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Tests of trend between disease outcomes
and ordinal covariates discretized from
underlying continuous variables: simulation
studies and applications to NHANES
2007–2008
Naomi C. Brownstein1,2* and Jianwen Cai3

Abstract

Background: Many epidemiological studies test trends when investigating the association between a risk factor
and a disease outcome. Continuous exposures are commonly discretized when the outcome is nonlinearly related
to exposure as well as to facilitate interpretation and reduce measurement error. Guidance is needed regarding
statistically valid trend tests for epidemiological data of this nature.

Methods: The association between a discretized variable and a disease is modeled through logistic regression or
survival analysis. Linear regression is then conducted by regressing the odds ratio or relative risk on the midpoint of
the exposure interval. The trend test is based on the slope of the regression line. In order to investigate the
performance of this approach, we conducted simulation studies, considering ten different approaches for the linear
regression based on the inclusion or exclusion of an intercept in the model and the form of the weights. The
proposed methods are applied to the National Health and Nutrition Examination Survey (NHANES) 2007–2008 for
illustration.

Results: The simulation studies show that eight of these methods are valid, and the relative efficiency depends on
the underlying relationship between the covariate and the outcome.

Conclusions: The significance of the study is its potential to help practitioners select an appropriate method to test
for trend in their future studies that utilize ordinal covariates.

Keywords: Discretization, Linear regression, Power, Weighted least squares

Background
Tests of trend are important in showing monotone rela-
tionships between risk factors and disease outcomes.
Drug developers aim to demonstrate that efficacy and
toxicity risk increase with dosage. In epidemiological
studies, investigators may ask if disease prevalence in-
creases with exposure. Examples include trends between
observed vitamin D serostatus and change in adiposity

indicators [1] and between physical activity level and de-
creasing breast cancer risk [2]. Investigating trends re-
quires care; popular trend tests may not test for
monotonicity [3]. Motivated by these applications, we
investigate trend tests useful in epidemiology.
Logistic and Cox regression are often used for model-

ing the relationship between a disease outcome and a
continuous risk factor. Yet, covariates may be subject to
substantial measurement error for which it may be diffi-
cult to adjust [4, 5]. Coefficients for continuous predic-
tors may be difficult to interpret in certain situations.
Consequently, continuous variables are frequently dis-
cretized, for example, nutrient quantiles. In some
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settings, such as meta-analyses, it may be impossible to
recover the underlying continuous values.
Tests of trend may be conducted based on rank statis-

tics using only the ordinal group membership [6, 7]. Le
et al. [8] propose a rank-based trend test between the or-
dinal covariates and the hazard function. Tarone [9] pro-
posed an exact test for monotone trend in the hazard
function, but this assumes identical censoring distribu-
tions for all groups. Although their lack of assumptions
may render these tests seemingly appealing, they may be
inappropriate and have low power when the ordinal co-
variate is non-uniformly distributed [10]. The
widely-used Cochran-Armitage trend test may have in-
flated type I error when the covariate margins are unbal-
anced, even for large samples [11].
When a continuous exposure is divided into intervals

and treated as ordinal, the median of each interval may
serve as a regression model covariate. Medians of inter-
vals defined by macronutrient quantiles were used to
test for linear trends between dietary patterns and dia-
betes incidence [12]. Another common practice is to fit
a regression model, treating the ordinal covariate as a
categorical variable. Trend is assessed by examining
whether the odds ratios or hazards ratios are changing
monotonically with covariate level.
In this paper, we evaluate ten approaches to test for a

trend in the odds ratios or hazard ratios. We present
type I error and power through simulations and apply
the methods to the NHANES dataset for illustration.

