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trees for time-to-event data analysis: an
application to AIDS and mortality post-HIV
infection data
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Abstracts

Background: This study aimed to introduce recursively imputed survival trees into multistate survival models
(MSRIST) to analyze these types of data and to identify the prognostic factors influencing the disease progression in
patients with intermediate events. The proposed method is fully nonparametric and can be used for estimating
transition probabilities.

Methods: A general algorithm was provided for analyzing multi-state data with a focus on the illness-death and
progressive multi-state models. The model considered both beyond Markov and Non-Markov settings. We also
proposed a multi-state random survival method (MSRSF) and compared their performance with the classical
multi-state Cox model. We applied the proposed method to a dataset related to HIV/AIDS patients based on a
retrospective cohort study extracted in Tehran from April 2004 to March 2014 consist of 2473 HIV-infected patients.

Results: The results showed that MSRIST outperformed the classical multistate method using Cox Model and MSRSF in
terms of integrated Brier score and concordance index over 500 repetitions. We also identified a set of important risk
factors as well as their interactions on different states of HIV and AIDS progression.

Conclusions: There are different strategies for modelling the intermediate event. We adapted two newly developed
data mining technique (RSF and RIST) for multistate models (MSRSF and MSRIST) to identify important risk factors in
different stages of the diseases. The methods can capture any complex relationship between variables and can be
used as a useful tool for identifying important risk factors in different states of this disease.

Keywords: HIV/AIDS, Highly active antiretroviral therapy, Random forest, Survival analysis, Recursively imputed survival
trees, Cohort studies

Background
There are many biomedical and epidemiological
follow-up studies where the subjects may experience
events of multiple types. For example, when studying
the time to death process in human immunodeficiency
virus (HIV)-positive patients, the patients can either ex-
perience acquired immunodeficiency syndrome (AIDS)
or not before death. One of the main challenges in this

research is the need to better understand the prognostic
factors affecting the long-term survival in patients to im-
prove their life expectancy. This is usually carried out by
fitting separate analyses for each end point as well as for
the intermediate events but this is not satisfying because
it does not account for the relations between these
events [1]. In this regard, using multistate models
(MSM), is a natural way to model this kind of complex
processes [2].
The MSM framework provides a very useful tool to an-

swer a wide range of questions in survival analysis that
cannot be answered by classical models [3]. Figure 1
shows two simple but most commonly used cases
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(progressive and illness-death) of multistate diagrams (for
the HIV/AIDS example). Competing risks are another
special case of MSMs in which one event precludes the
event of interest. In these models, the occurrence of
events of interest are considered as transitions from one
state to another and where the Markov assumption re-
quires that the transition rates depend only on the current
state of the patient and not on the patient’s history [2].
The interest then focuses on predicting the probability
that a patient will be in one of the states at some time
point after being HIV-infected.
Aalen and Johansen used counting process methods

to estimate transition probabilities when there are no
covariates [4]. However, in many applications, mea-
sured covariates on each individual under study are
also available. Therefore, it is often necessary to ac-
commodate the influence of these covariates on tran-
sition intensities through a regression model. In this
regard, there are a number of models for transition
intensities that have been proposed in the literature
including parametric models [5–9], semiparametric
Markov regression models where transition intensities
are modeled by the Cox [10] proportional hazards re-
gression model [11–15], or the Aalen additive hazards re-
gression model [2, 13, 16]. However, most of the time,
there are large correlations between covariates as well as
non-linear or multivariable relations especially in high di-
mension settings. This can make the Cox traditional
models inefficient and unattractive for variable selection
and variable effect estimation [17].
Recently, machine learning techniques have gained in-

creasing attention in many research areas including
time-to-event data analysis. Among them, the use of
data-driven ensemble methods for covariate selection and
prediction in right censored survival data have been

