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Abstract

Background: The complex interplay between viral replication and host immune response during infection remains
poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication,
highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than
reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV),
we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize
candidate regulatory targets for further investigation.

Results: We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology
provides significant predictive power to identify genes that are important for viral infection. We identified a novel
player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1)
complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory
cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation.

Conclusions: The current study provides validation of network modeling approaches for identifying important
players in virus infection pathogenesis, and a step forward in understanding the host response to an important
infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well
as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have
reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive
study to confirm that network topology can be used to predict phenotypes in mice with experimental validation.
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Background
The emergence of Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV), and more recently Middle
East Respiratory Syndrome Coronavirus demonstrate the
threat of coronavirus zoonosis to human health and the
global economy [1–3]. SARS-CoV is a positive stranded
RNA virus that emerged in 2002 and 2003 in
Guangdong Province, China likely from a pool of closely
related coronaviruses that circulate in horseshoe bats
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[4]. Infected patients typically presented with fever and
evidence of respiratory illness, general malaise and lower
respiratory tract symptoms including cough and short-
ness of breath, and had an overall fatality rate of ap-
proximately 10 % [5]. Despite this threat we are poorly
prepared to develop rapid strategies to ameliorate cor-
onavirus disease severity in an outbreak setting.
Viral pathogenesis has been extensively studied for de-

cades, yet the root causes remain poorly understood.
Furthermore, high mutation rates of RNA viruses allow
them to quickly adapt to changes in their host environ-
ment resulting in a complex system of virus and host re-
striction factor evolution [6]. While several endpoints of
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viral infection can be measured in animal models of dis-
ease (e.g., viral replication, immune cell infiltration, body
weight loss, time to death), the molecular and cellular
mechanisms that determine the severity of these effects
are not well-resolved. However, high throughput mo-
lecular approaches offer a way to discover novel host re-
sponse genes, proteins, and pathways that contribute to
the systems-level development of pathogenesis.
A key tool of systems biology, network-based strategies

can provide contextual information about broad spectrum,
druggable targets, such as host regulatory proteins that
drive the critical functional responses comprising the
pathobiology of these viruses [7]. Network-based methods
have been used to identify critical regulatory nodes within
signaling networks and produce mathematical models of
disease processes [8–12]. Analysis of coexpression-type net-
works has been used previously to identify genes and pro-
teins of increased importance to controlling system-wide
host responses [10, 12–15]. The topological locations of
genes in these networks can be used to identify hubs, genes
that are connected to many other genes and therefore may
be exerting a regulatory influence, and topological bottle-
necks, genes that bridge disparate sub-networks and may
serve as mediators of transitions between system states
[16–18]. Recently, a node’s participation in network motifs
in directional networks was shown to be an effective
predictor of importance [19]. However, directional inter-
action networks are not always available for a given system,
making methods for studying non-directional networks of
interest. While topology-based approaches have been
validated for in vitro systems, it is not clear that topology of
co-expression networks derived from complex tissues with
multiple cell types will be effective in prediction of
whole-organism phenotypes. Additionally, little if any
systematic experimental validation of network-based
predictions made from whole organism studies has
been undertaken.
Previously, we published time course studies of SARS-

CoV infection in mice, gathering transcriptomic data
from multiple time points and doses. We analyzed these
data to identify critical targets using weighted gene
correlation network analysis (WGCNA), an approach
which groups similarly behaving genes into modules,
then identifies genes with the most representative ex-
pression behavior within each module [20]. Here we se-
lect additional targets using the previous dataset and
determine their role in SARS-CoV infection in mice.
Weight loss phenotypes from infections in selected null
mice were examined in new experiments reported here
as well as from previously published studies. We identi-
fied a novel player in the immune response to virus in-
fection, Kepi, an inhibitory subunit of the PP1 complex,
which protects against SARS-CoV pathogenesis. We also
found that receptors for the proinflammatory cytokine,
TNFα, promote pathogenesis, presumably through ex-
cessive inflammation. Our results reveal new insight into
the critical balance between over- and under-stimulating
the innate immune response to infection. We validated
several network-based approaches systematically using
multiple KO mouse strains from this and previous stud-
ies, and found that ranking genes based on their network
topology makes even better predictions of effect on
pathogenesis than does WGCNA or simple differential
expression. This study represents a critical step toward
the validation of computational modeling approaches
which can explain the mechanisms underlying changes
in pathogenesis and predict regulators critical to this
process. This is the first instance of confirmation that
network topology can be used to predict phenotypes in
mice with experimental validation. Also, the confirmed
role of TNFα receptors and the new role of Kepi are
novel contributions to SARS-CoV literature.

