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Abstract

Background: Long read sequencing is changing the landscape of genomic research, especially de novo assembly.
Despite the high error rate inherent to long read technologies, increased read lengths dramatically improve the
continuity and accuracy of genome assemblies. However, the cost and throughput of these technologies limits their
application to complex genomes. One solution is to decrease the cost and time to assemble novel genomes by
leveraging “hybrid” assemblies that use long reads for scaffolding and short reads for accuracy.

Results: We describe a novel method leveraging a multi-string Burrows-Wheeler Transform with auxiliary FM-index
to correct errors in long read sequences using a set of complementary short reads. We demonstrate that our method
efficiently produces significantly more high quality corrected sequence than existing hybrid error-correction methods.
We also show that our method produces more contiguous assemblies, in many cases, than existing state-of-the-art
hybrid and long-read only de novo assembly methods.

Conclusion: Our method accurately corrects long read sequence data using complementary short reads. We
demonstrate higher total throughput of corrected long reads and a corresponding increase in contiguity of the
resulting de novo assemblies. Improved throughput and computational efficiency than existing methods will help
better economically utilize emerging long read sequencing technologies.

Keywords: de novo assembly, Hybrid error correction, Long read, Pacbio, BWT, FM-Index

Background
De novo genome assembly has benefitted dramatically
from the introduction of so-called “long” read sequencing
technologies. These technologies, such as SMRT sequenc-
ing by Pacific Biosciences (Pacbio) and nanopore sequenc-
ing platforms by Oxford Nanopore Technologies, produce
reads typically 10s of kilobases instead of hundreds of
bases. These reads can span repetitive or low-complexity
regions of the genome previously unresolvable using only
“short”-read next-generation sequencing. Unfortunately,
the relatively high error rate of these long-read technolo-
gies introduces new informatics and analysis challenges.
Effective and efficient methods are necessary to correct
these errors in order to realize the potential of these long
reads for whole genome assembly [1–4].
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As the size of long read datasets and genomes undergo-
ing de novo assembly increases, the performance of hybrid
long read correction and assembly methods becomes
increasingly important. For genomes of more complex
eukaryotes and mammals, the computational resources
required for effective de novo assembly are staggering
and difficult to coordinate. This is driven largely by the
pairwise overlap step required by all modern long read
assemblers. The time required to overlap these long reads
with one another increases quadratically relative to the
number of reads. While novel methods such as MHAP
[5] and Minimap [6] aim to improve this, in practice,
the computational time and memory required are often
prohibitively expensive.
Pre-assembly correction dramatically simplifies the sub-

sequent overlap and layout of long reads for assembly by
reducing the variance that must be accounted for in the
overlapping step. In particular, long reads having under-
gone error correction are likely to share much longer
identical stretches that can be used to efficiently find
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confidently overlapping reads. Fundamentally, the longer
and more accurate these corrections are, the more quickly
and accurately the long reads can be assembled.
Long read correction algorithms can be broadly clas-

sified as either self-correction or hybrid correction algo-
rithms. Self-correction algorithms correct long reads
using only other long read sequences. Self-correcting
algorithms, including Sprai [7], LoRMA [8], HGAP [1],
and PBcR [3] align the long reads to each other and gener-
ate a consensus sequence. In order to generate an accurate
consensus, these methods require relatively high cover-
age of long read sequence to overcome the high error
rate. Unfortunately, the relatively high cost per accurate
nucleotide for long-read sequencing technologies means
that deep sequencing using only long reads is expensive.
In contrast, hybrid correction algorithms use short-

read sequencing of the same sample to complement and
correct the long reads. Short-read sequencing has fewer
sequencing errors, costs less per base sequenced, and thus
the cost per accurate nucleotide is much lower. Many
hybrid error correction methods act similar to scaffold-
ers in that they require the assembly of complementary
short read data first, then alignment between long reads
and short-read unitigs or contigs. These approaches, while
reasonably effective, suffer from two classes of problems.
First, they incur the same type of disadvantages a short-
read only assemblies in that low-complexity and repetitive
elements larger than the size of the short reads cannot
be reliably resolved. When short reads are preassembled,
this bias can “correct” long read with incorrect sequence,
confounding assembly. Second, short read assembly fol-
lowed by pairwise alignment/overlap of long reads with
short-read contigs is often significantly slower than direct
long-read error correction.
Hybrid correction algorithms include LoRDEC [4],

ECTools [9], Jabba [10], CoLoRMap [11], and Nanocorr
[12]. Other methods, including Cerulean [13], DBG2OLC
[14], and hybridSPAdes [15] perform hybrid assembly of
long- and short-read data but do not explicitly correct
errors in the long-read sequences. These hybrid methods
are often able to construct more accurate and contiguous
assemblies than exclusively long-read assembly methods
at substantially lower cost. ECTools [9] and Nanocorr
[12] are based on the same underlying methodology, but
designed for Pacbio and nanopore sequences, respectively.
They perform a full alignment between short and long
reads, but are currently deprecated and take prohibitively
long to run for anything larger thanmicrobial genomes, so
they were not considered further.
For error correction or assembly methods to be use-

ful for large, complex genomes that are biomedically or
economically important, the key challenge is performing
as accurate an assembly as possible, as quickly as possi-
ble, and using as few computational resources as possible.

