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SUMMARY

This paper presents a new class of graphical and numerical methods for checking the
adequacy of the Cox regression model. The procedures are derived from cumulative
sums of martingale-based residuals over follow-up time and/or covariate values. The dis-
tributions of these stochastic processes under the assumed model can be approximated
by zero-mean Gaussian processes. Each observed process can then be compared, both
visually and analytically, with a number of simulated realizations from the approximate
null distribution. These comparisons enable the data analyst to assess objectively how
unusual the observed residual patterns are. Special attention is given to checking the
functional form of a covariate, the form of the link function, and the validity of the pro-
portional hazards assumption. An omnibus test, consistent against any model misspecifi-
cation, is also studied. The proposed techniques are illustrated with two real data sets.

Some key words: Censoring; Goodness of fit; Link function; Omnibus test; Proportional hazards; Regression
diagnostic; Residual plot; Survival data.

1. INTRODUCTION

The proportional hazards model (Cox, 1972) with the partial likelihood principle
(Cox, 1975) has become exceedingly popular for the analysis of failure time obser-
vations. This model specifies that the hazard function for the failure time T associated
with a p x 1 vector of covariates Z takes the form of

\(t;Z) = \(t)exp(P'0Z), (1-1)

where A<,(.) is an unspecified baseline hazard function, and /30 is a p x 1 vector of
unknown regression parameters.

Let C denote the censoring time. Assume that Z is bounded and that T and C are
independent conditional on Z. Suppose that the data consist of n independent repli-
cates of (X,A,Z), where X = min(T, C), A = I(T^C), and / ( . ) is the indicator
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function. Then the partial likelihood score function for 0O is

U(0) = £A,{Z1-Z(P,XI)}, (1-2)

where

2(0,1) = t Yl(t)txV(0'Z^Zl/fJ r,(0exp(/?'Z,), Y,(t) = I(X,> t).
/

For future reference, we denote the denominator of 2(0, t) by Sm(0, t). The maximum
partial likelihood estimator 0 is the solution to the estimating equation U(0) = 0.
Under some mild regularity conditions (Andersen & Gill, 1982), the random vector
J*(P)(P — 0O) is asymptotically zero-mean normal with an identity covariance matrix,
where J(0) is minus the derivative matrix of U(0).

Model (11) may fail in three ways: (i) the proportional hazards assumption, viz. the
time invariance of the hazard ratio A(?;Z)/A0(;), does not hold; (ii) the functional
forms of individual covariates in the exponent of the model are misspecified; (iii) the
link function, viz. the exponential form for the hazard ratio, is inappropriate. The
model misspecification can have detrimental effects on the validity and efficiency of the
partial likelihood inference (Lagakos & Schoenfeld, 1984; Struthers & Kalbfleisch,
1986; Lagakos, 1988; Lin & Wei, 1989).

Numerous graphical and analytical methods have been suggested for checking the ade-
quacy of Cox models. A partial review of the contributions in this area was given by Lin &
Wei (1991). Many of the existing methods are related to the so-called martingale residuals.

To describe the martingale residuals, we define the counting processes N^t) =
A,/(Ar, ^ t) (i = 1,...,«). These processes have the intensity functions Yj(t)\0(t) exp (P'QZJ)
(i = 1,...,«). The differences between the counting processes and their respective inte-
grated intensity functions,

M,(t) = Nt{t)- f V ^ e x p ^
Jo

are martingales. The martingale residuals are defined as

MM = N£t) - f' Y,(u) exp 0'Z,) dK^(u) (i = 1,.. . , n),
Jo

Ao(0= ['£"=' dN'(u

Jo SM(0,u)

where

For convenience, we denote Af,(oo) by M,. The martingale residual Mt(t) can be inter-
preted as the difference at time / between the observed and expected numbers of events
for the /th subject. These residuals have some properties reminiscent of ordinary resi-
duals in linear models. Most notably, for any /, IM,(() = 0, where the summation is
over the range i — 1,...,«, and

E{M,(t)} = cov{M,(t),Mj(t)} = 0 (/ * ; )
in large samples.

The score function (1-2) can be written as U(0,oo), where

,t) = t \'{Zi-Z(0,s)}dNi(s).
.=i Jo

Note that U(0,i) ='ZZiMi(t)> where the summation is over i= ! , . . . , « , which is a
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function of the martingale residuals. We call U0,t) = (£/,(/?,t),.. .,Up0,t))' the
empirical score process. The increments in this score process are the well-known par-
tial residuals introduced by Schoenfeld (1982).