Results
Generation of transcriptomic network models
To generate networks representing host response to viral
infection, we analyzed the transcriptional response to
SARS-CoV infection from a recently published study
[20]. In the previous study 20-week-old C57BL/6 J mice
were mock-infected or infected with SARS-CoV at 102,
103, 104, and 105 plaque forming units (PFU). Lung tis-
sues were collected at 1, 2, 4, and 7 days post-infection
(DPI) for microarray analysis. Mice infected with the
highest dose experienced severe weight loss and either
succumbed to infection or required humane euthanasia
[20, 21]. Mice infected with all other doses experienced
transient weight loss and recovered from infection. We
used the transcriptomic data from this experiment to
generate modules using the weighted gene correlation
network analysis (WGCNA), which establishes groups or
modules of genes representing the main expression
patterns in the process being studied [20]. WGCNA
identifies genes that are highly central to modules
(groups of similarly expressed genes), thus having high
module centrality scores (KME); these genes are postu-
lated to play an important role in overall function such
as pathogenesis. We used this approach in the previous
study to identify Serpine1 as important for SARS-CoV
pathogenesis.
This approach identifies genes that are related to each

other by expression pattern, but not those that are
highly central to the complete system. To address this
we generated an association network to identify topo-
logical bottlenecks, which are genes whose expression
patterns are similar to those of two groups of co-
expressed genes, and thus form a link between these
modules in the network. We first constructed a network
of genes related by mutual information in expression
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patterns over time using the context likelihood of re-
latedness (CLR) method [22], as we have done previ-
ously to identify regulatory relationships, functional
associations, or simply coordinated behavior [13, 23, 24].
Similar to protein-protein interaction networks, we have
found that topological bottlenecks within transcriptional
networks are significantly enriched in genes that have
particular importance to the systems-level phenotypes
being studied in the experiments [12, 23–27]. In the
current study, genes identified as topological hubs and
bottlenecks are predicted to play important roles in
regulating the host response to viral infection, and may
affect virus-induced disease severity.
We hypothesized that, in general, centrality in asso-

ciation networks and gene expression modules could
identify important components of the host response
to SARS-CoV.

Assessment of network predictive power
To examine this hypothesis we ranked all genes in our
transcriptional network using betweenness centrality
[28] and degree centrality, as well as Kme values from
WGCNA analysis [20]. To evaluate the performance of
the rankings, we gathered a set of 11 previously pub-
lished SARS-CoV infection studies [20, 29, 30] with KO
mouse strains (Table 1). We considered studies where
weight loss was used as a measure of pathogenicity.
Using the compiled weight loss data, we evaluated

different ranking approaches for their ability to predict
phenotypic outcome. We assessed the ability of the
Table 1 Summary of targets validated

Rank Network Bottleneck Network hub

1 *Stat1 *Ccr5

2 *Ccr5 *Myd88

3 *Myd88 *Stat1

4 *Kepi *Kepi

5 *Serpine1 Cxcr3

6 *Ccr1 Ido1

7 Cxcr3 *Ccr1

8 Plat *Serpine1

9 Ido1 Il28ra

10 Ptges2 Plat

11 Il1r1 *Ccr2

12 Il28ra Ptges2

13 *Ccr2 Il1r1

14 Ifnar Il18r1

15 Il18r1 Ifnar

Asterisks(*) designate null mice with altered weight loss phenotypes. Each column
Myd88, Il18r1, and Il1r1 assessed in Sheahan et al. 2008 [30]. Stat1, Ifnar, and IL28ra
etal. 2013 [20]. All others assessed in the current study. For Stat1 and Ifnar, backgro
**Ranked by absolute differential expression versus mock at day 1 post-infection
individual topological ranks (bottlenecks using between-
ness and hubs using degree centrality and Kme) to
classify genes as to their pathogenesis phenotypes in KO
mice. We also included differential expression, a
standard method for predicting gene importance,
from day 1 post-infection. Assessment was per-
formed using a receiver-operator characteristic
(ROC) curve, which takes into account the levels of
false positive and false negative predictions at the
same time without the need to place an arbitrary
threshold for the ranking. The area under the ROC
curve (AUC) will be 1.0 when the method perfectly
classifies the examples with no false positive or false
negative predictions, and it will be 0.5 for rankings
that are equivalent to random choice of examples.
This assessment revealed that network measures could

predict phenotype very well yielding ROC AUCs of 0.9,
0.93, and 0.83 for betweenness centrality, degree central-
ity, and WGCNA Kme, respectively. Differential expres-
sion after infection performed slightly worse than
network measures, giving an ROC AUC of 0.77. Though
these results were promising we wanted to validate the
approach on novel predictions to further characterize
the method.