suggested by several authors [17–20]. These methods focus
on learning a predictive rule which is well-generalized to
unobserved data [21]. One of the most popular ensemble
learning methods with a broad application in data mining
and machine learning techniques is random forests (RF);
with, random survival forests (RSF) as its extension to sur-
vival data analysis [22]. RSF can automatically handle the is-
sues of traditional methods by combining the ideas of
adaptive nearest neighbors and bagging as well as select
and rank variables by taking advantage of variable import-
ance measures [22, 23]. Motivated by improving some is-
sues of the Ishwaran’s suggested RSF model such as its
requirement of having a minimum predetermined number
of (observed failure) events in terminal nodes that conse-
quently makes censored observations hard to use, Zhu and
Kosorok [24] developed a procedure to extrapolate as much
as possible information contained in censored observations
by nonparametric imputation. They proposed to recursively
update the censored observations by imputation to the
current model-based conditional failure times and to refit
the model to these updated data. The final model is then
built by repeating this procedure several times. In this
method, referred to as recursively imputed survival trees
(RIST), the conditional failure times of the censored obser-
vations are incorporated into the model fitting procedure.
This in turn reduces the prediction error and improves the
accuracy of the model [24]. Ensemble learning methods
have been used to identify important risk factors in many
clinical research settings, with survival outcome, such as
time until death, as an endpoint for studying disease pro-
cesses [25–28]. However, no attempt has been made to ex-
ploit them under the multistate models context. In this
article, we propose a method which combines RIST [17]
with the multistate method, which we call multistate RIST
(MSRIST), in the hope of relieving the restrictive assump-
tions in traditional survival models and improving the pre-
dictive power of the resulting model as well as accounting
for correlation and interactions among features. We also
compare the MSRIST with a multistate version of RSF
(MSRSF) as well as with the Cox proportional hazard
model in terms of prediction power.

Methods
The statistical model
Multistate models and terminal node estimators
In this section we give a brief description of multistate
models. A multistate model can be described by a sto-
chastic process (X(t), t ∈ T)with a finite state space S
= {1, 2,…,N}, where T = [0, τ] is a time interval (τis the
time of the end of the study). The variable t denotes the
time since a special event like first diagnosis (for ex-
ample in HIV patients, it is time from HIV infection), d
denotes the time of the intermediate event (in HIV posi-
tive patients, it is time of developing AIDS). Let Ht− be a

a

b

Fig. 1 Two simple multistate structures for HIV data; a) Progressive
multistate model, b) Illness-death multistate model
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history (a σ-algebra) generated over the interval [0, t). A
history for example consists of information about the
patients including transition times from one state to an-
other state. In a multistate framework, the interest is to
predict events as well as to discover risk factors for each
transition (h→ j). Transition probabilities

Phj s; tð Þ ¼ P X tð Þ ¼ jjX sð Þ ¼ h;Hs−ð Þ; ð1Þ

for h, j ∈ S, t ∈T, s ≤ t, or transition intensities

αhj tð Þ ¼ lim
Δt→0

Phj t; t þ Δtð Þ
Δt

; ð2Þ

(the instantaneous hazard of progression to state j
given current state h) can characterize the multistate
process completely.
Two commonly used approaches for multistate models

are available: (a) the clock forward (in which time t is
considered since the entrance of the patient to the initial
state for all states even for an intermediate event); and
(b) the clock reset (in which time t in αhj(t), is consid-
ered since the entrance of the patient to state h) [29].
There are several model assumptions about the depend-
ency of the transition intensities on time, including be-
ing independent of time (constant intensities over time
called a time-homogeneous models), depending only on
the history of the process via the present state (a Markov
model) and depending on the present state (h) as well as
on the time Th (the entry time into state h) (a
Semi-Markov model) [30].
Regarding two of the approaches, clock forward

models can be considered as Markov models and, for
clock reset model, the Markov assumption does not hold
(because of dependency of the time scale itself on the
history through the time since entering to the current
state). Nevertheless, by assuming the dependency of the
sojourn times on the history of the process only through
the present state and the time since entry of that state, a
sequence of embedded Markov models can be formu-
lated by the subsequent multistate models (a semi-Mar-
kov model) [29].
Markov models are commonly used due to their sim-

plicity. In a multistate model, the Markov assumption
implies that

P X tð Þ ¼ jjX sð Þ ¼ h;Hs−ð Þ ¼ P X tð Þ ¼ jjX sð Þ ¼ hð Þ;
ð3Þ

and the transition probabilities are calculated from
the intensities by solving the so-called forward Kol-
mogorov differential equation [31]. Therefore, for the
illness-death model, the transition probabilities are
explicitly expressed as follows in terms of cumulative
intensities between s and t (i.e.Ahjðs; tÞ ¼

R t
s αhjðuÞdu):

