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Abstract

The Bio-inspired (Bi-i) Cellular Vision System is a computing platform consisting of sensing, array sensing-
processing, and digital signal processing. The platform is based on the Cellular Neural/Nonlinear Network (CNN)
paradigm. This article presents the implementation of a novel CNN-based segmentation algorithm onto the Bi-i
system. Each part of the algorithm, along with the corresponding implementation on the hardware platform, is
carefully described through the article. The experimental results, carried out for Foreman and Car-phone video
sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frames/s.
Comparisons with existing CNN-based methods show that the conceived approach is more accurate, thus
representing a good trade-off between real-time requirements and accuracy.
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1. Introduction
Due to the recent advances in communication technolo-
gies, the interest in video contents has increased signifi-
cantly, and it has become more and more important to
automatically analyze and understand video contents
using computer vision techniques. In this regard, seg-
mentation is essentially the first step toward many image
analysis and computer vision problems [1-15]. With the
recent advances in several new multimedia applications,
there is the need to develop segmentation algorithms
running on efficient hardware platforms [16-18]. To this
purpose, in [16] an algorithm for the real-time segmenta-
tion of endoscopic images running on a special-purpose
hardware architecture is described. The architecture
detects the gastrointestinal lumen regions and generates
binary segmented regions. In [17], a segmentation algo-
rithm was proposed, along with the corresponding hard-
ware architecture, mainly based on a connected
component analysis of the binary difference image. In
[18], a multiple-features neural-network-based segmenta-
tion algorithm and its hardware implementation have

been proposed. The algorithm incorporates static and
dynamic features simultaneously in one scheme for seg-
menting a frame in an image sequence.
Referring to the development of segmentation algo-

rithms running on hardware platforms, in this article
the attention is focused on the implementation of algo-
rithms running on the Cellular Neural/Nonlinear Net-
work (CNN) Universal Machine [5-7]. This architecture
offers great computational capabilities, which are suita-
ble for complex image-analysis operations in object-
oriented approaches [8-10]. Note that so far few CNN
algorithms for obtaining the segmentation of a video
sequence into moving objects have been introduced
[5,6]. These segmentation algorithms were only simu-
lated, i.e., the hardware implementation of these algo-
rithms is substantially lacking. Based on these
considerations, this article presents the implementation
of a novel CNN-based segmentation algorithm onto the
Bio-inspired (Bi-i) Cellular Vision System [9]. This sys-
tem builds on CNN type (ACE16k) and DSP type (TX
6×) microprocessors [9]. The proposed segmentation
approach focuses on the algorithmic issues of the Bi-i
platform, rather than on the architectural ones. This
algorithmic approach has been conceived with the aim
of fully exploiting both the capabilities offered by the
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Bi-i system, that is, the analog processing based on the
ACE16k as well as the digital processing based on the
DSP. We would point out that, referring to the segmen-
tation process, the goal of our approach is to find mov-
ing objects in video sequences characterized by almost
static background. We do not consider in this article
still images or moving objects in a video captured by a
camera located on a moving platform, where the back-
ground is also moving.
The article is organized as follows. Section 2 briefly

revises the basic notions on the CNN model and the Bi-
i cellular vision architecture. Then the segmentation
algorithm is described in detail (see the block diagram
in Figure 1). In particular, in Section 3, the motion
detection is described, whereas Section 4 presents the
edge detection phase, which consists of two blocks, the
preliminary edge detection and the final edge detection.
In Section 5, the object detection block is illustrated. All
the algorithms are described from the point of view of
their implementation on the Bi-i, that is, for each task it
is specified which templates (of the CNN) run on the
ACE16k chip and which parts run on the DSP. Finally,
Section 6 reports comparisons between the proposed
approach and the segmentation algorithms described in
[3] and [5], which have been also implemented on the
Bi-i Cellular Vision System.

