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Abstract

Background: Adolescence is a sensitive period for weight gain and risky health behaviors, such as smoking.
Genome-wide association studies (GWAS) have identified loci contributing to adult body mass index (BMI).
Evidence suggests that many of these loci have a larger influence on adolescent BMI. However, few studies have
examined interactions between smoking and obesity susceptibility loci on BMI. This study investigates the
interaction of current smoking and established BMI SNPs on adolescent BMI. Using data from the National
Longitudinal Study of Adolescent to Adult Health, a nationally-representative, prospective cohort of the US school-
based population in grades 7 to 12 (12–20 years of age) in 1994–95 who have been followed into adulthood (Wave
II 1996; ages 12–21, Wave III; ages 18–27), we assessed (in 2014) interactions of 40 BMI-related SNPs and smoking
status with percent of the CDC/NCHS 2000 median BMI (%MBMI) in European Americans (n = 5075), African
Americans (n = 1744) and Hispanic Americans (n = 1294).

Results: Two SNPs showed nominal significance for interaction (p < 0.05) between smoking and genotype with
%MBMI in European Americans (EA) (rs2112347 (POC5): β = 1.98 (0.06, 3.90), p = 0.04 and near rs571312 (MC4R):
β 2.15 (−0.03, 4.33) p = 0.05); and one SNP showed a significant interaction effect after stringent correction for
multiple testing in Hispanic Americans (HA) (rs1514175 (TNNI3K): β 8.46 (4.32, 12.60), p = 5.9E-05). Stratifying by sex,
these interactions suggest a stronger effect in female smokers.

Conclusions: Our study highlights potentially important sex differences in obesity risk by smoking status in
adolescents, with those who may be most likely to initiate smoking (i.e., adolescent females), being at greatest risk
for exacerbating genetic obesity susceptibility.
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Background
Adolescence is a sensitive period for weight gain and
health risk behaviors, such as smoking [1, 2]. Obese
smokers suffer 2.8–3.7 times greater mortality than
those who are not obese and do not smoke [3]. In the
US, nearly 90 % of adult daily smokers begin smoking in

their teens [4], and 400,000 adolescents become daily
smokers every year [5]. Many adolescents, particularly
females, use smoking as an appetite control strategy [6, 7].
Females with greater body dissatisfaction are more likely
to smoke [8], and obesity increases the likelihood of being
highly addicted to nicotine during adolescence [9]. The ef-
fects of smoking differ by gender, in that smoking has a re-
ported antiestrogenic effect in females, which may
influence fat deposition [10, 11]. Adolescent smoking also
varies by ethnicity, with Hispanic teens that have
expressed concern about their weight being more likely to
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smoke than non-Hispanic teens [12]. While it has been
demonstrated that weight is generally lower among adult
smokers (ages 25–44 years), and higher among former
adult smokers, this trend has not been observed in some
younger smokers (ages 16–24 years) [13]. In addition,
weight control effects of smoking may dissipate over
time, as long-term smokers (20+ years) are heavier than
never or former smokers, and heavy smokers are more
likely to be obese than both other smokers and non-
smokers [14, 15].
Genome-wide association studies (GWAS) have identi-

fied single nucleotide polymorphisms (SNPs) contribut-
ing to variation in adult body mass index (BMI) [16–21],
and evidence suggests these loci may have the greatest
influence on adolescent BMI [22–28]. While many stud-
ies of obesity control for smoking status [29–32], few
have examined the interaction between smoking and
obesity susceptibility loci on BMI [33–36]. However,
smoking has been implicated in appetite suppression
through the POMC neural pathway [37], and loci in this
pathway (POMC and MC4R) increase obesity risk [18, 38].
Our study examines the interaction between current smok-
ing and 40 GWAS-identified and replicated SNPs associ-
ated with BMI in European descent adults [16, 18, 19, 21]
on adolescent BMI in a multiethnic nationally-
representative cohort.