The martingale residuals and their transforms can be used to detect model depar-
tures (Barlow & Prentice, 1988; Therneau, Grambsch & Fleming, 1990). For example,
plots of the martingale residuals against covariate components provide useful clues on
appropriate functional forms of covariates in the exponent of the model. Also, plotting
the score process versus follow-up time may reveal violation of the proportional
hazards assumption. Interpreting the results from such residual plots, however, can be
quite challenging. It is often difficult to conclude whether a trend exhibited in a resi-
dual plot reflects model misspecification or is a phenomenon that is likely to occur
even when the model is correctly specified.

In the present paper, we offer an objective graphical solution to model checking.
Our approach is based on various partial-sum processes of the martingale residuals
and their transforms. Such processes include

Uj0,t) (t>O;j=l,...iP), £ / ( Z , , < x)M,- (-oo<x<oo;j=l,...,p),
1=1

where ZM is theyth covariate component for the tth subject. Under the null hypothesis
of no model misspecification, the distributions of these processes can be easily approxi-
mated through simulating certain Gaussian processes. Each observed process can then
be plotted along with a number of realizations from the corresponding Gaussian pro-
cess. The plots enable the data analyst to assess visually how unusual the observed pat-
terns are. To make the graphical inspection even more objective, some numerical
measures for the lack of fit may be attached.

The aforementioned graphical procedures are useful during the stage of model build-
ing. In some applications, however, such marginal plots may not be highly informative
due to the nonlinear nature of the model and nonorthogonality of covariates. Thus, there
is a need for omnibus lack-of-fit tests, which are consistent against any departures from
model (11). In this paper, we develop such a test based on the martingale residuals.

The new techniques for model checking are described in §2. The underlying theor-
etical developments and computational methods are relegated to the appendices. In § 3,
we provide illustrations with the Mayo liver disease data (Fleming & Harrington,
1991, pp. 359-75) and the Stanford heart transplant data (Miller & Halpern, 1982). In
§ 4, generalizations to the settings of time-dependent covariates and other relative risk
models are discussed.

2. MODEL CHECKING TECHNIQUES

2 1 . General
It is easier to approximate the distribution of a summary statistic from a group of

residuals than those of individual residuals. In this section, we derive diagnostic
methods for the Cox model by grouping the martingale-based residuals cumulatively
with respect to follow-up time and/or covariate values. These partial sums of residuals
are special cases of the following two classes of multi-parameter stochastic processes:

W,(t,z) = £f{Z,)I(Z, < z)M,(t), (2-1)
.=1
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Wr{t, r) = £ /(Z,)/(/?'Z,. < r)M,.(0, (2-2)
1=1

where / ( . ) is a known smooth function, z = (z,,.. . , z^)' e /?', and the event {Z, ^ z}
means that all the p components of Z, are no larger than the respective components of
z. If model (11) holds, these processes will fluctuate randomly around zero. In §2-2,
we show how to approximate their null distributions.

2-2. Null distributions of Wz and Wr

The process W2(t,z) is a smooth function of /?. By the Taylor series expansions
of Wz(t,z) and U{0) at 0O and some simple probabilistic arguments, the process
n~*W2(t,z) is seen to be asymptotically equivalent to the process n~'Wz(t,z), where

[ z)-g(0o,u,z)}dMl(u)
i=\ Jo

- t ['Yk(s)exp(0'QZk)f(Zk)I(Zk ^ z){Zk - Z(P0,s)}'X0(s)ds
k=\ JO

i). (2-3)
i=i Joo

In (2-3), Z(P, t) is the limit of Z(/3,0 and g(/3, t, z) is the limit of
L. Yk(t)exp((3'Zk)f(Zk)I(Zk ^ z)

It is proved in Appendix 1 that n~*Wz(t,z) converges to a zero-mean Gaussian pro-
cess. We now show how to approximate the limiting distribution through Monte Carlo
simulations. If we knew the stochastic structure of the martingale process M,(u), we
could easily simulate W2 after replacing the unknown quantities in (2-3) by their
respective consistent estimates. The distributional form of M,(u), however, is
unknown. One way to tackle this problem is to replace M,{u) in (2-3) by a similar pro-
cess, say M,(u), which has a known distribution. Note that the variance function of
M,(u) is E{N,(u)} (Fleming & Harrington, 1991, Lemma 2.3.2, Theorem 2.5.3). Thus a
natural candidate for M,{u) is N,{u)Gh where ./V,(w) is the observed counting process
and {G,,l= l,...,n} denotes a random sample of standard normal variables. Upon
replacing (30, \(s)ds, Z, g and {M,}(.) in (2-3) by $, dAo(s), Z, g and {N,(.)G,},
respectively, we obtain