2. Cellular Neural/Nonlinear Networks and Bio-
Inspired Cellular Vision System
Cellular Neural/Nonlinear Networks represent an infor-
mation processing system described by nonlinear ordin-
ary differential equations (ODEs). These networks,
which are composed of a large number of locally con-
nected analog processing elements (called cells), are
described by the following set of ODEs [1]:

ẋij(t) = −xij(t) +
∑

kl∈Nr̄
Aij,klykl(t) +

∑
kl∈Nr̄

Bij,klukl(t) + Iij (1)

yij(t) = f (xij(t)) = 0.5
(∣∣xij(t) + 1

∣∣ − ∣∣xij(t) − 1
∣∣) (2)

where xij (t) is the state, yij (t) the output, and uij (t)
the input. The constant Iij is the cell current, which
could also be interpreted as a space-varying threshold
[19]. Moreover, Aij,kl and Bij,kl are the parameters form-
ing the feedback template A and the control template B,
respectively, whereas kl ∈ Nr̄ is a grid point in the
neighborhood within the radius r̄ of the cell ij [20].
Since the cells cooperate in order to solve a given

computational task, CNNs have provided in recent years
an ideal framework for programmable analog array com-
puting, where the instructions are represented by the
templates. This is in fact the basic idea underlying the
CNN Universal Machine [1], where the architecture
combines analog array operations with logic operations
(therefore named as analogic computing). A global pro-
gramming unit was included in the architecture, along
with the integration of an array of sensors. Moreover,
local memories were added to each computing cell [1].
The physical implementations of the CNN Universal
Machine with integrated sensor array proved the physi-
cal feasibility of the architecture [11,12].
Recently, a Bio-inspired (Bi-i) Cellular Vision System

has been introduced, which combines Analogic Cellular
Engine (ACE16k) and DSP type microprocessors [9]. Its
algorithmic framework contains several feedback and
automatic control mechanisms among the different pro-
cessing stages [9]. In particular, this article exploits the
Bi-i Version 2 (V2), which has been described in detail
in reference [9]. The main hardware building blocks of
this Bi-i architecture are illustrated in Figure 2. It has a
color (1280 * 1024) CMOS sensor array (IBIS 5-C), two
high-end digital signal processors (TX C6415 and TX

Figure 1 Block diagram of the overall segmentation algorithm.
Figure 2 The main hardware building blocks of the Bi-i cellular
vision system described in [9].
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C6701), and a communication processor (ETRAX 100)
with some external interfaces (USB, FireWire, and a
general digital I/O, in addition to the Ethernet and
RS232).
Referring to the Analogic Cellular Engine ACE16k,

note that a full description can be found in [12]. Herein,
we recall that it represents a low resolution (128 * 128)
grayscale image sensor array processor. Thus, the Bi-i is
a reconfigurable device, i.e., it can be used as a monocu-
lar or a binocular device with a proper selection of a
high-resolution CMOS sensor (IBIS 5-C) and a low-
resolution CNN sensor processor (ACE16k) [9].
Two tools can be used in order to program the Bi-i

Vision System, i.e., the analogic macro code (AMC) and
the software development kit (SDK). In particular, by
using the AMC language, the Bi-i Vision System can be
programmed for simple analogic routines [9], whereas
the SDK is used to design more complex algorithms
(see Appendix). Referring to the image processing
library (IPL), note that the so-called TACE_IPL is a
library developed within the SDK. It contains useful
functions for morphological and grey-scale processing in
the ACE16k chip (see Appendix). Additionally, the Bi-i
V2 includes an InstantVision™ library [9].
Finally, note that through the article, the attention is

focused on the way the proposed segmentation algo-
rithm is implemented onto the Bi-i Cellular Vision Sys-
tem. Namely, each step of the algorithm has been
conceived with the aim of fully exploiting the Bi-i cap-
abilities, i.e., the processing based on the ACE16k chip
as well as the processing based on the DSP.

3. Motion detection
This section illustrates the motion detection algorithm
(Figure 1). Let YLP

i and YLP
i - 3 be two gray-level images,

processed by a low-pass (LP) filtering, and let YMD
i be

the motion detection (MD) mask. In order to implement
the motion detection onto the Bi-i, the first step (see
Equation 3) consists in computing the difference
between the current frame YLP

i and the third preceding

frame YLP
i - 3 using the ACE16k chip. The indices i and i-

3 denote that the frames i-2 and i-1 are skipped.
Namely, the analysis of the video sequences considered
through the article suggests that it is not necessary to
compute the difference between successive frames, but
it is enough every three frames. However, as far as the
algorithm goes, every frame is evaluated, even though
the reference frame is three frames older. This means
that we need to store every frame, because the frame i +
1 requires frame i-2 as a reference.
Then, according to Step 2 in Equation 3, positive and

negative threshold operations are applied to the

difference image via the ConvLAMtoLLM function [13]
implemented on the ACE16k chip. This function
(included in the SDK) converts a grey-level image stored
in the local analog memory (LAM) into a binary image
stored in the local logic memory (LLM). Successively,
the logic OR operation is applied between the output of
the positive threshold and the output of the negative
threshold. The resulting image includes all the changed
pixels.

