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Abstract

Background: Tissue factor (TF) is a protein that mediates the initiation of the coagulation cascade. TF expression is
increased in patients with poorly-controlled HIV, and may be associated with increased immune activation that leads to
cardiovascular morbidity. The role of TF in immune activation in liver disease in hepatitis C virus (HCV)-monoinfection
and HIV/HCV-coinfection has not been explored.

Methods: Fifty-nine patients were stratified: A) HIV-monoinfection (N = 15), B) HCV-monoinfection with chronic
hepatitis C (CHC) (N = 15), C) HIV/HCV-coinfection with CHC (N = 14), and D) HIV/HCV-seropositive with cleared-HCV
(N = 15). All HIV+ patients had undetectable HIV viremia. Whole blood was collected for CD4/CD8 immune activation
markers by flow cytometry and plasma was assayed for microparticle TF (MPTF) activity. Subjects underwent transient
elastography (TE) to stage liver fibrosis. Undetectable versus detectable MPTF was compared across strata using Fisher's
Exact test.

Results: MPTF activity was more frequently detected among patients with HCV-monoinfection (40%), compared
to HIV-monoinfection and HIV/HCV-seropositive with cleared HCV (7%) and HIV/HCV-coinfection with CHC (14%)
(p = 0.02). Mean TE-derived liver stiffness score in kPa was higher in patients with detectable MPTF (12.4 ± 8.5) than
those with undetectable MPTF (6.4 ± 3.0) (p = 0.01). Mean CD4 + HLADR+ and CD4 + CD38-HLADR+ expression
were higher in those with detectable MPTF (44 ± 9.8% and 38 ± 8.7%, respectively) than those with undetectable
MPTF (36 ± 11% and 31 ± 10.4% respectively) (p = 0.05 and 0.04 respectively).

Conclusions: HCV-monoinfection and HIV/HCV-coinfection with CHC were associated with MPTF activity. MPTF
activity is also associated with advanced liver fibrosis and with CD4 + HLADR+ immune activation.
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Background
Hepatitis C virus (HCV) is a leading cause of morbidity and
mortality among HIV-infected individuals [1]. Persons
coinfected with HIV and HCV are at risk for more rapid
progression of liver disease as compared to those with
HCV-monoinfection [2,3]. The pathogenesis of the acce-
lerated liver fibrosis observed in HIV/HCV-coinfected
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patients is complex and incompletely understood. The
cellular immune system is vital in the control of HCV in-
fection and it has been postulated that the HCV-specific
immune response in HIV-infected persons is impaired and
deregulated. This notion is supported by the finding that
HIV/HCV-coinfected patients with low CD4+ T cell counts
are more likely to experience accelerated fibrosis [4,5]. Data
regarding the pathogenesis of liver fibrosis among co-
infected patients with well-controlled HIV are lacking.
HIV-associated immune activation is known to play an

integral role in HIV pathogenesis and likely contributes
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to the pathogenesis of liver fibrosis in HIV/HCV-
coinfected patients as well. Chronic immune activation
results in a pro-coagulant state. One mechanism of in-
creased coaguability in the setting of immune activation
involves increased tissue factor (TF) expression in re-
sponse to tissue damage and cytokine release [6]. TF is a
transmembrane protein that mediates thrombin signal-
ing in the activation of the coagulation cascade. TF ex-
ists in several states: as cell-free TF in plasma, on cell
surfaces, and on cell-derived microparticles (MPs) [7].
MPs are membrane vesicles that are released from acti-
vated or apoptotic cells. Activation of cells or platelets
by systemic inflammation initiates an innate immune
pathway whereby plasma membrane blebs are released
and enter into the circulation, exposing procoagulant
phosphatidylserine and cellular epitopes conferring func-
tionality [8]. MPs are particularly prothrombotic when
they express TF [9,10]. Although it represents a small
portion of circulating TF, microparticle TF (MPTF) is
believed to be a functionally active form of TF. TF has
been implicated in a variety of disease states, including
malignancy, cardiovascular disease, acute liver injury,
septic shock, and HIV [11-13]. In HIV infected patients,
increased TF expression has been found to be associated
with increased HIV viral load, hepatitis B or C coinfec-
tion, markers of lipopolysaccharide (LPS) exposure, and
importantly, markers of immune activation [7,14]. The
impact of TF on immune activation and liver fibrosis
among HCV infected patients has not been extensively
explored. In this study, we examine the relationship be-
tween circulating MPTF activity and immune activation
markers and their association with the development
of advanced liver fibrosis among HCV monoinfected
patients and patients co-infected with well-controlled
HIV. Patients with suppressed HIV viremia are the
focus of this study because data on TF, immune activa-
tion, and liver fibrosis are limited in this contemporary
HIV population.

