
SOFTWARE Open Access

Detecting broad domains and narrow
peaks in ChIP-seq data with hiddenDomains
Joshua Starmer1,2* and Terry Magnuson1,2

Abstract

Background: Correctly identifying genomic regions enriched with histone modifications and transcription factors is
key to understanding their regulatory and developmental roles. Conceptually, these regions are divided into two
categories, narrow peaks and broad domains, and different algorithms are used to identify each one. Datasets that
span these two categories are often analyzed with a single program for peak calling combined with an ad hoc
method for domains.

Results: We developed hiddenDomains, which identifies both peaks and domains, and compare it to the leading
algorithms using H3K27me3, H3K36me3, GABP, ESR1 and FOXA ChIP-seq datasets. The output from the programs
was compared to qPCR-validated enriched and depleted sites, predicted transcription factor binding sites, and
highly-transcribed gene bodies. With every method, hiddenDomains, performed as well as, if not better than algorithms
dedicated to a specific type of analysis.

Conclusions: hiddenDomains performs as well as the best domain and peak calling algorithms, making it ideal for
analyzing ChIP-seq datasets, especially those that contain a mixture of peaks and domains.
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Background
Histone modifications and DNA binding proteins regulate
gene transcription and correctly identifying where they are
enriched is crucial to understanding development and cell
function [1]. Unbiased genomic surveys of histone modifi-
cations and DNA binding proteins can be made using
chromatin immunoprecipitation combined with high-
throughput sequencing (ChIP-seq). Once sequenced, the
reads must be analyzed to identify where they are enriched.
ChIP-seq analysis algorithms have specialized in identi-

fying one of two types of enrichment: broad domains (i.e.
histone modifications that cover entire gene bodies) or
narrow peaks (i.e. a transcription factor bound to an
enhancer). However, the threshold that distinguishes one
category from the other is arbitrary and can be spanned by
biologically relevant histone modifications. For example, tri-
methylated H3K27 (H3K27me3), which is correlated with
transcriptional repression, can cover entire gene bodies,

forming broad domains of enrichment [1], as well as en-
hancers and transcriptional start sites, forming narrow
peaks spanning a small number of nucleosomes [2, 3].
Thus, a full analysis of H3K27me3 can require two separate
methods and merging the results in an ad hoc manner [3].
A program that accurately identifies both broad domains
and narrow peaks simultaneously would greatly simplify
these analyses.
Hidden Markov models (HMMs) are suitable for identify-

ing changes in discrete states, and thus can determine if a
region is “enriched” or “depleted” [4]. Importantly, HMMs
generate posterior probabilities, providing a measure of
confidence that goes beyond the simple binary output of
“enriched” or “depleted”. Because it is not always clear
where an enriched domain starts and where it ends, poster-
ior probabilities indicate in which parts of the enriched
domain users should have high confidence and in which
parts they should have only moderate confidence.
We developed hiddenDomains, a program that uses an

HMM, to identify both enriched peaks and domains sim-
ultaneously. It is unique in that it does not need to be
tuned to one type of enrichment prior to analysis and does
not make assumptions about how reads should be
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distributed around transcription factor binding sites. We
have also added steps to prevent a problem identified in
other HMM based enrichment detection programs; inver-
sions in the output, where enriched regions are called de-
pleted. The HMM state optimizations and estimations for
transition and Gaussian emission probabilities are per-
formed by the depmixS4 [5] and the HiddenMarkov pack-
ages for R. hiddenDomains creates BED files that are
ready to be displayed in the UCSC genome browser and
are colored according to the posterior probabilities, allow-
ing users to select the confidence level they wish to view.
We compare hiddenDomains to the leading programs de-
signed for broad domains and narrow peaks and show that
it performs as well as, if not better, than the best program
in each class.