P11 s; tð Þ ¼ e− A12 s;tð ÞþA13 s;tð Þð Þ; ð4Þ

p22 s; tð Þ ¼ e−A23 s;tð Þ; ð5Þ

P12 s; tð Þ ¼
Z t

s
P11 s; tð Þα12 uð ÞP22 u; tð Þdu: ð6Þ

These probabilities can be estimated through the
non-parametric model (e.g. the Aalen-Johansen estima-
tor) [32]. For example the Nelson-Aalen estimator of cu-
mulative hazard for h→ j transition at t is

Âhj s; tð Þ ¼
X
s≤ t

ΔNhj sð Þ
Yh sð Þ ; h≠ j; ð7Þ

where ΔNhj(s)≔Nhj(s) −Nhj(s
−) is the number of h→ j

transitions observed exactly at time s and Yh(s)is the
number of individuals at risk in state h just prior to time
s. Moreover, the elements of the transition probability
matrix can be estimated as follows [2]:

P̂ s; tð Þ ¼
Y
s;tð g

I þ dÂ uð Þ� �
: ð8Þ

On the other hand, in a semi-Markov model, transi-
tion probabilities and intensities are as follows

Phj s; t;Thð Þ ¼ P X tð Þ ¼ jjX sð Þ ¼ h;Thð Þ ð9Þ
and

αhj t;Thð Þ ¼ lim
Δt→0

Phj t; t þ Δt;Thð Þ
Δt

; ð10Þ

which are not fixed (because they depend on the random
quantity of Th), and there are no Kolmogorov equations
for them. However, in general it is still possible to derive
transition probabilities from transition intensities even
though the theory is more complex [33].
There are different approaches for the estimation of

the transition hazards for censored data based on com-
mon regression models. For example, in a so-called sep-
arate approach, all transition hazards are modeled
separately. Here, we use the separate approach to build
our multistate trees.

Recursively imputed survival trees for multistate model
MSRIST consists of the following steps as suggested by
[24] in a single point survival analysis setting:

(1) Multistate tree model fitting: fit the number of M
extremely randomized multistate trees (ERMTs) to
the initial training set (instead of bootstrapped
samples). To this end M extremely randomized
multistate trees (one tree for each transition) for
the raw training dataset are generated under the
following settings: for each split for the h→ j
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transition, K candidate covariates (along with
random split points for each) are randomly selected
from (p) covariates. Then the best split (that leads
to the most distinct daughter nodes) will be
determined for each transition using the log-rank
test; and for each transition the splitting process
will be continued until a terminal node contains less
than nmin > 0 observed events.

(2) Conditional transition distribution: A conditional
survival distribution is calculated for each censored
observation.

(3) One-step imputation for censored observations:
All censored data in the raw training dataset will be
replaced (with a correctly estimated probability) by
one of two types of observations: either an observed
failure event with Y < τ, or a censored observation
with Y = τ.

(4) Refit imputed dataset and further calculation:
M independent imputed datasets are generated
according to 3, and one multistate tree is fitted for
each of them using 1(a) and 1(b).

(5) Final prediction: Steps 2–4 are recursively
repeated a specified number of times before final
predictions are calculated.

Random survival forests algorithm for multistate models
We will focus on models that satisfy the Markov as-
sumption, but results are applicable to non-Markov
models as well by considering d and t-d as covariates in
the forests as suggested by [22]. The details of the algo-
rithm are as follows:

1) Draw B bootstrap samples from the original data
while excluding about 37% of the data in each
bootstrap sample (out-of-bag or OOB data);

2) Grow a multistate survival tree for each bootstrap
sample based on randomly selected K ≤ p candidate
variables at each node of the tree. The candidate
variable, used to split each node for the h→ j
transition, is the one that maximizes a splitting rule
(e.g. using a log-rank test);

3) Grow the trees to full size under the constraint that
a terminal node should have no less than n0 > 0
unique cases for each transition;

4) Calculate ðP̂hj;b; Âhj;bÞh; j∈S for each tree, b;
5) Take average of each estimator over the B trees.