Target selection and validation
We therefore followed up on more candidates by con-
ducting SARS-CoV infections in null mice. In the previ-
ous study, a single WGCNA module (and its associated
genes) was selected for follow-up study based on its
WGCNA Differential expression**

*Myd88 Cxcr3

*Ccr5 *Ccr5

Cxcr3 *Serpine1

*Stat1 *Ccr1

*Kepi Ido1

Ido1 Plat

Plat *Stat1

*Serpine1 Il1r1

Il28ra Il18r1

*Ccr1 *Ccr2

*Ccr2 *Myd88

Il18r1 Ifnar

Ptges2 Il28ra

Il1r1 Ptges2

Ifnar *Kepi

represents a ranking of the genes using the indicated metric. Ccr1, Ccr2, Ccr5,
assessed in Frieman et al. 2010 [29]. Serpine1 and Plat assessed in Gralinski
und strain used was 129. For Il28ra, background strain used was Balb/c.
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unique properties. For the current study, we selected
KO target genes based on various criteria. Tnfrsf1b and
Kepi had high (96.9) and moderately high (85.8) percent-
ile scores for network degree centrality, respectively. In
addition, given the fact that Tnfrsf1b and Tnfrsf1a
constitute the primary receptor for TNFα as a hetero-
complex, we included the Tnfrsf1a/1b−/− double KO as
well. Cxcr3, Ido1, and Ptgs2 were also selected based on
prior interest in identifying critical mediators of the im-
mune/inflammatory response not previously known to
influence SARS-CoV infection. Importantly, all choices
were heavily influenced by KO mouse availability. We
reasoned that allowing KO availability to influence target
selection (instead of choosing candidates at the absolute
top of network rankings) was a reasonable approach,
since network-based scores are not expected to rank
genes in the precise order of their level of impact on bio-
logical processes, but are rather likely to position genes
in approximate rankings of importance. Additional file 1
shows the network degree centrality scores for the se-
lected genes, which fall across a range of values due to
the various criteria used to select them.
Groups of mice were infected with SARS-CoV and

assessed for weight loss over a seven-day period along
with appropriate wild type control infected mice, similar
to previously published studies [20, 29, 30]. Titer and
weight loss for these mutants are provided in Additional
file 2. For each experiment we determined whether the
null mouse had a significantly altered phenotype relative
to wild type as assessed by weight loss. Though this may
be an imperfect measure of pathogenesis it is an ac-
cepted method that has been utilized broadly [20, 29,
30], and importantly in the studies we used to validate
our network method. Because the combined previous
and current experiments provided data for genes occu-
pying a wide range of network score values, we assessed
the effectiveness of network betweenness, network de-
gree centrality, and WGCNA analysis in identifying
Fig. 1 Topological rankings work better to predict mouse phenotype than
to correctly classify genes as having a significant effect on pathogenesis as
SARS-CoV (see Table 1) was assessed using a receiver-operator characteristi
The differential expression (DE) category indicates the range of AUC values
post-infection combinations
genes relevant to SARS-CoV infection. Thus our assess-
ment considers whether network topology can discrim-
inate between presence/absence of phenotype (Table 1).
The results of performing an ROC analysis on the

combined set of published and novel targets (Fig. 1)
show a clear ability of network approaches to accurately
classify pathogenesis phenotypes of null mutants as
compared to random classification, recapitulating our
results based on previously published null mouse infec-
tions. In comparison, differential expression ranking per-
formed worse with the addition of our new targets with
an AUC of 0.59, compared to 0.77 considering only the
previously published results. While degree centrality was
originally used to select some of the novel targets, our
assessment shows that betweenness centrality works at
least as well. Because of the inclusion of genes from all
portions of the ranking (not just our top predictions), we
demonstrate the value of the network topology approach
to predict phenotype and identify mechanisms for
pharmacological intervention of viral infections.
Since the effect of perturbing TNFR was only observed

with the double-KO (see below), the individual scores of
the two synergistic genes were judged to be non-
meaningful for this analysis; thus we removed TNFR-
null mouse strains from our ranking performance assess-
ment. This points out a limitation of the analysis for
treatment of closely interacting individual genes, and
suggests that network analysis methods to handle this
kind of redundancy are needed.