Results
Comparing sensitivity and specificity of domain calling
To compare hiddenDomains to existing domain detecting
methods, we used an H3K27me3 ChIP-seq dataset (GEO:
GSE25308) derived from mouse myoblasts that has 145
ChIP-qPCR verified enriched sites and 52 ChIP-qPCR
verified depleted sites [6]. The ChIP-seq dataset has
29,694,722 H3K27me3 reads and 39,307,680 reads of soni-
cated input. The ChIP-qPCR sites allow us to determine
sensitivity, the percentage of true positives identified, and
specificity, the percentage of true negatives rejected, for
each method.
We compared hiddenDomains to the following programs

for detecting broad domains of ChIP-seq enrichment:
Homer (version 4.7) [7], MACS (version 2.1.0–referred to
as MACSv2 in this manuscript) [8], PeakRanger (version
1.18) [9], which includes BCP [10] and CCAT [11], Rseg
(version 0.4.8) [12] and SICER (version 1.1) [13]. Homer
and MACSv2 have options that allow them to specifically
search for broad domains of enriched ChIP-seq reads.
We started by running the domain finding programs on

the full dataset and uploaded the output the UCSC genome
browser (Fig. 1a). Visual inspection suggested two different
domain calling styles; programs either broke enriched
domains into smaller fragments and peaks or left larger
domains intact. We then quantified the number of domains
and their average widths called by all of the programs
(Fig. 1b). The programs identified anywhere from 5014 to
143,184 broad domains. In general, the more domains iden-
tified, the shorter the average domain. Rseg found the few-
est and longest domains, averaging 124 Kb per domain.
PeakRanger-CCAT found the most domains, averaging 2.8
Kb per domain. Overall, Homer, MACSv2 and PeakRanger-
CCAT appeared to break enriched domains into smaller
fragments and peaks and hiddenDomains, PeakRanger-
BCP, Rseg and SICER left larger domains intact.
We then compared sensitivity and specificity at different

read depths, including the full dataset, by down-sampling

the H3K27me3 and input reads to 20,000,000, 10,000,000
and 5,000,000 reads (Fig. 1c). The down-sampled datasets
were intended to simulate sub-optimal sequencing results.
Rseg, which found the fewest, but longest domains, and
PeakRanger-CCAT, which found the most, but shortest
domains, had the highest sensitivity at all read depths,
identifying ~75 % of the ChIP-qPCR verified enriched
sites, but also the lowest specificity, failing to reject ~42 %
of the ChIP-qPCR verified depleted sites. hiddenDomains,
PeakRanger-BCP and MACSv2 had the next best sensitiv-
ities, identifying ~62 % of the verified enriched sites, and
only failed to reject 10 % of the verified depleted sites.
SICER and HOMER had the lowest sensitivities, but the
highest specificity scores. Among the methods that con-
trol the number of false positives in their results with
specificities close to 1.0, hiddenDomains’s sensitivity is
comparable to the best programs in this class.

Comparing domain widths in an H3K36me3 ChIP-seq
dataset
Because there is no gold standard to determine whether a
program’s broad domains accurately cover an enriched re-
gion, we used the widths of gene bodies in an H3K36me3
ChIP-seq dataset (ENCODE: ENCSR000AKR, ENCFF
000BVZ), generated from K562 cells, as an approximation
for optimal domain widths. Figure 2a and b shows that all
of the programs except for Rseg identified domains that
overlapped gene bodies almost 100 % of the time. Rseg,
which also uses HMMs to determine enriched and
depleted states, called significantly more domains outside
of gene bodies and they often appeared over H3K36me3
depleted regions (Fig. 2a), as if the results had been
inverted. To verify that the inverted results were not due
to user error, we ran Rseg 100 times in a loop, using the
same command each time, and observed inverted results
in 10 of the runs. Because Rseg generated two classes of
results, we describe both of them in the remaining ana-
lyses, using Rseg-inverted to refer to the inverted results.
Inverting the results is possible with an HMM because de-
fining which state represents enrichment can be arbitrary.
In contrast, hiddenDomains takes inversion into consider-
ation and adjusts accordingly (see Methods).
H3K36me3 is associated with the chromatin of actively

