
RESEARCH ARTICLE Open Access

Sequence variation in telomerase reverse
transcriptase (TERT) as a determinant of risk of
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Abstract

Background: Telomerase reverse transcriptase (TERT) maintains telomere ends during DNA replication by catalyzing
the addition of short telomere repeats. The expression of telomerase is normally repressed in somatic cells leading
to a gradual shortening of telomeres and cellular senescence with aging. Interindividual variation in leukocyte
telomere length has been previously associated with susceptibility to cardiovascular disease. The aim of the present
study was to determine whether six variants in the TERT gene are associated with risk of incident coronary heart
disease, incident ischemic stroke, and mortality in participants in the biracial population-based Atherosclerosis Risk
in Communities (ARIC) study, including rs2736100 that was found to influence mean telomere length in a
genome-wide analysis.

Methods: ARIC is a prospective study of the etiology and natural history of atherosclerosis in 15,792
individuals aged 45 to 64 years at baseline in 1987–1989. Haplotype tagging SNPs in TERT were genotyped
using a custom array containing nearly 49,000 SNPs in 2,100 genes associated with cardiovascular and
metabolic phenotypes. Cox proportional hazards models were used to assess the association between the
TERT polymorphisms and incident cardiovascular disease and mortality over a 20-year follow-up period in
8,907 whites and 3,022 African-Americans with no history of disease at the baseline examination, while
individuals with prevalent cardiovascular disease were not excluded from the analyses of mortality.

Results: After adjustment for age and gender, and assuming an additive genetic model, rs2736122 and
rs2853668 were nominally associated with incident coronary heart disease (hazards rate ratio = 1.20, p = 0.02,
95 % confidence interval = 1.03– 1.40) and stroke (hazards rate ratio = 1.17, p = 0.05, 95 % confidence
interval = 1.00 - 1.38), respectively, in African-Americans. None of the variants was significantly associated
with cardiovascular disease in white study participants or with mortality in either racial group.

Conclusions: Replication in additional population-based samples combined with genotyping of polymorphisms in
other genes involved in maintenance of telomere length may help to determine whether genetic variants associated
with telomere homeostasis influence the risk of cardiovascular disease in middle-aged adults.
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Cellular aging
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Background
Telomeres are DNA-protein complexes that protect the
ends of chromosomes. Telomerase maintains telomere
ends during DNA replication by catalyzing the addition
of short telomere repeats (TTAGGG). The enzyme is
comprised of a protein with reverse transcriptase activity
that is encoded by the telomerase reverse transcriptase
(TERT) gene, and a telomerase RNA component (TERC)
which serves as a template for the telomere repeat after
recognition of a single stranded G-rich primer [1]. Ex-
pression of telomerase is normally repressed in somatic
cells leading to a gradual shortening of telomeres and
cellular senescence with aging [2, 3]. Heritability of telo-
mere length in humans has been reported to range from
36 % - 90 % [4, 5].
Leukocyte telomere length has been reported to be as-

sociated with susceptibility to cardiovascular disease [6].
When mean telomere length was measured in 10 pa-
tients with severe coronary artery disease and compared
to that observed for 20 controls, the size was signifi-
cantly reduced and equivalent to that found in individ-
uals without heart disease who were 9 years older [7].
Significantly shorter telomeres were also detected in
leukocyte DNA from 203 subjects who had had a myo-
cardial infarction (MI) before the age of 50 [8], from 620
chronic heart failure patients [9], and from 150 stroke
patients [10] when compared to controls. Shorter telo-
mere length has also been reported to be associated with
a higher prevalence of both atherothrombotic and
hemorrhagic stroke in a Chinese case–control study
[11]. Finally, in four prospective studies that evaluated
disease incidence, there was an increased risk of coron-
ary artery disease [12], MI [13–15], and stroke [13] asso-
ciated with shorter telomere length, while no association
was found with ischemic stroke in either the Nurses’
Health Study or the Physicians’ Health Study [16, 17].
Taken together, these results suggest that variation in
telomere length may play a role in the risk and progression
of cardiovascular disease. An association between survival
and leukocyte telomere length has also been observed in
several previous epidemiological studies [18–20].
Recently, a single nucleotide polymorphism (SNP)