Wz(t,z) = £/(*, < 0^/{/(Z/)/(Z, ^ z)-g(f3,Xl,z)}Gl

- t \'Yk(s)cxp0'Zk)f(Zk)I(Zk ^ z){Zk - 20,5)}'
*=i Jo

(2-4)
i=\

Although individual M,(u) may not be Gaussian, we show in Appendix 1 that the con-
ditional distribution of / j " ^ ' 2 ' given the observed data {Xh Ah Z,} is the same in the
limit as the unconditional distribution of n"^'((rZ). In the sequel, {XhA,,Z,} are
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regarded as fixed for Wz. To approximate the distribution of Wz, we simulate a num-
ber of realizations from Wz by repeatedly generating normal random samples {G,}
while holding the observed data {A1,, A,, Z,} fixed.

Similarly, it is shown in Appendix 2 that in large samples the distribution of Wr(t, r)
can be approximated by that of Wr(t,r), where Wr(t,r) is obtained from (2-4) by sub-
stituting I0'Z,^r) for I(Zi^z) ( /= l , . . . , n ) . Again, one may approximate the
distribution of Wr through simulations.

In §2-3-2-6, we develop model checking techniques by considering some special
cases of the Wz and WT processes. The following notation will be used: a capital letter
(e.g. Wz or Sz) refers to an original process or statistic, a small-case letter (e.g. wz or sz)
to its observed value, and the corresponding quantities under the Gaussian approxi-
mations are indicated by '"' (e.g. Wz, wz, Sz and sz).

2-3. Checking the functional form of a covariate
Therneau et al. (1990) showed that a smoothed plot of the M, versus a covariate

omitted from the fitted model provides approximately the correct functional form to
be placed in the exponent of the Cox model if the omitted covariate is uncorrelated
with the covariates in the model. Unfortunately, it is not clear how much confidence
one can have in such a scatterplot smoother. In fact, different smoothing techniques or
even the same technique with varying values of the smoothing parameter may result in
quite distinct smoothers.

Here, we suggest a less subjective approach. Instead of plotting the raw martingale
residuals, one plots the partial-sum processes of the M,,

£ (7= !,...,/>).
1=1

Note that Wj(x) is a special case of Wz{t,z) with/( . ) = 1, t = oo and zk — oo (for all
k^j). According to the general results presented in §2-2, the null distribution of
Wj{.) can be approximated through simulating the corresponding zero-mean Gaussian
process Wj(.). To assess how unusual the observed process w,(.) is under model (11),
one may plot it along with a few, say 20, realizations from the Wj{.) process (see
examples in § 3).

To further enhance the objectivity of the new graphical technique, one may comple-
ment the residual plot with some numerical values which measure the extremity of
Wj(.). Since Wj(.) fluctuates randomly around zero under the null hypothesis, a
natural numerical measure is s, = sup* | ws(x) |. An unusually large value of $,- would
suggest that the functional form for Z; may be inappropriate. The /rvalue, pr (5, ^ Sj),
can be approximated by pr (Sj ^ s/), where 5, = sup.,. | Wj(x) |. Note that the calculation
of pr (SJ^SJ) is conditional on {Xh A,-, Z,}. The results in Appendix 1 indicate that
pr (Sj ̂  sj) converges almost surely to pr (5, ^ Sj) as n —* oo. In turn, pr (Sj ̂  Sj) can be
estimated by generating a large number of normal samples {G,}. As justified in Appen-
dix 3, Sj is a reasonable test because it is consistent against incorrect functional forms
for Zj if there is no additional model misspecification and if Z, is independent of all
other covariates.

When the foregoing analysis shows that vv,(.) is too extreme, an appropriate functional
form for Z, may be identified from the observed pattern of Wj(.) or from the scatterplot
smoother of the raw martingale residuals. This point will be further elaborated in §3.
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2-4. Checking the link function
To check the exponential link function, we consider the following special case of the

Wr{.,.) process,

The null distribution of this process can be approximated by the zero-mean Gaussian
process W,(x). As in §2-3, one may plot the observed process w,{.) along with a few
realizations of W, (.), and supplement the graphical display with an estimated /rvalue
for supx | w,{x) |. Note that the w, plot resembles the residual plot against fitted values
for checking the linearity in the classical linear model. An unusual pattern of w,(.)
would suggest an alternative link function. As shown in Appendix 3, the sup* | W,{x) \
test is consistent against incorrect link functions in the form of g((3*'Z), where g is not
exponential and /?* is the limit of J3.