transcribed genes [14]. To identify actively transcribed
genes, we paired the ChIP-seq with an RNA-seq dataset
(ENCODE: ENCSR000CQL) that had also been per-
formed in K562 cells. After aligning the RNA-seq to the
human genome (hg19) with Tophat2 [15], we used
DEseq-count [16] to determine the number of reads that
mapped to each gene. We then ranked the genes by
RPKM and filtered out all genes with RPKM <1 and the
average width of the remaining transcribed genes was
24 kb. We then compared the average transcribed gene
width to the average domain size called by the various
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Fig. 1 Broad Domains in H3K27me3 ChIP-seq Data. a A UCSC Genome Browser screenshot of the ChIP-seq and domains called by the various methods.
b The number of domains called for each method used and the average domain width. c The sensitivity and specificity for the original ChIP-seq dataset
and down-sampled versions of it. The colors used in the graphs represent the same programs listed in the legend for (b)
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programs (Fig. 2b, middle bar graph, the red line indicates
the average transcribed gene width). Both Rseg and Rseg-
inverted had the widest domains overall and Homer’s were
the shortest. SICER’s domains were closest in size to the
average transcribed genes. hiddenDomains’s was a close
second, and PeakRanger-BCP was third. Lastly, we fo-
cused on the domains that covered the top 50 highly
expressed genes that were longer than 3 Kb (Fig. 2b, the
bar chart on the far right). When it did not invert its re-
sults, Rseg performed best, overlapped 95 % of the gene
bodies. SICER, PeakRanger-BCP, PeakRanger-CCAT and
hiddenDomains all performed similarly well, calling do-
mains that covered over 80 % of the gene bodies.

Comparing sensitivity and motif overlap of narrow peak
calling
To compare hiddenDomains to existing peak calling pro-
grams we used a ChIP-seq dataset for GA-binding protein
(GABP) (downloaded from http://mendel.stanford.edu/
sidowlab/downloads/quest/) in the Jurkat human T
lymphoblast cell line [17] that had 150 ChIP-qPCR veri-
fied enriched sites [18] defined as having >3-fold enrich-
ment over controls [19]. The ChIP-seq dataset had

7,862,231 GABP reads and 17,404,922 reads of input.
Without ChIP-qPCR verified depleted sites we can only
calculate sensitivity. In lieu of the ability to calculate speci-
ficity, we determined the accuracy of each method as the
percentage significant peaks that overlapped 59,618 pre-
dicted GABP binding sites identified by FIMO [20] with
the TRANSFAC GABP motif [21].
We compared hiddenDomains to the following pro-

grams for detecting narrow peaks of ChIP-seq enrich-
ment: Homer, MACSv2, GPS/GEM (version 2.5) [22, 23].
Homer and MACSv2 have options that allow them to spe-
cifically search for short peaks of enriched ChIP-seq reads.
SICER, PeakRanger-BCP and PeakRanger-CCAT were ex-
cluded from peak detection because their documentation
specifically states that they are tuned for domain calling.
(The standalone version of CCAT can be used for peak
detection and is discussed later in the manuscript.) Com-
parison to additional programs applied to the same tran-
scription factor dataset can be found in [19].
We started by running the programs on the full dataset

and uploading the results to the UCSC genome browser
(Fig. 3a) and verified that the output from each program
overlapped visible peaks. GPS/GEM identified the most
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peaks, 24,376, and they were 200 bp wide on average
(Fig. 3b). hiddenDomains found the smallest number of
peaks, 9337, and these were 1.2 kb wide on average, which
was to be expected since its default bin size is 1 kb. How-
ever, we also tested 212 bp wide bins (212 is the average
bin size of the three other peak calling algorithms) and
with this setting, hiddenDomains identified 11,785 peaks
averaging 411 bp wide (Additional file 1: Figure S1).