Prediction performance
To evaluate prediction performance of the model, the
prediction error can be estimated through the integrated
Brier score (BS), the squared difference between actual
and predicted outcome. The Brier prediction error for
state h is given by [34]:

PEh
B sð Þ ¼ E I X sð Þ ¼ hf g−π̂h sjzð Þð Þ2� �

; ð11Þ
which is estimated by

PÊ
h
B sð Þ ¼ 1

n

Xn
i−l

I xi sð Þ ¼ h
� �

−π̂ nð Þ
h sjzi� �� 	2


 �
ð12Þ

in the case of a complete observation, where xi(s) for
any time point can be computed by xiðsÞ ¼ PM−1

m¼0 Iftim≤
s < timþ1gxiðtimÞ, ti0 ¼ 0; ti1;…; tiMare the transition times
for each individual, xiðtimÞ;m ¼ 0;…;M; are the state oc-
cupied at these times and π̂h is a prediction for the tran-
sition probability. For the case of right censoring, the

sample contains fð~tim; ~xið~timÞÞg
M

m¼1 , ð~t
i
; ~xið~timÞÞ ,δiand zifor

each individual. Then, using the inverse probability of
censoring weights (IPCW) technique, the estimator be-
comes as

PÊ
h
B sð Þ ¼ 1

n

Xn
i¼1

w s;~ti; ~xi sð Þ; Ĝ nð Þ
; zi

� 	
I ~xi sð Þ ¼ h
� �

−π̂ nð Þ
h sjzi� �� 	2


 �
;

ð13Þ
where

w s;~ti; ~xi sð Þ; Ĝ nð Þ
; zi

� 	
¼

I ~ti≤s; ~xi sð Þ≠0
n o

Ĝ
nð Þ ~ti−jzi
� 	 þ

I ~ti > s
n o

Ĝ
nð Þ

sjzið Þ
:

ð14Þ
The BS measures the mean squared difference be-

tween the predicted probabilities for a possible outcomes
for a subject and the observed outcome. So, it is the
mean square error for a prediction and has been widely
used in survival data context. The smaller the IBS, the
better the predictions is returned by a model.

Cindex
Another criteria that was used in this study was con-
cordance index (Cindex) for survival data. Cindex is a
measure of the discriminative power of a model. In each
state, two patients (a pair) in survival analysis are con-
cordant if the predicted risk of the interesting event
based on the model is greater for the patient who expe-
riences the event at an earlier time point. The Cindex is
then calculated by using the frequency of concordant
pairs among all pairs of subjects. Cindex takes its values
between 0 and 1 and the greater the values the better
the discriminative power [35].

Variable importance
Importance of the variables was assessed by variable im-
portance criterion (VIMP). To calculate the VIMPs, the
sum of the decrease in prediction error is considered
when a split by a special variable is made. Therefore,
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following the structure proposed by Ishwaran et al. [22]
the VIMP was calculated as follows: a) the data was ran-
domly divided into train and test sets; b) a MSRIST was
created using the data in the training set; c) for a vari-
able say x, new cases (in the test set) were dropped
down the tree and they were assigned randomly to a
daughter node whenever a split for x is encountered for
each state; d) for each state the cumulative hazard func-
tion is calculated from all trees and averaged; e) the
VIMP for x is calculated by subtracting the prediction
error of the original ensemble and the new ensemble
that is obtained by random allocation for x.

Application
Data source
This study utilized a data set corresponding to a
registry-based retrospective cohort study conducted in
Tehran, Iran, from April 2004 to March 2014. The
population in the present study involved people who
were HIV-infected and who had a medical record in ei-
ther Behavioral Diseases Counseling Centers in Tehran
(Imam Khomeini or Zamzam Centers). A person who
had been infected with HIV was regarded as an
HIV-positive case, regardless of the clinical stage con-
firmed by laboratory criteria according to the country
definitions and requirements [36]. An HIV case, in the
Islamic Republic of Iran, was an individual who had two
positive sequential enzyme-linked immunosorbent assay
(ELISA) tests for HIV antibody followed and confirmed
by a western blot test [37] and an AIDS case was defined
as a presumptive (definitive) diagnosis of stage 4 condi-
tions and/or CD4 count less than 200 per mm3 of blood
in an HIV-infected subject [36].

Study variables and outcomes
The following variables were assessed for prognostic
value using a checklist of items, developed according to
the information documented in the medical records such
as: demographic information (age, sex, marital status,
and educational level), behavioral information (drug
abuse, smoking, and being in prison), baseline CD4 cell
count (cells/mm3), highly active antiretroviral therapy
(HAART or ART, a combination of several antiretroviral
medicines (which is believed to be more effective than
using just one medicine (monotherapy)) used to sup-
press HIV viral replication and to slow down the pro-
gression of HIV disease [38, 39]. The combination
usually includes several drugs such as two nucleoside re-
verse transcriptase inhibitors (NRTIs) (e.g., Abacavir,
Emtricitabine, and Tenofovir), a protease inhibitor (PI)
(e.g., Atazanavir, Darunavir, and Ritonavir)), co-infection
with TB, and causes of death (according to the informa-
tion documented in the medical records).