step 1 − compute the difference between the frames YLP
i and YLP

i−3

step 2 − apply a positive and negative threshold

step 3 − delete irrelevent pixel

(3)

Finally, according to Step 3, the Point Remove function
[13] (running on the ACE16k) is used for deleting irrele-
vant pixels not belonging to the contour lines. The out-
put of the algorithm is the MD mask YMD

i , which

entirely preserves the moving objects. Figure 3a, c shows
a sample frame of Foreman and Car-phone video
sequences, respectively, whereas Figure 3b, d shows the
corresponding motion detection mask YMD

i .

4. Edge detection
The proposed edge detection phase consists of two
blocks, the preliminary edge detection and the final edge
detection (see Figure 1). In the first block, the CNN-

          

(a)                                                        (b) 

             

                            (c)                                                                 (d) 

Figure 3 Motion detection for two benchmark video sequences.
(a) Foreman sample frame; (b) its corresponding mask YMD

i ; (c)
Car-phone sample frame; (d) its corresponding mask YMD

i . The
positive and negative thresholds in Equation 3 are 0.03 and -0.03,
respectively.
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based dual window operator (proposed by Grassi and
Vecchio [10]) is exploited to reveal edges as zero-cross-
ing points of a difference function, depending on the
minimum and maximum values in the two windows.
After this preliminary selection of edge candidates, the
second block enables accurate edge detection to be
obtained, using a technique able to highlight the discon-
tinuity areas.

4.1. Preliminary edge detection
The aim of this phase is to locate the edge candidates.
The dual window operator is based on a criterion able
to localize the mean point within the transition area
between two uniform luminance areas [10]. Thus, the
first step consists in determining the minimum and
maximum values in the two considered windows. Given

the input image YLP
i , we consider for each sample

s ∈ YLP
i (x, y) two concentric circular windows, centered

in s and having radius r and R, respectively (r < R). Let
MR and mR be the maximum and minimum values of
YLP

i within the window of radius R, and let Mr and mr

be the maximum and minimum values within the win-
dow of radius r [10]. Note that, for the video-sequences
considered through the article, we have taken the values
r = 1 pixel and R = 2 pixels. For each sample s, let us
define the difference function D(s) = a1 (s) - a2 (s),
where a1 (s) = MR - Mr and a2 (s) = mr - mR. By assum-
ing that s is the middle point in a luminance transition,
the relationship a1 (s) = a2 (s) holds. In the case of
noise, the change in the sign of the difference function
D(s) is a more effective indicator of the presence of a
contour [10]. Since D(s) approximates the directional
derivative of the luminance signal along the gradient
direction [10], the relationship D(s) = 0 is equivalent to
find the flex points of luminance transitions. In particu-
lar, we look for zero-points and zero-crossing points of
D(s). Hence, the introduction of a threshold is required,
so that samples s satisfy the condition -threshold <D(s)
<threshold. Successively, edge samples are detected
according to the following algorithm [10]:

step1 − computeD(s) = α1(s) − α2(s)

step2 − foreach s = (x0, y0)sothat − threshold < D(s) < threshold

ifD(s) = 0thens isedge

elseifD(s) ≥ 0and
(

D(x0 − 1, y0) < 0orD(x0 + 1, y0) < 0
orD(x0, y0 − 1) < 0orD(x0, y0 + 1) < 0

)
then s isedge.

