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Abstract

Background: The reduction in the cost of sequencing a human genome has led to the use of genotype sampling
strategies in order to impute and infer the presence of sequence variants that can then be tested for associations
with traits of interest. Low-coverage Whole Genome Sequencing (WGS) is a sampling strategy that overcomes
some of the deficiencies seen in fixed content SNP array studies. Linkage-disequilibrium (LD) aware variant callers,
such as the program Thunder, may provide a calling rate and accuracy that makes a low-coverage sequencing
strategy viable.

Results: We examined the performance of an LD-aware variant calling strategy in a population of 708
low-coverage whole genome sequences from a community sample of Native Americans. We assessed variant
calling through a comparison of the sequencing results to genotypes measured in 641 of the same subjects using
a fixed content first generation exome array. The comparison was made using the variant calling routines GATK
Unified Genotyper program and the LD-aware variant caller Thunder. Thunder was found to improve concordance
in a coverage dependent fashion, while correctly calling nearly all of the common variants as well as a high
percentage of the rare variants present in the sample.

Conclusions: Low-coverage WGS is a strategy that appears to collect genetic information intermediate in scope
between fixed content genotyping arrays and deep-coverage WGS. Our data suggests that low-coverage WGS is
a viable strategy with a greater chance of discovering novel variants and associations than fixed content arrays for
large sample association analyses.
Background
As compared to whole genome sequencing (WGS), at the
present time, genotype sampling is a more cost effective
strategy to identify variants associated with traits of inter-
est. Genome-wide association studies (GWAS) using fixed
content marker arrays represent a genotype sampling
strategy that has been successfully used in a number of
studies to identify SNPs significantly associated with
complex traits [1-3]. Additionally, by increasing the num-
ber of markers genotyped and using linkage disequilib-
rium to guide marker selection an increasing proportion
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of genomic variance can be interrogated during GWAS
[3]. The principal caveat of using fixed content arrays is
that there is a diminishing return on investment for
adding additional markers and a portion of the sequence
variation is expected to be poorly interrogated. Further,
variants that are specific to any population that are not
used to guide SNP selection, including variants that are
specific to a particular trait, are likely to be poorly in-
terrogated. Finally, trait-specific and rare variants may
be poorly imputed from the typed markers. Identifying
population-specific sequence variants and adding them to
the fixed content is a potential solution to this problem in
order to increase the effectiveness of GWAS. However, if
sequencing costs continue to decline, it will eventually
become more effective to employ sequencing techniques
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Figure 1 Sample depth of coverage. Histogram of the mean
sequencing read depth per sample for 641 samples. 88% of the samples
have mean depth less than 13, and 26% have depth less than 5.
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using the population of interest to find trait-associated
variants.
Even with exponential declines in the cost of next-

generation genomic sequencing, there are still difficulties
associated with using WGS to conduct association stud-
ies of complex traits because the moderate to small
effect sizes of variants typically involved in the etiology
of such traits requires large sample sizes. One approach
to increase the power of such studies without increasing
sequencing cost is to use whole-exome sequencing (WES),
in which only a small fraction of the genome is sequenced,
but at high coverage (i.e., high average number of se-
quence reads for a given base pair) [4,5]. A second
approach is to perform WGS, but reduce the overall
coverage. The success of this low-coverage strategy is
contingent upon the ability to locate variant sites and
accurately call genotypes when each site may only be
covered by a small number of reads (e.g., less than 5×
coverage). However, if variant calling in low-coverage
WGS is acceptable, the increased genomic landscape
sequenced relative to GWAS and WES allows for a greater
chance of discovering novel variants and associations.
The variant calling algorithms that are currently used