There were two primary endpoints: 1) AIDS develop-
ment; and 2) AIDS-related death. So, the outcomes of
interest was the duration of time from the HIV diagnosis
date to AIDS progression (HIV→AIDS transition) and
from AIDS to AIDS-related death (AIDS →Death transi-
tion). Censoring included those patients who were lost
to follow up and those who were alive at the end of the
study period.

Data description
There were 25 ineligible patients and 21 patients with a
medical record in both centers among 2519 identified
patients in the present study. We considered the data
from the 2473 patients (1937 men and 536 women)
whose information was appropriate for the analysis. The
mean (standard deviation) age of the patients was 34.01
(10.43) years, ranged from infancy to 74 years. Table 1 il-
lustrates the characteristics of the study population.
There were 1249 patients who developed AIDS, where
292 out of them died from AIDS-related causes (Fig. 2).
Other patients, who were alive or lost to follow up at
the end of the study, were considered to be censored.
The majority of the HIV-positive patients were male

(77.55%) and aged 25–44 years (73.1%), single (40.37%),
less-educated (92.66%). In addition, 53.09% of them
were smokers, 50.24% were drug abusers and about 60%
of them had a history of being in prison. Also, about
10.54% of the patients co-infected with TB and 41.53%
of them had used antiretroviral therapy.

Implementation
To implement the two tree-based methods of MSRSF
and MSRIST, the shared tuning parameters like the
minimum number of events in terminal nodes were
fixed (to make fair comparisons). Therefore, as suggested
by [22], the integer part of the square root of the num-
ber of covariates was used for K (the number of variables
at each splitting). Moreover, the minimal number of
events in each terminal node for all transitions was set
to 6. For MSRSF, the forest consisted of 1000 trees. The
log-rank splitting rule was used for MSRSF. For the
MSRIST model, 50 trees (M) were used in each of five
imputation cycles. We also fitted the Cox proportional
hazards (PH) model with the Lasso penalty where the
tuning parameter was determined using 10-fold
cross-validation using the “Penalized” package in R [40].
We randomly divided the data set into training and test-
ing data sets and repeated the methods 500 times. The
models were fitted to the training sets and evaluation
criteria were calculated over the test sets.

Results
The results of fitting MSRSF, MSRIST and the Cox
Model are presented for both transitions HIV→AIDS
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and AIDS →Death in Table 2. As there was no
deaths from causes not related to AIDS, the structure
of the data was considered as a progressive multistate
model.
As shown, the MSRIST outperformed both MSRSF

and the Cox models in terms of both criteria (IBS and
Cindex). So for the HIV→AIDS transition, the mean
(standard deviation) of IBS and Cindex related to
MSRIST were 0.113 (0.003) and 0.802 (0.004) respect-
ively. In addition for AIDS →Death transition, the mean
(standard deviation) of IBS and Cindex related to
MSRIST were 0.099 (0.004) and 0.762 (0.004) respect-
ively. As suggested by [1], we considered an add-
itional situation where sojourn times were considered
as covariates to investigate their effect on the survival.
However, there was no meaningful change in evalu-
ation criteria.
The values of the VIMP were calculated. The most

predictive variables for the present study were defined
as those whose VIMP (averaged over the forest) were
greater. As the MSRIST led to better predictive
power, we only calculated the VIMP for this model.
Figure 3(a) and (b), depicts all variables and plots
their VIMP for HIV→AIDS and AIDS →Death tran-
sitions, respectively. According to the figure the three
top most important variables for time from HIV in-
fection to AIDS progression which were baseline CD4
cells count, age and antiretroviral therapy respectively.
In addition, for the transition from AIDS to death the
three top most important variables were antiretroviral
therapy, TB and Gender, respectively. The VIMP of
the variables for the setting in which sojourn times
were considered as covariates were shown in Fig. 3(c).
As seen, the time since HIV→AIDS did not play an
important role as a covariate in modeling AIDS
→Death transition.
Figures 4 and 5 display the interaction between the

three most important variables for both transitions using
the MSRIST model and 3 year predicted survival. For
the HIV→AIDS transition, patients with the CD4 count
smaller than 200 and not using HAART have the worst
survival. Survival did not change much for those with
CD4 count > 500. According to Fig. 5, the worst survival
(for AIDS →Death) is related to men who have TB and
are not using HAART.