Results
Sample size, gender, mean age, percent median BMI
(%MBMI), smoking status and other descriptives are pre-
sented by ancestry in Table 1. In the full sample, 11 % of
participants aged 12–21 were obese (BMI ≥ 95th percent-
ile), while a further 17 % were overweight (BMI ≥ 85th per-
centile). African Americans (AA) had the highest percent
obese (15.8 %), while Hispanic Americans (HA) had the
highest percent overweight (21.9 %). Two-sample t-tests
showed significantly higher BMI and %MBMI in female,
but not male, smokers than their non-smoking counter-
parts (Additional file 1: Table S1).
In main effects analyses of SNPs on %MBMI among

European Americans (EA), 33 of the established 39 BMI
SNPs were directionally consistent with previous results
[18], and 19 of those showed nominally significant asso-
ciation with %MBMI (Additional file 2: Table S2). In
AA, 12 out of 17 generalizable SNPs had effects on
%MBMI that were directionally consistent with the pub-
lished literature, and 5 of these were nominally associ-
ated with %MBMI (Additional file 3: Table S3). In our
HA sample, 22 out of 31 established BMI loci in HA
were directionally consistent with effects reported for
BMI in EA adults, and 3 of these were nominally associ-
ated with %MBMI (Additional file 4: Table S4). Inter-
action analyses were subsequently performed for these

33, 12 and 22 directionally consistent SNPs in EA, AA
and HA, respectively.
Two SNPs showed nominal (p < 0.05) evidence for

interaction with smoking on %MBMI in EA adolescents
[rs2112347 (POC5): β = 1.98 (0.06, 3.90), p = 0.04 and
near rs571312 (MC4R): β 2.15 (−0.03, 4.33) p = 0.05].
One SNP had a significant interaction effect after the
most stringent multiple test correction for 67 SNPs
tested across three ancestries (0.05/67 = 7.5E-04) in
HA adolescents [rs1514175 (TNNI3K): β = 8.46 (4.32,
12.60), p = 5.9E–05] (Additional file 2: Tables S2, Additional
file 3: Tables S3 and Additional file 4: Tables S4). Fig. 1 il-
lustrates results from stratified analyses of these SNPs on
%MBMI by smoking status. In all cases, the estimated
effect of the BMI-increasing allele was more pro-
nounced in smokers (Fig. 1 and Table 2). None of
these SNPs showed a main effect on smoking status
(Additional file 2: Table S2, and Additional file 4:
Table S4).
Examination of three-way interactions (SNP x smoking

status × sex) for these three SNPs revealed only MC4R
had a nominally significant interaction effect [β = 5.44
(1.11, 9.77), p = 0.014]. Given the available sample sizes,
it is not unexpected that statistical evidence supporting
a three-way interaction would be difficult to detect.
When we investigated SNP × smoking status interaction
for MC4R in EA stratified by sex, we found a nominally
significant interaction only in EA females [β = 4.75 (1.73,
7.77), p = 2.0E-03; EA males β = 1.09 (−4.23, 2.05), p =
0.50]. In addition, when we stratified the effect of the
obesity-risk genotype by sex and smoking status, we
noted differential association with %MBMI (Table 2).
None of the three loci that showed nominal significance
for interaction were associated (p < 0.05) with %MBMI
in female nonsmokers, while only MC4R was nominally
significant in male nonsmokers. Both TNNI3K [β = 6.41
(0.92, 11.90), p = 0.02] and POC5 [β = 2.76 (0.55, 4.97),
p = 0.01] were nominally significant in HA and EA
female smokers, respectively. MC4R was significant
after correction for multiple testing in EA female
smokers [β = 5.48 (3.06, 7.88), p = 8.4E-06] (Fig. 2).

Discussion
While previous research has shown that some smoking-
associated loci influence BMI in smokers but not never
smokers [39], and some established BMI loci are associ-
ated with smoking [40], few studies have examined the
interaction between smoking and genetic risk for obesity
on adolescent BMI. In this nationally representative
study of adolescents, we identify two nominally signifi-
cant obesity susceptibility variants in EA, rs2112347
(POC5) and rs571312 (MC4R), and one Bonferroni cor-
rected significant variant in HA, rs1514175 (TNNI3K),
which showed a comparatively stronger association in

Young et al. BMC Genetics  (2015) 16:131 Page 2 of 11



Table 1 Sex, age, BMI, %MBMI and smoking status by ethnicity in the Add Health analytic sample

Characteristic All (N = 8113) European Americans (N = 5075) African Americans (N = 1744) Hispanic Americans (N = 1294)

