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Parametric assumptions equate to hidden
observations: comparing the efficiency of
nonparametric and parametric models for
estimating time to AIDS or death in a
cohort of HIV-positive women
Jacqueline E. Rudolph* , Stephen R. Cole and Jessie K. Edwards

Abstract

Background: When conducting a survival analysis, researchers might consider two broad classes of models:
nonparametric models and parametric models. While nonparametric models are more flexible because they make
few assumptions regarding the shape of the data distribution, parametric models are more efficient. Here we
sought to make concrete the difference in efficiency between these two model types using effective sample size.

Methods: We compared cumulative risk of AIDS or death estimated using four survival models – nonparametric,
generalized gamma, Weibull, and exponential – and data from 1164 HIV patients who were alive and AIDS-free in
1995. We added pseudo-observations to the sample until the spread of the 95% confidence limits for the
nonparametric model became less than that for the parametric models.

Results: We found the 3-parameter generalized gamma to be a good fit to the nonparametric risk curve, but the
1-parameter exponential both underestimated and overestimated the risk at different times. Using two year-risk as
an example, we had to add 354, 593, and 3960 observations for the nonparametric model to be as efficient as the
generalized gamma, Weibull, and exponential models, respectively.

Conclusions: These added observations represent the hidden observations underlying the efficiency gained
through parametric model form assumptions. If the model is correctly specified, the efficiency gain may be justified,
as appeared to be the case for the generalized gamma model. Otherwise, precision will be improved, but at the
cost of specification bias, as was the case for the exponential model.
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Background
When conducting survival analysis, a researcher might
consider using either of two classes of models to de-
scribe time to the event of interest: parametric or non-
parametric. In deciding between them, there is a
well-known yet relatively under-discussed trade off. The
researcher could choose the statistical efficiency and
rigid model form assumptions of the parametric

approach or the fewer model form assumptions but re-
duced efficiency of the nonparametric approach.
Suppose the researcher selects a finite-dimension para-

metric model, in which he first assumes the survival
function follows a particular form and then estimates
the parameters of that model [1]. The parameters allow
the model to vary in constrained ways (e.g. in its loca-
tion or scale) [2]. For example, he might have specified
an exponential survival model, which constrains the esti-
mated survival curve to be a function of a single param-
eter that governs the size of a constant hazard over the
study period. However, for his estimates to be essentially

* Correspondence: jerudolp@live.unc.edu
Department of Epidemiology, University of North Carolina at Chapel Hill, 135
Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill 27599,
NC, USA

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Rudolph et al. BMC Medical Research Methodology          (2018) 18:142 
https://doi.org/10.1186/s12874-018-0605-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210591545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-018-0605-8&domain=pdf
http://orcid.org/0000-0001-7177-1847
mailto:jerudolp@live.unc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


unbiased, the data generating mechanism must coincide
closely with the exponential model. In reality, though,
we know complex epidemiologic and biomedical data
are unlikely to follow simple parametric forms [3].
Suppose another researcher was unwilling to make

such assumptions regarding model form; she could in-
stead apply a nonparametric model. For example, she
might choose a nonparametric Kaplan-Meier estimator
of the survival function [4], where there are as many
parameters as there are distinct event times. This model
makes no assumptions regarding the distribution of
event times, allowing the survival curve to take on any
monotonically decreasing shape. While this flexibility is
highly attractive in theory, in practice, the benefit of
leaving the model unconstrained may be offset by the
decrease in efficiency compared to a less flexible para-
metric model, resulting in wider confidence intervals
than a parametric analog.
Here, we aim to make concrete the difference in

efficiency between a nonparametric and three parametric
survival models, by quantifying the number of hidden
observations that the assumptions of the parametric
models effectively add to our sample. Put another way, we
determined the number of additional participants one
would need to enroll if they wish to use a nonparametric
model (thereby making fewer assumptions) but still have
results be as efficient as a parametric model was at the
original sample size. To demonstrate this, we used data
from participants in the Women’s Interagency Human
Immunodeficiency Virus (HIV) Study (WIHS) [5].

Methods
Our study population was 1164 HIV-positive women en-
rolled in the WIHS who were alive and free of Acquired
Immunodeficiency Syndrome (AIDS) on December 6,
1995 [6]. The women were followed until AIDS or death,
loss to follow-up, or administrative censoring on
September 28, 2006. In this sample, we estimated crude
cumulative risk over the approximately 10 years of
follow-up for a combined endpoint of mortality and
clinical AIDS using four survival models (for more details,
see Additional file 1). We first used the nonparametric
Nelson Aalen estimator. We then compared the nonpara-
metric model to three parametric models: 3-parameter
generalized gamma, 2-parameter Weibull, and
1-parameter exponential. For all four models, pointwise
upper and lower 95% confidence limits of the cumulative
risk were obtained using the delta method [7, 8].
To conduct the comparison of the four models, we