to measure genotypes from sequence data can be divided
into three groups, each using successively more informa-
tion. The simplest variant callers make use of the reads
collected at a single genomic position from a single sam-
ple, and apply a statistical model to determine the most
likely genotype at that position for that sample. The sec-
ond type of variant caller includes information from
multiple samples at a single site. In this case the multiple
samples provide a prior likelihood that the site is a vari-
ant, and the caller determines the most likely distribu-
tion of alleles given the data. Both of these methods are
implemented in the program GATK Unified Genotyper
[6,7]. The third type of caller uses multiple samples, but
also incorporates the observed correlation between nearby
variants, i.e. linkage-disequilibrium (LD), to improve calls.
The program Thunder, which is based on the MACH
imputation algorithm [8], uses a Hidden Markov Model to
identify genomic regions shared by different samples, and
uses this information in calling variants [9]. In [9], Li et al.
show that LD-based variant calling using Thunder
increases calling accuracy in low-coverage samples to the
point at which low-coverage approaches become viable.
Low-coverage WGS produces high quality genotype

calls for common polymorphisms (i.e., a minor allele
frequency > 5% in the population) where several of the
sequenced samples can be expected to have the minor al-
lele. The confidence with which rarer alleles are detected
depends on the quality of the sequence, the number of in-
dividuals in the sample, and the prior probability that the
allele exists. Low-coverage WGS detects more polymor-
phisms than can possibly be detected with existing fixed
content arrays but is not as good as deep WGS for
detecting with confidence rare alleles or alleles that
are specifically typed with fixed content arrays. The utility
of low-coverage WGS will be greatest for studying popula-
tions that have not been subjected to prior systematic
variant detection. Low-coverage WGS with ~4X coverage
currently costs between 1 and 6 fold more per sample
than fixed content genotyping arrays, depending on cover-
age. If the cost of WGS falls, the current relative economic
advantage of fixed content genotyping arrays is expected
to decline in favor of the more comprehensive WGS.
The current report is part of an ongoing family study to

identify sequence variants that predispose to substance
dependence in a community sample of American Indians
[10-14].
The specific aims of this report were to (1) validate the

low-coverage WGS approach by comparing different
variant calling approaches and the resulting variant calls
from low-coverage WGS (3-12X see Figure 1) to geno-
types for approximately 200,000 polymorphic variants
measured with a first generation Axiom Affymetrix Ex-
ome Chip array and (2) provide a preliminary demon-
stration of the utility of the called variant data obtained
from low-coverage WGS by investigating the kinship
structure and calculating founder allele frequencies for
this sample.

Results and discussion
Sample concordance
To evaluate the efficacy of variant calling methods the
results of each caller were compared to genotypes from
the fixed content exome SNP chip. Because the exome
chip is specifically constructed to contain low-frequency
markers, there is a subset of markers that have not been
validated by Affymetrix in known heterozygotes. An
initial comparison between exome chip genotypes and
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Thunder’s variant calls shows that for roughly 0.5% of
the non-monomorphic exome chip sites, concordance
is essentially zero, indicating a systematic failure of the
marker on the exome chip, with A and B alleles becoming
reversed. While this data could potentially be recovered
by reversing the A and B alleles in analysis, the chip
manufacturer recommends dropping this relatively small
number of markers. We therefore remove from consider-
ation any marker with a concordance less than 2% across
all samples (998 markers).
We define the concordance of sample S as CS =NS,m/

NS,v, where NS,v is the number of genotypes for sample S
that contain at least one non-reference allele on the
exome chip, and NS,m is the number of those genotypes
where the variant call matches the exome chip genotype.
For the purposes of this calculation, an explicit or impli-
cit missing genotype call from a given caller is interpre-
ted as a homozygous reference call.
These calculations revealed a number of notable trends

(see Figure 2a). First, increased information included in
the calling algorithm leads to an increased fidelity of
calling, with multi-sample calling outperforming single
(a)

(b)

Figure 2 Concordance with exome chip. Concordance between exome
positive rate (b). One point (at depth = 30.4, concordances between 96.7% an
is calculated only at the sites that are measured as non-monomorphic in the
sample calling, and LD-aware methods outperforming
both. The median concordance rates are 85.5% (single
sample), 90.4% (multi-sample), and 97.5% (LD-aware).
Second, the marked dependence on sample depth ob-
served with single sample and multi-sample calling is re-
duced for LD-aware calling. For samples with average
coverage less than two, single sample and multi-sample
callers fare poorly, with concordances dropping below 10
percent, whereas with Thunder calling, no sample has less
than 78.8% concordance. The median improvement of
LD-aware calling over the other methods is dependent on
depth; for samples with less than 5X coverage, the median
improvement is approximately 30%, decreasing to only 2%
for samples with greater than 10X coverage. Of note,
concordance rates for LD-aware calling were similar in
magnitude for variants inside and outside of coding
regions (data not shown).
In addition to overall concordance, we examined the