Methods
We compare the type I error and power of trend tests
based on weighted and unweighted regression. The
underlying continuous covariate is exemplified using
measurements of body mass index (BMI). We discre-
tized observations into weight classes defined by the
World Health Organization [13], as shown in Table 1.
Suppose that an ordinal covariate has r levels. Let the

effect size, θj, denote the odds ratio (binary outcome) or
hazard ratio (time-to-event outcome) for level j com-
pared to a reference level. We fit a linear regression
model to the r ordered pairs with the median xj of the
covariate values within level j as the regressor and the
effect size θj as the dependent variable. Trend tests

between the ordinal covariate and the effect size may be
conducted by testing whether the slope of the regression
line is equal to zero against a two-sided alternative.
Typically, the procedure utilizes unweighted regres-

sion, which ignores variability in estimation of the effect
size. Weighted least squares may be more appropriate
and increase the efficiency of the estimator. One possible
and commonly used weight [14] is the inverse of the
estimated variance of the odds ratio or hazard ratio. An-
other popular method is to weigh each stratum estimate
by the stratum sample size [15]. Additional methods are
detailed in the Regression Methods section. In the
following sections, we describe the simulation studies
and data application. Sections detail components includ-
ing the models, parameters, covariates, and outcomes.
All simulations utilized SAS 9.2 [16].

Sampling covariates
The simulated covariate was sampled from the 2007–
2008 National Health and Nutrition Examination
Survey (NHANES) [17]. Beginning in 1999, NHANES
was given annually to a nationally representative
sample of approximately 5000 non-institutionalized
civilians per year. NHANES consists of interviews and
physical examinations designed to assess the health of
the U.S. population. A team of physicians and medical
technicians conducted physical examinations in
Mobile Examination Centers, standardized facilities
that travel to survey locations throughout the country.
Dietary and health interviewers asked additional ques-
tions using Computer-Assisted Personal Interview
software.
Our exclusion criteria include pregnancy, missing BMI

(n = 0), BMI above 70 (n = 4), and age less than 20 years
(n = 0). The remaining 5551 eligible individuals had BMI
values ranging from 14.2 to 67.3 kg/m2, a mean of 28.9
kg/m2 and standard deviation of 6.6 kg/m2. Table 1
includes summary statistics by weight class. The distri-
bution of BMI is strongly right-skewed; less than 2% of
the NHANES sample was classified as underweight. We
oversampled the underweight class to ensure sufficient
sample members for analysis. For each simulation, 80%
of individuals in the sample were selected with replace-
ment from the entire NHANES dataset, and the

Table 1 Description of NHANES Data by BMI Class

BMI Class WHO Defined Lower
Limit (kg/m2)

WHO Defined Upper
Limit (kg/m2)

Number of
Individuals

Unweighted Percent
of Sample

WHO Defined
Median (kg/m2)

Sample Median
BMI (kg/m2)

Underweight 12 18.5 93 1.7 17 17.8

Normal
Weight

18.5 25 1513 27.3 23 22.7

Overweight 25 30 1919 34.6 28 27.5

Obese 30 70 2026 36.5 35 34.0
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remaining 20% were selected from the subset consisting
of underweight individuals.

Binary outcome
We generate binary outcomes based on one of two
models. The probability pi that individual i with BMI zi
experiences the outcome is given by equation (1) or (2)

log
pi

1� pi

� �
¼ αþ β zi � 25ð Þ ð1Þ

log
pi

1� pi

� �
¼ αþ β zi � 14:2ð Þ2 ð2Þ

Model (1) assumes a linear relationship between the
logarithm of odds and BMI. The latter relationship is
quadratic and monotone increasing for zi > 14.2 kg/m

2,
the minimum value of BMI in the NHANES dataset.
Given α, β and zi, we calculate the expected event

probability pi. We generated a random variate from the
uniform (0,1) distribution, and let yi = 1 if ui < pi, yi = 0
otherwise. Then we created ordered categories corre-
sponding to the weight classes defined in [13] and fit
model (3) to the outcome based on the weight class,
using the “normal weight” class as the reference group.

log
pi

1−pi

� �
¼ β0 þ β1xi1 þ β2xi2 þ β3xi3 ð3Þ

Here, xij indicates whether individual i is in the jth or-
dered weight class. Underweight, overweight, and obese
correspond to weight classes j = 1, 2, 3, respectively. We
recorded the estimated odds ratios, θj = ORj = exp.(βj)
and the variances of the log-effect size, σj