Mean [95 % CI] /N (%) Smokers (N = 2065) Nonsmokers (N = 3010) Smokers (N = 324) Nonsmokers (N = 1420) Smokers (N = 367) Nonsmokers (N = 927)

Female 4286 (52.8) 1102 (53.4) 1569 (52.1) 149 (46.0) 811 (57.1) 183 (49.9) 472 (50.9)

Age in years 16.36 [16.32,16.40] 16.60 [16.53, 16.68] 16.08 [16.02, 16.15] 16.75 [16.54, 16.95] 16.34 [16.24, 16.43] 16.66 [16.48, 16.84] 16.53 [16.41, 16.64]

BMI 23.45 [23.34, 23.57] 23.18 [22.96, 23.40] 22.94 [22.78, 23.12] 24.97 [24.31, 25.63] 24.13 [23.83, 24.43] 23.65 [24.12, 25.27] 24.70 [23.32, 23.99]

%MBMI 112.42 [111.88, 112.96] 110.40 [109.36, 111.45] 110.76 [109.93, 111.59] 118.52 [115.36, 121.67] 115.93 [114.49, 117.36] 112.83 [114.64, 120.06] 117.35 [111.25, 114.41]

Self-reported BMI 79 (0.01) 24 (0.01) 30 (0.01) 6 (0.02) 12 (0.01) 2 (0.005) 5 (0.005)

% Obese 11 % 11 % 9 % 18 % 14 % 17 % 11 %

% Overweight 17 % 17 % 16 % 19 % 20 % 22 % 19 %

Region of US

West 1546 (19.1) 247 (12.0) 533 (17.7) 38 (11.7) 208 (14.6) 146 (39.8) 347 (40.3)

Midwest 2286 (28.2) 824 (39.9) 1034 (34.4) 65 (20.1) 268 (18.9) 39 (10.6) 56 (6.0)

South 3234 (39.8) 686 (33.2) 987 (32.8) 200 (61.7) 866 (61.0) 108 (29.4) 387 (41.8)

Northeast 1047 (12.9) 308 (14.9) 456 (15.1) 21 (6.5) 78 (5.50) 74 (20.2) 110 (11.9)

African Americans

Highly Educated 49 (15.1) 291 (20.5)

Hispanic Americans

Ancestry

Puerto Rican 89 (24.3) 134 (14.5)

Cuban 37 (10.0) 156 (16.8)

Mexican 181 (49.3) 475 (51.3)

Central/South American 27 (7.4) 92 (9.9)

Other Hispanic 33 (9.0) 70 (7.5)

Immigrant status

US Born 325 (88.6) 702 (75.7)

Non-US born 42 (11.4) 225 (24.3)
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smokers vs. nonsmokers. Sex-stratified analyses revealed
that, in general, smoking had a greater estimated effect
on %MBMI in adolescent females. In particular, EA fe-
male smokers who carry the MC4R obesity susceptibility
allele had a %MBMI that was 5.48 % higher than non-
smokers that carry the allele (p = 8.4E–06).
Our results are consistent with previous literature, in that

not all obesity susceptibility loci showed a greater estimated
positive effect in smokers (data not shown). Among EA, 20
of 33 BMI loci (61 %) had a larger estimated effect in
smokers versus nonsmokers, while 6 of 12 (50 %) and 12 of
22 BMI loci (55 %) had a larger estimated effect in smokers
versus nonsmokers among AA and HA, respectively. In
addition, the interaction effects we observed were generally
more pronounced in women than in men. Previous ana-
lysis of 14 established BMI loci in EA and AA adults
found no significant interaction (p < 0.05) between BMI

SNPs and smoking [33]. However, the authors noted a
3x increase in the estimated effect of the FTO
(rs9939609) risk allele in EA female smokers, as well as
a suggestive stronger estimated effect of the TMEM18
risk allele in AA female former/never smokers. No dif-
ferential effects were reported for men. In our analysis,
EA female smokers had a 1.22x increase in the esti-
mated effect of the FTO risk allele, while EA male
smokers had a 1.17 increased estimated effect of the
FTO risk allele, compared to nonsmokers. We did not
examine the effect of TMEM18 on BMI in AA, as that
SNP did not generalize in the recent AA GWAS.
In our study, HA adolescent smokers carrying the

obesity risk variant rs1514174 (near TNNI3K) were
8.46 %MBMI units larger than their non-smoking
peers (p = 5.9E–05). The association of TNNI3K with
obesity has been replicated in both in EA children