chose as an example the risk at year two. Our metric to
compare the efficiency of the nonparametric and paramet-
ric models was the width of the 95% confidence limits
(CL). Then, to take into consideration both bias and preci-
sion, we calculated the root mean square error (RMSE)

for each model, assuming that the nonparametric risk was
unbiased. We further took the average of the 95% CL
width at each distinct event time across the entire 10 years
of follow-up, as a way to compare the difference in statis-
tical efficiency across the entire risk curve.
Finally, to determine the number of observations we

would need to add to our sample for the nonparametric
model to be as efficient as the parametric model at the
starting sample size, we added pseudo-observations (or
ghosts) one-by-one to the 1164 data points. To do this in
a manner that did not perturb the shape of the function
we distributed the ghosts equally across the data points
(i.e., we assigned each original observation a weight that
increased by 1/1164 every time a new pseudo-observation
was added). Thus, for the original data set, the weight was
one, and the weight was two when the sample had been
doubled. After each observation was added, we repeated
the nonparametric analysis until the CL difference for the
weighted nonparametric model was smaller than that for
the parametric model at the original sample size. All
statistical analyses were carried out in SAS software
version 9.4 (SAS Institute Inc., Cary, NC).

Results
The cumulative risk curves across all 10 years of
follow-up for three of the models are shown in Fig. 1a.
The figure shows that the generalized gamma risk curve
was a good fit to the data (given by the nonparametric
curve), while the exponential curve was not. The latter
model both underestimated (at earlier time points) and
overestimated (at later time points) the risk estimated
nonparametrically. Also, as expected, the nonparametric
model had the widest point-wise confidence intervals
and the exponential model had the narrowest confidence
intervals. The average 95% CL width at each distinct
event time concurred with what was seen visually. As
can be seen in Table 1, the nonparametric model had
the largest average CL width, followed in order by the
generalized gamma, Weibull, and exponential models.
These results were particularly evident at two years

(Fig. 1b). The two-year risk of AIDS or death in the
1164 WIHS participants estimated using the nonpara-
metric model was 0.22 (95% CL difference: 0.048; RMSE:
0.078). For the generalized gamma model, the risk was
0.21 (95% CL difference: 0.042; RMSE: 0.074), and for
the exponential model, the risk was 0.15 (95% CL differ-
ence: 0.023; RMSE: 0.086). For the Weibull model, the
risk was 0.20 (95% CL difference: 0.039; RMSE: 0.073).
Thus, the generalized gamma approximated the non-
parametric risk well but was more precise; the exponen-
tial model was highly precise but biased. The Weibull
model sat between these two extremes in terms of bias
and precision, resulting in a smaller root-MSE than ei-
ther of the other parametric models.
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We found that we would need to add 354
pseudo-observations for the nonparametric two-year risk to
become as efficient as the generalized gamma model, 593
pseudo-observations for the nonparametric two-year risk to
become as efficient as the Weibull model, and 3960
pseudo-observations for it to become as efficient as the
exponential. These results are summarized in Table 1.

Discussion
Parametric models are always more efficient than non-
parametric models, and, in this demonstration, we
expressed that precision difference in terms of a difference
in effective sample size. We found that we had to add 354
observations to our sample for the two-year risk of AIDS
or death estimated nonparametrically to become as effi-
cient as the risk estimated in the original sample of WIHS
participants using a generalized gamma model. If we com-
pared to an exponential model, though, we would have
needed to more than quadruple the sample (an increase
from 1164 to 5124 participants) to have an equally
efficient nonparametric model. While this indicated that

the exponential model was far more efficient than either
the nonparametric or the generalized gamma model,
examination of the risk curves revealed that it also greatly
underestimated the risk at two years. If we had chosen the
exponential model to estimate our 10-year risk curves, we
would have been very precise but biased.
The difference in efficiency between parametric and non-

parametric models has previously been described in various
ways. First, parametric models are by definition smooth
curves through the data, the form depending upon the
shape assumption chosen. The smoothness arises as a
result of “borrowing” information from all observations.
For instance, predicted values of the model are determined
based on observed data near a focal point as well as data
observed distally [9]. One can envision this smoothing
process as using each observed data point’s information
more than once. This borrowing of information increases
model efficiency and was mimicked in our study by adding
the pseudo-observations to the nonparametric model’s
sample. Nonparametric models, on the other hand, are less
efficient than parametric models because they do not

Fig. 1 Cumulative risk of AIDS or death estimated using a nonparametric, generalized gamma, and exponential model and 95% confidence
intervals (a) over all 10 years of follow-up and (b) through the first 2 years of the full follow-up

Table 1 Estimated risks and model efficiency by the number of observations added to the sample