(rs2736100) located within an intron of TERT was sig-
nificantly associated with mean leukocyte telomere
length in a genome-wide association (GWA) study in
which 37,684 individuals from fifteen cohorts were in-
cluded in the discovery set. The estimated per-allele ef-
fect of addition of the A allele was 94.2 base pairs,
equivalent to 3.14 years of age-related telomere shorten-
ing [21]. The aim of the present study was to determine
whether six haplotype tagging SNPs located within the
TERT gene or the 5’ promoter region including
rs2736100 were associated with risk of incident coronary
heart disease (CHD), ischemic stroke, and all-cause

mortality in participants in the large biracial population-
based ARIC cohort. To date, there have been few previ-
ous investigations of the role of telomerase variants in
cardiovascular disease and its risk factors that have in-
cluded individuals of African ancestry [22].

Methods
Atherosclerosis Risk in Communities (ARIC) Study
The ARIC study was designed to study the development
of atherosclerosis in 15,792 individuals aged 45–64 years.
At the time of recruitment in 1987–1989, the partici-
pants resided in Forsyth County, North Carolina;
Jackson, Mississippi (African-Americans only); northwestern
suburbs of Minneapolis, Minnesota; or Washington
County, Maryland and were selected by probability sam-
pling. Incident cardiovascular events were ascertained
by annual telephone contact, and surveillance of local
hospital discharge lists and death records from state
vital statistics offices. CHD cases were defined as either
fatal CHD or a definite or probable MI. Definite and
probable stroke were defined as a rapid focal neuro-
logical deficit lasting 24 hours or until death; validation
of stroke hospitalization has been described elsewhere
[23]. In brief, records for eligible hospitalizations were
abstracted by a single trained nurse and classified by
a standardized computer algorithm, and were also
reviewed by a trained physician. Any disagreements be-
tween the computer diagnosis and that of the reviewing
physician were adjudicated by a second physician. Inci-
dent CHD, ischemic stroke, and death in this study in-
cluded events from 1987 through December 31, 2011.
Individuals were excluded from all of the analyses if they
were neither African-American nor white (n = 48); if
they were African-Americans from the Minnesota or
Maryland field centers (n = 55) due to the small numbers
recruited from these sites; or if they did not consent to
use or storage of their DNA (n = 44). Participants with
prevalent CHD, stroke, or transient ischemic attack were
excluded from the analyses of incident CHD and ischemic
stroke (n = 1,430) as were those with missing genotype
data for all sequence variants (n = 2,206). The final study
sample at risk of cardiovascular disease consisted of
8,987 white and 3,022 African-American study partici-
pants. Subjects with prevalent CHD or stroke were
not excluded from the analyses of all-cause mortality.
The study design and methods were approved by the in-
stitutional review boards at the collaborating medical
centers: University of Mississippi Medical Center Insti-
tutional Review Board (Jackson Field Center); Wake
Forest University Health Sciences Institutional Review
Board (Forsyth County Field Center); University of
Minnesota Institutional Review Board (Minnesota Field
Center); and the Johns Hopkins School of Public Health
Institutional Review Board (Washington County Field
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Center). Informed consent was provided in writing. A
detailed description of the ARIC study has been pub-
lished previously [24].

TERT polymorphisms and genotyping
Six SNPs either within the TERT gene or the 5-kb prox-
imal promoter region were genotyped as previously de-
scribed [25]. The TERT SNPs were among a panel of
nearly 49,000 SNPs in 2,100 genes associated with car-
diovascular and metabolic phenotypes selected for inclu-
sion on the custom Illumina IBC (ITMAT-Broad-CARe)
array as part of the shared Candidate Gene Association
Resource (CARe) funded by the National Heart, Lung,
and Blood Institute [26]. Systematic searching of the
PubMed citation database (http://www.ncbi.nlm.nih.gov/
pubmed), pathway-based bioinformatics tools, and ad-
vance access to the results of findings from GWA stud-
ies of diabetes, hypertension, and coronary artery disease
were used to develop an initial list of genes that were
then prioritized by investigators from the nine cohorts
participating in the CARe Consortium. Genes and path-
ways implicated in cardiovascular disease as well as lipid
metabolism, thrombogenesis, insulin resistance, metab-
olism, inflammation, oxidative stress, and apoptosis were
of particular interest in the selection process. For most
of the genes on the array including TERT (n = 1,784),
haplotype tagging SNPs were selected to capture genetic
variation represented in the four HapMap populations
[27] and SeattleSNPs [28] resequencing project. Three
TERT variants present on the array were excluded from
further analysis either because they were monomorphic
or did not meet Hardy-Weinberg equilibrium expecta-
tions in both whites and African-Americans.