Fig. 1 Main effect of SNP on %MBMI, stratified by ethnicity and smoking status, for those SNPs which showed a nominally significant (p<0.05)
interaction effect with smoking on %MBMI
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Table 2 Stratified analysis of nominally significant (p < 0.05) SNP-by-smoking interactions on %MBI in Add Health

European American (EA) Nonsmokers European American (EA) Smokers

POC5 (rs2112347) Beta [95 % CI] p Beta [95 % CI] p

All 0.04 [−1.19, 1.27] 0.947 1.75 [0.22, 3.28] 0.025

Females 1.22 [−0.49, 2.93] 0.16 2.76 [0.55, 4.97] 0.014

Males −1.48 [−3.26, 0.30] 0.102 1.03 [−1.01, 3.07] 0.324

MC4R (rs571312) Beta [95 % CI] p Beta [95 % CI] p

All 1.46 [0.09, 2.83] 0.036 3.50 [1.78, 5.22] 7.54E–05

Females 1.11 [−0.79, 3.01] 0.253 5.48 [3.07, 7.89] 8.37E–06

Males 2.05 [0.07, 4.03] 0.042 0.87 [−1.58, 3.32] 0.489

Hispanic American (HA) Nonsmokers Hispanic American (HA) Smokers

TNNI3K (rs1514175) Beta [95 % CI] p Beta [95 % CI] p

All −1.80 [−4.09, 0.49] 0.123 5.97 [2.36, 9.58] 0.001

Females −2.00 [−5.21, 1.21] 0.223 6.41 [0.92, 11.90] 0.022

Males −1.78 [−4.99, 1.43] 0.279 5.25 [0.39, 10.11] 0.033

Bold highlights nominally significant associations (p ≤ 0.05). Mixed effects model, BMI = β + βSNPxSMK + βSNP + βSMK + βage + βsex + f + s + ε, Betas shown in
table refer to βSNPxSMK. %MBMI = Percent of the CDC/NCHS 2000 median BMI

Fig. 2 Main effect of SNP on %MBMI, stratified by ethnicity, smoking status, and sex, for those SNPs which showed a nominally significant
(p<0.05) interaction effect with smoking on %MBMI
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[38, 41] and HA women [42]. TNNI3K has been asso-
ciated with increased intake of fats and sugary foods in
overweight or obese adults with Type 2 diabetes [43], and
has been nominally associated (p < 0.05) with emotional
and uncontrolled eating, suggesting a potential mechan-
ism for influencing obesity [30]. In mouse models,
TNNI3K expression has been linked to cardiac function
and cardiac oxidative stress following myocardial infarc-
tion [44, 45]. Both smoking and obesity increase systemic
oxidative stress [46] and risk of cardiovascular disease
(CVD), and the influence of TNNI3K on cardiac function
suggests a possible biological pathway for this interaction.
Two loci showed nominally significant effects for

interaction in EA adolescents, POC5 and MC4R. EA ad-
olescents carrying the obesity risk variant rs2112347
(near POC5) were 1.98 %MBMI units larger than EA
adolescent nonsmokers. Though the association between
rs2112347 and BMI has been replicated [41, 47, 48], the
biological mechanism through which rs2112347 influ-
ences obesity risk in not known [49]. This variant does
lie, however, within 500 kb of HMGCR, a gene involved
in lipid metabolism. Cigarette smoking increases dyslip-
idemia by inducing lipolysis in adipose tissue [50, 51],
offering a promising avenue for future studies.
Finally, rs571312 near MC4R demonstrates the stron-