Current methods often require prohibitively large com-
putational resources. Given that finding the appropriate
parameters for an assembly is often an iterative process,
these high computational costs are a barrier.

Methods
We introduce a new hybrid method for correcting
errors in long-read sequences called FM-index Long
Read Corrector (FMLRC). The main contribution of our
method is the application of an FM-index built from
a multi-string Burrows-Wheeler Transform (BWT) [16]
of the short-read sequencing datasets. The FM-index
enables arbitrary length k-mer searches through the
dataset, allowing for FMLRC to retrieve k-mer frequen-
cies from the short-read dataset in O(k) steps. Unlike
other data structures, the length of k is not fixed dur-
ing construction of the FM-index but is instead selected
at run-time. As a result, FMLRC uses the FM-index to
implicitly represent all de Bruijn graphs [17] of the short-
read sequencing dataset. These de Bruijn graphs are then
used to correct regions in the long reads that are not
supported by the short-read sequencing dataset.
Two secondary contributions arise as a result of the

first. FMLRC uses the single FM-index data structure to
perform two correction passes over each read: first with
a short k-mer and second with a longer K-mer. Secondly,
the specific parameters of the correction algorithm are
dynamically adjusted to match the k-mer frequencies for
a given read at run-time. FMLRC takes as input a BWT of
the short-read sequencing dataset. It constructs a single
FM-index in memory that is shared across all processes.
Each process individually corrects one read at a time by
applying common de Bruijn graph correction methods
(namely seed-and-extend or seed-and-bridge) using the
shared FM-index. These de Bruijn correction methods
require both a k-mer size and frequency thresholds
to determine whether a k-mer is present in the graph.
FMLRC dynamically adjusts these thresholds at run-time
for each pass over a long read. A single process will
correct the read using the implicit short k-mer de Bruijn
graph and then the implicit long K-mer de Bruijn graph
before writing the corrected result to disk. An overview
of this approach is shown in Fig. 1.
FMLRC is a publicly available C++ program1. The

implementation requires construction of a BWT of the
short-read dataset in the run-length encoded format of the
msbwt package2.

Advantages of the FM-index
FMLRC can be classified as a de Bruijn graph-based,
hybrid read corrector, meaning it uses k-mer frequencies
from a short-read sequencing dataset to correct errors in
a long-read sequencing dataset. Generally speaking, most
de Bruijn graph implementations are static and require
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Fig. 1 Illustration of the seed-and-bridge correction strategy using short and long k-mers. Implicit de Bruijn graphs with arbitrary k can be inferred
from an FM-index. The use of a short, fixed k often does not resolve “hairball” and other structures in the graph caused by low-complexity and
repetitive genomic elements. Longer K-mers may dramatically simplify the bridging step if sufficiently long seeds can be found. Illustrative
seed-and-bridge paths are shown for short k-mer and long K-mer graphs. Seed k-mers are shown in orange, and the correct path in black. The
two-pass (k, K) seed-and-bridge correction implemented in FMLRC allows the correction of short, nonrepetitive segments in the first pass, then
seeding larger K-mers and bridging to resolve more complex sequences

a fixed k-mer size and pruning threshold to be defined
during the construction of the de Bruijn graph [17].
The main advantage of FMLRC is that it uses an FM-

index as the underlying de Bruijn graph implementation.
FMLRC builds an FM-index [18] from a BWT [19] of
a short-read sequencing dataset to correct a long-read
sequencing dataset. These data structures have been pre-
viously used for short-read self-correction in FMRC [20],
but it has not been previously applied to long-read error
correction.
The FM-index is advantageous because many of the

correction parameters are not properties of the data struc-
ture itself and can instead be defined and/or dynamically
adjusted at run-time. First, FM-index queries are not fixed
to a single k-mer size, allowing FMLRC to construct one
FM-index and use it for all k-mer queries. Secondly, the
FM-index is built from a BWT that is a lossless encod-
ing of the original reads, meaning that no k-mers are
“pruned” as they commonly are in a de Bruijn graph. This
pruning is usually accomplished by removing all k-mers
with a frequency less than a fixed threshold. Instead,
FMLRC dynamically calculates thresholds for each long
read and decides whether a k-mer is “pruned" at run-
time. The combination of these two properties means the