Methods
Study design and population
This cross-sectional study was conducted at the Ruth M.
Rothstein CORE Center in Chicago, IL between June
2011 and December 2011 and was approved by The
Cook County Health and Hospitals System Institutional
Review Board. Written, informed consent was obtained
from each subject. Participants were stratified according
to HIV and HCV status, as follows: A) HIV-monoinfection
(N = 15), B) HCV-monoinfection with CHC (N= 15), C)
HIV/HCV-coinfection with chronic hepatitis C (CHC)
(N = 14), and D) HIV/HCV-seropositive with cleared-
HCV (N = 15). Strata D consisted of both patients with
spontaneous HCV clearance (N = 11) and patients who
achieved a sustained virologic response following HCV
therapy (N = 4). As a pilot study, sample size was deter-
mined by feasibility. Strata D was enrolled first to estab-
lish matching criteria. Subjects were matched by age,
sex, estimated duration of HIV and HCV infection (HIV
duration was estimated based upon self-reported year of
probable high-risk exposure and if that exposure time
point was unknown, then the date of diagnosis was used;
HCV duration was calculated based on self-reported year
of onset of high-risk activity (tattoo, exchange of sex for
drugs, etc.) and if there was no clear exposure, the dur-
ation of HCV was reported as unknown), and CD4 count,
with current CD4 counts in strata A and C being matched
to CD4 at estimated time point of HCV clearance in strata
D. All HIV-positive patients had undetectable HIV RNA.
Each subject completed a questionnaire regarding HIV
and HCV risk factors, had blood collected, and underwent
assessment of liver fibrosis. Through the questionnaire
and chart abstraction, data was collected regarding
demographic factors (ethnicity), lifestyle factors (history
of IDU, alcohol use, coffee consumption, smoking), and
labs (D-dimer, high-sensitivity c-reactive protein (hsCRP),
quantitative cytomegalovirus immunoglobulin G, complete
blood count, complete metabolic panel, coagulation tests,
and lipid profile) to allow for identification of potential
covariates.
Liver stiffness was assessed using transient elastogroa-

phy (TE), a non-invasive means of assessing liver fibrosis
by transmitting low speed elastic waves (~1 m/sec) and
determining their propagation velocity with high speed
ultrasound. All TE operators were trained and certified.
Measurements were obtained via an ultrasonic probe
(placed in the intercostal space at the level of the xiph-
oid process) perpendicular to the skin overlying the right
lobe of the liver. The TE-measured liver stiffness was
expressed in kilopascals (kPa) and determined from the
median value of 10 “valid” measurements (ie, elastic
waves that are propagated through the liver according to
the machine software). The speed of wave propagation
through approximately 1/500th the volume of the liver is
directly correlated with the square root of the elastic
modulus or tissue stiffness [15,16]. TE-derived fibrosis
scores correlate with Metavir fibrosis staging system as
follows: <7.1 = stage 0–1, 7.1-9.4 = stage 2, 9.5-12.4 = stage
3, and ≥ 12.5 = stage 4. The fibrosis stage predicted by TE
has been shown to correlate with the histologically deter-
mined fibrosis stage [17]. We reported liver stiffness by
strata and examined its relationship with TF and immune
activation markers by comparing no-moderate fibrosis
(stage 0–2) to severe fibrosis (stage 3–4).