We then compared the total peaks called, sensitivity,
and the percentage of peaks that overlapped predicted
GABP binding sites, at different sequencing depths, in-
cluding the full dataset, by sequentially halving the GABP
and input reads to 3,931,116, 1,965,558 and 982,779 reads
(Fig. 3c). Again, the down-sampled datasets were intended
to simulate sub-optimal sequencing results. At every sam-
ple size, GPS/GEM called the most peaks. In contrast,
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hiddenDomains called the fewest peaks at every sample
size larger than the smallest. However, the sensitivity for
GPS/GEM and hiddenDomains were almost identical at
all sample sizes, indicating that the 2.5-fold increase in the
number of peaks called by GPS/GEM did not provide it
with an advantage for identifying ChIP-qPCR verified
sites. With the full dataset, GPS/GEM identified 127
(85 %) of the ChIP-qPCR verified loci and hiddenDomains
identified 125 (84 %). Furthermore, at all sample sizes,
hiddenDomains had the highest percentage of peaks that
overlapped predicted GABP binding sites. With the full
dataset, 54 % of the peaks that hiddenDomains identified
overlapped predicted binding sites, whereas only 21 % of
GPS/GEM’s peaks overlapped predicted binding sites.
When hiddenDomains used 212 bp wide bins, it main-
tained the 2nd highest sensitivity (82 %) and the highest
percentage overlap of predicted GABP binding sites
(40 %) (Additional file 1: Figure S1). Thus, bin size alone
cannot account for hiddenDomains’s ability to call peaks
over predicted GABP binding sites.
Although GPS/GEM’s sensitivity is 1 % better than hid-

denDomains’s, it called over 2.5 times as many peaks and
only 21 % (5181 of 24,374) of these overlapped predicted
GABP binding sites. In contrast, 54 % (5052 of 9337) of
hiddenDomains’s peaks overlapped predicted GABP bind-
ing sites, suggesting that a greater percentage of its results
are true-positives. By these metrics, we conclude that
hiddenDomains’s output was comparable to, if not better
than, that from the best peak calling programs.
Because the control dataset for the Jurkat GABP ChIP-

seq is relatively noisy compared to newer datasets, we
used the peak finding programs on an ENCODE GABP
ChIP-seq dataset with much cleaner control data (EN-
CODE: ENCSR000BJK, ENCSR000BLG) to validate the
original results. We used hgLiftOver (http://genome.ucsc.
edu/cgi-bin/hgLiftOver) to convert the genomic coordi-
nates for the qPCR validated sites from hg18 to hg19, and
we used FIMO and the TRANSFAC GABP motif to predict
binding sites in hg19. The new dataset generated results
that were very similar to the original, if not more favorable
for hiddenDomains (Fig. 3d and e). hiddenDomains called
the fewest significant peaks, but these overlapped al-
most as many of the qPCR validated binding sites as
MACSv2, which overlapped the most. The peaks called
by hiddenDomains overlapped more predicted binding
sites than any other method and its percentage of peaks
overlapping predicted binding sites was also highest.
Although hiddenDomains accurately detects peaks, its

dependency on binning reads prevents it from being very
precise. To rectify this, we include a helper program,
peakCenters, which takes the output from hiddenDomains
and identifies the genomic coordinates for the peak cen-
ters. By default, peakCenters extends the peak by 100 bp
in the up and downstream directions, but this can be

changed on the command line. We used peakCenters and
its default settings on the ENCODE GABPA data and saw
that narrower peaks still performed very well, overlapping
as many qPCR validated sites as MACSv2 and more of the
predicted binding sites than MACSv2 and Homer (Fig. 3e).
Lastly, CCAT, when used separately from the PeakRanger