FM-index implicitly represents all de Bruijn graphs for the
short-read sequencing dataset.
FMLRC creates an in-memory FM-index by scanning

the BWT from disk. There are many different imple-
mentations of in-memory FM-indices that have varying
trade-offs between memory usage and CPU time to per-
form a k-mer lookup. FMLRC currently has two FM-index
implementations. The default FM-index implementation
uses bit arrays and rank operations to enable fast k-mer
lookups. This primary implementation sacrifices memory
usage to increase computational performance. The second
FM-index implementation is a traditional sampled FM-
index that allows users to set the sampling rate, leading
to longer computations with a smaller memory footprint.
The two FM-index implementations produce identical
corrected read results, and we present only the results
from the primary implementation in our performance
results.
For our results, we constructed the BWTs using a

combination of ropebwt2 [21] and the msbwt package3.
While this particular format stores only the original
read sequences, we must consider both the forward and
reverse-complement sequences when performing k-mer
queries. Every time we refer to a k-mer query, FMLRC
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is actually querying both the forward and reverse-
complement sequences and adding their frequencies
together prior to performing any checks.

De Bruijn graph-based correction
FMLRC accesses implicit, pruned, k-mer de Bruijn graphs
through the FM-index. While the de Bruijn graph-based
correction of FMLRC is similar to that of LoRDEC [4],
we briefly describe it here for completion and for refer-
ence in the following sections. Given a long read and a de
Bruijn graph, the first step is to classify all k-mers in the
long read as either weak or solid. In general, solid k-mers
are supported by the de Bruijn graph and weak k-mers are
not. For each k-mer in the long read, its k-mer frequency
is retrieved from the de Bruijn graph. If that frequency
is below a threshold, t, it is consider weak and otherwise
it is considered solid. Weak regions are consecutive weak
k-mers in the long read. Solid regions are consecutive
solid k-mers in the long read.
Weak regions can be flanked by zero, one, or two solid

regions. If a weak region has no flanking solid regions, the
entire read is one large weak region with no solid k-mers
to initialize a traversal of the de Bruijn graph. As a result,
these reads are not changed because there are no start
points for a de Bruijn graph traversal.
If a weak region has one flanking solid region, then

it is either a head or tail weak region in the read. In
either case, the solid k-mer closest to the weak region is
used as a “seed” k-mer for traversing the de Bruijn graph.
FMLRC performs a depth-first traversal of the de Bruijn
graph from this seed using an expected path length based
on the size of the weak region and returns any found
paths (seed-and-extend). If a weak region has two flank-
ing solid regions, FMLRC uses the two closest k-mers
from each solid region as “seed” and “target” k-mers (seed-
and-bridge). FMLRC then performs a depth-first traversal
from the seed k-mer and returns any paths that connect
to the target k-mer. If no path is found, FMLRC attempts
to extend backwards from the target to the seed k-mer,
which may resolve additional bridges that have exces-
sive branching close to the seed k-mer. If any paths are
returned from a de Bruijn graph traversal, the paths are
compared to the original weak region and the one with the
smallest edit distance is chosen to replace it. If no paths
are returned, then no change is made to the long read at
that region. In all de Bruijn graph traversals, we prevent
exponential traversal time by enforcing a branching limit,
L. Typically, the parameters t and L are either constant
values in a program or user-defined static values.

Differences in the short and long passes
One of the key differences in FMLRC compared to other
approaches is that it accesses two different de Bruijn
graphs though the FM-index and dynamically adjusts the

parameters of the correction algorithm to adjust for dif-
ferences in the graphs. FMLRC performs two passes: the
first with a short k-mer size and the second with a longer
K-mer size. For FMLRC, the two passes are program-
matically identical with the value of k or K passed as a
parameter. For brevity, we describe the differences in each
pass using parameter k noting that replacing k with K
describes the second pass of our method. Additionally,
we describe any dynamic variables as functions of k, the
implicit k-mer de Bruijn graph, and other user-defined
constants.
In general, the short k-mer pass does the majority of

the correction for FMLRC, whereas the longerK-mer pass
tends to correct repetitive, low-complexity regions within
the long read. To provide some intuition behind why the
long pass improves the results, we focus on the differ-
ences in de Bruijn graphs representing the same data but
with two different k-mer lengths. In general, two distinct
paths will be merged in a k-mer de Bruijn graph if they
share a pattern that is at least k long. This is because the
nodes along that shared region will be identical. At the
ends of the shared region, there will be two paths emerg-
ing representing the differences at the edge of the shared
regions.
When the same sequences are viewed through a longer