Kepi and TNFα play opposing roles in pathogenesis
We found that two targets, Kepi and TNFR had op-
posing effects on pathogenesis in mice. Kepi (gene
symbol: Ppp1r14c), was a moderately high degree cen-
trality gene with no previous association with viral
pathogenesis. Kepi is a protein kinase C-regulated
inhibitor of PP1 activity, and PP1 is an important
regulator of a number of cellular processes including
differential expression or expert selection. The ability of each method
determined by weight loss different than wild-type mice infected with
c curve (ROC). The area under the curve (AUC) is shown in the legend.
obtained when genes were ranked by DE from all viral dose and day
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muscle contraction, neuronal activities, splicing of
RNA, cell division, apoptosis, protein synthesis, and
regulation of membrane receptors and channels [31,
32]. From our weight loss data we found that at 4
through 7 DPI the Kepi−/− mice had significantly
more weight loss than the wild type animals, indicat-
ing that Kepi may play a protective role against se-
vere SARS-CoV-induced disease (Fig. 2). Uninfected
Kepi−/− mice showed no weight loss (data not shown).
Titers from infected mice show a trend toward a
modest increase in Kepi null mice, although the dif-
ference does not reach significance (Additional file 2).
The TNFα receptor 2 (Tnfrsf1b) was identified by our

analysis as having high degree centrality but we found
that infection of Tnfrsf1b−/− mice had only a modest
and non-significant effect on the weight loss phenotype
(data not shown). TNFα has two main receptors
Tnfrsf1a and Tnfrsf1b, and is a primary mediator of in-
flammation that has been implicated as important in re-
sponse to upper respiratory virus infection [33–35].
Accordingly, we also investigated the response of
double-null Tnfrsf1a/1b−/− mice to infection with SARS-
CoV. As can be seen in Fig. 2, the double-null mouse is
significantly protected from weight loss associated with
infection, indicating that TNFα may promote pathogen-
esis in SARS-CoV infection through two redundant
receptors.
Though the effects on weight loss in these mutant

mice were somewhat modest, the results were consistent
and repeatable across the five mice tested for each tar-
get, providing a reasonable assessment of statistical sig-
nificance for the results obtained.
Fig. 2 Kepi and TNFRs exhibit opposing effects on pathogenesis of
SARS-CoV. C57BL/6 J mice lacking Kepi or Tnfrsf1a/b were infected
with SARS-CoV at varying 103 PFU. Weight loss expressed as the
mean percentage of starting weight for five mice per time point up
to 4 days post-infection, and three mice for 5–7 days post-infection
is shown (y axis) plotted over time post-infection (x axis). Error bars
indicate standard error of the means
Validation of network model structure
Our transcriptional network model identified key com-
ponents of SARS-CoV pathogenicity. If our network
model reflects the true structure of the underlying regu-
latory machinery, albeit at a lower resolution, then dele-
tion of a target gene in an experimental system should
disrupt the expression of genes adjacent to the target in
the predicted network, or network “neighbors”. In order
to test this hypothesis, we identified network neighbors
of Kepi and Tnfrsf1b from the wild type infection
studies, as well as genes co-occupying the same
WGCNA modules of these genes. We then analyzed the
transcriptomes of the KO mouse strains during SARS-
CoV infection (see Methods) and compared the genes
predicted to be altered in the KO strain (the network
neighbors) with those that were actually altered by tran-
scriptome analysis. Because our network models do not
predict activation or repression effects, we can only pre-
dict that deletion of a target will have a significant effect
on the expression of its direct neighbors, as compared to
all other genes in the network. Figure 3 shows the ex-
pression changes in the target gene’s modules and net-
work neighborhoods in infected KO mice. Deletion of
the target genes caused predicted neighborhood genes to
be significantly differentially regulated relative to infec-
tion of wild type mice (p values < 0.001) for all cases ex-
amined. Not only were the gene expression values of
neighborhood genes significantly different from other
network genes, the overlap between neighborhood genes
and differentially expressed genes was significant as well
(p < .05 by permutation test). These results support the
predictions from our network models that deletion of a
target gene would affect expression of those genes pre-
dicted to be downstream.