(4)

In other words, by applying the algorithm (4) to the
sample itself and to the four neighboring samples, preli-
minary edge detection is achieved. In order to effectively
implement (4) onto the Bi-i, the first step is the compu-
tation of D(s), which can be realized using order-statis-
tics filters. They are nonlinear spatial filters that enable
maximum and minimum values to be readily computed
onto the Bi-i platform. Their behaviors consist in

ordering the pixels contained in a neighborhood of the
current pixel, and then replacing the pixel in the centre
of the neighborhood with the value determined by the
selected method. Therefore, these filters are well suited
to find the minimum and maximum values in the neigh-
borhood of the current pixel. The implementation of D
(s) gives the images in Figure 4a, c for Foreman and
Car-phone, respectively.
Going to Step 2, the threshold is implemented on the

ACE16k using the ConvLAMtoLLM function. Then, the
relationship -threshold <D(s) <threshold is satisfied by
implementing the operations inversion, OR and inver-
sion again onto the ACE16k chip. Note that we look for
samples s so that D(s) = 0. Additionally, we look for
samples s satisfying the condition that D (s) ≥ 0 but,
simultaneously, D(s) must be negative in a cross-shape
neighborhood of s. Specifically, at least one of the four
conditions D (x0 ± 1,y0 ± 1) < 0 must be satisfied. Thus,
we need to compute D(s) by exploring proper neighbor-
hoods of (x0,y0), two examples of which are reported in
Figure 4e, f. Note that the object is represented by black
pixels, while the background is represented by white
pixels. The exploration of proper neighborhoods in the
image D(s) can be done using the morphologic dilate4
function, which performs four-connectivity (cross-mask)
binary dilatation on the ACE16k [13]. Note that Figure
4e contains an edge, since the conditions D(x0-1,y0) < 0
and D (x0,y0-1) < 0 are satisfied. On the other hand, Fig-
ure 4f does not contain any edge, since D (s) > 0 in the
neighborhood of (x0,y0). Referring to Foreman, the edges
selected by implementing the condition -threshold <D
(s) <threshold are reported in Figure 4g, whereas those
selected by exploring proper neighborhoods of (x0,y0)
are reported in Figure 4h. In particular, note that Figure
4h highlights that there are some flat areas characterized
by some edges. Finally, the OR operation between the

images in Figure 4g, h provides the image Yprel
i

repre-

senting the preliminary edge detection. To this purpose,

Figure 4b, d depicts the images Yprel
i

for Foreman and

Car-phone video sequences, respectively.

4.2. Final edge detection
The aim of this phase is to better select the previously
detected edges. Referring to the previous section, note
that the zeros of D(s) are not only flex points of lumi-
nance transitions, but also the set of pixels having a
neighborhood where luminance is almost constant [10].
Since noise causes small fluctuations, these fluctuations
may generate changes in the sign of D that would be
incorrectly assumed as edge points. Therefore, in order
to better select the edges detected in the previous phase,
we need to integrate the available information with the
slope of the luminance signal. To this purpose, note that
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MR and mR identify the direction of maximum slope in
the neighborhood of s [10]. Therefore, by suitably
exploiting MR and mR, we first need to generate a
matrix S, which takes into account the slope of the
luminance signal. Then, a threshold gradient operation
is applied to S, with the aim to obtain a gradient matrix

G. Namely, the final objective is to obtain an image that
includes all the edges selected by the gradient operation

(i.e., Ygrad
i

). Successively, the image Ygrad
i

needs to be

cleaned and skeletonized, in order to reduce all the
edges to one-pixel thin lines. The image reporting the

          

  (a)                               (b) 

           

  (c)                        (d) 

                                               

(e) (f) 

          
                     
                   (g)                                                                   (h) 

Figure 4 Preliminary edge detection algorithm.(a) matrix D(s) for Foreman; (b) corresponding outcome Yprel
i

; (c) matrix D(s) for Car-phone; (d)
corresponding outcome Yprel

i
; (e) neighborhood of (x0, y0) containing and edge; (f) neighborhood of (x0, y0) not containing any edge; (g) edges

obtained by the condition -threshold <D(s) <threshold; (h) edges obtained by the four conditions on the neighborhoods of (x0, y0).
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final edge detection, indicated by Yfinal edge
i (s) , can be

obtained by applying the following algorithm:

step 1 − for each pixel s = (x0, y0) ∈ D compute s(s) =
{

MR(s) if D(s) ≥ 0
mR(s) if D(s) < 0

}

step 2 − apply a threshold gradient operation on S(s) to obtain G(s)

step 3 − for each pixel s ∈ Ypre1
i (s) compute Ygrad

i (s) =

⎧⎪⎨
⎪⎩

Ypre1
i (s) if s ∈ G(s)
∅ if s /∈ G(s)

step 4 − skeletonize Ygrad
i (s) to obtain Yfinal edge

i (s)

