the concordance of results using
standardized versus individual-specific stimuli is largely un-
known in clinical contexts. Additionally, there are a num-
ber of contexts in which reward-system dysfunction in a
given disorder may be contingent on a particular class of
stimuli (for example,, addiction cues in substance abuse
[148], food images in eating disorders [326], and sad pic-
tures in unipolar depression [232]). Although this issue
complicates cross-disorder comparisons, this variability in
response-eliciting stimuli leads to distinct phenotypic
expressions in different disorders.
Future research is needed to delineate linkages between

laboratory measures of reward processing and real-life
experiences of incentive motivation, positive affect,
reward-seeking, and risk-taking tendencies. The few
studies that have evaluated potential relations between
mesolimbic neural activity and subjectively experienced
reward [220] or motivation to work for rewards [154] have
yielded promising initial results suggesting the external
validity of laboratory-based measures of reward processes,
but research on the ecological validity of reward-
processing endophenotypic measures is needed. Addition-
ally, the development of measures sensitive to reward-
system integrity and suitably sensitive to change for inter-
vention studies are also needed. Although self-report
[743-745] and behavioral [209,746] measures of reward
capacity have been developed, their association to neuro-
biological function has proven to be limited. As suggested
by Treadway and Zald [19], an implication of clinical
neurobiological research into reward-system dysfunction
may be the modification of psychiatric interviews to frame
and code questions to tap hedonic capacity and motiv-
ation towards certain classes of stimuli.
Another area in need of greater research is reward-

circuitry function in comorbid disorders. Given that the
conditions reviewed here share mesolimbic dysfunction, it
is perhaps not surprising that there are high rates of
comorbidity between these disorders. For example, there
are high rates of comorbidity between substance abuse
and other Axis I conditions [747-749], schizophrenia and
bipolar disorder [750], and ASD and mood and anxiety
disorders [751]. A number of explanations for the high
comorbidity rates have been suggested, including shared
genetic etiology, self-medication of symptoms, and com-
mon socioenvironmental determinants [752,753], but only
multi-group studies that directly compare cases with
comorbid disorders will be able to distinguish the nature
of reward-circuitry dysfunction in these contexts.
Finally, as previously noted, the vast majority of clin-

ical research into reward-circuitry function is cross-
sectional in nature, and has focused only on adults.
Given the importance of brain development prior to
adulthood, the study of reward-related processes during
development will be crucial to disambiguate the prox-
imal effects of altered reward-circuitry function from its
more downstream effects on learning, motivation, and
overall functioning [754-756]. There may be critical
periods during early development when mesolimbic
dysfunction creates a predisposition to any number of
disorders, and understanding the factors that mediate
these processes will be essential for treatment and the
prevention of symptom onset.
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