Clinical and laboratory measurements
The clinical and laboratory measurements used for this
study were assessed during the first clinical examination
in 1987–1989 and have been described previously
[29, 30]. Plasma total cholesterol and triglycerides were
measured by enzymatic methods and low density lipo-
protein (LDL) cholesterol was calculated [31]. High
density lipoprotein (HDL) cholesterol was measured
after dextran-magnesium precipitation of non-HDL [32].
Blood pressure was measured three times while seated
using a random-zero sphygmomanometer and the last
two measurements were averaged for analysis. Individ-
uals with diastolic blood pressure ≥ 90 mm Hg, systolic
blood pressure ≥140 mm Hg, or who used antihyperten-
sive medication were defined as having hypertension.
Fasting serum glucose was measured by a standard hexo-
kinase method on a Coulter DACOS chemistry analyzer
(Coulter Instruments, Fullerton, CA). The case definition
for diabetes was a fasting glucose level > 7.0 mmol/L, a
nonfasting glucose level >11.1 mmol/L, and/or self-

reported physician diagnosis or treatment for diabetes.
Body weight and other anthropometric variables were
measured by trained technicians according to standard-
ized protocols. Body mass index (BMI) was calculated
as weight in kilograms/(height in meters)2. Information
on cigarette smoking and alcohol consumption was ob-
tained using an interviewer-administered questionnaire,
and both smoking and drinking status was classified as
current, former, or never.

Statistical analysis
Hardy-Weinberg equilibrium was tested for each SNP
separately by race using a χ2 goodness-of-fit test prior to
the application of any exclusion criteria. Linkage disequi-
librium (LD) was estimated using Haploview version 4.2
[33]. Proportions, mean values, and standard deviations
were calculated for clinical and demographic variables
relevant to cardiovascular disease. Comparisons between
groups were performed using chi square tests for cat-
egorical variables and t-tests for continuous variables.
Cox proportional hazards models were used to estimate
hazard rate ratios (HRR) for incident CHD and ischemic
stroke, and for death from all causes for each addition of
the minor allele for each SNP. The genotypes for
rs2736100 were coded in both races with respect to the
allele previously shown to be associated with shorter
telomere length [21]. Analyses of rs6863494 were only
carried out for African-American study participants
since this variant was monomorphic in whites. Regres-
sion models were adjusted for either age and gender
(model 1), or for age, gender, and a panel of established
cardiovascular risk factors including BMI, current smok-
ing, diabetes, hypertension, and HDL and LDL choles-
terol (model 2). The proportional hazards assumption
was met for all of the TERT SNPs tested individually by
race with the exception of rs2736122 (model 1) and
rs4246742 (models 1 and 2) when analyzed in whites for
association with incident CHD, and rs2853668 (model 1)
in the analyses of mortality in whites [34]. In the ana-
lyses of CHD and ischemic stroke, follow-up time was
calculated from the date of the baseline visit to the date
of the first event. For the non-cases, follow-up continued
through the date of last contact, or the date of death if
the date of last contact had occurred within one year. In
the analyses of all-cause mortality, follow-up continued
through either the date of death or December 31, 2011.
A two-sided p-value of 0.05 was considered statistically
significant, and the Bonferroni correction was used to
adjust for multiple comparisons. The results are pre-
sented separately by self-reported racial group. Power
calculations were performed using the Cox regression
module of the Power Analysis and Sample Size com-
puter program [35]. Using the observed incidence of
CHD and ischemic stroke in each racial group, the allele
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frequency for each TERT polymorphism in African-
Americans and whites, and a Bonferroni corrected p-
value of 0.002 (0.05/6 variants x 2 phenotypes x 2 races),
there was greater than 90 % statistical power to detect a
HRR of ≥ 1.1 for each TERT variant. All of the statistical
analyses were performed using Stata version 9.0 (Stata
Corporation, College Station, TX).