(5)

In order to effectively implement the algorithm (5)
onto the Bi-i, at first the matrix D(s) is processed by
means of the ConvLAMtoLLM function, which imple-
ments the threshold ‘zero’ on D(s). Then, the pixels
in D that correspond to D (s) ≥ 0 assume the maxi-
mum value of the luminance signal (within the win-
dow of radius R) and generate the image MR

D .
Similarly, the pixels in D that correspond to D(s) < 0
assume the minimum value of the luminance signal
and generate the image mR

D . Then, in order to imple-

ment the matrix S(s), we need the following new
switch template:

A =

⎡
⎢⎣

0 0 0

0 − 1 0

0 0 0

⎤
⎥⎦ B =

⎡
⎢⎣

0 0 0

0 2.2 0

0 0 0

⎤
⎥⎦ I = 0 (6)

The matrix S(s) is generated onto the ACE16k chip,
where MR

D is used as input, mR
D as state whereas the

output of the ‘zero’ threshold is used as mask. Referring
to the template (6), we have chosen the name switch
since the image S(s) is obtained by ‘switching’ between
MR (s) and mR (s), depending on the mask values. Note
that the template (6), by providing the matrix S(s),
enables the slope of the luminance signal to be taken
into account. The experimental result of S(s) are
reported in Figures 5a and 6a for Foreman and Car-
phone, respectively.
Then, according to the algorithm (5), we need to

implement the threshold gradient operation onto the Bi-
i. This can be done using a sequence of eight templates,
applied in eight directions N, NW, NE, W, E, SW, S,
and SE. For example, referring to the NW direction, the
following novel template is implemented on the
ACE16k:

A =

⎡
⎢⎣

0 0 0

0 1 0

0 0 0

⎤
⎥⎦ B =

⎡
⎢⎣

−3 0 0

0 3 0

0 0 0

⎤
⎥⎦ I = thres (NW) (7)

where the bias is used as a threshold level (herein,
thres = -1.1). The other seven remaining templates can
be easily derived from (7). Then the logic OR is applied

                

                                          (a)                                                            (b)                                                           (c)

                             

                                   (d)                                                             (e)                                                          (f)                                      

Figure 5 Final edge detection for Foreman.(a) the matrix S(s); (b) the image G(s); (c) output of the prune function; (d) output of the hollow
template; (e) edges selected by the gradient Ygrad

i
; (f) final result Yfinal edge

i
.
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to the eight output images in order to obtain a single
image, which is denoted by G(s) (see Figure 5b). Note
that G stands for gradient, given that it represents the
output of the threshold gradient (7). However, the
image G needs to be cleaned, since it usually contains
some open lines (see the upper left-side in Figure 5b).
These open lines can be deleted by applying the prune
template:

A =

⎡
⎢⎣

0 0.5 0

0.5 3 0.5

0 0.5 0

⎤
⎥⎦ B =

⎡
⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎦ I = −1.5. (8)

The output of the prune function is reported in Figure
5c, where it can be seen that the open line in the upper
left-side part has been partially deleted. Note that the
prune function also enables the back part in Figure 5c
to become more compact (i.e., the white dots in the
black part have disappeared). Then, the hollow template
reported in [13] has to be applied. This template, run-
ning on the ACE16k chip, enables the concave locations
of objects to be filled. In order to achieve this objective,
the hollow template needs to be applied. The output of
the hollow is shown in Figure 5d. The white part in Fig-
ure 5d indicates that the corresponding part in the
image S(s) does not contain information related to
edges. Since the hollow is time-consuming, it is useful
to carry out this operation by exploiting the great com-
putational power offered by the CNN chip.
Finally, by using the switch template (6) with input =

Yprel
i (s) , state = ∅ (i.e., the white image) and mask =

G(s), it is possible to obtain the image Ygrad
i (s), which

includes all the edges selected by the gradient opera-
tion (see Figures 5e and 6b). In order to skeletonize

Ygrad
i (s) and reduce all the edges to one-pixel thin

lines, the skeletonization function (included in the
TACE_IPL library) is implemented on the ACE16k
chip. Then, in order to complete open edges (if any)
we can use the dilation and erosion functions included

in the TACE_IPL. Specifically, we first apply the dila-
tion function, and then the erosion function. These two
functions are applied from three to six times, depend-
ing on the video sequence under consideration. Finally,
the last step lies in deleting the remaining open lines.
By applying the prune template (8), the final edges can

be obtained, as shown by the images Yfinal edge
i (s)

reported in Figures 5f and 6c for Foreman and Car-
phone, respectively.