2 = Var (βj) for
j = 1, 2, 3.
We regressed the odds ratio, θj, centered at 1, on the

median, mj, centered at 23, of the BMI values within
covariate class j. This invokes the linear model,

θ j
� ¼ γ0 þ γ1m

�
j þ ε j ð4Þ

where εj is normally distributed, E(εj) = 0, θj
* = θj − 1,

and m*
j = mj – 23. The variance of εj is specified for each

method in the “Regression Methods” section. We also
investigated models without an intercept, i.e.

θ j
� ¼ γ1m

�
j þ ε j ð5Þ

Intuitively desirable, these models force the expected
odds ratio for the referent group to be unity. For each
method, we record whether the trend test for H0: γ1 = 0
was rejected at the 0.05 level.

Time-to-event outcome
Given the log-hazards ratio β and the covariate zi for in-
dividual i, we assumed one of two underlying

proportional hazards models [18]. The hazard for indi-
vidual i at time t can be modeled by either

Λ tijzið Þ ¼ Λ0 tið Þ exp β zi � 25ð Þ½ � ð6Þ
or

Λ tijzið Þ ¼ Λ0 tið Þ exp β zi � 14:2ð Þ2� �
; ð7Þ

assuming either a linear or a monotone quadratic rela-
tionship between the hazard rate and BMI. We gener-
ated event times Ti from an exponential distribution
with hazard rates exp.[β(zi – 25)] and exp.[β(zi – 14.2)2]
respectively [19]. Censoring times Ci were generated
from the uniform (0, bk) distribution, where bk is chosen
so that the event probability for the entire sample is ap-
proximately pk for k = 1, 2, 3. These probabilities corres-
pond to heavy censoring (p1 = 0.2), medium censoring
(p2 = 0.5), and light censoring (p3 = 0.7). The values of bk
are given in Table 2. The observed data for each individ-
ual include vi =min (ti, ci) and δi = I(ti < ci). We fit a Cox
proportional hazards model [18] with the normal weight
group as the reference group:

Λ tijxi1; xi2; xi3ð Þ ¼ Λ0 tij
� �

exp β1xi1 þ β2xi2 þ β3xi3
� �

ð8Þ

We record the resulting hazard ratios, θj = HRj =
exp.(βj) and the variances of their logarithms σ2j = Var
(βj). Then, we fit linear models given by equations (4)
and (5) and recorded whether or not the trend test for
H0: γ1 = 0 was rejected against a two-sided alternative.

Parameter values
To quantify the type I error, we generated binary out-
comes with β = 0, which reduces to.

logð pi
1−pi

Þ ¼ α, or pi = exp.(α)/[1 + exp.(α)] . We investi-

gated α = log (0.2), log (0.3), log (0.4), log (0.5), log (0.6),
log (0.7), log (0.8). Each configuration was simulated
10,000 times with 1000 observations.

Table 2 Values of bk for the Uniform Censoring Intervals (0,bk)

Type 1 Error and Linear Alternatives

k pk β = 0 β = log (1.01) β = log (1.05) β = log (1.1)

1 0.2 0.475 0.4 0.375 0.32

2 0.5 1.755 1.7 1.55 1.4

3 0.7 3.450 3.5 3.2 3.2

Quadratic Alternatives

k pk β = 0.001 β = 0.002 β = 0.003

1 0.2 0.35 0.265 0.205

2 0.5 1.35 1.12 0.95

3 0.7 2.8 2.35 2.05
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We computed power under the alternative that the ef-
fect size is linearly related to the covariate, i.e. we gener-
ated data according to equation (1) and (6) and β = log
(1.01), log (1.05), and log (1.1). For an increase of 5 units
in body mass index, these correspond to hazards ratios
or odds ratios of about 1.05, 1.28, and 1.61, respectively.
We generated data according to equations (6) and (7)

with the same β values detailed in the previous para-
graph. The covariate is centered at 14.2, the minimum
BMI value in the NHANES dataset, in equations (2) and
(7). We chose to generate data in this form because it
represents a monotone nonlinear increasing relationship
with body mass index. All power estimates utilized
30,000 simulations, each of which used a sample size of
1000.