false positive rate for each sample and genotype caller,
defined as the fraction of variant sites for that sample
called with at least one non-reference allele by the geno-
type caller that are homozygous reference on the Exome
chip genotypes and genotypes from three variant callers (a) and false
d 98%) has been removed to expand the data region. The concordance
exome chip genotypes.
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Chip. As seen in Figure 2b, the overall false positive rate
for all callers is generally less than 0.03, with only a
slight dependence on depth. The median values across
sample are 0.02 for multi-sample calling, 0.01 for single-
sample calling, and 0.003 for LD-aware calling. Surpris-
ingly, in this low-coverage data, multi-sample calling
produces a higher false positive rate than the single sam-
ple approach, but both are outperformed by LD-aware
calling. Note that real false positive rates in a sequencing
experiment will likely be higher than those reported
here, since we are restricting the current data set to the
well-behaved variants that are part of a genotyping chip.

Site calling
Imputation uses correlations between nearby variants to
help call genotypes. Decreased variant frequency causes
uncertainty in these correlations and therefore lower
fidelity of calling. To investigate the role of variant
frequency, we examine the fraction of variant sites discov-
ered by Thunder as a function of frequency and compare
with the variant sites discovered by multi-sample Unified
Genotyper. We define a variant site as a site at which at
least one alternate allele is detected from among all
samples in the exome chip data. We consider that site to
be found by a variant caller if at least one alternate allele is
called at that position, regardless of whether or not any
genotypes match.
Figure 3 displays the fraction of sites discovered within

a set of frequency ranges. For variant frequencies greater
than 0.01, both multi-sample Unified Genotyper and
Thunder perform well, finding greater than 97% of the
Figure 3 Frequency dependence of site finding. The fraction of
variant sites found is dependent on both the frequency range of the
variant, and the method used to call variants. The GATK Unified
Genotyper in multisample mode finds more variants at all frequency
ranges, but the disparity is most pronounced at the lowest frequencies,
where the Unified Genotyper finds approximately 50% more variant
sites than THUNDER. Single-sample Unified Genotyper calls follow a
model that assumes a constant probability of finding any site in a
single sample.
variant sites, with slightly more variants being discov-
ered by Unified Genotyper. As the frequency decreases,
both methods degrade in performance, however, Thunder
degrades more quickly. At the lowest frequencies, where
the minor allele count in the exome chip data is 1, Unified
Genotyper identifies approximately 57% of the variant sites,
while Thunder identifies only 41%. Note that there is
no contradiction between higher concordance rates for
Thunder and better variant finding with Unified Genotyper,
because LD-based methods are less adept at finding
variants with a lower minor allele frequency. When a site
is not noted as variant by Thunder, this is equivalent to a
reference call for all samples. Because these variants have
preferentially low frequencies, most of these reference
calls will be correct, and the concordance is largely
unaffected.
When Unified Genotyper is run in single-sample

mode, the probability of finding each variant in a given
sample is independent of the frequency of that variant in
other samples. The overall probability of finding a site,
then, will be increased for higher frequency sites since
each sample with the variant provides an independent
chance of finding the site. Assuming that the probability
of finding any given site in a single sample is p, and that
the frequency of the variant site is f, the probability of
finding the site in the cohort is given by 1-(1-p) f. A
curve of this form is shown in Figure 3, and the single-
sample results follow its general shape.