Approach N M Riska 95% CLsa CL Differencea Average CL Differenceb

Nonparametric 1164 0 0.218 0.194, 0.242 0.048 0.047

Generalized Gamma 1164 0 0.210 0.189, 0.231 0.042 0.042

Nonparametric 1164 354 0.218 0.197, 0.239 0.042 0.041

Weibull 1164 0 0.200 0.180, 0.219 0.039 0.040

Nonparametric 1164 593 0.218 0.199, 0.238 0.039 0.038

Exponential 1164 0 0.152 0.141, 0.163 0.023 0.030

Nonparametric 1164 3960 0.218 0.207, 0.230 0.023 0.022

Abbreviations, N sample size, M pseudo-observations added, CL confidence limit
aAt two years
bAt all event times
Comparing the estimated two-year risk of AIDS or death, 95% CLs, and CL difference of all four models at the starting sample size (M = 0) and when the
nonparametric model became as efficient as the parametric generalized gamma (M = 354), Weibull (M = 593), and exponential (M = 3960) models. The average
95% CL difference at all event times is also given
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borrow information. Nonparametric models work only at
the focal point and have as many parameters as there are
distinct data points.
Second, the difference in precision between parametric

and nonparametric models has been described in terms
of “approximation error” [10]. Parametric models pre-
sume the model form to be correct and thus do not
account for any error that arises because the model’s
estimate is only an approximation of the truth. This
supposed knowledge of the true specification adds infor-
mation beyond the data (again represented here by the
pseudo-observations). Parametric models are therefore
more efficient than nonparametric models (which make
no such assumptions) with the same number of
observations.
When the parametric model happens to be correctly

specified, the hidden observations might be seen as a
benefit (i.e. an assumption correctly leveraged). In such
a setting, one has a model that is both unbiased (assum-
ing no other biases) and efficient. However, in real life,
parametric models are rarely perfectly specified [3]. If
the difference in efficiency between the nonparametric
and parametric model is great enough and if their point
estimates also differ, two researchers could arrive at
different inferences [10]. In these situations, the hidden
observations, representing the additional information
gained through the model form assumptions, provide
one with a result that is precise but potentially biased.
For instance, one could easily see a researcher who used
the highly efficient but biased exponential model from
our example arriving at a different conclusion about the
two-year risk of mortality or AIDS in this WIHS popula-
tion than a researcher using the nonparametric model.
There were several limitations of our demonstration.

For one, the results were meant to be illustrative and,
while the idea generalizes, the numerical results cannot
be generalized to other situations. The number of ghosts
hidden by the constraints of a given parametric model
will likely be context-dependent, being based on factors
such as starting sample size, the underlying data gener-
ation distribution, and the assumed parametric form
(e.g. the number of parameters), among others. For in-
stance, our results would have differed if we had selected
the ten-year risk to compare. Additionally, we were not
attempting to determine the number of observations
that had to be added for the nonparametric model to be-
come as smooth as the corresponding parametric model.
Such continuity would require an infinite number of
data points. Instead, we used the CL difference at one
point along the cumulative risk curve as a working
approximation for model efficiency and determined the
finite number of observations that had to be added for
the nonparametric risk to become more efficient than
the parametric risk.

Conclusions
Here, we made concrete the difference in precision be-
tween a nonparametric model and three corresponding
parametric models. We have shown that the efficiency
gain resulting from the parametric form constraints can
be viewed as similar to working in a sample that con-
tains a number of hidden observations or “ghosts.” In
the most extreme case, we saw that the exponential
model’s strict one-parameter form restriction was
equivalent to almost 4000 additional observations but
that, if we used that highly precise exponential model to
estimate the two-year risk of death or AIDS, we would
obtain a precise but biased answer.
The question remains, then, which model should we

choose in practice. On the one hand, we might always
select the nonparametric model to limit the number of
assumptions we are making, which is theoretically
appealing. On the other, small sample sizes or the desire
to include many variables in one’s model routinely make
nonparametric models infeasible, particularly if one is
unable to add more observations to one’s sample. In
such cases, a parametric model may be needed, but one
should always consider the potential for bias due to
model misspecification. Additionally, while not explored
here, a middle ground does exist in semiparametric
models. Semiparametric models decompose the param-
eter vector into a parametric and nonparametric compo-
nents; thus, they are more efficient than nonparametric
models but require fewer assumptions than parametric
models [11].
Which model makes the best choice will no doubt be

context- and data-dependent, and the decision process
will most likely include consideration of the bias/vari-
ance trade-off. Our work seeks to remind those making
such decisions that the efficiency gained from a paramet-
ric model is never “free” but can rather be directly re-
lated to a certain number of pseudo-observations closely
tied to a chosen (and assumed correct) parametric
model specification.

Additional file

Additional file 1: Survival formulas. (PDF 534 kb)
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