K-mer de Bruijn graph, the number of merged, ambigu-
ous paths strictly decreases because an increasing amount
of similarity is required for the paths to become merged
in the graph. This effect is illustrated in Fig. 1. In practice,
short k-mers are often long enough to uniquely identify
most areas of the genome. However, genomic charac-
teristics such as low-complexity sequence, gene families,
or repeat regions are difficult to traverse using short
k-mers. Thus, our method uses the larger K-mer to bridge
weak regions composed of repeated or low-complexity
sequences that are computationally expensive to fully tra-
verse using a small k-mer.
In addition to changing the value of k in the two passes,

other parameters are adjusted as well to match the dif-
ferent k-mer sizes. First, the threshold, t, determining
whether a k-mer is weak or solid is dynamically adjusted
for each long read. FMLRC uses a dynamic threshold
based on the k-mer frequencies in the long read. First,
there is an absolute minimum, user-defined k-mer fre-
quency, T, that is required for any k-mer to be consider
solid. Second, the frequency of any k-mer greater than
this absolute minimum is added to a list and used to cal-
culate a median solid frequency, m, for the long read. A
second user-defined value, F, is the fraction of this median
that is required for a k-mer to be considered solid. Thus,
the final threshold distinguishing solid and weak k-mers
in a given long read is defined as t = max(T , F ∗ m).
In summary, with each pass over a long read, FMLRC
dynamically calculates a threshold for determining weak
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or solid k-mers based on an absolute minimum and the
surrounding k-mer frequencies from the long read.
For low-coverage short-read datasets, it is often the case

that t = T because F ∗ m < T . For high-coverage
short-read datasets, this dynamic threshold alleviates the
need to select a fixed threshold beforehand, and it instead
uses counts from the implicit de Bruijn graph to derive
an expected count for k-mers in the read. Additionally,
this approach enables FMLRC to adjust the threshold for
different sizes of k automatically at run-time.
Finally, the branch limit, L, is scaled with each pass to

allow for less branching when k is small and more branch-
ing when K is large. As described earlier, a small k-mer
de Bruijn graph will have more branches and may require
more computation to do a full depth-first traversal in
repetitive regions. To avoid this, we restrict the short k-
mer traversals to primarily fixes the “easy” errors caused
by sequencing. As a result, the “harder” traversals caused
by larger repetitive elements are addressed more accu-
rately by the longK-mer pass. The branch limit factor,B, is
a user defined parameter such that the maximum branch
limit, L = B ∗ k.

FMLRC parameter selection
FMLRC allows for five main parameters to be defined by
the user: T, F, B, k, and K. T is the absolute minimum fre-
quency required for a k-mer to be considered solid in the
de Bruijn graph. F is the fraction of the median counts
required for a k-mer to be considered solid in the de Bruijn
graph. B is the branch limit factor that limits the amount
of computation of a de Bruijn graph traversal. In all test
cases, we used the FMLRC default parameters: T = 5,
F = 0.10, and B = 4.
The last two parameters are the choice of k and K

for the short and long correction passes. To gain some
insight into what values of k and K are best, we ran mul-
tiple tests using the E. coli K12 MG1655 and S. cerevisiae
W303 datasets. We allowed k = [17, 19, 21, 23, 25] and
K = [−, 49, 59, 69, 79, 89], leading to a total of 30 test cases
for each dataset. The test cases with K = − indicate
that no second K-mer pass was performed (it is only
using a one-pass, short k-mer for correction). For each
test case, we ran FMLRC, aligned the corrected reads to
the reference genome, and then gathered statistics on the
resulting alignment. We counted the the total number of
bases that matched the reference genome and the “gain”
(see “Correction accuracy” section). The results of this
experiment are shown in Table 1.
We see that as k and K increase, gain generally increases

but the total number of matching bases decreases, indi-
cating a tradeoff between sensitivity and specificity. In all
of our tests, performing a second pass with the long K-
mer always improved all three statistics. In general, the
gain begins plateauing around k = 21 and K = 59

and matching bases decreases in the E. coli dataset, so we
chose these as the default values for k and K. While it
is clear that the “best” k and K is likely data-dependent
because differences in coverage, sequencing quality, and
sequencing content will impact the ability of FMLRC to
find solid k-mers and perform corrections, these defaults
perform close to optimal across all of our evaluated
datasets.

Results
We evaluated the accuracy of our method using comple-
mentary long- and short-read datasets for three species:
E. coli K12, S. cerevisiaeW303, and A. thaliana Ler-0 (see
“Availability of data and material” section). We compared
the relative correction accuracy and computational per-
formance of our method to several existing hybrid and
long-read-only correction methods. We also assessed the
effectiveness of our corrected reads for de novo assembly
using a non-correcting assembler, Miniasm [6], and com-
pared these data to several other state-of-the-art hybrid
and long-read-only de novo assembly methods.