Discussion
There are so many diseases which include intermediate
events. Multistate models provide an evolving method in
survival analyses. In this study, a new multistate survival
data analysis was proposed by introducing RSF and RIST
methods into the multistate modeling framework. Appli-
cation of the MSRIST approach provides an alternative
way to build a risk prediction model while preventing

Fig. 2 The structure of the application and corresponding
sample sizes

Table 1 Characteristics of the study population infected with
the HIV virus

Variables Number Percent

Gender

Female 505 22.45

Male 1744 77.55

Age group (year)

1–24 260 11.60

25–44 1639 73.10

45–74 343 15.29

Marital status

Single 874 40.37

Married 852 39.35

Divorced 330 15.24

Widow 109 5.03

Education level

High (academic) 147 7.34

Low (school) 1856 92.66

Being in prison

No 899 39.97

Yes 1350 60.03

Smoker

No 933 46.91

Yes 1056 53.09

Drug abuse

No 1119 49.75

Yes 1130 50.24

Tuberculosis infection

No 2012 89.46

Yes 237 10.54

Antiretroviral therapy

No 1315 58.47

Yes 934 41.53

Baseline CD4 count (cells/mm3)

500+ 417 21.55

351–500 296 15.30

201–350 415 21.45

0–200 807 41.70

Tapak et al. BMC Medical Research Methodology          (2018) 18:129 Page 6 of 12



the imposition of parametric or semi-parametric con-
straints on the underlying distributions. Moreover, this
method provides a way to automatically address
high-level interactions and higher-order terms in vari-
ables for different transitions of the disease process while
allowing accurate prediction [41].
We applied MSRIST to identify important prognostic

factors affecting duration of time to two states in
HIV-infected patients (HIV→AIDS and AIDS →Death;
a progressive multistate model). Several risk factors
strongly associated with survival time of transitions to
both states (AIDS and Death) were identified (HIV→
AIDS and AIDS→Death). Among them, MSRIST identi-
fied baseline CD4 count, age and antiretroviral therapy
as the top three most important predictors of survival
for the duration of time from HIV diagnosis to AIDS
progression and antiretroviral therapy, TB and gender
for the duration of time from AIDS diagnosis to death.
It was shown that the baseline CD4 count is the

top first important predictor of progression to AIDS.
The results suggest that predicted 3-year survival was
dramatically diminished for the patients who had a
CD4 cell count less than 200 cells/mm3 compared to
other levels. Several epidemiological studies have
shown an increase in the risk of HIV/TB coinfection
as the CD4 cell count decreases [39, 42, 43]. High
levels of CD4 cell count (over 500 cells/mm3) re-
duces TB-related mortality among HIV-positive
people as well as those not co-infected with TB and
therefore it plays an important role in the incidence
of HIV/TB co-infection [44]. Age was the second
most important variable for the HIV→ AIDS transi-
tion. According to epidemiological studies, patients
aged 50 years or over are at a higher risk of progres-
sion to AIDS compared to younger patients (based
on the Cox model) [39, 45–47].
A leading preventable cause of death among people

living with HIV is TB [48]. According to our find-
ings, time to transitions from AIDS to death for an
HIV-infected patient was highly associated with TB
co-infection and the results showed that it plays an

important role in AIDS-related deaths. This prognos-
tic factor was the second top most important variable
for progression from AIDS to AIDS-related deaths.
The epidemiological studies confirmed this finding
[38, 39, 49]. Therefore, the importance of treatment
of TB in HIV infected people is revealed by this evi-
dence. It was also shown that HAART plays an im-
portant role in survival of HIV-infected patients in
both transitions. This effect was not shown in the
traditional Cox model in the previously published
paper on this dataset [39]. According to the results,
using antiretroviral therapy increases 3-year survival
of the patients for AIDS progression and
AIDS-related deaths considerably. It was the third
top most important variable for AIDS progression
and the top most important variable for progression
from AIDS to death. This finding is in agreement
with several studies [41, 50, 51].
The present study was conducted based on a large