Results
The allele and genotype frequencies for six TERT poly-
morphisms evaluated in this study (Table 1) were in ac-
cordance with Hardy-Weinberg expectations for both
white and African-American study subjects (all p > 0.05).
When LD was estimated for these variants, the SNPs
were not highly correlated for either white or African-
American study participants (all r2 < 0.15) (Table 2). A
description of the study sample at the first clinical visit

stratified by race is shown in Table 3. There were 403 in-
cident CHD cases (13.3 %) and 287 ischemic stroke
cases (9.5 %) ascertained in African-American subjects
during an average follow-up period of 20.0 years, and
933 CHD cases (10.4 %) and 452 stroke cases (5.0 %)
identified in whites during an average follow-up period
of 20.4 years. All of the clinical and demographic charac-
teristics differed significantly between white and African-
American participants with the exception of the levels of
total and LDL cholesterol.
The results of the analysis of the association between

the TERT sequence variants and incident CHD and is-
chemic stroke are displayed in Tables 4 and 5, respect-
ively. SNP rs2736122 was nominally associated with
incident CHD in African-Americans both in the minim-
ally adjusted Cox regression model (HRR = 1.20, p =
0.02, 95 % confidence interval (CI) = 1.03 – 1.40) and in
a second model that was further adjusted for a panel of
established cardiovascular risk factors (HRR = 1.18, p =
0.04, 95 % CI = 1.01 – 1.39). Similarly, one of the genetic
variants was nominally associated with incident ischemic
stroke (rs2853668) in African-Americans in a model
adjusted for age and gender (HRR = 1.17, p = 0.05, 95 %
CI = 1.00 – 1.38), but this relationship was attenuated
after BMI, current smoking, and diabetes and hyperten-
sion case status were added to the regression models.
There were also 1,203 (36.2 %) and 2,875 deaths (29.3 %)
among African-American and white participants, re-
spectively, during the mean 20.5-year follow-up period.
All-cause mortality was assessed but no association with
any of the TERT sequence variants was found for either
racial group (all p > 0.15) (Table 6). None of the associa-
tions described above remained significant after correc-
tion for multiple comparisons.

Discussion
A functional role for telomerase in the maintenance of
telomere length has been established both in vitro and
in vivo, including in the heart [36]. In an early test of the
proposed causal relationship between telomere attrition
and cellular senescence, retinal pigment epithelial cells
and foreskin fibroblasts that do not normally express tel-
omerase were transfected with the enzyme’s catalytic
subunit. The telomerase positive clones exhibited elon-
gated telomeres and exceeded their normal life span by
more than 20 cell divisions [37]. Similarly, restoration of
telomerase activity in Terc-deficient mice resulted in
longer telomeres and absence of premature aging [38],
and alleviated the tissue degeneration and activation of
DNA damage signaling that are characteristic conse-
quences of telomere loss [39]. Forced expression of
TERT in cardiac muscle in mice promoted cell prolifera-
tion and cardiac myocyte survival, suggesting a possible
strategy for organ regeneration after injury [40].

Table 1 TERT genotype and allele frequencies stratified by race.
ARIC study (1987–1989)