suite of programs, can be configured to identify narrow
peaks. Using this configuration, we applied it to the EN-
CODE GABPA dataset. CCAT identified 591,231 enriched
regions, 18 times more peaks than the next largest number
found by GSP/GEM (32,643). hiddenDomains, Homer and
MACSv2 all identified close to 10,000 enriched regions, 50
times fewer peaks than CCAT’s. CCAT’s peaks averaged
1.6Kb wide and covered 968 Mb, over one third of the en-
tire non-N hg19 genome. In comparison, the average num-
ber of bases called enriched in the H3K37me3 analysis was
only 372 Mb. These results suggest that CCAT must have
very low specificity and are reminiscent of CCAT’s analysis
of the H3K27me3 data. With the H3k27me3 data, CCAT
identified the most domains and had a high sensitivity
score, but at the expense of having domains that overlapped
many of the validated “depleted” regions and thus, an un-
acceptably low specificity score (see Fig. 1c). Because of its
poor performance with the ENCODE GABP dataset, we
excluded CCAT from additional narrow peak analyses.

Analysis of narrow peak calling in additional transcription
factor ChIP-seq datatsets
To further characterize the abilities of the narrow peak call-
ing programs, we applied them to two additional ChIP-seq
datasets for the transcription factors Estrogen Receptor 1
(ESR1) (ENCODE: ENCSR000BKN, ENCSR000BMP) and
Forkhead Box A1 (FOXA1) (ENCODE: ENCSR000BLE,
ENCSR000BLG) (Fig. 4a and c). Just like for GABP, we de-
termined the accuracy of each method as the percentage
significant peaks that overlapped the 67,506 predicted ESR1
and the 57,557 predicted FOXA1 binding sites identified by
FIMO with their respective TRANSFAC motifs.
The results for ESR1 and FOXA1 were similar to the re-

sults for GABA1. We found that while hiddenDomains
found the fewest domains, these overlapped nearly as
many predicted binding sites as the other methods (Fig. 4b
and d). Furthermore, a much greater percentage of the
peaks called by hiddenDomains overlapped predicted
binding sites for both transcription factors than the other
methods (Fig. 4b and d). Lastly, we applied peakCenters to
hiddenDomains’s output for both the ESR1 and FOXA1
datasets and the 200 bp wide peaks had results similar to
the GABPA outcomes; there were fewer predicted sites
called significant, but the percentage overlap remained the
highest of the peak finding programs. These results show
that the enriched regions identified by hiddenDomains do
not overlap predicted binding sites simply because its
peaks are wider than the other methods’.
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Discussion
hiddenDomains performs exceptionally well using a two
state HMM that makes no assumptions about how the
reads are distributed around transcription factor binding
sites. Although RSeg also uses a two state HMM, there
are important differences between these two programs.
First, Rseg uses the difference between two independent
negative binomial distributions to model the ChIP and
control reads and the HMM parameters are estimated
for the entire genome, rather than per chromosome. In
contrast, hiddenDomains uses a normal distribution to
model the difference in normalized read counts in bins
with one or more read in either the ChIP or control data-
sets and the HMM parameters are estimated separately

