Additional file 1: Supplemental Methods, Figures S1-S4 and Table S2

"Shared functions of plant and mammalian StAR-related lipid transfer (START) domains in modulating transcription factor activity" by Kathrin Schrick et al.

Supplemental Methods

Flow cytometry

GFP levels in live yeast cells were quantified by flow cytometry as in [1]. Yeast cells transformed with GSV:yEGFP3 constructs were grown to exponential phase $\left(\mathrm{OD}_{600}\right.$ of $\left.\sim 0.500\right)$ in selection media containing low-flow fluorescence yeast nitrogen base without riboflavin and folic acid [2]. GFP positive and negative controls were pUG 35 and $\mathrm{pNF}-1$, respectively. For each sample, 2×10^{6} cells were washed in 0.5 ml PBS, resuspended in 0.1 ml PBS for sonication, and another 0.9 ml was added prior to sample processing. Flow cytometry was performed using a BD Biosciences FACSAria Flow Cytometer Cell Sorter. Illumination was with a 200 mW 488 nm argon laser. Emission was detected through a $530 / 30 \mathrm{~nm}$ filter (FL1-H filter). 500,000 particles (yeast cells) were gated per sample.

Supplemental References

1. Niedenthal RK, Riles L, Johnston M, Hegemann JH: Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 1996, 12(8):773-786.
2. Sheff MA, Thorn KS: Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 2004, 21(8):661-670.

Figure S1. Trichomes on first leaves of gl2 mutants transformed with GL2 constructs. (A-D) Scanning electron micrographs (SEM) of first leaves. (A) gl2 mutants exhibit a defect in differentiation of trichome cells as indicated by short unbranched trichomes that barely emerge from the epidermis. gl2 mutants transformed with (B) ProGL2:EYP:GL2 exhibit branched trichomes, indicating a rescue of the mutant phenotype, while gl2 mutants transformed with (C) ProGL2:EYFP:GL2-StAR-START or (D) EYFP:GL2-ATML1-START display a partial rescue of the trichome differentiation defect.

Figure S2. Exogenously supplied cholesterol does not alter activity levels of StAR-GSV. The addition of cholesterol in the range from $0-50 \mu \mathrm{M}$ had no effect on the activity levels of yeast cells expressing the GSV construct containing the mouse StAR START domain together with the $p S U T 1$ plasmid. Error bars indicate standard deviations for two independent transformants in two trials.

Figure S3. Rosette phenotypes of StAR-START versus the D182L missense mutant expressed in the GL2 transcription factor.
(A-D) Rosettes exhibiting leaf trichomes. (A) Wild-type (WT) level of trichomes in comparison to (B) $g l 2$ null mutant which displays a reduction in leaf trichomes.
(C-D) Representative $g l 2$ lines expressing (C) ProGL2:EYFP:GL2-StAR-START or (D) ProGL2:EYFP:GL2-StAR-D182L-START. While mouse StAR-START can partially replace the GL2-START domain, the missense mutation D182L results in a reduction in trichome cell differentiation. Scale bar $=2 \mathrm{~mm}$. This figure is supplemental to Figure 4.

Figure S4. In vivo expression of GSV constructs as yEGFP3 fusions in yeast.
(A) Schematic of GSV translational fusion to yEGFP3.
(B) Flow cytometry data for the \% GFP cells. The negative control which does not contain GFP corresponds to 0.01% GFP positive cells and the positive control which contains yEGFP3 alone (pUG35) corresponds to 0.59% GFP. The GFP-expressing cells exhibit \% GFP values ranging from 0.03-0.70\%.
(C) Mean values for \% GFP from side scatter plots. The negative control shows a mean value of 12 while the positive control (pUG35) exhibits a mean value of 41 . The GFP-expressing cells show mean values in the range from 36-47.
(D) Activity levels of the corresponding GSV-yEYFP3 constructs containing START domains from Arabidopsis ATML1, PDF2, and GL2 (green), and mammalian StAR and corresponding mutants (red) are indicated. Error bars show standard deviations for two independent transformants in three trials, and double asterisks indicate a significant increase in activity over the pUG35 control (Two-tiered t-test, $\mathrm{P} \leq 0.05$).
(E) Flow cytometry side scatter plots of GFP positive yeast cells expressing yEGFP3. The top polygon from each plot indicates the population of cells that were gated as GFP positive (arrows). Side scatter is indicated on the X -axis and GFP signal is indicated on the Y -axis. "Media control" lacks yeast cells, while the "Yeast control" contains yeast cells that carry the same selectable marker (URA3) as the remaining samples albeit no GFP expression. The yEGFP3 control exhibits strong expression of yEGFP3 from the pUG35 plasmid. The sample order of the GSV-yEGFP3 constructs from top to bottom, right to left, corresponds to that in AD. Each of the GSV samples indicates the presence of GFP positive cells in comparison to the negative controls.