gest influence on %MBMI in EA female smokers [β = 5.48
(3.06, 7.88), p = 8.4E-06], compared to EA female non-
smokers [β 1.11 (−0.79, 3.01), p = 0.253], EA male non-
smokers [β 2.05 (0.07, 4.03), p = 0.042], and EA male
smokers [β 0.87 (−1.58, 3.32), p = 0.489] (Table 2, Fig. 2).
Variants in MC4R are associated with monogenic obesity
and show differential effects on BMI by sex and age, with
a greater influence on adolescent females [22, 52]. MC4R
is primarily expressed in the central nervous system [53],
and plays a pivotal role in the leptin-melanocortin path-
way regulating appetite, energy balance, and stress re-
sponse [54]. Variants in and near MC4R have been linked
to metabolic syndrome [55, 56], percent body fat [57, 58],
eating behavior [59], higher fat intake [60], and lower en-
ergy expenditure [61, 62]. In animal and some human
models, variants near MC4R have been shown to dispro-
portionally affect adiposity in females [63–69]. While
nicotine has been implicated in animal models as having a
hypophagic effect on the leptin-melanocortin pathway in-
fluencing feeding behavior [37, 70], other research has
shown a 2.9 fold increased risk of metabolic syndrome
among smokers who carry a risk variant at a SNP
(rs17782313) in high linkage disequilibrium (LD) with our
MC4R SNP (rs571312, R2 = 0.955) [69]. Rs17782313 has
also been associated with a gender and temporal-specific
effect on BMI, as well as smoking behavior [72]. Our re-
sults suggest MC4R obesity risk variants might mitigate
the appetite suppressant effect of nicotine in adolescent
female smokers.

Add Health represents a unique sample during a sensi-
tive developmental period, when risky health behaviors
are being established. Add Health is a nationally repre-
sentative sample of US adolescents who are being
followed into adulthood. As such, our results can be
considered generalizable to American adolescents enter-
ing adulthood in the late 1990s-early 2000s, but likely
are not generalizable to adolescents at other time pe-
riods or in other countries. While we are fortunate to
have measured heights and weights for the majority of
our sample, current smoking was self-reported, though
the questions used to assess smoking status in Add
Health have been validated among adolescents. Our
study was also limited by the lack of established BMI
loci in all ancestries, particularly HA. We also recognize
that we were possibly underpowered to detect effects
due to small sample size [73], and that our approach
cannot account for SNPs with an interaction effect but
no measurable marginal effect on %MBMI. Given our
sample size (N = 5075) and other model parameters in
EA, we have between 47 and 52 % power to detect nom-
inally significant interaction effects as large as those seen
for the variants near POC5 (β 1.98) and MC4R (β 2.15).
While our power is limited, pointing to the need to rep-
licate our results in larger future studies, our results do
suggest potential SNPs for further interrogation of the
influence of smoking on BMI, particularly in adolescent
females.

Conclusions
Our study highlights potentially important sex differ-
ences in obesity risk by smoking status in adolescents,
with those who may be most likely to initiate smoking
(i.e., adolescent females), being at greatest risk for poor
health outcomes (exacerbating genetic obesity risk).
Smoking influences central body fat distribution, and re-
search suggests this effect could be particularly pro-
nounced among women [74]. In addition, smokers have
a greater risk of metabolic syndrome [71, 75] and dyslip-
idemia [76], as well as a much greater risk of mortality,
particularly for CVD deaths among obese women under
age 65 [3], highlighting the importance of targeting
smoking early in adolescence to prevent poorer health in
adulthood.

Methods
Study sample
The National Longitudinal Study of Adolescent to Adult
Health (Add Health) is a nationally-representative, pro-
spective cohort of adolescents from the US school-based
population in grades 7 to 12 (12–20 years of age) in
1994–95 (n = 20,745) who have been followed into adult-
hood (Table 2). Add Health selected a systematic ran-
dom sample of 80 high schools and 52 feeder middle
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schools, representative of US schools with respect to re-
gion, urbanicity, school type and size, and student demo-
graphics. Written informed consent was obtained from
participants or a parent/guardian if the participant was a
minor at the time of recruitment. Respondents were
followed through Wave II (1996, n = 14,738, age 13–21),
Wave III (2001–2002, n = 15,197, age 18–26) and most
recently Wave IV (2007–2008, n = 15,701, age 24–32),
when respondents provided written informed consent
for participation in genetic studies (n = 12,234). Add
Health included a core sample plus subsamples of se-
lected groups, including African American students with
at least one parent with a college degree, collected under
protocols approved by the Institutional Review Board at
the University of North Carolina at Chapel Hill covering
recruitment at all sites. The survey design and sampling
frame have been described previously [77-79].