African-American MAF White MAF p

dbSNP ID N % N %

rs2736122

GG 1,857 56.1 0.25 5,283 53.8 0.27 0.04

AG 1,246 37.7 3,835 39.1

AA 205 6.2 698 7.1

rs4246742

TT 1,444 43.5 0.35 7,037 71.6 0.15 <0.01

AT 1,453 43.8 2,549 25.9

AA 421 12.7 241 2.5

rs6863494

TT 2,950 90.3 0.05 9,823 100..0 0.00 <0.01

CT 305 9.3 2 0.0

CC 13 0.4 0 0.0

rs4975605

CC 1,012 30.6 0.45 2,742 27.9 0.47 <0.01

AC 1,619 48.9 4,861 49.5

AA 679 20.5 2,218 22.6

rs2736100*

CC 683 20.6 0.54 2,533 25.8 0.49 <0.01

CA 1,661 50.0 4,932 50.2

AA 975 29.4 2,361 24.0

rs2853668

GG 841 25.3 0.50 5,432 55.3 0.26 <0.01

TG 1,647 49.6 3,707 37.7

TT 831 25.1 688 7.0

dbSNP, The National Center for Biotechnology Information’s SNP database; SNP,
single nucleotide polymorphism; ID, identification; N, number; MAF, minor allele
frequency; p, p-value for difference in genotype frequencies between racial
groups evaluated by Pearson’s chi-squared test; *A allele previously associated
with shorter telomere length [21]
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Leukocyte telomere length has been shown to be asso-
ciated with cardiovascular disease risk in some but not
all studies [7–17]. In the current study, a nominal asso-
ciation between rs2736122 and incident CHD in the
fully adjusted model (HRR = 1.18, p = 0.04, 95 % CI =

1.01– 1.39), and rs2853668 and incident ischemic stroke
in a regression model adjusted only for age and gender
(HRR = 1.17, p = 0.05, 95 % CI = 1.00 – 1.38) was de-
tected in African-American ARIC study participants.
These observations are in accordance with an earlier

Table 2 Linkage disequilibrium between TERT single nucleotide polymorphisms

LD TERT SNP

r2, White rs2736122 rs4246742 rs6863494* rs4975605 rs2736100 rs2853668

rs2736122 x 0.053 --- 0.062 0.058 0.021

rs4246742 0.053 x --- 0.09 0.005 0.006

rs6863494 x

rs4975605 0.062 0.09 --- x 0.04 0.034

rs2736100 0.058 0.005 --- 0.04 x 0.13

rs2853668 0.021 0.006 --- 0.034 0.13 x

r2, African-American rs2736122 rs4246742 rs6863494 rs4975605 rs2736100 rs2853668

rs2736122 x 0.001 0.011 0.052 0.001 0.016

rs4246742 0.001 x 0.097 0.047 0.015 0.001

rs6863494 0.011 0.097 x 0.032 0.024 0.004

rs4975605 0.052 0.047 0.032 x 0.021 0.011

rs2736100 0.001 0.015 0.024 0.021 x 0.023

rs2853668 0.016 0.001 0.004 0.011 0.023 x

LD, linkage disequilibrium; SNP, single nucleotide polymorphism; *rs6863494 is monomorphic in whites

Table 3 Race-specific clinical and demographic characteristics. ARIC participants free of CVD (1987 – 1989)

N AA N White p

(N = 3,022) (N = 8,987)

N (%) N (%)

Male 3,022 1,081 (35.8) 8,987 4,030 (44.8) <0.001

Current smokers 3,020 857 (28.4) 8,984 2,145 (23.9) <0.001

Current alcohol 2,994 951 (31.8) 8,975 5,909 (65.8) <0.001

Hypertension 3,009 1,613 (53.6) 8,953 2,250 (25.1) <0.001

Diabetes 2,953 532 (18.0) 8,972 715 (8.0) <0.001

Incident MI/Fatal CHD 3,022 403 (13.3) 8,987 933 (10.4) <0.001

Incident ischemic stroke 3,022 287 (9.5) 8,987 452 (5.0) <0.001

Mean (SD) Mean (SD)