Functional effects of Kepi and TNFR deletion on SARS-
CoV pathogenesis
We anticipated that the phenotypes of the resistant
Tnfrsf1a/1b−/− mice and susceptible Kepi−/− mice re-
spectively would be reflected in the expression profiles
of functional gene subsets, and that this information
could provide insight into the mechanisms behind the
observed phenotypes. Gene expression in the KO mice
was examined after SARS-CoV infection and differen-
tially expressed genes between infected wild type and
KO mice were clustered based on their expression pro-
files and associated with functional gene ontology (GO)
categories arising from enrichment analysis (Fig. 4a;
average fold changes for each cluster are provided in
Additional file 3). A heatmap of gene fold change values
for the indicated clusters is provided in Additional file 4.
The marked increase in pathogenesis we observed in the
Kepi−/− mice was accompanied by modest increases
(relative to infection of wild type mice) across most



Fig. 3 Validation of network predictions. Network neighborhoods for each of the target gene deletions tested were assessed for their expression
difference from the rest of the network using a Student’s t test. Neighborhoods are defined in terms of the WGCNA module that contains the
target gene (blue bars) or the first-order network of the target gene from the CLR-inferred network (red bars). All comparisons shown have p
values less than 0.001. Standard error is shown for each data point as error bars. Negative mean expression indicates that deletion of the target
gene is reducing the expression of its neighborhood compared to response in a wild type mouse
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immune response-related clusters (only clusters with
discernible functionality are shown). The Tnfrsf1a/1b de-
letion showed a somewhat opposite decrease for most
clusters at day 4, with this trend resolving or partially
reversing at day 7. Previous studies with various influ-
enza strains found that increases in pro-inflammatory
processes were correlated with increased levels of patho-
genesis [36]. Our results for Tnfrsf1a/1b seem to agree
with this finding, since day 4 data reveals that the
A

B

Fig. 4 Fold changes in mut/WT for cluster categories and GO terms. a Exp
were analyzed using hierarchical clustering; the functional content of these
average direction of fold change elicited by the mutant for the cluster are
values were calculated using permutation tests of random gene groups ha
calculated as in (a), except genes were grouped for fold change analysis us
apoptosis = GO:0006915, neutrophil apoptosis = GO:0001781, GO:0033029, G
inflammation-related cluster is significantly down-
regulated. Although day 7 shows a partial reversal of
this effect, the infection is largely resolved at this
point and therefore this reversal is unrelated to
pathogenicity. Interestingly, the Kepi−/− demonstrated
an increase in expression for genes in the same clus-
ter. It could therefore be surmised that the increased
pathogenicity in the Kepi−/− is a direct result of in-
creased inflammatory activity due to absence of the
ression data of mutant and WT mice from infection with SARS-CoV
clusters was determined using functional enrichment analysis. The
shown coupled with p-values for the significance of the change. P-
ving identical sizes to the gene group under test. For (b), values were
ing selected GO terms instead of gene expression clusters. General
O:0033030, GO:0033031, GO:0006925, inflammation = GO:0006954



McDermott et al. BMC Systems Biology  (2016) 10:93 Page 7 of 12
gene. However, this is unlikely because of Kepi’s func-
tion as an inhibitor of the protein phosphatase PP1,
which is known to regulate diverse cellular functions.
PP1 opposes the following pro-inflammatory pro-
cesses: TNFα activation, NF-kB activation [37], pros-
taglandin synthesis [38], neutrophil activation through
inhibition of ROS generation, and promotes down-
regulation of pro-inflammatory genes. Thus the ob-
served increase in genes related to inflammatory pro-
cesses may be a compensatory response caused by
chronic absence of PP1 inhibition (see Discussion).
PP1 has also been shown to contribute to apoptosis
signaling in neutrophils [39, 40]. Accordingly, we saw
a gene expression increase in the cluster associated
with leukocyte apoptosis in the Kepi−/− mice at both
4 and 7 DPI, suggesting that the removal of the block
on PP1 causes an increase in apoptotic mechanisms.
These findings were borne out by examining expres-
sion of all genes associated with the GO terms “in-
flammatory response”, “apoptosis”, and “neutrophil
apoptosis” (Fig. 4b). Interestingly, an effect on apop-
tosis could only be observed when the more specific
“neutrophil apoptosis” term was used. Fold changes
and significance measures for genes in all clusters are
provided in Additional file 5.
Neutrophils and monocytes are known to be key

players in an inflammatory loop induced in influenza
pathogenesis [36]. Accordingly, we examined expression
profiles of genes specific to these cells in Kepi- and
Tnfrsf1a/1b−/− mutant mice. Consistent with the role of
infiltrating neutrophils and monocytes in response to in-
fection, we observed significant down-regulation of both
monocyte (p-value = 0.00038) and neutrophil (p-value =
0.0036) markers in the protected Tnfrsf1a/1b−/− mice at
day 4 post-infection, but not at day 7 (Additional file 6).
The susceptible Kepi−/− mice have somewhat elevated
expression of neutrophil and monocyte markers at both
time points, but as discussed above and the Discussion
section, this is not likely to be a direct result of Kepi
loss/PP1-activation, but is likely a compensatory effect.