Laboratory methods
Peripheral blood was collected into heparin, EDTA, sodium
citrate, and serum-separator tubes (SST) via venipuncture
from patients. EDTA and sodium citrate tubes were
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processed within one hour. After centrifugation serum
was collected from the SST tube and frozen at −80°C.
Peripheral blood mononuclear cells (PBMC) were iso-
lated from heparin tubes by density gradient centrifuga-
tion using lymphocyte separation medium (Mediatech,
Inc). Cells were cryopreserved in freeze media (90%
FBS + 10% DMSO) and stored in liquid nitrogen (LN2)
until testing.
Characterization of T cell immune activation and

memory was performed in batch by polychromatic flow
cytometry on frozen/thawed heparin PBMCs. Frozen
PBMCs were removed from LN2 storage and thawed
rapidly in a 37°C water bath, washed, and rested over-
night in a 37°C incubator. The following day cells were
washed and stained for cell viability with Aqua Live/
Dead cell stain kit (Invitrogen) prior to cell surface
staining. Cell surface markers were stained with
fluorochrome-conjugated monoclonal antibodies to
CD3, CD8, HLA-DR, CD38, CD45RA, CCR7 (BD Bio-
sciences), and CD4 (Invitrogen). After staining, cells
were fixed in 2% formaldehyde and analyzed within
24 hours on a LSR2 flow cytometer (BD) using FACS
Diva software v6.1.1. Analysis of flow cytometry data was
performed using FlowJo software (Tree Star Inc). Immune
activation (CD38+\HLA DR+) and memory (CD45RA
\CCR7) analyses were performed after stringent gating on
singlet live (Aqua−) CD3+\CD4+ or CD3+\CD8+ T cells.
EDTA plasma specimens were assayed in duplicate for

circulating levels of IFNγ, IL-1β, IL-6, IL-8, IL-10, IL-12
(p40), IL-12(p70), IL-15, IL-17a, IP-10, MIP-1α, and TNF-
α using the Human Cytokine/Chemokine kit (EMD
Millipore, Billerica, MA) according to manufacturer
recommended protocols. All kits were read using a
Luminex 100 IS System (Luminex Corp, Austin, TX) by
the Rush Proteomics and Biomarkers Core Facility with
biomarker concentrations calculated using a 5-parametric
curve fit using xPonent 3.2 software (Luminex Corp).
Median %CV and assay recovery values all fell within
acceptable limits specified by EMD-Millipore.

Plasma Preparation and MPTF Activity Measurement
Plasma specimens were collected using sodium citrate
tubes and spun at 1500 × g for 15 minutes at room
temperature. Platelet-poor plasma (PPP) was removed
from the vacutainer tube and placed in a 15 mL conical
tube and spun down a second time at 1500 × g for
15 minutes to obtain platelet-free plasma (PFP), which
was transferred to a new 15 mL conical tube and vor-
texed to thoroughly mix. The plasma was aliquoted into
0.5 mL cryovials, flash frozen in LN2, and stored at −80°C
until analyzed.
MPTF activity was measured by a two-stage chromo-

genic assay as previously reported [18]. MPs were pelleted
from 200 μL of PFP by centrifugation at 20 000 × g for
15 min at 4°C, washed twice with HBSA (137 mm NaCl,
5.38 mm KCl, 5.55 mm glucose, 10 mm HEPES, 0.1%
bovine serum albumin, pH 7.5), and re-suspended in
100 μL of HBSA. Samples were incubated with either 1 μL
of a TF-blocking antibody (hTF1) (4 μg/mL) or 1 μL of a
control antibody (mouse IgG: 4 μg/mL) for 15 minutes at
25°C and then 50 μL aliquots were added to duplicate
wells of a 96-well plate. Each MP sample was then incu-
bated for 2 hours at 37°C in a 50 μL mixture of HBSA
containing 10 nm factor VIIa, 300 nm factor X and
10 mm CaCl2. Factor Xa generation was stopped by the
addition of 25 μL of 25 mm EDTA buffer and 25 μL of
the chromogenic substrate S2765 (4 mm) was added and
incubated at 37°C for 15 min. Finally, absorbance at
405 nm was measured using a VERSAmax microplate
reader (Molecular Devices). TF activity was calculated by
reference to a standard curve generated using relipidated
recombinant human TF (0–55 pg/mL). The TF-dependent
factor Xa generation (pg/mL) was determined by subtract-
ing the amount of factor Xa generated in the presence of
hTF1 from the amount of factor Xa generated in the pres-
ence of the control antibody.

