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EEG alpha phenotypes: linkage analyses and
relation to alcohol dependence in an American
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Abstract

Background: Evidence for a high degree of heritability of EEG alpha phenotypes has been demonstrated in twin
and family studies in a number of populations. However, information on linkage of this phenotype to specific
chromosome locations is still limited. This study’s aims were to map loci linked to EEG alpha phenotypes and to
determine if there was overlap with loci previously mapped for alcohol dependence in an American Indian
community at high risk for substance dependence.

Methods: Each participant gave a blood sample and completed a structured diagnostic interview using the Semi
Structured Assessment for the Genetics of Alcoholism. Bipolar EEGs were collected and spectral power determined
in the alpha (7.5-12.0 Hz) frequency band for two composite scalp locations previously identified by principal
components analyses (bilateral fronto-central and bilateral centro-parietal-occipital). Genotypes were determined for
a panel of 791 micro-satellite polymorphisms in 410 members of multiplex families using SOLAR.

Results: Sixty percent of this study population had a lifetime diagnosis of alcohol dependence. Analyses of
multipoint variance component LOD scores, for the EEG alpha power phenotype, revealed two loci that had a LOD
score of 3.0 or above for the fronto-central scalp region on chromosomes 1 and 6. Additionally, 4 locations were
identified with LOD scores above 2.0 on chromosomes 4, 11, 14, 16 for the fronto-central location and one on
chromosome 2 for the centro-parietal-occipital location.

Conclusion: These results corroborate the importance of regions on chromosome 4 and 6 highlighted in prior
segregation studies in this and other populations for alcohol dependence-related phenotypes, as well as other
areas that overlap with other substance dependence phenotypes identified in previous linkage studies in other
populations. These studies additionally support the construct that EEG alpha recorded from fronto-central scalp
areas may represent an important endophenotype associated with alcohol and other substance dependence.

Background
Although tribes differ with regard to the use of alcohol
and drugs, the United States Indian Health Service has
cited substance abuse as one of the most urgent health
problems facing Native Americans [1-4]. It has been
reported that several Native American communities
have alcohol dependence rates that are 4-5 times higher
than the general U.S. population [5-9]. In one American
Indian community, lifetime alcohol dependence rates
have been estimated at 65% in men and 54% in women

[10]. Although substance dependence has been found to
have a heritable component in this Indian community,
specific genetic factors and the genes that encode for
them have yet to be fully identified [10-16].
Electrophysiological measures are highly heritable phe-

notypes [17-22] that may aid in linking brain function to
the processes involved in the development of substance
dependence in the general population [23-25], as well as
in Indian populations [10,26,27]. Several features of the
resting EEG have been shown to be genetically influ-
enced, and EEG phenotypes based on frequency and
amplitude characteristics that may be useful in genetic
analyses have been suggested [22,28,29]. EEG patterns
appear to remain highly stable over most of an adult’s
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lifespan [30], with variation within an individual studied
on two different occasions being not greater than that
observed between monozygotic twins [19].
Early studies investigating the variation in the EEG

and its potential genetic basis focused on visually obser-
vable patterns in the EEG such as low voltage records
with an absence of alpha activity or recordings with
monomorphic, continuous alpha waves [30,31]. Early
genetic studies identified these patterns as being highly
heritable, some having an autosomal dominate mode of
inheritance, and provided data in a few families for link-
age to a marker on chromosome 20q (see [21,30,32,33]
for review). More recent studies, using quantitative mea-
sures, have consistently demonstrated that EEG alpha
activity has perhaps the highest heritability of all the
EEG frequencies, and that a moderately high to high
proportion of the genetic variance in the EEG is shared
among the frequency bands [34-38]. In order to further
clarify the mode of genetic transmission on alpha
power, Smit and colleagues [34], examined EEG alpha in
a large sample of adolescent twins. Their findings con-
firmed high heritability for this phenotype but addition-
ally suggested that the mode of genetic transmission
was due to additive genetic factors that were largely spe-
cific. They additionally found that no significant amount
of variance in EEG alpha activity could be attributed to
unique environmental factors and that all non-genetic
variance was most likely due to unreliability in measure-
ment. They therefore concluded that individual differ-
ences in alpha activity, in that population, were little
influenced by developmental plasticity and/or individual
experiences [34].
Several important studies have begun to identify genes