Race/ethnicity
Ancestry informative genetic markers were not available, so
a self-reported race/ethnicity variable was constructed
based on survey responses regarding ancestral background
and family relationship status from both participants and
their parents at Wave I. We used a three-category classifi-
cation: non-Hispanic European American (EA), non-
Hispanic African American (AA), and Hispanic American
(HA). Within HA, we generated additional variables to ac-
count for subpopulation (Cuban, Puerto Rican, Central/
South American, Mexican, or Other Hispanic), as well as
foreign-born status (first generation immigrants versus
those born in the US).

Sibling relatedness
Add Health oversampled related adolescents, resulting in
5524 related Wave I respondents living in 2639 house-
holds [80]. Familial relatedness was classified according to
participant and parental self-report. Twin zygosity was
confirmed by 11 molecular genetic markers [81].

Genetic characterization
The 40 SNPs genotyped in the current study were identi-
fied in published GWAS from the Genetic Investigation of
Anthropometric Traits (GIANT) consortium for BMI in
EA adults [16, 18, 19, 21]. Genotyping was performed
using TaqMan assays and the ABI Prism 7900R Sequence
Detection System (Applied Biosystems, Foster City, CA,
USA). Primer sequences and TaqMan probes are avail-
able upon request. The genotype call rate ranged
from 97.8 to 98.2 % and the discordance rate between
blind duplicates was 0.3 %. SNPs that failed tests for
Hardy-Weinberg Equilibrium (HWE) (p < 0.001)
within race/ethnicity were excluded (N = 1, rs2922763)
resulting in 39 SNPs for this analysis, as listed in
Additional file 5: Table S5.

Criteria for generalizability
Across all groups, to the extent possible, generalizability
was defined as similar direction of effect as reported in the
literature and nominal statistical significance (p < 0.05) [24].
These criteria make generalization in the EA subpopulation
straightforward, since these associations were defined in EA
adults. A recent large AA GWAS [82], however, suggests
that some SNPs fail to generalize, either due to limited
power or because of linkage disequilibrium differences that
fail to capture the signal of the functional variant. We thus
excluded 15 SNPs in AA that have not shown evidence for
generalization (i.e., SNP effect estimates were directionally
inconsistent and evidence for association was p > 0.20 in
the recent AA GWAS) [82]. Similar results were reported
in a recent HA GWAS of postmenopausal women, where
only 9 of 32 established BMI loci showed evidence for asso-
ciation. As this analysis was conducted in a limited sample,
however, we chose to retain all directionally consistent loci
in our HA analysis [42]. In addition, SNPs with insufficient
cell size for analysis (n < 10 individuals per genotype) were
excluded, leaving 33 SNPs in EA, 12 SNPs in AA, and 22
SNPs in HA for the interaction analyses (included SNPs
highlighted in bold in Additional file 5: Table S5).

Analytic sample
At Wave IV, 59 % (n = 12,234) of Wave I (n = 20,745)
respondents provided samples, with consent, from
which DNA was extracted and genotyped (n = 12,066).
To be eligible our study, individuals had to have at
least 80 % of their 39 SNPs genotyped (n = 11,448)
and be between the ages of 12 and 21 years at either
Wave II or III (n = 9129). Among the 9129 eligible
adolescents, we excluded: the monozygotic twin with
fewer genotyped loci (n = 139), individuals of Native
American (n = 57), Asian (n = 436) or unclassified (n
= 112) race/ethnicity, pregnant (n = 110), disabled (n =
47), and those missing data for geographic region (n
= 67), BMI (n = 2), or current smoking (n = 46). The
analytic sample was selected from waves II or III to
capture the age range of 12–21 years, and all covari-
ates match the wave at which BMI was measured.
Our final analytic sample (n = 8113) included 5075
EA, 1744 AA, and 1294 HA.