5. Object detection
The proposed object detection phase can be described
using the following iterative procedure:

BEGIN : k = 1

step 1 − − − fill closed edges (notsimultaneously) in the inverted image of Y
final edge
i to obtain Y

fill(k)
i

step 2 − − − detect changes between Y
fill(k)
i and (−Y

final edge
i ) to obtain Y

changes(k)
i

step 3 − − − fill closed edges in Y
fill(k)
i to obtain Y

fill(k+1)
i .

step 4 − − − thicken edges in Y
fill(k+1)
i to obtain Y

dilation(k+1)
i .

step 5 − − − detect objects in Y
dilation(k+1)
i to obtain Y

recall(k+1)
i

step 6 − − − detect changes between Y
recall(k+1)
i and Y

changes(k)
i

if changes �= 0 and if the extracted object Yextracted(k+1)
i is a moving object,

then update Ychanges(k)
i

step 7 − − − assign k = k + 1

step 8 − − − if Y
fill(k)
i �= Y

fill(k+1)
i go to step 3 else END

(9)

First, the following hole-filler template is implemented
on the ACE16k:

A =

⎡
⎢⎣

0.1 0.2 0.1

0.2 1 0.2

0.1 0.2 0.1

⎤
⎥⎦ B =

⎡
⎢⎣

0 0 0

0 1 0

0 0 0

⎤
⎥⎦ I = 1.3. (10)

This template is applied to the inverted image of

Yfinal edge
i

with the aim to fill all the holes. Figure 7

depicts the outputs of the hole-filler after different pro-
cessing times, with the aim to show the system behavior
when the processing times are increased. Note that the
hole-filler has to be applied in a recursive way, in order
to fill more and more holes. However, differently from
Figure 7 that has an explanatory purpose, we need to
apply this template by slowly increasing the processing

           

                                             (a)                                                        (b)                                                       (c)        

Figure 6 Final edge detection for Car-phone.(a) the matrix S(s); (b) edges selected by the gradient Ygrad
i

; (c) final result Yfinal edge
i

.
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times. Namely, if we slowly increase the processing
times, it is possible to highlight at the most two closed
objects at a time, so that these objects can be extracted
in the next steps. As a consequence, the hole-filler plays
an important role: by slowly filling the holes in a mor-
phological way, it enables the closed objects to be
extracted in the next steps of the algorithm.
In order to implement the second step, the logic XOR

is applied between the output of the hole-filler (i.e.,

Yfill (k)
i

) and the inverted image of Yfinal edge
i

. Note that

the logic XOR enables changes in the two images to be
detected. This logic function returns a 1 only if both
operands are logically different, otherwise it returns a 0.
Bitwise logic XOR is executed on the ACE16k between

LLM1 and LLM2 (binary images stored in the Local
Logic Memories 1 and 2). Herein, the outcome of the

XOR is the binary image Y changes (k)
i

, which locates the

changes between the two images Yfill (k)
i

and(
−Yfinal edge

i

)
. The output of the XOR is shown in Fig-

ure 8a.
According to Step 3, the hole-filler template is applied

to Yfill (k)
i

, with the aim to obtain Yfill (k+1)
i

. Referring to

Step 4, the morphologic dilate function is utilized to

thicken the contours within the image Yfill (k+1)
i

. The

result of the dilate function, which performs binary dila-

tation onto the ACE16k, is indicated by Y dilation (k+1)
i

and is shown in Figure 8b.
According to Step 5, we need to detect the remaining

objects in Y dilation (k+1)
i

. This can be done using the

recall template

A =

⎡
⎢⎣

0.5 0.5 0.5

0.5 3 0.5

0.5 0.5 0.5

⎤
⎥⎦ B =

⎡
⎢⎣

0 0 0

0 3 0

0 0 0

⎤
⎥⎦ I = 3 (11)