Figure S5. Protein-metabolite interaction network for mammalian and Arabidopsis START domains.
(A) Normalized protein-metabolite enrichment data expressed as the fold-change of domainbound metabolite relative to the GV control greater than 4 were processed using Cytoscape to produce an edge-weighted interaction network in which larger elliptical nodes represent the different START domains tested and hexagonal nodes represent the interacting metabolites.

Distances between protein and metabolite nodes reflect the interaction strengths based upon the magnitude of fold-change - the shorter the edge the more enriched the metabolite.
(B) A sub-network was generated to compare and contrast the nature of protein-bound metabolites between the mammalian START domains, PCTP (human), StAR (mouse) and StAR ${ }^{\text {D182L }} *$ (mouse).
(C) A sub-network comparing the Arabidopsis and human PCTP START domains. The subnetworks (\mathbf{B}, \mathbf{C}) were filtered for interactions with a greater than 10 -fold change in enrichment relative to the GV control and only high confidence metabolite assignments were included.

For all networks (A-C), in cases where a node had multiple interactions with the same chemical sub-class of metabolite, e.g. PtCho, these interactions were combined and weighted to give one interaction. Metabolite names designated by asterisks were further validated by mass spectrometry, matching exact mass and retention time to a known standard analyzed under the same experimental conditions.

Table S2. Oligonucleotides used in this study. Nucleotide bases shown in bold denote restriction sites used for cloning or changed bases from site-directed mutagenesis unless otherwise indicated.