associated with certain EEG phenotypes. Low voltage
alpha, in females, has been reported to be associated
with a genetic variant that leads to low activity of the
enzyme that metabolizes dopamine and norepinephrine,
catechol-o-methyltransferase (COMT) [39]. Low voltage
alpha has also been reported to be linked to the
GABAergic system, as an association has been found
between the exon 7 variant of the GABAB receptor gene
and alpha voltage [40,41]. In a study of Plains Indians, a
genome scan revealed evidence for linkage to EEG alpha
and beta activity on chromosome 5q13-14 near the cor-
ticotropin releasing hormone binding protein (CRH-BP)
[27]. Additionally, in that study, an association of alpha
power to CRH-BP was found in Plains Indians as well as
in a replication sample of 188 Caucasians [27]. These
genetic findings provide evidence that EEG measures
are promising endophenotypes in the search for genes
involved in alcohol dependence.
In particular, several genetic studies have demon-

strated that bipolar EEG measures are highly heritable
[36], and may be particularly useful endophenotypes for

substance dependence. Porjesz and colleagues [42] have
also found significant associations between and the
GABAergic system and bipolar measures of the human
EEG. They found significant genetic linkage between the
beta frequency of the EEG and a cluster of GABAA

receptors genes on chromosome 4p. Additionally, a
GABAA receptor gene within this cluster was found to
be associated with a DSM-IV diagnosis of alcohol
dependence [43].
Genetic studies of complex diseases often have advan-

tages when they are conducted in well-defined popula-
tions such as Native American tribes living on
reservations [44]. This report is part of a larger study
exploring risk factors for substance dependence in an
American Indian community [5,10,11,13-15,45-57]. We
have previously reported that EEG alpha power is highly
heritable in this American Indian community (h2 = 0.62
frontal, 0.67 posterior scalp locations). The current
study’s aims were to: (1) map loci linked to EEG alpha
phenotypes, and (2) to determine if there was overlap of
the loci identified for alpha phenotypes and loci pre-
viously mapped for alcohol dependence in this Ameri-
can Indian community.

Methods
Participants were recruited from eight geographically
contiguous reservations, with a total population of about
3,000 individuals, using a combination of a venue-based
method for sampling hard-to-reach populations [58,59],
as well as a respondent-driven procedure [60] as pre-
viously described [5,13]. The venues for recruitment
included: tribal halls and culture centers, health clinics,
tribal libraries, and stores on the reservations. A 10-25%
rate of refusal was found depending on venue. Refusal
rates were higher at tribal libraries and stores than
health clinics and tribal halls/culture centers. Transpor-
tation from their home to The Scripps Research Insti-
tute was provided by the study.
To be included in the study, participants had to be an

Indian indigenous to the catchment area, at least 1/16th
Native American Heritage (NAH), between the age of
18 and 70 years, and be mobile enough to be trans-
ported from his or her home to The Scripps Research
Institute (TSRI). Participants were excluded from elec-
trophysiological analyses if they had a history of head
trauma or were currently using medications that could
bias the EEG recording. The protocol for the study was
approved by the Institutional Review Board (IRB) of
TSRI, and the Indian Health Council, a tribal review
group overseeing health issues for the reservations
where recruitment was undertaken.
Potential participants first met individually with

research staff to have the study explained and give writ-
ten informed consent. During a screening period,
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participants had blood pressure and pulse taken, and
completed a questionnaire that was used to gather infor-
mation on demographics, personal medical history, eth-
nicity, and drinking history [61]. Participants were asked
to refrain from alcohol and drug usage for 24 hours
prior to the testing. No individuals with detectable
breath alcohol levels were included in the study dataset
(n = 3). During the screening period, the study coordi-
nator also noted whether the participant was agitated,
tremulous, or diaphoretic and their data were eliminated
from subsequent analyses. Each participant also com-
pleted an interview with the Semi-Structured Assess-
ment for the Genetics of Alcoholism (SSAGA) and the
family history assessment module (FHAM) [62], which
was used to make substance use disorder and psychiatric
disorder diagnoses according to Diagnostic and Statisti-
cal Manual (DSM-III-R)[63] criteria in the probands and
their family members [63]. The SSAGA is a semi- struc-
tured, poly-diagnostic psychiatric interview that has
undergone both reliability and validity testing [62,64]. It
has been used in another Native American sample
[65,66]. Personnel from the Collaborative Study on the
Genetics of Alcoholism (COGA) trained all interviewers.
The SSAGA interview includes retrospective lifetime
assessments of alcohol use, abuse, and dependence.
A research psychiatrist/addiction specialist made all best
final diagnoses.
Six channels of bipolar EEG (F3-C3, C3-P3, P3-01 and