where the image Y dilation (k+1)
i

is used as input and the

image Yfinal edge
i

as state. In order to show how the

recall template works, Figure 9 shows its output after
different processing times. Note that the recall template
has to be applied in a recursive way. In particular, by
increasing the processing times, note that more and
more objects are recalled (see Figure 9).
However, differently from Figure 9 that has an expla-

natory purpose, herein we need to apply this template
by slowly increasing the processing times. Namely, in
order to guarantee a satisfying total frame rate, we need
to recall few objects at a time, so that the processing
times due to the recall template are not large. In this
way, the slow recursive application of the recall template

     

      (a)                          (b)               

     

                        (c)                          (d)

Figure 7 Behaviour of the hole-filler template for Foreman.(a)
output after about 15 μs; (b) output after about 30 μs; (c) output
after about 45 μs; (d) output after about 60 μs.

               

         (a)                                                 (b)               
Figure 8 Object detection algorithm for Foreman.(a) detected changes Y changes (k)

i
; (b) dilated image Y dilation (k+1)

i
.
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does not affect the overall system performances. In con-
clusion, the recall template plays an important role: by
taking into account the image containing the final edge
(state), it enables the objects enclosed in the dilated
image (input) to be recalled and subsequently extracted.
Now, by applying the recall template (11) using the

image in Figure 8b as input and the image in Figure 5f
as state, the image reported in Figure 10a is obtained.

This image, indicated by Y recall (k+1)
i

, is constituted by

groups of objects. In order to obtain new objects at each
iteration, we need to detect the changes between the

images Y recall (k+1)
i

and Y changes (k)
i

, as indicated by Step

6. To this purpose, we can apply the logic XOR between

Y changes (k)
i

and Y changes (k)
i

. If changes are detected, we

need to check whether the extracted object belongs to
the moving objects. This operation is implemented by
exploiting the AND operation between the output of
previous XOR and the motion detection mask YMD

i .

The output of the AND is indicated by Y extracted (k + 1)
i

.

For example, the objects extracted after the first itera-
tion are shown in Figure 10b. Finally, the extracted

object Y extracted (k + 1)
i

is used to update the image

Y changes (k)
i

, with the aim of obtaining Y changes (k+1)
i

.

This iterative procedure is carried out until all the
objects are extracted. Namely, the procedure ends when

the condition Yfill (k)
i

= Yfill (k+1)
i

is achieved for two

consecutive iterations. Figures 8 and 10 summarize
some of the fundamental steps of the object detection
algorithm for Foreman video sequence. Similar results
have been obtained for Car-phone video sequence.

6. Discussion
We discuss the results of our approach by making com-
parisons with previous CNN-based methods illustrated
in [3] and [5]. We would remark that the comparison
between the proposed approach and the methods in [3]
and [5] is homogeneous, since we have implemented all
these techniques on the same hardware platform (i.e.,
the Bi-i). At first, we compare these approaches by
visual inspection. By analyzing the results in Figures 11
and 12, it can be noticed that the proposed technique
provides more accurate segmented objects than the ones
obtained by the techniques in [5] and [3]. For example,
the analysis of Figure 11a suggests that the proposed
approach is able to detect man’s mouth, eyes, and nose.
Note the absence of open lines too. The methods
depicted in Figure 11b, c do not offer similar capabil-
ities. Referring to Figure 12a, note that we have obtained
an accurate result, since man’s mouth, eyes, and nose

      

      (a)                          (b)               

      

                        (c)                          (d)

Figure 9 Behaviour of the recall template for Foreman.(a)
output after about 50 μs; (b) output after about 85 μs; (c) output
after about 170 μs; (d) output after about 650 μs.