Confounding effect of kinship
To provide preliminary evaluations of the utility of the
called variant data obtained from low-coverage WGS,
we attempted to estimate kinship coefficients between
all pairs of individuals in the present sample using the
called variant data and to generate allele frequencies for
the identified loci.
The ability of LD aware genotype calling methods to

reliably impute genotypes will be affected by the presence
of closely related relatives and the effective population
size. This study has both closely related and cryptically
related individuals from a Native American tribe as well as
population admixture with individuals of known European
ancestry. Inclusion of close relatives should improve the
ability of LD aware imputation algorithms to call geno-
types on specific haplotypes. In contrast, we would expect
that the level of admixture present in the study population
would effectively reduce the ability of LD aware algo-
rithms to call genotypes. Thus, there is the potential
that the results from the present study may not be gene-
ralizable to other populations. Because correlations be-
tween array generated genotypes and imputed genotypes
from sequence data appear to be stable as a function of
coverage, the confounding inclusion of relatives and
admixture do not appear to be a significant factor. An
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analysis of a nearly-unrelated subset of the data would not
be directly comparable to our original results, because of
the large number of samples that must be removed even
to limit relations to cousin-level.
During the process of confirming the relationships

between subjects and their self-reported familial rela-
tionships, we observed a trend that suggests a possible
impact of including subjects with different degrees of
relatedness. Figure 4 shows the distribution of kinship
coefficients calculated from imputed genotypes using
PREST [15] for groups that are expected to have the
same kinship coefficient. There is a trend that the mea-
sured kinship coefficient is less than expected for closely
related individual and greater than expected for distantly
related and unrelated individuals. This suggests an uncor-
rected bias in how genotypes are imputed and/or that
individuals have cryptic relationships. A comparison with
kinship coefficients calculated from genotypes for a set of
Figure 4 Empirical kinship coefficents. Histograms of empirical
kinship coefficients calculated from THUNDER genotypes. Each row
contains all pairwise values that have the noted value for the pedigree-
defined kinship coefficient. Thus, the lowest histogram ( φped = 0.25)
contains all full sibling and parent–child relations, the next row up
contains grandparent-grandchild, avuncular, and half-sibling relations,
and so on.
common variants contained on the exome chip exhibited
greater than expected IBD sharing for all relative pairs
suggesting an influence of cryptic relationships (data not
shown). The greater than expected IBD sharing for close
relative pairs seen in the exome chip genotypes also sug-
gests the possibility of bias in how genotypes are imputed,
but this could also be the result of differences in content
between the selected set of variants from the WGS dataset
and the variants contained on the exome chip that were
used to estimate kinship. In either circumstance, the high
concordance rates between the WGS and exome chip data
indicates this bias has a minimal impact on individual
genotype calls.

Corrected allele frequencies
To estimate allele frequencies for this population, it is
necessary to correct for family structure. Simply counting
prevalence of alleles will result in an upward bias due to
inclusion of alleles that are identical by descent. One solu-
tion is measuring the prevalence in a subset of the samples
chosen with all pairs having a kinship coefficient calcu-
lated from the pedigree structure below a specified thresh-
old. Using a subset of less related individuals, however,
will increase error due to sampling from a smaller popu-
lation. A more powerful solution involves the use of
the Best Linear Unbiased Estimate (BLUE) of the allele
frequencies based on the observed alleles, and kinship
coefficients based on the pedigree structure [16]. Allele
frequencies were estimated using this method as imple-
mented in the package MQLS [17]. In the current data
set, MQLS-calculated corrections to the simple prevalence
frequencies are small, with a root-mean-squared correc-
tion across all variants of less than 1%. These corrections
are of similar direction and magnitude to those calculated
in a simple allele prevalence on a less related subset of the
cohort (kinship coefficient less than 0.1). The deviation
between these frequencies and the whole sample uncor-
rected frequencies correlates with the MQLS corrections
at r =0.65 indicating that MQLS approach is performing
as expected. This also provides further evidence that any
bias in genotype as suggested by the underestimation of
IBD sharing among closely related individuals using WGS
data is likely to have a minimal impact on genotype calls.
Figure 5a displays a two-dimensional histogram com-

paring MQLS-calculated allele frequencies versus the fre-
quencies from 1000 genomes for samples with European
ancestry [18]. Figure 5b shows a histogram of the fre-
quency differences between the two populations. In each
case, the frequencies displayed are those of the non-
reference allele rather than the minor allele. In each figure,
similar features can be observed. First, the distribution is
strongly peaked, mostly at very lopsided allele frequencies,
where the European and Native American samples agree
closely. Second, the distribution has wide tails of highly-