F4-C4, C4-P4, P4-02, international 10-20 system) were
obtained using an electrode cap (impedance < 5 K
ohms), as described. Bipolar recordings were obtained
for comparison to previous studies in a wide range of
ethnic groups [67-70]. A forehead ground electrode was
used. An electrode placed left lateral infra-orbitally and
referenced to the left earlobe was used to monitor both
horizontal and vertical eye movement. Resting EEG was
recorded in a temperature and noise controlled room
while a participant was comfortably sitting on a chair.
Participants were instructed to relax and keep their eyes
closed, but to remain awake throughout the EEG
recording. Ten to 15 minutes of EEG was collected on
paper (Nihon Kohden, high-low pass filters 1-70 Hz)
and also digitized for subsequent analyses. EEG records
were monitored during all recordings for signs of drow-
siness or artifact. Ten minutes of artifact-free, drowsi-
ness-free EEG, as defined by Daly and Pedley [71], was
computer analyzed for each channel. Muscle and move-
ment artifact are identified by a computer driven algo-
rithm that identifies epochs with waveforms that are
between 0.25 and 0.5 Hz with an amplitude of higher
that 100 microvolts squared per Hz (movement arti-
facts) and waveforms that are between 20 and 50 Hz
with amplitudes above 25 microvolts squared per Hz
(muscle artifact). These epochs are verified by the user

as artifact and are then removed prior to processing.
Time of recording with respect to the menstrual cycle
was not controlled, as previous studies have demon-
strated that the EEG variables under study are not sensi-
tive to time during the cycle [72].
Records were digitized at 128 Hz. The Fourier trans-

form of consecutive four-second epochs (minimum 140)
was calculated and the power spectrum produced using
an IBM compatible PC with software developed by
Ehlers and Havstad [73]. Power density is calculated in
microvolts squared per octave, a transformation that
expands amplitudes at high frequencies and reduces
them at low frequencies, producing a spectrum with less
1/f characteristics [74]. A rectangular window is used.
The transformed data were compressed into frequency
bands. Mean spectral power density (microvolts
squared/octave) in the alpha 7.5-12.0 Hz frequency band
was calculated by summing the raw power spectral
values within the band, multiplying by a scale factor
derived from the calibration signal to produce the total
power in the band in microvolts squared, and dividing
by the width of the band in octaves. This width is the
logarithm of the ratio of the maximum and minimum
frequencies in the band, divided by the log of two. The
details of the spectral analysis procedures have been
previously described [50,73,74].
The data analyses were based on the overall aim that

was to map loci linked to EEG alpha power phenotypes
and to determine if there was overlap with loci pre-
viously mapped for alcohol dependence phenotypes in
an American Indian community. To reduce the number
of dependent variables in our linkage analyses, a princi-
pal component analysis (PCA) was performed over the
six bipolar electrode locations for the alpha frequency
band. Varimax rotation yielded two components (eigen-
values > 1, range 2.64-2.67). The electrode sites loading
on the first factor were the two fronto-central leads
(F3-C3, F4-C4) and the electrode sites loading on the
second factor were the four more posterior leads
(C3-P3, C4-P4, P3-O1, P4-O2) (loadings ranged from
0.64 to 0.93). The two orthogonal factors explained 87%
of the variance. Mean power in each band was averaged
across the electrode sites within each of the identified
components generating a value for mean power (micro-
volts squared/octave) for each of the regions identified
by the PCA for each participant. These values were the
dependent variables in the linkage analyses.
One hundred and eighty-one pedigrees containing