I. Primers for GL2 START domain deletion construct and GL2 START domain swaps. Homologous sequences for domain swap in-fusion cloning are indicated in bold.	
Name	5'-3' sequence
GL2 START Δ F	[Phos] GTC TTC TTC ATG GCT ACC AAC GTC CCC ACC
GL2_START_ Δ R	[Phos] GAG GGC AAA GAC GCC CGT GTA GAA ATC G
GL2_START_flank_right_F	GTC TTC TTC ATG GCT ACC AAC GTC
GL2 START flank left R	GAG GGC AAA GAC GCC CGT GTA
GL2_ATML1_START_F	GGC GTC TTT GCC CTC GAG GCT GAT AAG CCT ATG ATT G
GL2_ATML1_START_R	AGC CAT GAA GAA GAC GAG CCG CTC ACA TTG GCG GTC
GL2_EDR2_START_F	GGC GTC TTT GCC CTC AAC CAA GCA TTT TCC AGG AA
GL2_EDR2_START_R	AGC CAT GAA GAA GAC CCA CCC TTT TAG ATC AAT TTG
GL2_REV_START_F	GGC GTC TTT GCC CTC GAG GAG ACT TTG GCA GAG TTC
GL2_REV_START_R	AGC CAT GAA GAA GAC CCG CAA CGC GGA AAT GGT CA
GL2_mStAR_START_F	GGC GTC TTT GCC CTC GAC CAG GAG CTG TCC TAC ATC C
GL2_mStAR_START_R	AGC CAT GAA GAA GAC GCT GGC TTC CAG GCG CTT GC
II. Gene specific primers for PCR amplification and cloning of START domain coding regions in GSV plasmids.	
Name	5'-3' sequence
Atlg64720 for_KpnI 218	CTCACCACGTTAACCCCGGTACCTCTTCCAAAGAG
Atlg64720 rev_Sacl 945	GTGAGCCATTATGGCGAGCTCGGATAAACCTGCTC
At2g28320_for_KpnI_418	TTGAGTAGCTCAGGTACCGACCATCACTCAAACTC
At2g28320 rev SacI_ 1151	CTTGCACTTCTTGGAGCTCCCCCTGACGACAG
At3g13062_for_KpnI_201	CTCGGTTTCTCAATCTGGTACCTCCCAATCAGG
At3g13062_rev_SacI_934	AGCTTACAGCGAGCTCTGTGGGCCCTTGGGGTCG
At4g 14500_for_KpnI_365	TGGCCTCAAGAGGTACCGATAACGGG
At4g14500_rev_SacI_1084	CCATTTGGGCGAGCTCAGATAGAGATGAGTCTG
At5g07260_for_KpnI_229	CTATATCCCGGTACCGCTACGTCTTTGACTG
At5g07260_rev_SacI_952	CTGGTCGAATATGAGCTCATTGTGACCAATTGAAGG
At5g35180_for_KpnI 634	CAAGGTCCAGGTACCCTTTTGAGGCAATCATC
At5g35180_rev_SacI_1382	TGGAACTTGGAGAGCTCAACCGTGGCGGAAG
At5g45560 for_KpnI 487	AGGACAACTATTGGTACCGGCCCTCCAGAATC
At5g45560_rev_SacI_1229	GATGCCATATTGAGCTCAACAGGGATCCTGATCGG
At5g54170_for_KpnI_344	TTTCAAGAGGTACCAAAACAAAGGAGAGATTGCC
At5g54170 rev SacI 1065	CATGAAAGCAGACCGGAGCTCCTTGGTTCCTCC
ANL2 outer F 824	CCTCCTTAGAACTCGCTGTCGGCACC
ANL2 outer R_1780	GCTTGCTCCAATTGTGGACCGACG
ANL2 for KpnI 915	GCAGCAGCAGCAGTCGGGTACCATTAATGGG
ANL2_rev_SacI_1685	GGCGTTATTGATGTGAGCTCGTGAGATGTAACGG
ATHB8_for_KpnI_429	GACCCCTGGTACCCAGCCTCGTGATGC
ATHB8 rev SacI	GCCGCTGGTCTGAGCTCCCAACCTG
ATML1_for_KpnI	ACATTTTGAGGTCGGGTACCATACCTTCTGAGGC
ATML1_rev_SacI	CAGGACTCGTTATCACGGAGAGCTCACAAGC
CNA for KpnI 432	GGCATCTGGTACCCCTCAGAGAGATGC
CNA rev Saci 1162	GACGCCGTCCGAGCTCATTAACACTAC
FWA outer F_ 450	GGCTGAGAATGCTAACTTGGAGCGGG
FWA outer R 1440	GCCACTTGTCCACCGAAGGACTCG
FWA_for_KpnI_592	GATTTTAGTGGTGGTACCAGGACGTCTGAGAAGG
FWA_rev_SacI_1361	GCAGACAATCCGAGCTCAATTTCAGTCAAGTTG
GL2_for_KpnI_A	GTCTCGGTACCCTCGATTTCTACACGGGCGTC