(a)

(b)

Figure 5 Allele frequencies in the NA Cohort. a). A two
dimensional histogram comparing allele frequencies in the Native
American cohort with those in European ancestry samples from
1000 genomes. The variants shown are the union of the two sets.
Color scales logarithmically with the number of variants as in the
colorbar above the image. b). One dimensional histogram of the
difference in allele frequency for the same variants as shown in (a).
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variant allele frequencies. Third, there is asymmetry
between the two populations with a greater number of var-
iants having a higher frequency in the European-ancestry
cohort than in the Native American group, reflecting the
admixture of the current Native American data set.

Conclusions
Low-coverage WGS represents a genotype sampling strat-
egy between fixed content SNP arrays and deep WGS, but
there are economic and coverage trade-offs between each
of these approaches. Because fixed content SNP arrays be-
came economically viable before either of the sequencing
approaches, much has been written about the proportion
of common sequence variants that can be imputed with
commonly used, fixed content SNP arrays (e.g. [19]). Cur-
rently, however, there is substantial interest in studying
increasingly rare variants in association studies of complex
traits, which has led to increased focus on WGS approa-
ches. Assuming that this is likely to continue and the costs
associated with WGS will continue to drop, WGS will
eventually prevail as the analysis method of choice leading
to the question of whether to pursue low-coverage or deep
WGS strategies.
Depth of coverage and calling technology are not

chosen independently when designing a sequencing
experiment. Rather, an experimenter with a fixed budget
must choose between fewer samples with higher coverage
and more samples with lower coverage. The ability of LD-
based calling makes the latter option viable, but previous
studies do not explicitly show it to be preferable.
To make clear the viability of low-coverage sequen-

cing, the present study evaluated variant calls from
low-coverage sequence data using the LD-aware calling
software Thunder and the single- and multi-sample calling
options in Unified Genotyper. The results demonstrated
increased fidelity of variants calls made using the LD-
aware Thunder relative to calls made using multi-sample
GATK to genotypes generated from a fixed content SNP
microarray. Nonetheless, this increased fidelity came at
the cost of failing to identify a number of very low
frequency variants (i.e., <0.5%). Despite this trade-off, we
conclude that low-coverage sequencing still presents spe-
cific advantages over deep sequencing when economic
conditions are fixed. These advantages are best illustrated
using a hypothetical example in which we assume that
equivalent genotype concordance could be achieved with
LD-aware calling at 5x coverage and multi-sample calling
at 15x coverage as suggested by Figure 2. In such a case,
as seen in Figure 3, the call rate of the lowest frequency
variants will be approximately 40%. However, for a fixed
cost, three times more samples can be sequenced at low
coverage than at high coverage. Even assuming, in a worst
case, that the LD-aware call rate will still be 40%, and
further assuming that multi-sample variant calling at 15×
coverage results in 100% call rate for the lowest-frequency
variants, the total number of low-frequency variants dis-
covered will still be greater in the lower coverage sample.
This advantage becomes even more apparent if the
higher-coverage sample is sequenced at a depth of 30× or
greater.
Furthermore, the net effect of the ability to find rare

variants is unlikely to be felt in single-variant associ-
ation tests, where it is uncommon for sample sizes to
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be sufficient to detect a significant association. Rather,
burden tests, in which attempt to identify genes or path-
ways where more deleterious mutations are observed in
cases than controls (e.g. [20,21]) are expected to benefit
from the greater discover of rare variants.
In the present study, we have not attempted to com-

pare these variant callers across a full range of cohort
sizes and depths, and cannot therefore generalize that
any set of parameters will produce similar results using
LD-aware calling. However, the performance of LD-
aware calling as a function of these parameters has
been addressed via extensive simulations in [9], revealing
several trends. First, genotype concordance is roughly
independent of sample size (above 30) for coverage above
6X. Second, as coverage decreases, the concordance de-
creases for smaller cohorts; at 2X coverage, 200 samples
are required to produce concordance equivalent to the 6X
case. Finally, the SNP discovery rate is far more sensitive
to cohort size than concordance.
To provide a preliminary demonstration of the utility