Statistical analyses
The number of patients with detectable MPTF activity
versus no detectable MPTF activity (undetectable) were
compared among subjects with HCV-monoinfection
(strata B), those with HIV/HCV-coinfection with CHC
(strata C) and those with resolved or no hepatitis C
(strata A and D) using Fisher's Exact test. In addition,
the quantitative detectable TF levels were compared be-
tween the strata using ANOVA. For normally distributed
data, two sample t test was used to compare the differ-
ence between undetectable and detectable TF; for non-
normally distributed data, Wilcoxon Rank-Sum test was
used to compare the difference between undetectable
and detectable TF. Mean and standard deviation for nor-
mal data, median (minimum, maximum) for non-normal
data, number and percentage for categorical data were
reported. P-values <0.05 were considered statistically
significant. All analyses were performed using SAS
Version 9.2 (Cary, NC).

Results
A total of 63 subjects were enrolled; 4 patients who did
not meet inclusion criteria were subsequently excluded
(3 were HIV-positive patients who were found to have
positive HIV RNA and 1 was an HIV/HCV coinfected
patient initially enrolled for strata C but found to have
negative HCV RNA) and the remaining 59 subjects were
analyzed (Table 1). Among HIV-positive subjects, the
median CD4 count was 420 (295–1117) cells/μl. The es-
timated median duration of HCV infection among strata
B, C, and D was 26 (3–40) years.



Table 1 Baseline characteristics of HIV-Infected, HCV-Infected, and HIV/HCV-coinfected patients (n = 59)
Variable Strata A (N = 15) Strata B (N = 15) Strata C (N = 14) Strata D (N = 15) P

Demographics

Sex, N (%) 1.00

Female 4 (27) 4 (27) 4 (29) 4 (27)

Male 11 (73) 11 (73) 10 (71) 11 (73)

Age, years 53 (51–56) 54 (51–56) 54 (52–56) 53 (42–66) 0.95

Race/Ethnicity, N (%) 0.21

African American/non-Hispanic 11 (73) 12 (80) 9 (64) 13 (87)

Caucasian/non-Hispanic 4 (27) 2 (13) 4 (29) 0

Caucasian/Hispanic 0 1 (7) 1 (7) 2 (13)

Laboratory values

ALT (U/L) 18(11–82) 43 (19–78) 23(14–88) 22 (10–77) 0.0009

AST (U/L) 19 (14–52) 37 (23–84) 30 (18–83) 24 (18–55) 0.0002

Albumin (g/dL) 4.2 (3.8-5.1) 4.0 (3.4-4.7) 4.3 (2.7-4.7) 4.2 (3.8-5.0) 0.29

Total cholesterol (mg/dL) 168 (118–253) 155 (88–200) 147.5 (98–207) 171 (124–220) 0.24

hs-CRP (mg/L) 4.0 (0.5-11.3) 1.2 (0.2-36.9) 0.7 (0.2-27.2) 3.5 (0.2-65.3) 0.08

D-dimer (μg/mL) 0.34 (0.19-0.98) 0.34 (0.21-2.25) 0.22 (0.19-2.07) 0.35 (0.19-1.49) 0.41

Risk factors, N (%)

Sexual preference 0.01

MSM 6 (40) 1 (7) 1 (7) 1 (7)

Heterosexual 7 (47) 14 (93) 11 (79) 14 (93)

Bisexual 2 (13) 0 2 (14) 0

Alcohol use, N (%) 0.32

> once a week 4 (27) 1 (7) 2 (14) 0

< weekly, but >monthly 2 (13) 1 (7) 2 (14) 1 (7)

Monthly or less 9 (60) 13 (86) 10 (72) 14 (93)

Injection drug use ever, N (%) <0.0001

Yes 1 (7) 9 (60) 13 (93) 9 (60)

No 14 (93) 6 (40) 1 (7) 6 (40)

TE-derived fibrosis score* 4.4 (3.0-11.6) 7.9 (4.7-29.9) 7.6 (3.2-22.3) 5.9 (3.0-9.1) 0.001

Current CD4 count (cells/μL) 495 (296–956) - 457 (299–651) 668 (295–1117) 0.01

Nadir CD4 count (cells/μL) 168 (22–415) - 225 (13–428) 302 (124–918) 0.08

Duration of ARVs (years) 9 (1–25) - 11(3–15) 6 (0–20) 0.59

Estimated duration of HIV (years) 12 (2–25) - 17 (5–31) 19 (1–28) 0.69

Estimated duration of HCV (years) - 24 (15–40) 30 (12–38) 26 (3–37) 0.23

HCV viral load (IU/mL) - 974,248 (1,622-4,604,960) 706,476 (17,145-20,000,000) - 0.95