GL2_rev_SacI_A	CTTTGGTGAGCTCGTTGGTAGCCATGAAGAAGAC
GL2_for_KpnI_B	TCGGCTCTCTCGGTACCTACACGGGCGTC
GL2_rev_SacI_B	TGTAACTCCGAGCTCGTCTTTGGTGGGGACG
GL2_for_KpnI_728	TCTACACGGGTACCTTTGCCCTCGAGAAGTCCCG
GL2_rev_SacI_1500	TCCGAGAGAGAGCTCGGTGGGGACGTTGGTAG
HDG1_for_KpnI_910	CAACCGGGTACCGTTAGTGATTTTGATC
HDG1_rev_SacI_1674	GCAGTTTATAGGGGATGGGAGCTCGGAAGTGG
HDG2 for_deltaSacI 759	CGTGGCTGCAATGGAAGAACTCATGAGGATGGT
HDG2_rev_deltaSacI_791	ACCATCCTCATGAGTTCTTCCATTGCAGCCACG
HDG2_for_deltaSacI_1038	AGGAAACTATAATGGAGCCCTTCAAGTGATGAGTGC
HDG2_rev_deltaSacI_1073	GCACTCATCACTTGAAGGGCTCCATTATAGTTTCCT
HDG2_for_KpnI_712	ATCACTGCAGGTACCGAATCTGACAAACC
HDG2_rev_SacI_1415	GTAGCCATGACGAGCTCTAACCGCTCGC
HDG3 outer F (625-650)	CATCCCCGTGTGTCTCCTCCTAATCC
HDG3 outer R (1511-1537)	TGGTCATTCCAGCAAAGAAGGTTCTCG
HDG3_for_KpnI	CCACTCGAGGGAAACCGGTACCCCTGCAGATGC
HDG3_rev_SacI	TCTTTCCATGGTTAGTTAGCGCGAGCTCGACAG
HDG4 outer F (539-562)	CTTGTGGCCACAATCTCCGCCTCG
HDG4 outer R (1447-1475)	TGTGACAGCTTCATCAAGTTCTTCCTCGC
HDG4_for_KpnI	AAGAACAACAACGATGGTACCTTGATTGCGG
HDG4_rev_SacI	AGGTATGAGCTCAAGGTCAGTGATGTTTGTAGC
HDG5 outer F (808-836)	GACATGAGTGTATACGCTGGGAACTTTCC
HDG5 outer R (1766-1791)	GGTCCAAGACTGTCCATATGCAGTGC
HDG5_for_KpnI	CAACAACGGTACCTTACTTGCGGATGAAGAAAAGG
HDG5_rev_SacI	GCAGATGAAATTACGAGCTCATCAGTTATGTTTCTAGC
HDG8 for_deltaSacI 649	AGTGCGGTTGAAGAGCTGAAGCGGCTGTTTTTGGC
HDG8_rev_deltaSacI_683	GCCAAAAACAGCCGCTTCAGCTCTTCAACCGCACT
HDG8_for_KpnI_597	ACCACGACCAGGTACCGAAACGGATATGAGCC
HDG8_rev_SacI_1322	ATGGAGGAGAGCTCCATCCTCTCACAC
HDG9_outer_F_571	TTCTAACCGTCTCCCCGAGCCTTCAAGC
HDG9_outer_R_1547	GACTGTGGCGAGAAGTCGAGTTTGTTAACC
HDG9 deltaSacI_F_1329	CTTTGGCTACGGAGCCCGACGTTGGACCG
HDG9_deltaSacI_R_1357	CGGTCCAACGTCGGGCTCCGTAGCCAAAG
HDG9_for_KpnI_669	GGAAATGCAGAATGGTACCCCACTATCTCAACTGG
HDG9 rev_SacI_1437	AACTCCGGGATTGAGCTCGTTGGGCAAGGC
HDG11_for_deltaKpnI_1000	CAGGAATGGGAGGTACGCATGAGGGTGC
HDG11_rev_deltaKpnI_1028	GCACCCTCATGCGTACCTCCCATTCCTG
HDG11_for_KpnI_663	GCCTAACTTGGCTGGTACCGACATGGATAAGCC
HDG11_rev_SacI_1400	GAAGACGCTGGTACGGATAGGAGCTCAAATCTTTCACAC
HDG12_for_KpnI_592	CCATCTCAGCCAGGTACCGTTTTATCAGAGATGG
HDG12_rev SacI 1361	ACTCCTCCGAGCTCAAGGGATGATG
MLN64_deltaSacI_F_867	GCCCTGTCCTGCGGAGCTTGTGTACCAGG
MLN64_deltaSacI_R_867	CCTGGTACACAAGCTCCGCAGGACAGGGC
MLN64 for_KpnI	TCCTTTGCAGGTACCGACAATGAATCAGATGAAGAAG
MLN64_rev_SacI	TATCAGAGCTCCGCCCGGGCCCCC
PCTP_for_KpnI	GACTGCGGTACCATGGAGCTGGCCGCCG
PCTP_rev_SacI	TCAACCCATGGATGCAATGTTCCGAGCTCTCTTTCATAGG
PDF2_for_KpnI	TTGAGGTCAGGTACCATTCCTTCTGAGACTG
PDF2_rev_SacI	TATCACGGAGAGCTCACCAGGAATGTTGC
PHB_for_KpnI 463	AACCCAAATCCTCAGGGTACCCAACGTGATGC
PHB_rev_SacI_1198	CAGGTTGGAGCTCTCCACCATACTG
REV_for_KpnI_423	GGTCACAACTCCTCAGGGTACCCTTAGAGATG
REV_rev_SacI_1162	CAGCAGGCTGGAGCTCTAATCCATACACTACT