Regression methods
We examine ten regression methods, seven weighted
and three unweighted. We used the delta method for
methods 4 and 5 to find the estimated variance of each
effect size θj, j = 1, 2, 3. Models lacking an intercept
force the regression line to pass through the point with
median 23 and effect size 1; the odds ratio or hazards ra-
tio for the reference group is exactly 1. Models with an
intercept lack this restriction. Models either used obser-
vations for all covariate levels or excluded the point cor-
responding to the reference group. Details are found in
Table 3.

Application of methods to NHANES data
We conducted trend tests between BMI and two out-
comes in the NHANES dataset. The outcomes were
based on the questions “Has your doctor told you that
you have diabetes?” and “Has your doctor ever told you
that you had high blood pressure?” Answer choices were
“yes”, “no”, or “don’t know”. Responses of “don’t know”
were considered missing. The diabetes question included

the choice “borderline or pre-diabetes”, which we
grouped with the “yes” category.

Results
First, we report which methods are valid. Second, we in-
vestigate power of the valid methods based on various
effect sizes. Finally, we provide a summary table compar-
ing the methods (Table 3).

Type I error
Both methods (1 and 8) without intercepts failed to con-
trol type I error. Figures 1 and 2 show consistently in-
flated size for these methods, which should not be used
in practice.
The remaining unweighted regression methods (2 and

3) were valid, as were methods (6 and 7) weighted by
the inverse variance or standard error of the logarithm
of the effect size and the intercept-included methods
that weight by the stratum sample size.
Simple unweighted regression (method 2) and simple

regression weighting by the stratum sample size (method
10) had type I error near the nominal rate. All other
methods were excessively conservative.

Power
Before describing the results of the power analyses, we
provide the reader with intuition. When the relationship
between the effect size and ordinal covariate is weak, we
expect that power should be low for all methods. For
such weak relationships, we expect that proportion of
events in each class would not be that different and the
variances of the effect sizes should be close to each
other. Consequently, homogeneity of variance is almost
satisfied, and unweighted methods may be comparable
to weighted methods.
By contrast, when the relationship between the effect

size and the covariate is strong, we expect to observe
increased power. The odds ratios should increase

Table 3 Summary of Methods and Results: Type I Error and Power

Method 1 2 3 4 5 6 7 8 9 10

Weighted? No No No Yes Yes Yes Yes Yes Yes Yes

Weights N/A N/A N/A (θj2σ2j)−1 (θjσj)−1 (σ2j)− 1 (σj)− 1 nj nj nj

Intercept? No Yes Yes Yes Yes Yes Yes No Yes Yes

Reference Group included? Yes Yes No Yes Yes Yes Yes Yes No Yes

Type I Error Controlled? No Yes Yes Yes Yes Yes Yes No Yes Yes

Power: Linear N/A M L VL VL H M N/A H M

Power: Weak Quadratic N/A H M L L M M N/A M H

Power: Strong Quadratic N/A M L VL VL H M N/A H H

VL Very Low Power, L Low Power, M Moderate Power, H High Power
Relative amounts of power refer to the relative ranks of the methods. Methods classified as with high power had the most power for at least one scenario in the
corresponding type of simulation. Methods classified as with medium or low power were ranked next. Methods classified with very low power displayed the
lowest power in every simulation of that type
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Fig. 1 Simulated type I error rates for each method with binary outcomes by increasing intercept in Eq. (1), which in this case is equal to the log-
odds of the event for a person with a BMI of 25 kg/m2.The dashed horizontal line at 0.05 indicates the significance level
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Fig. 2 Simulated type I error rates for each method by increasing prevalence with time-to-event outcomes, or equivalently, decreasing censoring.
The dashed horizontal line at 0.05 indicates the significance level
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more quickly, and the variances may differ appre-
ciably from each other. Therefore, we expect weighted
methods to be more powerful than unweighted methods,
as shown in Figs. 3 and 4. Power for quadratic alternatives
are detailed in a subsequent section and Figs. 5, 6, 7, 8, 9,
and 10.