Values are expressed as median (range) unless otherwise noted. *TE-derived fibrosis scores correlate with Metavir fibrosis staging system as follows: <7.1 = stage
0–1, 7.1-9.4 = stage 2, 9.5-12.4 = stage 3, and ≥ 12.5 = stage 4.
Strata: A = HIV monoinfection, B = HCV monoinfection, C = HIV/HCV coinfection with CHC, D = HIV/HCV coinfection with cleared HCV.
Abbreviations: ARV, antiretroviral; hsCRP, high sensitivity C-reactive protein; MSM, men who have sex with men; TE, transient elastography.
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Patients with HCV-monoinfection were more likely
to have detectable MPTF (40%), compared to HIV-
monoinfection and HIV/HCV-seropositive with cleared
HCV (7%) and HIV/HCV-coinfection with CHC (14%)
(p = 0.02) (Table 2). Among subjects with detectable
MPTF, there was no statistically significant difference
in the mean MPTF activity (pg/ml) between strata
(A and D = 0.31 ± 0.32, B = 0.15 ± 0.21, C = 0.14 ± 0.05;
p = 0.42). Further, MPTF activity was found to be
associated with liver fibrosis. The mean TE-derived
liver stiffness score in kPa was higher in patients with
detectable MPTF (12.4 ± 8.5) than those with unde-
tectable MPTF (6.4 ± 3.0)(p = 0.01). Subjects with TE-
derived stage F3-4 on METAVIR scale were more
likely to have detectable MPTF than those with F0-2
(p = 0.03) (Table 2).



Table 2 Tissue factor detection by strata and fibrosis stage

TF Undetectable TF Detectable Total p-value

Strata 0.02

A and D 28 (93%) 2 (7%) 30

B 9 (60%) 6 (40%) 15

C 12 (86%) 2 (14%) 14

Fibrosis stage 0.03

0 - 2 40 (89%) 5 (11%) 45

3 - 4 7 (58%) 5 (42%) 12

Mean ± SD TE-derived liver stiffness (kPa) 6.4 ± 3.0 12.4 ± 8.5 0.01

Strata A: HIV-monoinfection, Strata B: HCV-monoinfection, Strata C: HIV/HCV-coinfection with CHC, and Strata D: HIV/HCV-seropositive with cleared HCV.
Abbreviations: CHC chronic hepatitis C, TE transient elastography, TF tissue factor.
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Across strata, the mean percentage of CD4+ T cells
expressing the immune activation markers HLADR+
and CD38-HLADR+ was higher in those with detectable
MPTF (44 ± 9.8% and 38 ± 8.7% respectively) than those
with undetectable MPTF (36 ± 11% and 31 ± 10.4% re-
spectively)(p = 0.05 and 0.04 respectively). The mean per-
centage of CD4 T cells of the terminal effectors expressing
RA subtype was lower in patients with detectable MPTF
(8 ± 6.3%) compared to those with undetectable MPTF
(13 ± 6.8%, p = 0.04) (Table 3). There was no statistically
significant difference in the expression CD8+ T cell
markers of immune activation, memory subsets, or
cytokine levels among those with and without detect-
able MPTF. Among HCV-monoinfected subjects, there
were no significant differences in immune activation or
inflammation markers stratified by detectable versus
undetectable MPTF, though there was a trend towards
lower mean IL-10 levels in subjects with detectable
compared to undetectable MPTF (1.69 ± 2.84 vs. 2.86 ±
2.29 pg/mL; p = 0.07).
Lastly, there was no difference in hsCRP level in those

with detectable MPTF activity as compared to those
without detectable MPTF activity (median: 3.9 (0.2 - 65.3)
Table 3 Association between tissue factor detection and CD4

CD4 T-cell marker Percent expression in patients w

Detectable TF

HLADR+ 43.8 ± 9.8

TotalCD38+ 15.2 ± 6.4

CD38 + HLADR+ 5.7 ± 2.9

CD38-HLADR+ 38.2 ± 8.7

CD38 + HLADR- 9.6 ± 3.7

CD45RA + CCR7- 8.3 ± 6.3

CD45RA-CCR7+ 19.9 ± 5.2

CD45RA + CCR7+ 18.4 ± 12.1

CD45RA-CCR7- 53.4 ± 15.4

Results reported as mean ± standard deviation.
CD45RA + CCR7-, terminal effectors expressing RA (TEMRA); CD45RA-CCR7+, Central
TF, tissue factor
mg/L vs.1.9 (0.2 - 36.9) mg/L, respectively, p = 0.41). Simi-
larly, the D-dimer did not differ significantly between
those with detectable MPTF activity and those without de-
tectable MPTF activity (median: 0.35 (0.2 – 1.0) μg/mL vs.
0.32 (0.2 – 2.3) μg/mL, respectively, p = 0.65).