Correction accuracy
To evaluate FMLRC, we used the approach used by the
Error Correction Evaluation Toolkit (ECET) [23] to cal-
culate error correction sensitivity, specificity, and “gain”
relative to a known reference genome (Sensitivity =
TP/(TP + FN), Specificity = TN/(TN + FP), and gain =
(TP − FP)/(TP + FN) where TP, TN, FP, and FN are
true positives, true negatives, false positive, and false neg-
ative, respectively). We modified the published pipeline
to work efficiently with long reads, but the statistics are
computed in an similar manner. In particular, we aligned
the original and corrected FASTA files to the correspond-
ing reference genome for each organism using BLASR
[22]. Using the original ECET implementation, which was
designed for short-read sequences, specific loci in long
reads could not be evaluated before and after error correc-
tion due to the high incidence of short insertions and dele-
tions. Instead, we consider loci relative to the reference
sequence to which each read aligned. A nucleotide is con-
sidered “correct” if it aligns properly to a single nucleotide
in the read sequence. Loci in the reference sequence
with mismatched or delected nucleotides in the read
sequence are considered incorrect. Our evaluation code is
available at https://github.com/txje/lrc_eval, including the
computation of error correction statistics directly from
BLASR’s −m5 format alignments.
In addition to these statistics, we report the total aligned

reads and properly aligned nucleotides. Again unlike
short-read error correction, where every read is expected
to align in full both before and after error correction,
the number and span of long-read alignments may fluc-
tuate and impacts the utility of a sequence dataset for

https://github.com/txje/lrc_eval
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Table 1 Choosing k and K

K

k – 49 59 69 79 89

E.coli - Matching Bases

17 404736174 405150086 404809579 404608992 404361044 403888297

19 403117580 404580392 404571352 404418084 404297325 403826761

21 403002237 404365615 404367089 404255830 404131272 403841312

23 403516577 404381062 404378242 404240202 404107504 404041491

25 403819785 404461301 404480970 404453527 404363292 404236385

E. coli - Gain

17 0.1011 0.388 0.4709 0.5258 0.5468 0.521

19 0.3823 0.5887 0.612 0.6245 0.6279 0.6172

21 0.4879 0.634 0.6429 0.6459 0.6442 0.6345

23 0.5137 0.641 0.6474 0.6487 0.6457 0.6361

25 0.523 0.6396 0.6453 0.6461 0.6422 0.6318

S. cerevisiae - Matching Bases

17 1250679980 1253590990 1252340540 1251288299 1250445441 1249925285

19 1250052124 1252517259 1252462544 1252139063 1251853858 1251785285

21 1248322270 1251887685 1251963458 1251672602 1251758116 1251744201

23 1248801294 1252245368 1252387319 1252408890 1252545735 1252558864

25 1249574404 1252269051 1252478532 1252557840 1252778626 1252739127

S. cerevisiae - Gain

17 0.0264 0.224 0.3159 0.3946 0.452 0.4871

19 0.1172 0.3903 0.443 0.4822 0.5096 0.5273

21 0.2527 0.4938 0.5129 0.527 0.5367 0.5434

23 0.3319 0.5153 0.5251 0.5332 0.5388 0.5435

25 0.3728 0.5155 0.5226 0.5287 0.5334 0.5372

This table shows the result of running FMLRC using many different values for k and K for an E. coli and S. cerevisiae datasets
The test cases with K = − indicate that no second pass of correction using the long K-mer was performed, so those test cases use a single pass short k-mer only. After
correcting the reads, we aligned the results using BLASR [22] and gathered statistics on the alignments. Matching bases indicates the number of matching bases across all
mappings. Gain is defined as (TP − FP)/(TP + FN) (see “Correction accuracy” section). For each statistic, the best result is bolded in the above table. To summarize, increasing
values for k and K tend to increase the gain but decrease the total matching bases - a tradeoff between sensitivity and specificity. Additionally, all tested values of K for a long
K-mer pass improves the results over a single k-mer pass

downstream analysis. For example, error correctionmeth-
ods that agressively filter out low-quality sequences, such
as Jabba [10], may report very high sensitivity and speci-
ficity, but do so by reporting and aligning only a subset of
the input sequences.
In addition to evaluating FMLRC, we also evaluated

the following hybrid correction methods using the same
ECET pipeline: LoRDEC [4], Jabba [10], and CoLoRMap
[11]. For completeness, we also included comparison to
long-read-only methods: Canu [5], LoRMA [8], and Sprai