1600 individuals were used in the genetic analyses.
Of these, 410 individuals have both genotype and phe-
notype data and 236 additional individuals have only
phenotypic data. Sixty-six families have only a single
individual with phenotype data. These individuals were
included within some analyses to the extent that they
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contribute information about trait means and variance
and the impact of covariates. The family sizes for the
remaining families ranged between 4 and 41 subjects
(average 12.19 ± 8.19). Eighty-one families were geneti-
cally informative. The data includes 142 parent-child,
260 sibling, 53 half sibling, 11 grandparent-grandchild,
235 avuncular, and 240 cousin relative pairs. Only sib-
ling, half-sibling, avuncular and cousin pairs were
included as being potentially genetically informative.
Many individuals can be linked to a few large extended
pedigrees with many founders and complex “loop”
structures, which were “broken” to simplify the analysis.
DNA was isolated from whole blood using an auto-

mated DNA extraction procedure, genotyping was done
as previously described [75]. Genotypes were determined
for a panel of 791 autosomal microsatellite polymorph-
isms [76] using fluorescently labeled PCR primers under
conditions recommended by the manufacturer (HD5
version 2.0; Applied Biosystems, Foster City, CA). The
HD5 panel set has an average marker-to-marker dis-
tance of 4.6 cM, and an average heterozygosity of
greater than 77% in a Caucasian population. Allele fre-
quencies were estimated from the entire Mission Indian
population with genotype data. Gender and age
accounted for greater than 5% of the phenotypic var-
iance for each of the phenotypes. Therefore, age and
gender were included as covariates in the analyses.
Genotypes were ultimately determined for 410 sub-

jects. Samples for which less than 90% of genotypes met
quality standard were repeated for the entire panel. Ulti-
mately 273,598 genotypes were accepted. Less than 10%
of the sample had the majority of the failed genotypes.
All available genotypes for all of the autosomal markers
were analyzed for each family using PREST [77] to
detect sample and pedigree structure errors resulting in
the removal of 6 individuals from further analyses.
PREST assesses degree of allele sharing and calculates
several statistics for each relative pair that are each sen-
sitive difference type of pedigree miss-specification. Ped-
check was used to detect non-Mendelian inheritance
patterns [78]. Relevant genotypes were reviewed blind to
diagnosis. Very few Mendelian inconsistencies could be
resolved by review of electropherograms. Genotypes for
the nuclear family were removed for each Mendelian
inconsistency. A total of 772 genotypes were removed
from linkage analysis because of Mendelian inconsisten-
cies. To further reduce errors, the probability that each
genotype is correct was assessed in the context of all
other available genotypes using the maximum-likelihood
error-checking algorithm implemented in Merlin [79].
Genotypes that had a probability of less than 0.025 of
being correct were removed from further consideration.
A total of 508 genotypes were removed in this step.
Duplicate genotypes were available for a large fraction

of the genotype problems detected by Pedcheck and
Merlin. In almost all cases these problematic results are
reproducible, suggesting somatic mutations, mosaicism
or “null alleles” (the failure to amplify the allele from
one chromosome resulting in the assumption that an
individual is homozygous for the other allele). In our
previous experience about 0.5% of microsatellite geno-
types using the HD5 panel give reproducible results that
are inconsistent with other family genotype data.
Variance component estimate methods were used to

calculate LOD scores using SOLAR v2.0.4 [80,81]. Simu-
lation analyses were then conducted in which a genetic
locus was simulated under the null hypothesis of no
linkage across 50,000 trials to derive nominal p-values
for the reported LOD scores [82].

Results
Four hundred and ten participants’ EEG records were
available for these analyses. Three hundred sixty-six
(60%) of participants met criteria for Alcohol depen-
dence. Demographics of this sample are presented in
Table 1. There were no significant differences in the
demographics between the participants with EEG
records and genotyping available (e.g. the linkage sam-
ple, n = 410) and the entire sample of participants in
the study with valid SSAGA data (n = 628) but no geno-
typing and/or EEG data.
Analyses of multipoint variance component LOD

scores, for the EEG alpha phenotype, revealed two loci
that had a LOD score of 3.0 or above for the fronto-
central scalp region on chromosomes 1 and 6. Four
additional locations were identified with LOD scores
above 2.0 on chromosomes 4, 11, 14, and 16 for the
fronto-central location, and one on chromosome 2 for
the centro-parietal-occipital location. Figure 1 presents
the linkage peaks generated by these analyses across the
genome, and figure 2 presents individual chromosome
data for the three largest LOD scores of chromosomes
1, 6 and 11. Table 2 presents the peak LOD scores, the
closest marker location for the loci identified, empirical
p values, and additionally gives information of other