for each chromosome. Second, RSeg explicitly incorpo-
rates mapability into its model, and hiddenDomains impli-
citly ignores unmappable regions by using samtools to
filter out reads that map to them and then ignoring bins
with zero reads. Lastly, Rseg can invert its output; calling
enriched regions depleted and depleted regions enriched.
In contrast, hiddenDomains evaluates the states after par-
ameter estimation to determine which one represents en-
richment. Although these differences in the algorithms are
subtle, the differences in the output are dramatic. Rseg’s
inverted output in the H3K36me3 dataset would lead to
erroneous interpretations, and at every sample size in the
H3K27me3 dataset hiddenDomains had much higher
specificity and its domains were much smaller.
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Fig. 4 Narrow Peaks in ESR1 and FOXA1 ChIP-seq Data. a A UCSC Genome Browser screenshot of the ESR1 ChIP-seq and peaks called by the various
methods. b The number of peaks called, the number of predicted binding sites overlapped by peaks, and the percentage of peaks that overlapped
predicted binding sites for the various methods. c A UCSC Genome Browser screenshot of the FOXA1 ChIP-seq and peaks called by the various
methods. d The number of peaks called, the number of predicted binding sites overlapped by peaks, and the percentage of peaks that overlapped
predicted binding sites for the various methods
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In the transcription factor ChIP-seq datasets, we noticed
there are several loci that hiddenDomains did not call
enriched, even though other programs, like MACSv2 did
(Figs. 3a, c and 4c). Many of the sites that hiddenDomains
excluded from its results had very low ChIP-seq reads that,
numerically, were no different from the control dataset.
One possibility for why other programs call these sites
enriched is their model assumptions (i.e. reads on opposite
strands within a specified distance are more likely to indi-
cate transcription factor binding than reads on the same
strand). In contrast, hiddenDomains does not make as-
sumptions about how reads should be distributed around
transcription factor binding sites. Although it might seem
like hiddenDomains’s simple model would result in exces-
sive false positives, we note that across multiple datasets,
the relatively small number of peaks that hiddenDomains
calls overlap a large number of qPCR validated and pre-
dicted binding sites, even when the bin size is set to 212 bp
or when peakCenters limits them to 200 bp.
Because hiddenDomains called relatively few loci signifi-

cantly enriched, unique loci that were called enriched
were rare. However, we did see them from time to time.
In one case, this occurred over a very narrow region (less
than 100 bp wide) that contained a mound of reads (rather
than a vertical rectangle of reads that would suggest a
PCR-amplification artifact). This site was called significant
because hiddenDomains did not make assumptions about
how far apart reads should be to indicate enrichment.
hiddenDomains is especially useful for data like

H3k27me3 ChIP-seq that contain both narrow peaks and
broad domains because it does not need to be tuned to ei-
ther type of enrichment. All other programs that analyze
both types of enrichment require setting a parameter that
tunes it to one type or the other. However, if knowing the
precise location of transcription factor binding site is im-
portant, we have three recommendations: 1) using the
peakCenters program that is included with hiddenDo-
mains, 2) using MACSv2 3) combining the output from
hiddenDomains with a specialized binding site program
like GEM. Furthermore, the default bin size for hiddenDo-
mains (1 kb) means that, without changing this parameter,
a single peak may span two or more enriched loci (see
Fig. 4a). This is acceptable if the user simply wants to
know if a transcription factor binds within a region. How-
ever, if the user wants higher resolution by default and
they know their data only contains narrow peaks, we rec-
ommend using MACSv2.

Conclusions
Using ChIP-seq datatsets for H3K27me3, GABP, ESR1 and
FOXA1, we have shown that hiddenDomains’s sensitivities
and specificities are among the best, if not better than,
methods that are dedicated to identifying broad domains or
narrow peaks. We have also shown that a larger percentage

of hiddenDomains’s GABP, ESR1 and FOXA1 results over-
lap predicted binding sites than any other method using the
default bin size (1 kb) and much smaller, 212 and 200 bp,
bin sizes. Because hiddenDomains implements a simple
model, and yet fits the data as well, if not better than, more
complicated models in a wide variety of situations, we
believe it represents a significant improvement over the
current state-of-the-art in ChIP-seq analysis.

Implementation
hiddenDomains is a program that consists of three main
stages. While more details are given below, briefly, the
first stage bins the reads, the second stage creates the
HMM and identifies enriched peaks and domains and
the third stage converts the results into BED files.
The first step uses samtools [24] to filter out reads with

low MAPQ scores from a ChIP-seq experiment and
counts how many of the remaining reads map to uni-
formly sized bins spanning the genome of interest. The
default minimum MAPQ score, 30, filters out reads that
map to multiple locations, have many mismatches, or
poorly called base pairs. The default bin size is set to 1 kb,
which works well for both broad domains and identifying
the presence or absence of transcription factor binding.
For more precise peak coordinates for transcription fac-
tors, users can set the bin size to 200 bp or smaller, or
visually inspect the data in the UCSC Genome Browser
for a peak width.
Binned reads, one for a control dataset, if available, and