Body mass index (BMI)
Weight and height were measured during in-home
surveys using standardized procedures. BMI (kg/m2)
was calculated using measured height and weight
assessed at Waves II or III when participants were
between the age of 12 and 21 years, with priority for
younger age at measurement (Wave II: n = 7681), unless
the respondent was not seen at Wave II and was still be-
tween the ages of 12–21 years at Wave III (n = 432). Self-
reported heights and weights, which have been previously
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validated in Add Health, were substituted for those who
refused measurement and/or weighed more than the scale
capacity (Wave II n = 55; Wave III n = 24) [83]. Due to
changes in weight and height with growth and develop-
ment, BMI varies by age and sex, which necessitates using
age- and sex-specific BMI Z-scores relative to a reference
such as the US the CDC/NCHS 2000 growth curves [84].
However, these growth curves do not represent the tails of
the distribution well, which is a particular issue in a cohort
with considerable upward skew in distribution relative to
the CDC/NCHS 2000 healthy reference. A strategy to
deal with this is to use percent of the CDC/NCHS 2000
median [85], which also has the benefit of ease in inter-
pretation relative to the Z-score. Accordingly, our out-
come for all analyses was the percent of the CDC/
NCHS 2000 median BMI (%MBMI).

Current smoking
Current smoking was based on self-report, which has
been previously validated among adolescents [86], and
was defined as smoking at least 1 day in the last 30 days.
[2, 87, 88] Current smoking status was queried at Waves
II (Ncurrent_smokers = 2589) and III (Ncurrent_smokers = 2377),
to match the wave at which BMI was measured. To meas-
ure the effect of BMI-related SNPs on current smoking,
we performed main effects logistic regression using smok-
ing status as the outcome and SNP as predictor, stratified
by ancestry (Additional file 2: Tables S2, Additional file 3:
Tables S3 and Additional file 4: Tables S4).

Statistical analysis
In ancestry-stratified, multivariable interaction (SNPxsmok-
ing) models with %MBMI as the outcome, we controlled
for age, sex, geographic region, and self-reported heights
and weights using Stata (v13.1, Stata Corp, College Station,
Texas). In non-EA populations, we also controlled for over-
sampling of adolescents from highly-educated African
American families (n = 355), and Hispanic subpopulation:
Cuban (n = 193), Puerto Rican (n = 223), Central/South
American (n = 119), Mexican (n = 656), and other Hispanic
(n = 102), as well as an indicator for foreign-born status
(n = 267). Sample design effects and familial relatedness
were accounted for by including separate random effects
for school and family. When a nominally significant inter-
action (p < 0.05) was detected, we ran additional inter-
action models (SNP x smoking status, stratified by sex;
and SNP x smoking status x sex), and examined SNP ef-
fects in models stratified by smoking status and sex, to fa-
cilitate interpretation. To correct for multiple testing, we
applied a Bonferroni correction equal to 0.05/number of
SNPs tested in each group (0.05/33 = 0.0015 in EA, 0.05/
22 = 0.0023 in HA, 0.05/12 = 0.0042 in AA).

Availability of data and materials
Add Health adheres to the NIH policy on data sharing,
but due to the sensitive nature of Add Health data, ac-
cess is limited and governed by the Add Health data
management security plan to ensure respondent confi-
dentiality. For this reason, the distribution of data is lim-
ited to a public-use dataset for a subset of respondents,
and a restricted-use dataset distributed only to certified
researchers committed to maintaining limited access.
Add Health is currently in the process of submitting
genetic data to dbGaP, which will be made available to
researchers meeting both dbGaP and Add Health data
use requirements. More information can be found here:
http://www.cpc.unc.edu/projects/addhealth.

Additional files

Additional file 1: Table S1. Two-sample t-test of differences in BMI and
%MBMI by smoking status, stratified by ancestry and sex. (DOCX 72 kb)

Additional file 2: Table S2. Results of SNPxSmoking on %MBMI
(Interaction), SNP on %MBMI (Main effects), and SNP on smoking in
European American adolescents in Add Health. (DOCX 41 kb)

Additional file 3: Table S3. Results of SNPxSmoking on %MBMI
(Interaction), SNP on %MBMI (Main effects), and SNP on smoking in
African American adolescents in Add Health. (DOCX 35 kb)

Additional file 4: Table S4. Results of SNPxSmoking on %MBMI
(Interaction), SNP on %MBMI (Main effects), and SNP on smoking in
Hispanic American adolescents in Add Health. (DOCX 40 kb)

Additional file 5: Table S5. Established BMI loci used in present
analysis. (DOCX 31 kb)
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