of the called variant data obtained from low-coverage
WGS, we used these data to confirm the kinship struc-
ture of the study pedigrees, and compared calculated
founder allele frequencies for this sample to those repor-
ted in the 1000 genomes project for European ancestry
participants. Though this would represent only a very
preliminary use of low-coverage WGS data in a gene-
finding expedition, this illustration suggests that these
data are appropriate for further analysis in linkage and
associations studies.
Though secondary to scientific concerns, the costs of

storage and computation must also be considered when
choosing sequencing and variant calling strategies. Stor-
age costs do not actively influence the choice of high or
low coverage WGS because the storage scales with total
number of reads, while the choice between high and low
coverage is whether those reads will be distributed
across few or many samples. The aligned sequence read
data for this project with 708 samples with an average
read depth of 7.9 was 21 terabytes. In a high-coverage
sequencing project with the same sequencing budget,
the storage would be approximately the same, but fewer
samples would be covered. The storage of variant data
that is used by each approach for association analysis is
roughly proportional to the product of the sample size
and number of variants typed or imputed, and it is typic-
ally negligible compared to the read data. In this data set
the compressed VCF files with 708 samples and 21.7 M
variants require 65 gigabytes or 4.23 bytes per genotype,
while the exome chip data in binary plink format for 730
samples for 225115 SNPs require 46 megabytes or 0.28
bytes per genotype. The main difference between the
per-genotype size of the data files is the amount of
stored supporting information and compression.
There is also a substantial greater cost required for the
infrastructure required by both low-coverage and deep
WGS analysis than fixed content genotype array analysis.
The infrastructure for imputation with low-coverage
WGS adds substantially to the cost. In this experiment
the average cpu time for producing all-site single sample
GATK Unified genotyper calls was 32 hours using 4
cores of a single node in a linux cluster with 122 blade
servers, each with 8-core 2.80 GHz Intel processors,
2×4 M L2 cache (Model X5560) and 48 GB of shared
memory. The same cluster used approximately 25000
CPU hours to run Thunder on all 708 samples. More
than 300 Terabytes of disk space would have been used
had metafiles generated during processing not been
regularly deleted.
Two aspects of Thunder may limit its use in some

situations. First, Thunder only operates on SNPs, and
does not call indels. Second, Thunder only works on
autosomal chromosomes. Neither of these limitations is
fundamental in nature, but overcoming each will require
further development. Because of the advantages of low-
coverage WGS described above it is likely that it will
increasingly be used because of its economic advantages
over deep WGS.
The present report demonstrates the viability of low-

coverage WGS for identifying variants associated with
complex traits and describes specific advantages this
approach might possess over deep WGS. Notably, add-
itional improvements in variant calling routines are likely
to occur, which could further improve data generated
from low-coverage WGS. For example, while LD-based
calling improves the overall call quality of low-coverage
sequencing, low-coverage does not preclude the use of
multi-sample techniques to discover low-frequency vari-
ant sites. Though we have not explored this possibility, an
approach merging multi-sample results at low frequency
with LD-based results at a higher frequency may be better
than either method alone. Because LD-aware calling relies
on correlations of nearby variants, its performance may be
enhanced in a data set with many related samples, as in
the current study. However, the performance of LD-based
calling in settings with unrelated data [9] suggests that this
effect is not vital to the conclusions presented here.

Methods
Participants
The protocol for the study was approved by the Scripps
Institutional Internal Review board and Indian Health
Council, a tribal review group overseeing health issues for
the reservations where recruitments took place. Written
informed consent was obtained from each participant
after study procedures had been fully explained. Partici-
pants were compensated for their time spent in the study.
Participants who were of Native American Heritage were
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targeted for study and recruited from eight geographically
contiguous reservations with a total population of
about 3,000 individuals. Participants who were mobile
and between the ages of 18–82 years were recruited
using a combination of a venue-based method for sampling
hard-to-reach populations [22,23] and a respondent-driven
procedure [24], as reported previously [25]. Demographic
characteristics of this Native American population have
been reported previously [25].