Discussion
In this study we employed network-based models of host
response to SARS-CoV to predict target nodes critical to
the pathogenesis of infection. We make two contribu-
tions in this paper. Firstly, we demonstrate that ranking
genes using unbiased network analysis provides good
prediction of pathogenic phenotype in KO mice relative
to levels expected by random chance. Second, our work
highlights the critical balance involved in regulating in-
flammatory machinery during SARS-CoV infection, and
suggests that inhibition of TNFα or PP1 signaling may
represent viable avenues for future investigations into ef-
fective pharmaceutical therapies.
Our network models of mouse lung response to infec-
tion with SARS-CoV were based only on transcriptional
data from infection of wild type mice. To demonstrate
the efficacy of our approach, we compiled results of KO
mice from this and other studies that tested the role of
various genes in SARS-CoV infection of mice. These
candidates resulted in roughly equal numbers of positive
and negative outcomes, and thus represented an effect-
ive test of our approach. Target candidate identification
through network analysis has been used previously, but
in silico/in vitro validation has only occurred in cell cul-
ture and bacterial systems [14, 24, 25, 27]. We found
that our modeling approach using network hub or
bottleneck ranking provides significant prediction of
genes important in pathogenesis. The results from this
study and previous studies validated our approach show-
ing that network approaches perform better than differ-
ential gene expression to identify important genes for
pathogenesis.
We then showed that the network neighborhood pre-

dictions made by these network models were consistent
with expression data derived from KO mice infected
with virus (Fig. 3). Though these studies only validated a
portion of the network models, this is an important step
toward construction of more robust and complete
models of pathogenesis, especially in relationship to how
single gene KOs perturb the host signaling networks and
understanding redundancy.
It is clear however, that improvements in modeling

will result in more mechanistic hypotheses and quantita-
tive relationships, which are currently lacking in our ap-
proach. For example, the gene expression network
developed in this study does not predict directionality,
and it is clear from our transcriptional analysis of the
KO mice that the effect on predicted downstream genes
is not complete. Future studies can use these data to re-
fine the network model and provide predictions of de-
pendency and directionality.
Our results reveal opposite effects of Kepi and TNFα

receptor removal during SARS-CoV infection. Figure 5
depicts possible mechanisms for the effects of removing
TNFα or Kepi during SARS-CoV infection. As shown in
Fig. 5a, Kepi is known to inhibit PP1, which drives
apoptosis in neutrophils. In general PP1 exerts an anti-
inflammatory effect on innate immune machinery, such
that Kepi-mediated PP1 inhibition promotes inflammatory
processes. Removing Kepi (Fig. 5b) releases the restraint
on PP1, likely resulting in a general downregulation of in-
nate immunity and decreased capacity to resist the effects
of infection and increased pathogenicity. TNFα is a potent
driver of leukocyte-mediated inflammation which in the
case of normal SARS-CoV infection likely causes signifi-
cant tissue damage. Removal of TNFRs (Fig. 5c) may dis-
able a component of the inflammatory response, such that



Fig. 5 Kepi and TNFα signaling during SARS-CoV infection. Proposed model for the influence of Kepi, PP1, and TNFα signaling on SARS-CoV-
mediated lung pathogenesis during WT conditions (a), Kepi deletion (b), and Tnfrsf1a/1b deletion (c). Bold lines indicate strong effects, thin lines
indicate weak or diminished effects; dashed lines indicate indirect effects
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tissue damage is diminished. However, non-TNFα-related
mechanisms (e.g. through IL1β, TLR4 etc.) could still be
able to control progress of the infection, and the net result
is decreased pathogenicity. Thus our studies appear to
have highlighted the role of a critical balance between too
little and too much inflammation in pathogenesis during
murine SARS-CoV infection. Interestingly, we found that
the expression of Kepi doubles in Tnfrsf1a/1b−/−mice dur-
ing infection (not shown), suggesting the presence of a
negative feedback loop between Kepi and TNFα signaling.
While Kepi and TNFα signaling do not directly oppose
each other and they are clearly not the only two important
components of inflammatory regulation, study of both
null mice reveals that simultaneously promoting Kepi-
mediated repression of PP1 signaling and limiting TNFα-
driven inflammation may lessen the pathogenic effects of
SARS-CoV infection.
This balance has been demonstrated previously by