data-set and the results can be generalized to the
Iranian HIV-infected population. The effect of several
predictors on AIDS progression and AIDS-related
deaths, in a high-middle-income country, was evident
[39]. This kind of information may help establish
intervention measures to suppress the progression of
HIV to AIDS and to reduce the risk of death among
HIV-positive patients [39].
We adapted two newly developed data mining tech-

nique (RSF and RIST) for multistate models (MSRSF
and MSRIST) to identify important risk factors in two
different stages of the disease. Several studies con-
firmed RSF’s promising performance in survival ana-
lysis compared with traditional Cox proportional
hazards model [26, 27, 41]. Zhu and Kosorok [24]
also showed that RIST outperforms RSF and the Cox
model in classical survival data settings (with just one
event of interest), and they have provided a detailed
discussion about why RIST works. In the present
study, it was also shown that the proposed method
based on RIST works in multistate data analysis as
well. The usual multistate regression methods are

Table 2 Integrated Brier score (IBS) and Cindex values for three methods (Cox, MSRIST and MSRSF) over 500 repetitions

Transition

HIV ➔ AIDS AIDS ➔ Death
(Markov Assumption)

AIDS ➔ Death
(Non-Markov assumption)

Method IBS Cindex IBS Cindex IBS Cindex

Cox 0.126
(0.008)

0.747
(0.008)

0.143
(0.013)

0.638
(0.033)

0.139
(0.012)

0.637
(0.034)

MSRSF 0.123
(0.009)

0.768
(0.009)

0.110
(0.009)

0.703
(0.035)

0.111
(0.010)

0.702
(0.036)

MSRIST 0.113
(0.003)

0.802
(0.004)

0.099
(0.004)

0.762
(0.024)

0.101
(0.006)

0.759
(0.025)
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Fig. 3 Variable importance for transitions from (a) HIV to AIDS, (b) AIDS to Death (under a Markov assumption) and (c) AIDS to Death (under a
Non-Markov assumption)
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dependent on the Markov assumption which can be
restrictive. In the proposed methodology, handling the
non-Markov setting is straightforward. To this end,
one should consider transition times as covariates
which provide researchers with the ability to account
for time-varying effects of other covariates. Taking
into account the transition times may also provide a
test to check the Markov assumption. If the value of
the variable importance is large, it could be con-
cluded that the Markov assumption does not hold.
The other advantage of the proposed method is that
it can take into account nonlinear effects of the co-
variates in each state as well as high order interaction
between them. Therefore, a flexible functional form
for the covariates is considered which can be easily
uncover highly complex interrelationships between
variables [23, 52]. The proposed method can be easily
used in complex multistate data settings. MSRIST
preserves information of the censored observations
through computing the conditional survival function
and improves the model prediction by using the up-
dated conditional failure information. The main ad-
vantage of the MSRIST model is its tree-based model
building. This is because of the fact that larger trees

are grown by using the whole training data instead of
using bootstrapped samples and there are more
observed events (by imputing the survival time of
censored observations) to create deeper trees. The
overfitting issue is also avoided by the diversity estab-
lished through randomness in imputation steps [24].
Moreover, the MSRIST is more nonparametric, re-
quiring weaker model assumptions. In spite of these
benefits for the MSRIST model, there are some draw-
backs for the presented model. For example, it is
more variable than parametric approaches and inter-
pretation of the model can be challenging. It is sug-
gested that the performance of the proposed method
is investigated in other datasets.

Future Research
Recently, joint modeling of a longitudinal response
process and a time-to-event outcome has gained consid-
erable attention and it is an open research area. A com-
mon objective in these studies is to characterize the
relationship between two outcomes simultaneously. A
potential promising extension of the model proposed
here is to introduce the RIST/MSRIST into joint
modeling.

Fig. 4 MSRIST estimated three-year survival of the HIV-infected patients for progression to AIDS as a function of HAART, age and baseline CD4
count. Smoothed curves are loess curves of the estimated survival for each individual
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Conclusions
We proposed a new strategy for multi-state frame work
modelling and investigated the performance of the
method for modeling the intermediate event. We
showed that this new method outperformed the classical
Cox regression model as well as our other proposed
method based on random survival forest. Data mining
techniques can be used as a useful tool in the
multi-state modeling context. Further investigations are
needed with other data sets.
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