Power under linear alternative
For binary outcomes when the odds ratio is 1.1, the best
methods are 6, which weights by the inverse of the vari-
ance of the parameter estimate and 9, which has ex-
cludes the referent group and weights by the stratum
sample size. See Fig. 3. Simple unweighted regression
(method 2) has similar power as the intercept method
weighted by the stratum sample size (method 10), the
unweighted method excluding the reference group
(method 3) has slightly less power, and all other methods
are less powerful.
Results are similar but not identical for time-to-event

data. For hazards ratios 1.1 or greater, method 6 is the
most powerful, as shown in Fig. 4. Under light censoring
and a hazards ratio of 1.1, method 9 has about the same
power. When the hazards ratio is 1.05, the preceding
methods are still most powerful, but the methods
weighting by the inverse of the variance of the logarithm
of the hazards ratio (method 6) and the stratum sample

size for the non-reference groups (method 9) are nearly
as powerful.
Additional simulations for odds ratios of 1.01 and

1.05 are included in Figs. 11, 12, 13, and 14. In these
simulations, the power is lower overall for all
methods. For both binary and time-to-event out-
comes, the power was highest for the method weight-
ing by the stratum sample size (10) and the standard
unweighted method (2), followed by the other
weighted methods (6, 7, and 9). The improved rank-
ing for the unweighted method 2 is likely due to the
lack of events in each stratum and more homoge-
neous variances, which decrease the need for complex
weighting in these cases.

Power under monotone quadratic alternative
For power calculations under quadratic alternatives as
shown in eqs. (2) and (7), we examined β = 0.001, 0.002
and 0.003. These correspond to odds ratios or hazards
ratios of about 1.12, 1.25 and 1.40, respectively for a
BMI of 28 compared to a BMI of 23. Power under non-
linear alternatives is shown in Figs. 5, 6, 7, 8, 9, and 10.
In contrast with the linear alternative, unweighted re-
gression was nearly always less powerful than the best
weighted method. When the effect size is related to body
mass index through a weak quadratic relationship, such
as β = 0.001, either method 3, 6, 9, or 10 is the most
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Fig. 5 Power for binary outcomes generated by Eq. (2) with β = 0.001. The setup denotes a weaker quadratic relationship between the log-odds
of the event and increasing BMI
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powerful method, depending on the intercept for binary
data or the prevalence for time-to-event data. This ob-
servation holds for all cases for binary data and all three
levels of censoring for time-to-event data. When β =
0.002 or β = 0.003, method 9 is the most powerful in
most cases for binary data and under time-to-event data
with light censoring. Method 6 is the most powerful for
binary data when β = log(0.2) and time-to-event data
under heavy or medium censoring when β = 0.002 or β
= 0.003. The different ranking of each method is likely
explained by the number of events present in the dataset
in each group. This is evident by the fact that results are
similar between binary data with β = log(0.2), corre-
sponding to a prevalence of about 17% for those with a
BMI of 25, and heavy censoring, corresponding to an
event probability of 0.2.

Application to NHANES data
Weighted frequencies for the outcomes are included
in Table 4. None of the underweight individuals have
diabetes, and only one underweight individual (0.33%
weighted) has borderline or pre-diabetes. High blood
pressure has sufficient numbers for all weight classes.
Results are summarized in Table 5. All tests were
rejected for diabetes, meaning that the prevalence of
diabetes increases with increasing BMI class. The test
for high blood pressure was not rejected for methods
2, 3, 4 or 5. This is not surprising; methods 4 and 5
were the least powerful in all simulations. While these
trend tests were not significant, the p-values were just
above 0.05. By contrast, tests for trend for high blood
pressure were rejected by the remaining weighted
methods, meaning that the prevalence of high blood
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Fig. 10 Power for time-to-event outcomes generated by Eq. (7) with β = 0.003. The setup denotes a strong quadratic alternative in which the
logarithm of the hazard ratio increases quadratically with increasing BMI