showing that targeting SARS-CoV-driven inflammation
through NF-kappaB signaling can alleviate SARS-CoV
pathogenicity in mice [41]. Targeting inflammation dur-
ing SARS through TNFα inhibition has been previously
recommended based on bioinformatics analysis and
expert opinion; however the current study provides the
first experimental evidence for this hypothesis. In
addition, since loss of Kepi results in increased patho-
genesis, PP1 inhibition represents a second possibility
for follow-up studies on SARS-CoV pharmaceutical
treatment. Since removal of the innate PP1 inhibitor
likely has the effect of crippling the immune response,
exogenous inhibitor may have the desired effect of
enhancing innate immunity to an optimal degree, al-
though careful titration of therapeutic doses may be ne-
cessary to avoid an overactive immune response, and
toxicity may be an issue. Inhibition of TNFα receptor
signaling may represent a more promising potential
therapy, since total deletion of TNFRs led to a favorable
outcome. The presence of semi-redundant innate im-
mune signaling remaining in TNFR-null mice is appar-
ently sufficient to control SARS-CoV infection, so that
signaling through these receptors can be aggressively tar-
geted. Future studies will investigate the effects of these
pharmaceutical therapies using the mouse model.
One seemingly contradictory result was the elevated

expression of inflammation-related genes in Kepi−/−

mice. This appears surprising given the antagonistic na-
ture of PP1 signaling toward innate immune processes.
Removal of the PP1 inhibitor results in unregulated PP1
activity, which shuts down innate immune response cas-
cades and promotes neutrophil apoptosis, although one
report documented PP1 opposing apoptosis in these
cells [42]. Since transcriptomics studies can only moni-
tor mRNA transcript levels, data from protein phosphor-
ylation states (where much of the critical signaling
events may be manifested) were not collected in this
study. Induction of these genes is likely an attempt to
augment immune response signaling in the face of un-
checked PP1. The slight increases in neutrophil- and
monocyte-specific genes in the Kepi−/− mice may suggest
that rather than decreasing levels of neutrophils through
apoptosis, PP1 is shutting down inflammatory pathways
within these cells in mutant mice. Thus while gene
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expression is increased, phosphatase activity may still neg-
ate much of the intended signaling response to infection.
Interestingly, removal of several other components of

the immune response in previous work also resulted in
susceptible phenotypes. Deletion of chemokines and
receptors important for neutrophil and monocyte re-
cruitment and chemotaxis (Ccr1, Ccr2, and Ccr5) all in-
creased pathogenesis (Table 1) [30] and lung pathology,
indicating that these genes play an essential role in pro-
tecting the host from SARS-CoV pathogenesis. Deletion
of Ifnar, which plays an important role in antiviral ef-
fects, did not have a significant effect on pathogenesis of
SARS-CoV [29], likely due to the number of interferon
antagonists encoded in the SARS-CoV genome. This
was also true of the cytokine receptor Il1r1, which is a
mediator of inflammation, and Cxcr3, a chemokine re-
ceptor implicated in neutrophil involvement in ARDS
[43]. Given these observations and the somewhat modest
effects on weight loss exhibited in our study, the effects
of Kepi and Tnfrsf1a/1b on pathogenesis are likely to be
part of a larger picture involving inflammation and their
roles will require further investigation.

Conclusions
The current study provides 1) validation of network
modeling approaches for identifying important players
in virus infection pathogenesis, and 2) a step forward in
understanding the host response to an important infec-
tious disease. The results presented here suggest the role
of Kepi in the host response to SARS-CoV, as well as in-
flammatory activity driving pathogenesis through TNFα
signaling in SARS-CoV infections. These results will be
further investigated in future studies, which will include
testing of pharmaceutical compounds. Though we have
reported the utility of the approach in bacterial and cell
culture studies previously, this is the first comprehensive
study to confirm that network topology can be used to
predict phenotypes in mice with experimental validation.
We envision that our approach could be used to comple-
ment traditional approaches and provide more resolution
between cause and effect from large, costly systems biol-
ogy studies.

Methods
Viruses
SARS-CoV MA15 (referred to as SARS-CoV throughout
the text) was described in [44]. All experiments using
live virus were performed in an animal biosafety level 3
(BSL3) containment laboratory at the University of
North Carolina.

Virus titration of mouse lung tissues
Harvested lung tissues were frozen at −80 °C in 1 mL
PBS. At the time of titration tissues were thawed,
homogenized for 60 s at 6000 rpm and plated in serial
dilutions on Vero cells as described previously.