Table 1 Demographics

Linkage Sample
(n = 410)

Entire Sample
(n = 628)

Gender M = 162, F = 248 M = 260, F = 368

Married 84 108

Employed 188 259

Income ≥ $20,000 year 195 323

Native American Heritage
≥ 50%

165 255

Age 30.1 ± 0.6 30.5 ± 0.5

Education 11.6 ± 0.1 11.6 ± 0.1
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findings in the literature for substance related pheno-
types observed at or near those locations.
Identified loci for EEG alpha phenotypes were found

to overlap with regions of interest identified in previous
genome scans for alcohol dependence related pheno-
types conducted in this Indian population. The area on
chromosome 4 that was identified in the present linkage
analysis for frontal alpha power, was found previously
for an alcohol drinking symptoms severity phenotype as
well as for a “persistent smoking” phenotype in this
Indian population [13,47]. The area on chromosome 6
that was identified in the present linkage analyses for
frontal alpha power was also found previously in a gen-
ome scan for an alcohol withdrawal phenotype in this
Indian population [13].

Discussion
Identifying biomarkers of alcohol dependence in Native
American populations is important because of the high
burden of morbidity and mortality that substance use
disorders pose to some Native American groups. As

reported previously, Indians in this sample have high
rates of alcohol (65% in men 54% in women) and canna-
bis (32.3%) dependence and antisocial personality disor-
der (9.8%), but not higher rates of major depressive
disorder (8.7%) or anxiety disorders (9.02%)
[13,14,48,54,55]. Our finding of high rates of DSM-III-R
alcohol dependence is consistent with the findings of
investigators working in several other native commu-
nities [6-9]. The identification of biomarkers that may
represent endophenotypes in Indian populations may
aid in genetic studies seeking to identify inherited fac-
tors that may contribute to the high rates of substance
dependence in these populations.
One set of endophenotypes that may be particularly

informative for the genetic analysis of substance depen-
dence and other psychiatric disorders are human elec-
trophysiological measures [e.g. EEG, event-related
potentials (ERPs), event-related oscillations (EROs)] [83].
The EEG is a highly heritable, quantitative, biological
measure that is less complex and presumably closer to
gene function than diagnostic and psychological

Figure 1 Multipoint Linkage Analysis for the EEG alpha power in fronto-central leads (upper graph), EEG alpha power in the centro-
parieto-occipital leads (lower graph) phenotypes for the entire genome. Results for each chromosome are aligned end to end with the p
terminus on the left. Log of the Odds (LOD) score is plotted on the Y-axis. Vertical lines indicate the boundaries between the chromosomes. The
numbers above on the X-axis indicate the chromosome number.
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Figure 2 Multipoint Linkage Analysis for EEG alpha power in fronto-central leads phenotype for chromosomes 1,6,11. Log of the
Odds (LOD) score (Y-axis) is plotted for the chromosome location map (in centimorgans (cM), X-axis). Nearest markers to the peak are
presented within the support interval. Horizontal bars are presented to indicate the support interval and LOD score for other phenotypes where
evidence for linkage has been found in this population. ADPD = antisocial personality disorder, regular tobacco = smoking daily for a month or
more, persistent tobacco = smoking 10 or more cigarettes a day for more than a year.

Table 2 Genetic Loci for EEG traits in an American Indian community

CHR Trait LOC
(cM)

LOD Nearest
Marker

Nominal
p-value

Supporting References (phenotype)

1 Fronto-central alpha 12 4.25 D1S214/
D1S450

0.00012 Gizer et al., unpublished work (Alcohol Dep)

2 Centro-parietal-
occipital alpha

92 2.66 D2S286 0.00314 [15] (ASPD); [85] (Alcohol Dep); [94,95] (Smoking)

4 Fronto-central alpha 98 2.25 D4S2460 0.00318 [13] (Drinking/Dep symptoms); [85] (Alcohol Dep); [86] (Quant
Alcohol Phenotype); [87] (Max Drinks); [88,89] (Drinking)