               

         (a)                               (b) 

Figure 10 Object detection algorithm for Foreman.(a) group of objects Y recall (k+1)
i

; (b) new objects after the first iteration

Y extracted (k + 1)
i

.
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are detected, along with some moving parts in the back
of the car. Again, the approaches depicted in Figure
12b, c do not reach similar performances. It can be con-
cluded that, by exploiting the proposed approach, the
edges are much more close to the real edges with
respect to the method in [5] and [3].
Now an estimation of the processing time achievable

by the proposed approach is given in Table 1. Note that
the motion detection and the object detection phases can
be fully implemented onto the ACE16k chip, whereas
the edge detection phase requires that some parts be
implemented on the DSP (see Section 4). The sum of
the processing times of the different phases is 37767 μs,
which gives a frame rate of about 26 frames/s.
Note that the computational load is mainly due to the

DSP in the edge detection phase (28778 μs) and, specifi-
cally, to the presence of the order-statistics filters. On the
other hand, these filters are requested to implement the
dual window operator, which is in turn required to achieve
accurate edge detection, as explained in [10]. Namely, edge
detection is a crucial step for segmentation. If we detect
edge accurately, we can segment the images correctly. If
we analyze the result in reference [5], we note that the
authors use a threshold gradient algorithm, which is not
particularly suitable for edge detection. On the other hand,

the dual window operator is one of the best edge detector
(see [10]), even though its implementation is time con-
suming. Referring to the processing times measured on
the Bi-i for the methods in [3] and [5], their values are
13861 and 5254 μs, respectively. The corresponding frame
rates are 72 and 190 frames/s, respectively, while our
approach gives 26 frames/s. Thus, the segmentation meth-
ods in [3] and [5] are faster than the proposed approach,
even though they are less accurate, as confirmed by Fig-
ures 11 and 12. Anyway, we believe that 26 frames/s can
be considered a satisfying frame rate achievable by the
proposed approach, since it represents a good trade-off
between accuracy and speed.
Finally, we would point out that, while we have con-

ducted this research, a novel Bio-inspired architecture
called Eye-RIS vision system has been introduced [21].
It is based on the Q-Eye chip [21], which represents an
evolution of the ACE family with the aim to overcome
the main drawbacks of ACE chips, such as lack of
robustness and large power consumption. Our plan is to
implement the segmentation algorithm developed herein
on the Eye-RIS vision system in the near future. To this
purpose, note that one of the authors (F. Karabiber) has
already started to work on the Eye-RIS vision system, as
is proof by the results published in [22].

     

  (a)                                                       (b)                                               (c) 

Figure 11 Foreman video sequence.(a) segmentation by our method; (b) segmentation by the method in [5]; (c) early segmentation in [3].

  

      (a)                                                     (b)                                                         (c) 

Figure 12 Car-phone video sequence.(a) segmentation by our method; (b) segmentation by the method in [5]; (c) early segmentation in [3].
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7. Conclusion
This article has presented the implementation of a novel
CNN-based segmentation algorithm onto a Bio-inspired
hardware platform, called Bi-i Cellular Vision System
[9]. This platform combines the analog processing based
on the ACE16k processor [11] as well as the digital pro-
cessing based on the DSP. The proposed experimental
results, carried out for some benchmark video
sequences, have shown the feasibility of the approach,
which provides a satisfying frame rate of about 26
frames/s. Finally, comparisons with the CNN-based
techniques in [5] and [3] have highlighted the accuracy
of the proposed method.

Appendix
The software development kit (SDK) is a set of C++
libraries to be used for Bi-i programming. Some parts of
the SDK are based on classes defined in the BaseData
module of the InstantVision™ libraries. The SDK is
designed to be used together with Code Composer Stu-
dio from Texas Instruments (http://www.ti.com/).
The TACE_IPL is an image processing library (IPL)

for ACE16k. It contains two function groups for proces-
sing images: morphological operations and gray scale
operations. The constructor of this class initializes the
needed instruction group and writes corresponding IPL
templates to the ACE16k.
Note that all the details about the SDK, the InstantVi-

sion™ libraries and the TACE_IPL can be found at:
http://www.analogic-computers.com/Support/
Documentation/
Alternatively, the Bi-i programming guide (which

includes the SDK and the TACE_IPL) can be requested
at: giuseppe.grassi@unisalento.it

List of abbreviations
AMC: Analogic Macro Code; Bi-i: Bio-inspired; CNN: Cellular Neural/Nonlinear
Network; IPL: image processing library; LP: low pass; LAM: local analog
memory; LLM: local logic memory; MD: motion detection; ODEs: ordinary
differential equations; SDK: software development kit.
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