Table 4 Cell Counts (and Weighteda Percentage) of Outcomes within Each Weight Class in the NHANES Dataset

Outcome Underweight Normal Weight Overweight Obese All

Diabetes Status

No Diabetes 92 (99.7) 1406 (95.3) 1699 (93.0) 1563 (81.8) 4760 (90.0)

Diabetes or Pre/Borderline 1 (0.3) 105 (4.7) 219 (7.0) 460 (18.2) 785 (10.0)

Blood Pressure Status

No High Blood Pressure 74 (83.5) 1153 (81.1) 1275 (70.4) 1050 (57.1) 3552 (69.4)

High Blood Pressure 19 (16.5) 359 (18.9) 642 (29.6) 974 (42.9) 1994 (30.6)
aWeighted percentages take into account the sampling design used in NHANES
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pressure increases with increasing BMI class. The
relative magnitude of the p-values in these tests paral-
lel those in the simulations; results are similar be-
tween the methods that weight by the inverse
variance or standard error of the log-odds ratio, or by
the stratum sample size, with or without using the
normal weight group.

Discussion
Regression methods without intercepts had inflated type
I error. The relative power of the remaining eight

methods varies with the underlying relationship and the
number of events in each group. To implement these
methods, standard sample size requirements must be
met. There should be at least 10 subjects in each
stratum experiencing the outcome of interest and 10
subjects in each stratum not experiencing the outcome
[6]. Insufficient sample size may result in inflated prob-
ability of type I error or loss of power.
The odds ratio variance estimate depends on both the

variance of the logistic regression slope parameter and
the square of the odds ratio itself. Consequently, in these

Table 5 Conclusions of Trend Tests for the NHANES Dataset

Outcome Method 1 2 3 4 5 6 7 8 9 10

Diabetes or Pre/Border-line P-value N/A 0.024 0.023 0.032 0.034 0.010 0.013 N/A 0.012 0.020

Reject N/A Yes Yes Yes Yes Yes Yes N/A Yes Yes

High Blood Pressure P-value N/A 0.051 0.064 0.056 0.061 0.010 0.023 N/A 0.007 0.016

Reject N/A No No No No Yes Yes N/A Yes Yes

Yes = The null hypothesis of no trend was rejected at the 0.05 significance level
No = The null hypothesis of no trend was not rejected at the 0.05 significance level
Method 1: Unweighted, no intercept
Method 2: Unweighted, with intercept
Method 3: Unweighted, with intercept, reference group omitted
Method 4: Weighted by the inverse of Var (OR), with intercept
Method 5: Weighted by the inverse of SE (OR), with intercept
Method 6: Weighted by the inverse of Var (LogOR), with intercept
Method 7: Weighted by the inverse of SE (LogOR), with intercept
Method 8: Weighted by the sample size, no intercept
Method 9: Weighted by the sample size, with intercept, reference group omitted
Method 10: Weighted by the sample size, with intercept
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Fig. 11 Power for binary outcomes generated by Eq. (1) with a linear alternative of an odds ratio of 1.01 for a unit increase in BMI. The setup
denotes a weak linear alternative in which the log-odds of the event increases linearly but slowly with increasing BMI
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simulations, when holding the parameters from logistic
regression constant and assuming that prevalence is in-
creasing with increasing covariate value, the odds ratio
variance estimate for higher BMI classes exceeds the
corresponding variance for the lower BMI classes. This
relationship is more pronounced as the effect size in-
creases and the ratio estimates become more extreme.
Dependence of the variance of the ratio estimates on the
two aforementioned sources of variability results in
lower power once the true effect size exceeds about 1.1
based on the results of these simulations. Naturally, the
methods that depend only on the variance of the param-
eters from logistic regression have much higher power.
In fact, method 6 was one of the methods with the high-
est power in most cases when the effect size was moder-
ate or large. Similarly, weighting by the stratum sample
size results in adequate power because the variances are
approximately proportional to the stratum sample sizes.
In these cases, unweighted methods perform worse be-
cause they fail to account for heterogeneity in the vari-
ance of the estimates in each stratum. Unweighted
methods, on the other hand, performed well when the
effect size was small and the variances were more
similar.
Applying the methods to NHANES showed a trend of