Age (years) 3,022 53.1 (5.7) 8,987 54.1 (5.7) <0.001

DBP, mm Hg 3,022 79.6 (11.8) 8,983 71.6 (10.0) <0.001

SBP, mm Hg 3,022 127.8 (20.3) 8,984 118.2 (16.9) <0.001

Glucose (mmol/L) 2,941 6.4 (3.0) 8,980 5.8 (1.6) <0.001

Insulin (pmol/L) 2,941 138.0 (291.4) 8,979 81.4 (94.9) <0.001

BMI (kg/m2) 3,019 29.7 (6.1) 8,980 26.9 (4.8) <0.001

Total cholesterol, mmol/L 2,895 5.6 (1.2) 8,971 5.5 (1.0) 0.503

LDL cholesterol, mmol/L 2,870 3.6 (1.1) 8,832 3.5 (1.0) 0.281

HDL cholesterol, mmol/L 2,895 1.4 (0.4) 8,973 1.3 (0.4) <0.001

Triglycerides, mmol/L 2,896 1.3 (0.9) 8,973 1.5 (1.0) <0.001

CVD, cardiovascular disease; N, number; AA, African-American; p, p-value for tests of differences of group means determined by t-tests or of categorical values
evaluated by Pearson’s chi-squared test between racial groups; MI, myocardial infarction; CHD, coronary heart disease; DBP, diastolic blood pressure; SBP, systolic
blood pressure; BMI, body mass index; LDL, low density lipoprotein; HDL, high density lipoprotein
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report that 5 TERT SNPs including rs2736100 and
rs4975605, and 2 variants including rs2853668 were as-
sociated with risk of incident nonfatal MI and ischemic
stroke, respectively, in 23,294 individuals of European
ancestry enrolled in the Women’s Genome Health Study
(WGHS) [41]. However, rs2853668 was associated with a
reduced susceptibility to ischemic stroke in the WGHS
(HRR (stroke) = 0.81, p = 0.03, 95 % CI = 0.66 – 0.98)
after adjustment for age, BMI, smoking, diabetes,

hypertension, and hormone use while the same variant
increased risk in the ARIC study. Although there was
adequate power to detect the same HRR observed by
Zee et al., none of the three polymorphisms found to be
associated with cardiovascular disease in the WGHS that
were also genotyped in the ARIC study (rs2736100,
rs4975605, rs2853668) [41] were associated with stroke
or CHD in white study participants. Other reasons for
the discordant findings could be associations that were

Table 4 TERT sequence variation and incident coronary heart disease. ARIC study (1987 – 2011)

African-American (N = 3,022) (MI/Fatal CHD = 403) White (N = 8,987) (MI/Fatal CHD =933)

Model 1 Model 2 Model 1 Model 2

dbSNP ID HRR 95 % CI p HRR 95 % CI p HRR 95 % CI p HRR 95 % CI p

rs2736122*

CHD 1.20 1.03, 1.40 0.02 1.18 1.01, 1.39 0.04 0.95 0.86, 1.06 0.38 0.94 0.85, 1.05 0.29

rs4246742*

CHD 1.00 0.87, 1.15 0.97 0.98 0.85, 1.14 0.83 0.96 0.85, 1.09 0.56 0.99 0.87, 1.13 0.88

rs6863494

CHD 0.93 0.67,1.29 0.66 0.95 0.68, 1.32 0.77 -- --

rs4975605

CHD 1.04 0.91, 1.19 0.55 1.05 0.91, 1.20 0.52 1.02 0.94, 1.12 0.61 1.02 0.93, 1.11 0.74

rs2736100

CHD 0.99 0.86, 1.14 0.89 1.00 0.86, 1.15 0.97 0.97 0.88, 1.06 0.48 0.98 0.89, 1.07 0.60

rs2853668

CHD 0.93 0.81, 1.07 0.32 0.98 0.84, 1.13 0.73 1.05 0.95, 1.16 0.35 1.07 0.97, 1.19 0.19

dbSNP, The National Center for Biotechnology Information’s SNP database; SNP, single nucleotide polymorphism; ID, identification; N, number; HRR, hazard rate
ratio; CI, confidence interval; p, p-value for hazard rate ratios from Cox regression models; MI, myocardial infarction; CHD, coronary heart disease; Model 1, adjusted
for age and gender; Model 2, adjusted for age, gender, BMI, current smoking, diabetes, hypertension, HDL cholesterol, and LDL cholesterol; *not consistent with
proportional hazards assumptions in whites for rs2736122 (Model 1) and rs4246742 (Models 1 and 2)

Table 5 TERT sequence variation and incident ischemic stroke. ARIC study (1987 – 2011)

African-American (N = 3,022) (Ischemic Stroke = 287) White (N = 8,987 ) (Ischemic Stroke = 452)