Discussion
In this exploratory study, we found that the presence of
MPTF is associated with advanced fibrosis in our cohort
of patients with HIV, HCV, and HIV/HCV coinfection.
Accordingly, the strata including patients with active
HCV were more likely to have detectable circulating
MPTF than patients in the strata without active HCV.
Circulating MPTF activity was also found to be asso-
ciated with CD4 HLADR+ T-cell immune activation.
Data previously reported from our cohort demonstrated
significantly increased CD4+ HLADR+ levels in HIV/
HCV coinfection with CHC compared to HIV/HCV
coinfection with cleared HCV and HIV monoinfection,
though not significantly different from HCV monoin-
fection, suggesting that CD4 + HLADR+ expression is
driven by HCV viremia [19]. MPTF detection was
greatest among HCV monoinfected patients compared
T-cell immune activation

ith: p-value

Undetectable TF

36.2 ± 11.0 0.05

19.5 ± 9.1 0.16

5.5 ± 2.8 0.85

30.7 ± 10.4 0.04

14.0 ± 7.4 0.01

13.3 ± 6.8 0.04

19.9 ± 5.2 0.99

18.8 ± 10.1 0.91

48.0 ± 12.3 0.23

Memory; CD45RA + CCR7+, naïve; CD45RA-CCR7-, effector memory;
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to HIV/HCV coinfected patients, a finding which may
reflect a down-regulation of TF-associated immune re-
sponses due to antiviral control of HIV in HIV/HCV coin-
fection that is absent patients with HCV monoinfection
[20]. We also demonstrated higher levels of effector mem-
ory CD4 cells expressing CD45RA+ and CD4+ CD38 +
HLADR- expression in subjects with undetectable TF
compared to detectable TF, however at lower magnitudes
overall than other effector, memory, naïve, and immune
activation CD4 cell subsets. In HIV-infected patients with
virologic suppression, the representative HIV-infected
population in our cohort, a recent report identified no
differences in CD4+ naïve, central memory, and effector
cell subsets in patients with protease-activated receptor 1
expression, a thrombin activated receptor that functions
as a proinflammatory chemokine regulator, compared to
healthy HIV-negative controls, further suggesting that
potential TF-mediated immune activation is attenuated in
the setting of well-controlled HIV [21].
Systemic inflammation mediated by monocyte and T

cell immune activation may be an important link be-
tween MPTF activity and liver fibrosis. Funderburg et al.
demonstrated that expression of TF on monocytes was
associated with immune activation and with expression
of soluble CD14, the LPS receptor released following
translocation with LPS stimulation in HIV infection [14].
In addition, LPS, a stimulus known to induce MP release
from monocytes and macrophages, has been shown to
be associated with liver fibrosis in patients with HCV-
related liver disease, though the mechanism by which
LPS contributes to liver fibrosis is not well understood
[22-24]. In advanced fibrosis, the increase in proinflam-
matory cytokines in the plasma could induce the release
of MPs by endothelial cells. MPs derived from activated
and apoptotic T cells can fuse with cell membranes of
hepatic stellate cells (HSCs), the major effector cells for
extracellular matrix deposition in liver fibrosis, and
induce fibrolytic activation in a negative feedback loop in
HSCs [25]. In chronic hepatitis C, inhibition of apoptosis
of HSCs is associated with advanced fibrosis [26-28].
Within our cohort, we have previously observed a trend
toward lower stage fibrosis with higher IL-10 levels,
a pleiotropic anti-inflammatory cytokine (19). Mouse
models have shown that IL-10 inhibits LPS induction of
TF in macrophages [29]. Similarly, in our current ana-
lysis, we found that among hepatitis C monoinfected
subjects, those with detectable TF had a trend toward
lower IL-10 levels. Given the possible association be-
tween TF production and liver fibrosis, this finding
further supports a potential inverse relationship be-
tween IL-10 and liver fibrosis. As apoptotic cells are one
of the sources of circulating MPs, the impact of func-
tional TF expression on the complex immunopathogen-
esis of liver fibrosis is likely a balance between endothelial
cell apoptosis and inflammatory monocyte/macrophage
origins of MPTF in viral infection [30]. Our current
cohort’s findings suggest that TF as an innate immune
activation component may play a role in the develop-
ment of advanced liver fibrosis in CHC.
As TF may represent a biomarker for liver fibrosis in