[7]. For all tests, we ran LoRMA v0.4, LoRDEC v0.6
with options -k 21 -s 5, and Jabba with option -k 75
(as recommended in [10]). FMLRC was run with default
parameters (-k 21 -K 59) for E. coli, S. cerevisiae, and
A. thaliana. All other methods’ parameters were left at
their defaults.
Table 2 shows accuracy metrics and resource usage

for all compared methods. For A. thaliana and S. cere-
visiae, FMLRC has the highest total corrected loci
(true positives) and competitive gain and sensitivity. For
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Table 2 After aligning the corrected reads to a reference genome, sensitivity, specificity, and gain were computed

Method Reads aligned TP FN Sens. Spec. Gain CPU (s) Mem (GB)

E. coli K12

Canu 58982 657793 1571579 0.2951 0.9987 0.1482 17421 2.99

CoLoRMap 81485 5538038 35474190 0.1350 0.9998 0.1332 137777 23.06

FMLRC 81851 13562639 15069242 0.4737 0.9996 0.4689 11015 4.60

Jabba 75620 15553372 111609 0.9929 0.9999 0.9920 22922 63.87

LoRDEC 81138 3278911 36691424 0.0820 0.9998 0.0808 61305 2.08

LoRMA 81051 1135657 144161 0.8874 0.9999 0.8669 54240 45.72

Sprai 75532 463636 293039 0.6127 0.9999 0.5783 44302 33.53

S. cerevisiae W303

Canu 142765 1562542 5441239 0.2231 0.9992 0.1401 108175 3.33

CoLoRMap 210423 18901871 79065115 0.1929 0.9992 0.1857 2815200 45.49

FMLRC 211270 31849332 49204291 0.3929 0.9991 0.3829 68519 17.77

Jabba 223385 29893606 42670 0.9986 0.9999 0.9967 187968 367.92

LoRDEC 210151 8468872 96577493 0.0806 0.9997 0.0776 212495 3.56

LoRMA 204323 3063164 221583 0.9325 0.9999 0.9176 223358 49.52

Sprai 192670 2013269 3063751 0.3965 0.9996 0.3288 215261 49.52

A. thaliana Ler-0

Canu 574065 12002535 72017120 0.1429 0.9986 0.1030 1301971 10.92

CoLoRMap 1075381 170235345 2056204621 0.0765 0.9983 0.0737 6802359 106.08

FMLRC 1447042 442064624 1164804073 0.2751 0.993 0.2601 708910 16.26

Jabba 813495 320742341 2945173 0.9909 0.9968 0.9724 3641309 333.44

LoRDEC 1113617 78276025 2022520259 0.0373 0.9979 0.0337 1111800 3.42

LoRMA 903298 2217661 2778223 0.4439 0.9986 0.3715 17281259 70.28

Sprai 751684 18960255 30734331 0.3815 0.9996 0.3631 5996657 8.11

For A. thaliana and S. cerevisiae, FMLRC produced more total true positive (corrected loci) than any other method while maintaining competitive sensitivity and gain. Methods
with higher average specificity, notably Jabba, often discard a higher proportion of reads, reporting only those with the highest-confidence corrected sequence. FMLRC also
requires significantly less CPU time than other hybrid error correction methods, and comparable memory. LoRDEC and FMLRC CPU time and memory results include
construction of the BWT

E. coli, FMLRC corrects fewer loci than Jabba, but more
total reads. As discussed above, methods with higher
sensitivity and specificity - including LoRMA, Sprai, and
Jabba - typically accomplish this by selectively reporting
the highest-confidence corrected sequences. This kind of
confidence filtering is possible after correction for most
methods, but can negatively impact downstream assembly
(see “De novo assembly” section).

Performance
CPU and memory usage for each method are shown in
Table 2. Performance tests were run on a homogenous
cluster of 120 compute nodes, each with two Intel E2680
(2.5GHz) processors and 1Tb RAM. FMLRC requires less
CPU time (including construction of the general-purpose
BWT) than all other hybrid correction methods. On

average, FMLRC’s memory usage is among the most
memory-efficient methods, including Canu and LoRDEC.
The remaining hybrid error-correction methods,
CoLoRMap, LoRMA, and Jabba, use significantly more
memory and, especially in the case of Jabba (> 300GB)
may prove prohibitive to run without significant computa-
tional infrastructure. Jabba, in particular, while producing
comparable total true positives to FMLRC, required
2−5× as much CPU time and 15−20× as muchmemory.