6 Fronto-central alpha 50 3.90 D6S1575 0.00022 [13] (Alcohol Withdrawal); [90,92,93] (Smoking);

11 Fronto-central alpha 30 2.98 D11S4115 0.00118 [15] (ASPD); [96] (Opioid Dep); [97] (Alcohol Dep)

14 Fronto-central alpha 113 2.13 D14S65 0.0039 [51,98] (Cannabis Dep); [99] (Opioid Dep); [100] (Ever Smoked)

16 Fronto-central alpha 69 2.07 D16S415/
D16S3140

0.0051 [101] (Ever quit smoking)

22 Fronto-central alpha 29 2.38 D22S280/
D22S277

0.00174 [27] (Theta EEG); [75] (LR to alcohol); [[88,103], Gizer et al.,
unpublished work (Alcohol Dep); [102] (Smoking)
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measures of substance dependence. We have previously
reported that the heritability estimates of bipolar EEG
power measures in this Indian community sample
ranged from 0.16 to 0.67 [50]. These findings were com-
parable to that reported for the COGA sample by Tang
and colleagues [36] who reported heritability estimates
from 0.22 to 0.64 for bipolar EEG recordings. In both
studies, the highest heritabilities were observed in the
alpha and beta frequencies, particularly in posterior
areas. Taken together these studies suggests that the
EEG is significantly heritable in this Indian population
and that heritability estimates for this population appear
to be very similar to what has been found in the COGA
population.
Several areas of the genome were found to have LOD

scores above 2 that appear to be linked to the heritable
phenotype of EEG bipolar alpha power in this Indian
population. There are two loci for the alpha power phe-
notype, found in this Indian community study, that
were identified in previously published linkage analyses
for substance dependence phenotypes in this Indian
population [13]. One site was on chromosome 4 at @98
cM (LOD = 2.25) near the ADH gene cluster. Bivariate
linkage analysis was conducted at this site on chromo-
some 4 for persistent tobacco use and an alcohol drink-
ing severity phenotype also previously identified at this
site. The maximum LOD score for the bivariate analysis
for this region was 3.4 [47]. This site has also been
found to be linked to alcohol dependence [84,85] a
quantitative alcohol-related phenotype [86], and maxi-
mum number of drinks [87] in the COGA population. It
has additionally been identified with alcohol drinking
phenotypes in a cohort selected for smoking behavior
[88] and in the Irish Affected Sib-pair study [89]. The
second region identified in the present genome scan for
an alpha EEG power phenotype was a region on chro-
mosome 6 at @50 cM (LOD = 3.9) that was found pre-
viously in this Indian community sample for an alcohol
withdrawal phenotype [13]. A region near this site
appears to have been found to be linked to several
smoking phenotypes [90-93]. The gene for the GRM4
glutamate receptor is also found in this region of chro-
mosome 6. Thus it appears that these areas on chromo-
somes 4 and 6 may harbor genes for both the EEG
alpha phenotype as well as a number of substance
related traits observed in this Indian population as well
as in other population samples.
Six other areas of the genome provided LOD scores

suggesting evidence for linkage to the bipolar alpha
power phenotype in this Indian population. One site
was on chromosome 1 at @12 cM with a LOD score of
4.25. The same locus was previously identified in a gen-
ome scan for alcohol dependence (Gizer and colleagues,
unpublished work). This site harbors a number of genes