mStAR_for_KpnI	GTCAGTCCTTGGTACCCAACTGGAAGCAACACTC
mStAR rev SacI	TTAACACTGGAGCTCAGAGGCAGGGCTGGC
III. Primers for sequencing plasmid inserts, construction of GV plasmid, or cloning of the yEGFP3 expression vector (pUG35) and protein expression vector BG1805	
Name	5'-3' sequence
GSV_seq_for	TCCCAAAACCAAAAGGTCTCCGCTG
GSV seq rev	CCCCAACATGTCCAGATCGAAATCG
Gal4DBD_for_1	ATGAAGCTACTGTCTTCTATCGAAC
Gal4DBD rev 276	CAATGCTTTTATATCCTGTAAAGAATCC
Gal4_NruI for_282	TACCCCTGCAGCTGCGTCGCGACTAGAGGATCC
Gal4_NruI_rev_314	GGATCCTCTAGTCGCGACGCAGCTGCAGGGGTA
VP16 NruI for 1182	TGCGGGCTCTACTTCATCGTCGCGACACTTAGACGGCG
VP16_NruI_rev_1219	CGCCGTCTAAGTGTCGCGACGATGAAGTAGAGCCCGCA
pUG35_seq_3117R_MET25p	TTCCTTCGTGTAATACAGGGTCG
pUG35 seq 2964F yEGFP	ACCAAAATTGGGACAACACCAGTG
pUG35_MET25p_for_207	GCACCTTGTCCAATTGAACACGC
pUG35_yEGFP_rev_730	ACCTTCTGGCATGGCAGACTTG
pUG35_for_ATG	CATCCATACTCTAGAATGAGTGGATCCCCCGGGC
pUG35 rev_ATG	GCCCGGGGGATCCACTCATTCTAGAGTATGGATG
pGSV_for_BamHI	AAGCAAGGATCCTGAAAGATGAAGCTACTGTC
pGSV rev EcoRI	TCGCGCGAATTCCCCACCGTACTCG
pGS_rev_EcoRI	ACTATAGGGCGAATTCGAGCTCCACC
pG_rev_EcoRI	GTCTAAGTGGAATTCGGTACCTAACAATGC
GSV_for_pENTR TOPO	CACCATGAAGCTACTGTCTTCTATCGAAC
GSV_rev_pENTR TOPO	TGCCCCACCGTACTCGTCAATTCCAAG
IV. Primers for site-directed mutagenesis of mouse StAR START domain	
Name	5'-3' sequence
StAR M143R;N147D for (atg->agg;aac->gac)	GC ATG GAG GCC AGG GGA GAG TGG GAC CCA AAT GTC
StAR M143R;N147D_rev	GAC ATT TGG GTC CCA CTC TCC CCT GGC CTC CAT GC
StAR R181L;D182L for (cga->cta;gac->ctc)	CTG GTG GGG CCT CTA CTC TTC GTG AGC GTG CGC
StAR R181L;D182L_rev	GCG CAC GCT CAC GAA GAG TAG AGG CCC CAC CAG
StAR R181L_for (cga->cta)	G GGG CCT CTA GAC TTC GTG AGC GTG CG
StAR R181L_rev	CG CAC GCT CAC GAA GTC TAG AGG CCC C
StAR D182L_for (gac->ctc)	CTG GTG GGG CCT CGA CTC TTC GTG AGC GTG CGC
StAR D182L_rev	GCG CAC GCT CAC GAA GAG TCG AGG CCC CAC CAG
StAR C224R for (tgc->cgc)	GAA CAC GGC CCC ACC CGC ATG GTG CTT CAT CC
StAR C224R_rev	GG ATG AAG CAC CAT GCG GGT GGG GCC GTG TTC
StAR L241R_for (ctg->cgg)	CC AAG ACT AAA CTC ACT TGG CGG CTC AGT ATT GAC C
StAR L241R rev	G GTC AAT ACT GAG CCG CCA AGT GAG TTT AGT CTT GG
StAR F266D_for (ttc->gac)	CC TA TCG CAG ACC CAG ATA GAG GAC GCC AAC CAC C
StAR F266D_rev	G GTG GTT GGC GTC CTC TAT CTG GGT CTG CGA TA GG
StAR L270M for (ctg->atg)	GAG TTC GCC AAC CAC ATG CGC AAG CGC CTG G
StAR L270M_rev	C CAG GCG CTT GCG CAT GTG GTT GGC GAA CTC