De novo assembly
The ultimate goal of any long read correction algorithm is
to provide better data for genomic analysis. We assessed
the ability of our method to successfully complete assem-
bly of simple and complex genomes and to compare
its performance to other long-read error correction and
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de novo assembly methods. We assessed the methods
listed in Table 3 on the E. coli, S. cerevisiae, andA. thaliana
datasets listed above. Our method, along with LoRDEC
and Sprai, perform only read correction. We used Mini-
asm (https://github.com/lh3/miniasm r159 and Minimap
https://github.com/lh3/minimap r124) to assemble the
corrected reads from these methods. We used option
−Sw5 for Minimap; all other parameters were left at their
defaults. The straightforward approach to identity-based
overlapping and graph layout used by Miniasm allows us
to assess the effect of read correction on de novo assembly.
All assemblies were run on a heterogeneous Linux-

based cluster with more than 9600 cores and 48Gb-1Tb
RAM per node. All jobs had a hard limit of 16 processes
and 7 days wall-clock run time. For larger genomes such
as A. thaliana, several methods, including hybridSPAdes
and Cerulean, failed after exceeding these limits or
exceeding 1Tb main memory. Canu is a modern fork
of the Celera Assembler and consists of the basic PBcR
correction method using the MHAP overlapper followed
by assembly with HGAP. So we assess only the Canu
pipeline as a whole.
Several of the methods took prohibitively long (> 1

week) or failed to assemble the A. thaliana genome. We
analyzed completed assemblies using Quast v4.1 [24]
with default parameters in Table 4. Percent error indi-
cates the total of mismatched bases, insertions/deletions,
and no-calls (Ns). As shown, FMLRC has comparable
performance to other methods for E. coli K12. It also out-
performs all methods except Canu in terms of N50 for S.
cerevisiae W303. Although the continuity is often higher

Table 3 Long-read and hybrid correction and assembly methods

Method Correction Assembly Preassembly Citation

Miniasm Long-read [6]

Canu Long-read Long-read [5]

Sprai Long-read [7]

LoRMA Long-read [8]

hybridSPAdes Hybrid [15]

DBG2OLC Hybrid X [14]

Cerulean Hybrid X [13]

ECTools Hybrid X [9]

LoRDEC Hybrid [4]

Jabba Hybrid [10]

CoLoRMap Hybrid [11]

Nanocorr Hybrid [12]

FMLRC Hybrid Our method

All of the compared methods are shown along with their mode of error correction
and assembly, each either long-read only or “hybrid” using complementary
short-read data. “Preassembly” indicates whether a hybrid method requires the
short read data to be preassembled using a different method

for Canu and other long-read consensus methods, these
typically rely on high coverage of long reads and degrade
in performance as coverage drops. These test datasets
contain high (> 100×) coverage of both long and short
reads. Furthermore, post-assembly polishing steps such
as Quiver [1] and Nanopolish [25] are typically effective
in reducing the assembly error from less than 1% to less
than 0.01%.

Discussion
Correction of errors in long read sequences using com-
plementary short reads remains a popular method for
increasing the utility of long read sequence, particularly
since long read sequencing remains prohibitively expen-
sive relative to standard NGS inmany cases.While several
methods exist for hybrid error correction and assembly
[4, 9–15], these approaches sometimes limit the utility of
corrected sequences for downstream assembly or other
applications due to low throughput - they report only
segments where very high accuracy can be achieved or
clip and trim low confidence sequences. These produce
very polished (accuracy in excess of 99%) sequence, but
reduce the total number and size of sequences available
for assembly. In practice, a balanced approach is neces-
sary to retain the long-range information while increasing
sequence accuracy to aid in pairwise overlapping of reads.
Our proposed method does not perform any clipping or

trimming of long read sequences, but corrects errors using
high-accuracy short read sequences, enabling more sensi-
tive and specific overlap of reads during de novo assembly.
While no method produces obviously better results across
all assembly metrics, FMLRC exhibits high accuracy cor-
rection while maintaining high assembly contiguity for
a range of genome sizes. Practically, our method is also
computationally efficient whereas competitive methods
such as Jabba take prohibitive computational resources for
even moderately sized data sets.

Conclusion
Flexible “modular” approaches to de novo long read
sequence assembly are becoming more popular with
the introduction of efficient overlap and layout methods
such as DALIGNER (https://github.com/thegenemyers/
DALIGNER), MHAP [5], Minimap [6], and Mini-
asm [6]. Existing error correction methods including
DBG2OLC [14], Cerulean [13], and hybridSPAdes [15]
require preassembly of short read sequence and per-
form a variant of scaffolding using long read sequences.
While this approach benefits from the high accuracy
of short read sequence, it retains the biases inherent
in assembly of short read sequences. In particular, it
is often difficult or impossible to properly assemble
low-complexity or repetitive sequences using only short
reads [26].

https://github.com/lh3/miniasm
https://github.com/lh3/minimap
https://github.com/thegenemyers/DALIGNER
https://github.com/thegenemyers/DALIGNER
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Table 4 Long-read and hybrid correction assembly statistics