Exome chip genotyping
Previously isolated DNA samples were measured for
quality control and concentration using a Nanodrop spec-
trophotometer. Quality control metrics suggested by the
Affymetrix Axiom 2.0 Assay Manual Workflow documen-
tation were adopted and applied. Samples were expected
to achieve an A260/280 between 1.8 and 2.2, an A260/230
greater than 1.5, and a measured concentration 50 ng/μl
or greater. Samples that passed these quality control met-
rics were randomly assigned to 96-well plate positions and
diluted to 50 ng/μl; each plate included an Affymetrix-
provided internal control gDNA sample at this same con-
centration. All plates were stored at −20°C until submitted
for fragmentation, hybridization, labeling, and scanning.
The Axiom 2.0 Assay Automated Workflow User Guide
was followed to prepare all DNA samples for geno-
typing. The Beckman Coulter Biomek FXP Automated
Laboratory Workstation and Affymetrix GeneTitan MC
Instrument were used for all sample preparation, hybri-
dization, ligation, washing, staining and scanning of the
samples. Briefly, 200 ng of gDNA is amplified for 23 hours
at 37°C using Module 1 of the Axiom 2.0 Reagent Kit.
After amplification, the samples are fragmented using
Module 2 of the Axiom Reagent Kit. The fragmented
DNA is precipitated overnight at −20°C. The precipitated
DNA is centrifuged for 40 min at 4°C at 3200 × g (4000
RPM) in an Eppendorf 5810R centrifuge. Re-suspension
and hybridization preparation of the sample is carried out
using Module 2 of the Axiom Reagent Kit. Following
preparation of the hybridization plate, the samples are
denatured and transferred to a GeneTitan hybridization
tray. The Axiom array plate and hybridization tray are
then loaded onto the GeneTitan MC Instrument. The
samples hybridize on the GeneTitan for 23.5 hours. Fol-
lowing hybridization, ligation and stain trays are prepared
and loaded onto the GeneTitan MC Instrument. Ligation,
washing, staining and scanning of the array is carried out
on GeneTitan MC Instrument. Initial sample and array
quality is assessed using the Affymetrix Genotyping Con-
sole Software. Variants are initially subjected to Affymetrix
quality control as described by Affymetrix [26]. A control
sample was included on all plates. Additionally, we ran 56
samples in duplicate; any variant with discordant results
across more than three of these pairs was also removed.
Hardy-Weinberg p-values were calculated using plink
[27,28] on a subset of 239 unrelated samples, and those
variants with a p < 10-10 were removed. Finally, three
samples were removed that had an apparent discordance
between reported gender and gender as calculated
using plink.

Whole genome sequencing
The DNA libraries were prepared according to Illumina
TruSeq™DNA Sample Prep protocol. Total cellular DNA
was sheared to sizes between 200 and 800 base pairs by
using a Covaris S2 sonicator according to the Illumina
TruSeq DNA protocol and then libraries were prepared
using the Illumina TruSeq™DNA Sample Prep Kit on
Tecan Freedom EVO 200 Automated Liquid Handling
System. Libraries were size selected for insert fragments
around 300 base pairs using Pippin Prep automatic
DNA size selection system (Sage Science). Libraries were
analyzed and quantified using a LabChip GX automated
electrophoresis system (Caliper) and diluted to 15 nM
concentration. The paired-end sequencing (2 × 100 cycles)
was performed on HiSeq2000 sequencers (Illumina). Ini-
tially each library was sequenced on a single lane of a flow
cell. The measured concentration of DNA in a library is
an unreliable predictor of the optimal amount of DNA
that should be loaded on a flow cell. During the course of
this experiment we converted to a strategy where 24
samples were pooled and run on multiple lanes of a flow
cell such that the optimal amount of DNA could be
determined to enable collection of the greatest amount of
quality sequence per lane.

Sequencing metrics
We define depth of coverage in WGS as the number of
mapped bases divided by the total length of the reference
genome; Figure 1 displays the distribution of sample
coverage. The central 80% of the samples are appro-
ximately evenly distributed between coverage of 3X and
12X. As basic quality control metrics, we examine the per-
cent of reads that map to the genome (median 91.925%),
and the percent that are correctly paired (median 88.325%).