Model 1 Model 2 Model 1 Model 2

dbSNP ID HRR 95 % CI p HRR 95 % CI p HRR 95 % CI p HRR 95 % CI p

rs2736122

Isch. stroke 0.89 0.73, 1.08 0.24 0.90 0.74, 1.10 0.32 1.01 0.87, 1.17 0.89 1.02 0.87, 1.18 0.82

rs4246742

Isch. stroke 0.94 0.79, 1.11 0.47 0.96 0.80, 1.15 0.67 0.99 0.82, 1.18 0.89 1.00 0.83, 1.21 0.99

rs6863494

Isch. stroke 0.90 0.61, 1.33 0.59 0.96 0.65, 1.42 0.84 -- --

rs4975605

Isch. stroke 0.94 0.80, 1.11 0.48 0.88 0.74, 1.04 0.14 1.00 0.88, 1.14 0.97 1.00 0.87, 1.14 0.98

rs2736100

Isch. stroke 1.07 0.91, 1.27 0.41 1.03 0.86, 1.22 0.75 0.93 0.82, 1.06 0.31 0.93 0.81, 1.06 0.27

rs2853668

Isch. stroke 1.17 1.00, 1.38 0.05 1.08 0.91, 1.28 0.36 1.02 0.88, 1.18 0.76 1.03 0.89, 1.20 0.71

dbSNP, The National Center for Biotechnology Information’s SNP database; SNP, single nucleotide polymorphism; ID, identification; N, number; HRR, hazard rate
ratio; CI, confidence interval; p, p-value for hazard rate ratios from Cox regression models; Model 1, adjusted for age and gender; Model 2, adjusted for age,
gender, BMI, current smoking, diabetes, hypertension, HDL cholesterol, LDL cholesterol; Isch., ischemic
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found by chance in either or both cohorts, as well as dif-
ferences in ascertainment since WGHS included only
nonfatal MI cases in the analyses while the ARIC study
case definition encompassed both MI and fatal CHD.
Although the observed associations between the TERT

variants and both CHD and stroke were modest in Afri-
can Americans and were no longer significant after cor-
rection for multiple testing, differences in LD could
contribute to the absence of an association in whites
if a true causative variant was only correlated with
rs2736122 or rs285366 in African-Americans. Inspection
of the LD plots generated at the TERT locus for the
Utah residents with Northern and European ancestry
(CEU) and African ancestry in Southwest USA (ASW)
populations included in the International HapMap Pro-
ject reveals that the race-specific LD patterns are
not identical, with the caveat that this region has not
been densely genotyped (HapMap3 Genome Browser
release #2, chromosome 5: positions 1,306,287 –
1,348,162) [27]. Similarly, variation in linkage disequilib-
rium structure between whites and African-Americans
could also explain the reversal in the direction of associ-
ation of rs2853668 with incident ischemic stroke seen in
the ARIC study when compared with the WGHS. As-
suming that rs2853668 may not be the causal variant in
either cohort, correlation between the polymorphism
and a protective allele at another locus in WGHS partic-
ipants, and with a risk allele in ARIC participants could
lead to the observed results [42]. Other reasons for the
discrepancy could include chance, differences in allele
frequency for the rs2853668 T allele in the two racial

groups, and variation in other genetic or environmental
factors that may contribute to cerebrovascular disease
risk in the two study populations. The TERT rs2736100
variant was not associated with incident CHD or stroke
in either racial group. In the GWA study of telomere
length in which rs2736100 was identified, there was also
no relationship between this variant and prevalent cor-
onary artery disease in a meta-analysis that combined
the results for 22,233 cases and 64,762 controls of
European ancestry who were enrolled in the CARDIo-
GRAM consortium but did not include individuals of
African descent [21, 43].
The relationship between telomere length and aging

and longevity has also been assessed. A negative correl-
ation between telomere length and age has been con-
sistently observed when examined in multiple tissues
[3, 44–47]. More recently, telomere length was positively
correlated with increased lifespan in the Amish Family
Osteoporosis Study [18], and Fitzpatrick et al. reported
that individuals in the shortest quartile of leukocyte telo-
mere length in the Cardiovascular Health Study were
more likely to die than those in the longest quartile dur-
ing a 6.1-year follow-up period [20]. In contrast, Bischoff
et al. found no correlation between telomere length
and survival in a sample of 812 individuals from 3 differ-
ent Danish study populations [48]. Similar results were
reported in the Scottish Lothian Birth Cohort [49], and
in a study of 3,075 participants in the population-based
Health ABC Study aged 70–79 years in which neither
overall survival or death from cardiovascular disease
was associated with telomere length [50]. While an