of relevance including: the GABA delta receptor gene
GABRD, an aldehyde dehydrogenase gene ALDH4A1, a
serotonin receptor gene HTR1D, a cannabinoid receptor
gene CNR2, and a circadian rhythm gene PER3. A sec-
ond site was on chromosome 2 @92 cM (LOD = 2.66).
This site is near a location (99 cM) that has been
reported previously to be linked to alcohol dependence
[85,94] and habitual smoking [95] in the COGA sample.
This site on chromosome 2 also appears to be within 10
cM of a site reported previously for an antisocial per-
sonality disorder phenotype in this Indian population
[15]. Another site was identified on chromosome 11 for
the EEG alpha power phenotype in this Indian popula-
tion at @30 cM with a LOD score of 2.98. This site
appears to be within 15 cM of a site identified in a gen-
ome scan for opioid dependence in a sample of small
nuclear families recruited from 4 sites [96], and also
may overlap with a site identified for alcohol depen-
dence in a SW Indian tribe [97]. Several genes of inter-
est are found within this site including: a glycine
transporter SLC6A5, brain-derived neruotrophic factor
BDNF, and a serotonin precusor tryptophan hydroxlyase
TPH1. Another site identified in the present genome
scan was on chromosome 14 at @113 cM (LOD = 2.1).
This site was found in two genome scans for cannabis
dependence, one in this Indian population [51] and one
in the COGA study [98]. This site on chromosome 14
was also found to be within 20 cM of a site identified
by Lachman and colleagues [99] for opioid dependence
in a mixed racial population and for an “ever smoked”
phenotype in the COGA sample [100]. On chromosome
16 a site was identified at @70 cM with a LOD score of
2.06 that was also found in a genome scan for an “ever
quit smoking phenotype” [101]. The concordance
between studies in identifying several loci in the genome
that are associated with substance dependence pheno-
types and alpha power further suggests that the search
for candidate genes within these locations may be pro-
ductive in identifying some general mechanisms that
may underlie variation in both phenotypes.
There have been two published studies that have

reported linkage findings specifically for EEG pheno-
types. One study was conducted using the COGA sam-
ple [42]. In that study evidence was found for linkage
and linkage disequilibrium at a GABAA receptor gene
on chromosome 4 (at @56 cM) for the beta frequencies
of the EEG [42]. In another genome scan, conducted in
Plains American Indians, a site within 10-15 cM of this
site on chromosome 4 was also identified for theta and
alpha EEG power [27]. This site was not identified in
the present study. Another site identified in the study of
EEG phenotypes in Plains Indians was on chromosome
5 in a region between 53 and 114 cM. This site appears
to be linked to theta, alpha and beta power in the Plains
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Indian population [27]. Although this site was not iden-
tified in the present genome scan for EEG alpha pheno-
types it was found in a previous genome scan for an
“alcohol craving” phenotype in the present Indian popu-
lation (LOD score = 4.5) [11]. One site identified in the
present study on chromosome 22 at @29 cM (LOD =
2.4) for the alpha power phenotype was also found in
the genome scan in Plains Indians for a theta EEG phe-
notype [27]. This general region has also been identified
in genome scans for a number of other substance abuse
related phenotypes such as smoking [102], alcohol
dependence [[16,103], Gizer et al., unpublished work)
and level of response to alcohol [75].
Interestingly 7 of the eight loci with LOD scores above

2 identified in the present study were from the fronto-
central scalp location. The important of frontal cortical
brain areas for a variety of impulsive behaviors including
substance use disorders has been documented in a num-
ber of human and animal studies [104,105]. Disruption
of orbitofrontal cortex laterality has been demonstrated
in offspring from multiplex alcohol dependence families
[106]. Smaller prefrontal cortices have also been shown
to be associated with early-onset drinking in individuals
with co-morbid mental disorders [107]. White matter
microstructure deficits have also been identified several
right hemisphere tracts connecting prefrontal and limbic
systems in abstinent alcoholic men [108]. Taken
together these studies suggest that heritable factors may
contribute to some aspects of the functioning of frontal
lobe areas that have been associated with substance use
disorders.

Conclusion
In conclusion, two loci that had a LOD score of 3.0 or
above for an EEG alpha power in fronto-central areas
phenotype were found on chromosomes 1,6. Addition-
ally, 4 loci were identified with LOD scores above 2.0
on chromosomes 4, 11, 14, and 16. One loci was identi-
fied on chromosome 2 for the centro-parieto-occipital
region. These results corroborate the importance of
regions on chromosome 4 and 6 highlighted in prior
segregation studies in this and other populations for
alcohol dependence-related phenotypes, as well as other
areas that overlap with other substance dependence phe-
notypes identified in previous linkage studies in other
populations. However the results of this study should be
interpreted in the context of several limitations. First,
the findings may not generalize to other Native Ameri-
cans or represent all Indians within this population. Sec-
ond, only retrospective and cross-sectional data on
alcohol use disorders were assessed. Despite these lim-
itations, this report represents an important step in an
ongoing investigation to determine genetic and environ-
mental factors associated with substance use and use

disorders in this high risk and understudied ethnic
group.
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