Variant calling
Reads from whole genome sequencing were aligned
using BWA version 0.5.8c (each of the two fastq files is
used to create a sai file using bwa aln –t 4, then these
files are combined with bwa sampe –p illumina). Picard
1.48 was used to de-duplicate and sort the resulting
BAM files. GATK v1.0.5777 was used to realign near
indels (−et NO_ET –dt NONE). Following Picard Fix-
MateInformation, GATK was used to recalibrate BAM
quality scores using the –standard_covs argument to
CountCovariates (so that the bam is reclibrated on Read-
Gropu, QualityScore, Cycle, and Dinuc). For samples that
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ran on more than one lane, we performed these calcu-
lations on each lane individually. We calculated variant
calls independently for each BAM file using GATK
Unified Genotyper and following the best-practices for
low-coverage samples [7,29]. To guard against sample
misidentification, we compared these initial variant calls
to the results of the exome chip genotyping. Given an
arbitrary sample’s exome chip results, and another sam-
ple’s WGS variant calling, we define a quantity M

M≡
Y

markers

L Df jGTECg
f GT

where L{D|GTEC }, the likelihood of the sequencing data
given the exome chip genotype is calculated by the
Unified Genotyper, and recorded in its PL annotation,
and fGT is the frequency of the exome chip genotype, as
estimated from the exome chip data. This quantity will
be maximized when the two samples are identical. We
calculate M for each pair of samples. Cases in which M
was maximized for an apparent mismatch were further
investigated using calculated kinship coefficients com-
pared to the known pedigree structure. In cases where
apparent mismatches could not be resolved, samples
were removed from analysis. For the samples that ran on
more than a single lane, BAM files were combined to
produce a single BAM file for each sample. This set of
files was used to perform three types of variant calling.
First, single sample variant calls were made using Unified
Genotyper v2.1-8 with low-coverage parameters (−stand_-
call_conf 4 –stand_emit_conf 0 –dcov 250). Second,
multi-sample variant calling across all samples, using
Unified Genotyper with the same parameters as the
single-sample call. Third, LD-aware variant calls were
calculated in a multi-stage process that initially creates
genotype-likelihood files (GLF) for single samples using
samtools-hybrid [30,31], creates initial haplotypes with
BEAGLE [32], and then runs Thunder using the BEAGLE
haplotypes as input. Specifically, samtools-hybrid is used
to create single-sample GLFs. This call is parallelized by
calling each region of 5 million base pairs separately. The
glfMultiples tool combines all of the sample GLFs for one
region into a single VCF. The regions are combined into
per-chromsome multi-sample VCFs, and variants are fil-
tered to include only passing variants using a combination
of infoCollctor and vcfCooker. Each single-chromosome
multi-sample VCF is split into groups of 10000 variants,
with an overlap of 1000 variants. These groups are each
run through BEAGLE for 50 iterations, and then re-
attached to chromosomal VCFs using ligateVCF. Again,
the chromosomal VCFs are split into groups of 10000
variants with an overlap of 1000. Each of these VCFs
(containing all samples) is used as input to thunder,
and the resulting phased VCF files are again joined at
the chromosome scale using ligateVCF. This pipeline
is run with a version of UMAKE [33] that has been
modified to fit the local computing environment. The
distribution of UMAKE also contains the intermediary
scripts mentioned above, such as vcfCooker, and liga-
teVCF. At no time in the process is pedigree informa-
tion of the samples taken into account.
This variant calling activity was performed on 708 sam-

ples. However, only a subset of the samples had measured
genotypes using the Axiom Exome Chip, so the final
comparisons were carried out using the 641 samples
in common.

Confounding effects of kinship and allele frequency
correction
Kinship coefficients for all pairwise individuals were
generated from exome chip genotypes and sequence
data were estimated using PREST-plus v4.09 [15].
For calculation of the allele frequencies given the pedi-

gree information, initially KinInbcoef v1.1 is used to create
kinship coefficients from the known pedigree structure in
the proper format for MQLS. Then MQLS v1.5 is used
with option 1, and all samples with unknown phenotype.
With MQLS option 1, the unphenoytped samples are used
in the estimate of the allele frequency.
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