Dataset Method # contigs N50 Genome fraction Error rate

E. coli K12 Canu + Miniasm 1 4631922 99.832 0.00444

Genome: 5Mb
CoLoRMap + Miniasm 1 4723063 84.485 0.02322

Pacbio: 450Mb
FMLRC + Miniasm 1 4646838 99.757 0.00029

Illumina: 3.4Gb
Jabba + Miniasm 76 72751 92.923 0.00005

LoRDEC + Miniasm 1 4688727 97.504 0.00321

LoRMA + Miniasm 107 64214 89.871 0.00099

Sprai + Miniasm 1 4639974 99.989 0.00092

Miniasm 1 4783415 0.002 0.01333

Canu 2 4656585 99.998 0.00012

hybridSPAdes 2 4469733 99.967 0.0001078

DBG2OLC 2 4585967 98.210 0.00225

Cerulean 16 1258842 98.959 0.09500

S. cerevisiaeW303 Canu + Miniasm 36 729798 89.739 0.00521

Genome: 12Mb
CoLoRMap + Miniasm 23 766539 83.464 0.00761

Pacbio: 1.3Gb
FMLRC + Miniasm 32 771324 87.717 0.00175

Illumina: 18Gb
Jabba + Miniasm 186 62337 72.239 0.00008

LoRDEC + Miniasm 61 597849 85.563 0.00941

LoRMA + Miniasm 292 49850 74.632 0.00103

Sprai + Miniasm 39 561985 88.697 0.00193

Miniasm 29 566484 0.009 0.03738

Canu 26 777664 90.955 0.00068

hybridSPAdes 229 568823 87.303 0.00899

DBG2OLC 32 530806 0.067 0.03407

Cerulean 78 466556 0.03687

A. thaliana Ler-0 Canu + Miniasm 2100 74153 81.844 0.01410

Genome: 120Mb
CoLoRMap + Miniasm 963 404022 60.225 0.01853

Pacbio: 11Gb
FMLRC + Miniasm 1923 57751 67.275 0.00401

Illumina: 13Gb
Jabba + Miniasm 1632 57307 62.796 0.00041

LoRDEC + Miniasm 2232 30229 43.088 0.01107

LoRMA + Miniasm 34 26316 0.361 0.00448

Sprai + Miniasm 1475 169744 91.070 0.00824

Miniasm 740 615512 0.003 0.03409

Canu 419 835253 96.123 0.00760

DBG2OLC 440 754404 87.477 0.00388

Miniasm does not perform either read correction or consensus calling, so the resulting assembly has the same error profile of the input read

To overcome these limitations, we developed FMLRC, a
long read correctionmethod that uses amulti-string BWT
and FM-index to represent all de Bruijn graphs of a short
read dataset. The method uses two passes to perform the
correction: one with a relatively short k-mer and one with
a longer K-mer. In each pass, unsupported sequences are
identified in the long reads and the implicit de Bruijn

graph identifies alternate, supported sequences from the
short reads. These alternate sequences are then used to
correct the original read.
We showed that FMLRC reliably corrects more loci

than other methods while maintaining competitive gains,
sensitivity, and specificity. Furthermore, FMLRC is more
computationally efficient than any of the other hybrid



Wang et al. BMC Bioinformatics  (2018) 19:50 Page 10 of 11

error-correction methods evaluated. We further showed
that using FMLRC as a preassembly error correction
step in conjunction with existing overlap-layout assem-
bly methods produces highly contiguous assemblies with
competitive accuracy relative to existing hybrid and non-
hybrid assembly methods.
Future work will include a specific cost-benefit analy-

sis of the quantity of long- and short-read data required
to effectively assemble genomes based on their size and
repetitive structure. While previous work has been done
in this area, FMLRC, as a more efficient method for
hybrid correction of long reads, is expected to allow
more effective de novo assembly with less long read data
than previously possible. Future improvement and opti-
mization of the FM-Index structure and bridging strategy
could produce further speed and accuracy improvements
over existing methods. In addition to a BWT with FM-
index, it will be worth exploring the performance of
other data structures, including novel variants of a de
Bruijn graph that support multiple values of k [27, 28].
Our method is applicable to both Pacbio SMRT sequenc-
ing and nanopore sequencing datasets, however further
parameter optimization may improve its accuracy and
efficiency for nanopore sequences, which exhibit a slightly
different error profile than Pacbio. In the long term, bet-
ter integration of FMLRC error correction along with
other tools for overlapping, layout, and consensus of long
read sequencing data will help realize the goal of a fully
modular and efficient de novo assembly process.

Endnotes
1 http://github.com/holtjma/fmlrc
2 http://github.com/holtjma/msbwt
3 https://github.com/holtjma/msbwt/wiki/Converting-

to-msbwt’s-RLE-format
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