one for a ChIP dataset, are then used as input to the
HMM in the second stage. If a control dataset is included,
both the ChIP and control datasets are normalized by a
factor based on their total read counts. If the smaller of
the two datasets has fewer than 10,000,000, 100,000,000
or 1,000,000,000 reads, then the read depths are divided
by 1,000,000, 10,000,000 or 100,000,000, respectively.
After normalization the new control read counts are
subtracted from the new ChIP read counts. This is similar
to the method described by Wang, Lunyack and Jordan
[25], but not implemented in their program, BroadPeak,
which does not accept control datasets. Following the
normalization step, bins with no reads mapping to them
are excluded and hiddenDomains truncates the maximum
and minimum read counts per bin to minimize the effects
that repetitive regions have on estimating variances. If a
control dataset is used, the normalized read counts form a
normal distribution centered on 0 with a standard devi-
ation that is approximately 5 (Additional file 1: Figure S2).
Thus, the default maximum and minimum number of nor-
malized reads in a bin after subtracting the normalized con-
trol read counts is 200 and −10, respectively. These values
account for the skewing in the data caused by true ChIP-
seq enrichments and allow for two times the standard devi-
ation reductions in the depleted areas. Furthermore, these
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values perform well in practice. However, they can be chan-
ged at the users discretion. For example, if hiddenDomains
only detects repetitive regions, the maximum number of
normalized reads can be reduced to 100. hiddenDomains
then builds and estimates parameters for a two-state
HMM, one state modeling enriched regions and one state
modeling depleted regions. Parameter estimation is done
for each chromosome, using either the depmixS4 [5] or
HiddenMarkov packages for R. In practice, we observed
that depmixS4 works well with data containing a mixture
of broad domains and narrow peaks, and HiddenMarkov
works well with data consisting entirely of narrow peaks.
hiddenDomains tries depmix4 first, and if it fails to con-
verge on parameter estimates, HiddenMarkov is used. On
data where both methods succeed, the results are identical
(data not shown). With both packages, hiddenDomains
uses normal distributions to model emission probabilities.
The choice of distribution was based on histograms of the
normalized binned read counts (Additional file 1: Figure
S2). The initial parameters for the “enriched” state are the
standard deviation and three times the mean of the normal-
ized bin read counts. The initial parameters for the “de-
pleted” state are the standard deviation and mean of the
normalized bin read counts. Formally, the joint likelihood
for the series of observations (i.e. the read counts in the
bins), O1:B, and latent states, S1:B, given transition and emis-
sion parameters, Θ, is:

P O1:B; S1:B j Θð Þ ¼
P S1 ¼ ið Þ P O1 j S1 ¼ ið Þ

YB−1

b¼1
P Sbþ1 ¼ j j Sb ¼ ið Þ

P Obþ1 j Sbþ1 ¼ jð Þ:

Where Sb can be either an enriched or depleted state,
P(S1 = i) is the prior probability of the first bin on a
chromosome being in one of those two states, P(O1 | S1 = i)
is the probability of emitting the observed read count, O1,

from the initial state, P(Sb + 1 = j | Sb = i) is the probability
of transitioning from the state assigned to bin b to the state
assigned to bin b + 1, and lastly, P(Ob + 1 | Sb + 1 = j) is the
probability of emitting the observed read count at bin b + 1
given the state at bin b + 1. Furthermore, P(O1 | S1 = i) and
P(Ob+ 1 | Sb + 1 = j) are normally distributed, with one set of
parameters assigned to the enriched state and another set
of parameters assigned to the depleted state. In order to
obtain maximum likelihood estimates of the model param-
eters, Θ, we first need the marginal likelihood of the obser-
vations and this is calculated using the forward algorithm
as modified by [26]. This reformulation calculates the gradi-
ents of the likelihood at the same time and prevents under-
flow with both the standard log transformation and using a
scaling factor. Thus, the recursive method for calculating
P(O1 :B| Θ) is:

F1 O1j Θð Þ ¼ P O1; S1 ¼ jð Þ
Fb Ob; Sb ¼ j j O1: b−1ð Þ

� �
¼ P Ob j Sb ¼ jð Þ

Xn
i¼1

Fb−1 ið Þ P Sb ¼ j j Sb−1 ¼ ið Þ
" #

�
Xn
i¼1

Fb−1 ið Þ

and the log-likelihood is found by taking the log of both
sides. Lastly, Θ is estimated with the EM algorithm and
smoothing parameters are estimated with the forward-
backward algorithm.
On rare occasions neither depmixS4 nor HiddenMarkov

can converge on parameter estimates for the HMM for a
single chromosome when using a control dataset (this did
not happen with any of the datasets examined in this
manuscript). When this occurs, hiddenDomains uses the
average parameters estimated from the other chromosomes
for the HMM. hiddenDomains opts for using parameter es-
timates per chromosome, rather than always using the aver-
age, because using the average results in a slight reduction
in sensitivity and specificity (see Additional file 1: Figures
S1 and S3). That said, even when the average is used for all
chromosomes, hiddenDomains continues to rank among
the best programs for both broad domain and narrow peak
calling.
Once the HMM parameters are estimated, the optimal

state, either enriched or depleted, and its posterior prob-
ability is assigned to each bin. Because an HMM can arbi-
trarily assign state 1 or 2 to be the enriched state,
hiddenDomains identifies the enriched state as the one
capturing the highest variance. This information is used as
input to the third hiddenDomains’s stage, which converts
it to a BED file and ensures that the domains’ start and
stop coordinates conform to chromosome sizes. When
displayed in the UCSC genome browser, each bin is color-
coded by its posterior probability. Bins with posterior
probabilities greater than 0.9 are black and bins with lower
posterior probabilities (>0.8 and >0.7) are sequentially
lighter shades of grey.
The peakCenters program uses the BEDTools coverage

tool [27] to count the number of reads that overlap each
position in an enriched region. It identifies the peak as the
position with the most overlapping reads.

Software compared to hiddenDomains
We compared hiddenDomains to the following programs
for detecting broad domains of ChIP-seq enrichment:
Homer (version 4.7) [7], MACS (version 2.1.0–referred to
as MACSv2 in this manuscript) [8], PeakRanger (version
1.18) [9], which includes BCP [10] and CCAT [11], Rseg
(version 0.4.8) [12] and SICER (version 1.1) [13].
We compared hiddenDomains to the following programs

for detecting narrow peaks of ChIP-seq enrichment: Homer,
MACSv2, GPS/GEM (version 2.5) [22, 23].
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Unless otherwise noted, all examples given in this paper
used default settings for all programs. One consistent
exception to this was for MACSv2 and Homer, which
required specific parameters to identify peaks or domains.
For these programs, the appropriate parameters were al-
ways set. Default parameters were used because they were,
in general, found to be the most stable [28] and these are
what most researchers are going to use. See Additional file
1 for example command lines used for each program with
each dataset.

Availability and requirements
Project Name: hiddenDomainsProject Home Page: http://
hiddendomains.sourceforge.net/Operating Systems: UNIX,
MacOS, WindowsProgramming Languages: Perl and
ROther requirements: samtools and, optionally, bedtoolsLi-
cence: GPLv2 All Perl and R scripts are available at Source-
Forge: https://sourceforge.net/projects/hiddendomains/.
Documentation and a tutorial can be found at: http://

hiddendomains.sourceforge.net/.

Additional file

Additional file 1: This document includes Figures S1, S2 and S3 and
example command lines used with each program. (PDF 266 kb)
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