patients with CHC, the TF and thrombin pathways may
serve as therapeutic targets aimed at preventing or slow-
ing liver fibrosis. Murine models have been developed to
demonstrate that targeted inhibition of TF and thrombin
can reduce liver fibrosis [31-33]. Whether the safe use
of thrombin inhibitors may confer TF-associated anti-
fibrotic activity in patients with hepatitis C-related liver
fibrosis requires validation with measures of TF activity
in larger interventional studies. Additionally, epidemio-
logical studies centered on traditional metabolic and
behavioral risk factors, as well as carotid artery assess-
ments, have established a potential link between HCV
and increased CVD risk [34-37]. HCV RNA has also
been detected in carotid plaques in asymptomatic pa-
tients with chronic HCV [38]. Investigations of emerging
anti-fibrotic agents, such as monoclonal antibodies
against regulators of fibrogenesis, Toll-like receptors,
and caspase inhibitors, which incorporate endothelial
biomarker analyses such as TF activity may generate im-
portant translational information, with implications for
possible therapeutic approaches, that may further correl-
ate the intersection of inflammatory responses to hepa-
titis C infection, liver fibrosis, and CVD risk [39].
There were several limitations of this study. First, our

sample size was small; We attempted to account for
important factors in the natural history of hepatic fibro-
genesis by enrolling subjects that were well-matched by
age, gender, CD4 count, and estimated duration of HIV
and HCV infection. However, the small cohort pre-
cluded the performance of a multivariate analysis which
may have limited our ability to control for other relevant
variables. Second, MPTF levels were below the limit of
detection in the majority of study subjects’ plasma speci-
mens. This restricted our ability to perform meaningful
analysis based upon differences in levels of MPTF by
HIV and HCV infection status. However, this finding was
not unexpected as undetectable MPTF measurements are
common in adults without acute inflammatory or active
cardiovascular comorbidities [40]. In addition, our use of
PFP to measure MPTF activity may have contributed to
lower levels of MPTF compared to levels reported in
recent studies of TF using PPP from HIV-infected and
CHC patients [7,11,25]. However, we felt this was neces-
sary to preclude possible exposure to platelets, which may
result in increased MPTF activity because of TF reacto-
genicity to anionic phospholipids on the surface of plate-
lets [41-43]. We also recognize that our methodology for
assaying MPTF activity cannot determine the cellular
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phenotype of TF, though the vast majority of TF in
blood is thought to originate from activated monocytes
[44,45]. Thus, we are not able to determine if innate
monocyte activation is driving TF activity in our sub-
jects. Similarly, the cross-sectional study design cannot
specifically address whether elevated MPTF expression
in HCV are mediators of a disease process contributing
to liver fibrosis or increased cardiovascular risk or
simply a consequence of enhanced global inflammation
associated a persistent viral infection without direct
causality. Alternatively, the observed association be-
tween MPTF and liver fibrosis may reflect impaired MP
clearance in the setting of cirrhosis because the liver,
with other organs, contributes to MP clearance [46-50].
Longitudinal studies determining whether interventions
along the TF-induced coagulation pathway may exert
anti-fibrotic activity and impact CVD endpoints are
needed.

Conclusions
The pathogenesis of HCV-associated liver fibrosis is
complex and multifaceted. Coinfection with HIV may
accelerate this process, but the dynamic immunologic
mechanisms by which this occurs remain incompletely
understood. Findings of our study contribute further
data suggesting that immune activation plays a role
in the development of liver fibrosis. In addition, we
identify TF as a possible biomarker for advanced liver
fibrosis in chronic hepatitis C infection. The potential
diagnostic and therapeutic applications of TF among
patients with liver disease warrant further studies.
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