Table 6 TERT sequence variation and all-cause mortality. ARIC study (1987 – 2011)

African-American (N = 3,319) (Deaths = 1,203) White (N = 9,827) (Deaths = 2,875)

Model 1 Model 2 Model 1 Model 2

dbSNP ID HRR 95 % CI p HRR 95 % CI p HRR 95 % CI p HRR 95 % CI p

rs2736122

Mortality 1.05 0.95, 1.15 0.36 1.04 0.94, 1.14 0.47 1.04 0.98, 1.10 0.22 1.03 0.97, 1.10 0.27

rs4246742

Mortality 0.99 0.91, 1.08 0.85 0.99 0.90, 1.08 0.76 1.01 0.94, 1.08 0.80 1.02 0.95, 1.09 0.63

rs6863494

Mortality 1.00 0.84, 1.20 0.96 1.00 0.84, 1.20 0.96 -- --

rs4975605

Mortality 0.96 0.89, 1.04 0.37 0.94 0.87, 1.02 0.16 1.00 0.95, 1.05 0.96 0.99 0.94, 1.04 0.74

rs2736100

Mortality 1.00 0.92, 1.09 0.93 0.98 0.90, 1.07 0.73 1.03 0.98, 1.09 0.21 1.03 0.97, 1.08 0.32

rs2853668*

Mortality 1.00 0.92, 1.09 0.94 0.97 0.89, 1.05 0.44 0.99 0.93, 1.05 0.73 1.02 0.96, 1.08 0.62

dbSNP, The National Center for Biotechnology Information’s SNP database; SNP, single nucleotide polymorphism; ID, identification; N, number; HRR, hazard rate
ratio; CI, confidence interval; p, p-value for hazard rate ratios from Cox regression models; Model 1, adjusted for age and gender; Model 2, adjusted for age,
gender, BMI, current smoking, diabetes, hypertension, HDL cholesterol, LDL cholesterol; * not consistent with proportional hazards assumptions in whites for
rs2853668 (Model 1)
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association between two polymorphisms in oligonucleo-
tide/oligosaccharide-binding fold containing 1(OBFC1),
a gene related to telomere length [51], and decreased
risk of cardiovascular death was demonstrated in women
in the Cardiovascular Health Study [52], none of the
TERT sequence variants examined here had a discernible
effect on the time to death in ARIC study participants.
For all of the statistical analyses described above, it is

possible that, although there was only a marginal effect
on the risk of developing cardiovascular disease when
the TERT polymorphisms were considered individually,
the polymorphisms may play a role in combination with
other loci associated with variation in telomere length as
demonstrated by Codd et al. in a genetic risk score ana-
lysis for coronary artery disease [21]. In addition, since
the association between the TERT polymorphisms and
telomere length could not be evaluated in the ARIC
study, a link between increased risk of cardiovascular
disease and the possible functional impact of the gene
could not be explored further. It should also be noted
that since several risk factors for cardiovascular disease
including obesity and smoking have been shown to be
associated with telomere length in leukocytes [53], dif-
ferences in the distribution of these covariates between
populations or racial and ethnic groups could result in
inconsistencies in the reported relationship between
TERT and a given disease outcome. Further investigation
of sequence variation in TERC [54] as well as other
genes such as OBFC1, CTS telomere maintenance
complex component 1 (CTC1), and zinc finger pro-
tein 676 (ZNF676) that have been identified and rep-
licated in large-scale GWA studies of telomere
length [51, 55] but were not present on the genotyp-
ing array may also prove to be informative in the
ARIC cohort.

Conclusions
The association between six TERT polymorphisms that
tag the variation in this gene and development of MI
and ischemic stroke over a 20-year follow-up period was
examined in white and African-American ARIC study
participants with no prior history of disease. After ad-
justment for age and gender, rs2736122 and rs2853668
were nominally associated with incident CHD and
stroke, respectively, in African-Americans but not in
whites. The results suggest that interindividual variation
in a gene implicated in cellular aging may be associated
with cardiovascular disease, and that replication in other
population-based cohort studies is warranted.
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