increasing diabetes with increasing BMI. For high blood
pressure, four valid weighted trend tests were significant,
while the two valid unweighted trend tests failed to

achieve significance. Fitting a logistic regression model
to the NHANES dataset for each outcome indicates that
the outcomes are at least moderately linearly associated
with the median of the BMI class. (Adding quadratic
terms did not significantly improve the model based on
a type III test.). Simulations indicate that most powerful
and type-I error controlled methods for binary outcomes
with linear alternatives are methods 6 and 9, depending
on the intercept of the model. Based on the weighted
prevalence estimates for diabetes and high blood
pressure, the intercept should be around 0.2 or less,
indicating that method 6 is preferred. Indeed, for
both outcomes, method 6 rejected the trend test, in-
dicating that the diseases are associated with increas-
ing BMI class.
While it is conceptually reasonable to force the effect

size for the reference group to be unity, methods with
this restriction were not valid. On the other hand, the
methods excluding the reference group seems counterin-
tuitive. Instead of having 4 data points, only the 3
non-referent points are included in the model. Yet, these
method were powerful when the effect sizes displayed
certain nonlinear trends.
The study includes a variety of simulations, but it is

subject to limitations. We considered various situations
that are common in practice in our simulations, but
there could be other situations that worth exploring in
the future. The situations that we considered assumed
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Fig. 12 Power for binary outcomes generated by Eq. (1) with a linear alternative of an odds ratio of 1.05 for a unit increase in BMI. The setup
denotes a weak linear alternative in which the log-odds of the event increases linearly at a moderate rate with increasing BMI
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Fig. 13 Power for time-to event outcomes generated by Eq. (6) with a hazard ratio of 1.01 for a unit increase in BMI. The setup denotes a weak
linear alternative in which the logarithm of the hazard ratio increases linearly but slowly with increasing BMI
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Fig. 14 Power for time-to event outcomes generated by Eq. (6) with a hazard ratio of 1.05 for a unit increase in BMI. The setup denotes a weak
linear alternative in which the logarithm of the hazard ratio increases linearly at a moderate rate with increasing BMI

Brownstein and Cai BMC Medical Research Methodology            (2019) 19:2 Page 13 of 14



observations to be independent. Correlated data could
arise in practice and it will be of interest to examine the
performance of the various tests with correlated obser-
vations in future research.
In conclusion, under most situations, trend tests be-

tween an ordinal covariate and an odds ratio or hazard
ratio should employ either simple unweighted regression
or regression weighted by either the stratum sample size
(for a small effect size) or the inverse variance of the
logarithm of the effect size (for a large effect size). If
there is reason to believe that the relationship between
the ordinal covariate and the effect size increases more
quickly than a linear relationship, it would be best to fit
the data to a regression model without the reference
group and weighted by either the stratum sample size or
the inverse variance of the logarithm of the effect size.

Conclusions
The hypothesized relationship between the discretized
covariate and the outcome should be considered care-
fully to ensure that trend tests have adequate type I error
and power. Trend tests based on regression models
forced to pass through the point with the null value at
the median for the reference group are intuitive but not
statistically valid. For most cases, we recommend using a
trend test based on either simple unweighted regression
between the discretized covariate and the outcome, or
regression weighted by either the stratum sample size or
the variance of the logarithm of the effect size. The
importance of the study is its ability to serve as a guide
for future analysts throughout medicine, epidemiology,
and public health to select an appropriate trend test for
binary or time-to-event outcomes and ordinal covariates.
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