RNA extraction from lung tissues and microarray analysis
Harvested lung tissues were immediately placed in 1 mL of
RNAlater (Life Technologies), incubated at 4 °C overnight,
and then placed at −80 °C. Later, tissues were thawed and
homogenized/virus-inactivated in 1 mL of TRIzol (Life
Technologies) using a tissue homogenizer (− Magnalyser,
Roche). Using Agilent mouse whole genome oligonucleo-
tide (4×44K) microarrays, microarray processing, data ac-
quisition, quality control and differential expression analysis
were similar to the experiments described [45]. Four to five
mice per time point and dose were analyzed, depending on
number of surviving mice. Replicate probes were summa-
rized as mean expression and fold-change relative to time-
matched mock infections were calculated using mean ex-
pression from biological replicates.

Identification and ranking of topological bottlenecks
Microarray data was normalized using RMA [46]. Wild
type virus infected data was expressed as a log2 fold-
change ratio from the time-matched control sample and
significantly changed genes (Student’s t test p-value < 0.05,
fold-change > 1.5) were used for network inference. This
yielded 8787 genes for SARS-CoV. Four additional genes
targeted for KO studies were included in the network ana-
lysis so they could receive scores and rankings. The Con-
text Likelihood of Relatedness method (CLR) was used to
infer relationships between genes by assessing the mutual
information between expression profiles for all pairs of
genes considered, then normalizing across all relationships
for the pair. After applying a CLR score cutoff of 1.5, the
final network had 4697079 edges. Betweenness and degree
centrality was calculated as previously described [12].

Mouse validation experiments
Kepi (Ppp1r14c strain 013041), Ido1 (strain 005867),
Tnfrsf1b (strain 002620) and Tnfrsf1a/1b (strain 003243),
Tnfrsf1a (strain 002818), Ptges2 (strain 009135) and Cxcr3
(strain 005796) KO mice along with appropriate controls
were purchased from Jackson laboratories and infected at
10 weeks of age. Weight loss was assessed at each time
point for 5 mice (KO and WT controls). Groups of 3 mice
were harvested for each strain and time point for titration
and transcriptomic analysis. Mice were lightly anesthe-
tized with ketamine/xylazine and infected with 105 PFU of
SARS-CoV in a volume of 50 mL or given PBS for a mock
infection. All animals were given food and water ad libi-
tum and weighed daily. Housing and husbandry was in ac-
cordance with UNC IACUC protocols. All KO mice
tested were in C57BL/6 background, which is somewhat
less sensitive to SARS-CoV infection than BALB/c used in
some other studies.
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Clustering and functional enrichment
Gene expression data from KO mice and corresponding
controls were processed as described above. KO mice in-
cluded Ppp1r14c, Tnfrsf1a, Tnfrsf1b, and Tnfrsf1a/1b, as
well as Cxcr3. Clusters were detected using the hclust pack-
age in R for hierarchical clustering. Genes from individual
clusters were submitted to enrichment analysis to identify
statistical GO term enrichment using the GOstats package
in R. A reciprocal procedure was also followed in which all
genes matching a particular GO term were assessed for
their combined transcriptional response to infection.
Identification and ranking of eigengenes
Initial Weighted Gene Correlation Network Analysis
(WGCNA) was performed as described. The analysis
was performed a second time for this study, utilizing the
same 8787 differentially expressed genes with the
addition of 4 KO-targeted genes so that all genes tar-
geted for KO could receive a score. Module centrality
(KME) was calculated as correlation with the module
eigengene as previously described [20].
GEO accessions
The wild type mouse infection transcriptomic data have
been previously described and deposited in the GEO data-
base as GSE33266. Mouse transcriptomics datasets have
been deposited for the KO mice infected with SARS-CoV
for Kepi−/− (GSE40827), Tnfrsf1b-null (GSE40824), and
Tnfrsf1a/1b-null (GSE40840) mice.
Additional files

Additional file 1: Network degree centrality scores – degree centrality
identifies the network hub genes. (XLSX 665 kb)

Additional file 2: Weight loss and titer – Weight loss and titer data for
various mice strains infected with SARS-CoV. (XLSX 23 kb)

Additional file 3: Figure 4 fold changes – fold change data from the
analysis depicted in Fig. 4. (XLSX 14 kb)

Additional file 4: Companion heatmap for Fig. 4 – heatmap
representing fold changes identified in Fig. 4. (PDF 249 kb)

Additional file 5: Individual fold changes – individual fold change
values for all genes incorporated in Fig. 4. (XLSX 1253 kb)

Additional file 6: Monocyte and neutrophil marker levels – monocyte-
and neutrophil-specific markers allow inference of the presence of these
cells. (PDF 252 kb)
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