25. Checking the proportional hazards assumption
If Z is a dichotomous variable, the standardized score process J~*([3)U((3,i) is

asymptotically equivalent to the Brownian bridge B°, and the corresponding supre-
mum test is consistent against nonproportional hazards alternatives (Wei, 1984). For
p $s 1, each of the proportional hazards test statistics,

has the distribution of sup0Su^, | B°{u) | asymptotically if {V(t)}jk = 0 (j #= k) for all t,
where V{.) is the limiting covariance matrix for n~2U((30,.) (Therneau et al., 1990).
This general result is of limited practical use, however, because the assumption on
V(.), which essentially requires the independence of covariates, usually fails.

Note that U((3,t) is a special case of Wz{t,z) with z = oo and f(x) = x. Thus the
results described in § 2-2 can be used to simulate the distributions of

The resulting /rvalues are valid asymptotically regardless of the covariance structure
V(.). One can also conduct graphical inspections of the proportional hazards assump-
tion by comparing the observed score processes with the simulated ones.

For assessing the overall proportionality, it is natural to consider the test statistic

sup||t/0M|| or sup£{j^/3),y}*IW')l-

As shown in Appendix 3, such tests are consistent against the nonproportional hazards
alternative: A(/;Z) = Ao(/)exp{0(f)'Z}, where 6{t) is not time-invariant. The powers
tend to be high if #(.) is monotone.

2-6. An omnibus test
With/( . ) = 1, the W£.,.) process becomes

Plotting the W0(t,z) process versus / and z simultaneously would permit a global
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assessment of the model adequacy; however, high-dimensional graphics is still in its
infancy. Since the null distribution of the Wo{.,.) process is centred around zero, it is
natural to construct a lack-of-fit test based on the statistic So — sup, z\W0(t,z)\. An
extreme value of s0 would indicate model misspecification. The p-value, pr(S0 ^ s0),
can again be estimated through simulations. Because the supremum is taken over the
entire product space of the follow-up time and covariates, the So test is consistent
against any departures from model (11), as is proven in Appendix 3.

Schoenfeld (1980) proposed a chi-squared goodness-of-fit test by comparing the
observed and expected numbers of events in cells arising from a partition of the Car-
tesian product of the range of covariates and the time axis. A key criticism of this
approach has been its arbitrariness in partitioning. The relationship of our omnibus
test with Schoenfeld's is analogous to that of Kolmogorov's supremum test versus
Pearson's chi-squared test for a hypothesized continuous distribution.

27. Simulation experiments
From our numerical studies, we have found the aforementioned Gaussian approxi-

mations to be satisfactory for practical sample sizes. In one key experiment, we assumed
the Cox model X(t;h) — exp(f30h), where h = 0,l,...,9 with equal proportions, and gen-
erated censoring times from uniform (0, r). For /30 = 0-2, r = 3, n = 50 and significance
level of 005, the sizes of three supremum tests, sup, z | W0{t, z) |, supx | W, (x) | and
sup, | U((3, t) |, were estimated at 004, 004 and 005, respectively. In this and all other
studies, we used 1000 realizations of the Gaussian process with 1000 replications of the
data. To evaluate the sup^ | W,(x) | test, we adopted the same set of experimental par-
ameters except that X(t;h) = exp(-0-2h+ 0-1 h2). The estimated size was 004. Addi-
tional experiments confirmed that the supremum tests did indeed preserve the size well.

Our numerical studies have also indicated that the proposed supremum tests are sen-
sitive to model misspecification. For example, when h2 is omitted from the true model
X(t;h) = exp(0-5/i — O-l/i2), the estimated powers for the tests sup^ | Wi(x) |, or equiv-
alently sup^ | W,(x) \, and sup,z | W0(t,z) | with the 0-05 significance level were, respect-
ively, 0-85 and 079, for n = 50 and 25% uniform censoring. Schoenfeld's test which
partitions the time axis into two intervals (0, 0-5) and (0-5, oo) and h into three subsets
(0,1,2), (3,4,5) and (6,7,8,9) had power of about 0-63. Further partitioning would
lead to unacceptably small cell counts, while splitting h into two categories would
render the test completely insensitive to the quadratic trend. The optimal test in this
case is the partial likelihood score test for testing no h2 effect. Its power was estimated
at 0-96. Obviously, this is an unfair competitor since the score tests are designed for
specific and nested alternatives. To study nonproportional hazards alternatives, we
generated failure times from the Weibull model with density X(t;h) — (yh)t'rh~\ For
7 = 0-2, T = 5, n = 50 and the 005 significance level, the estimated powers of the
sup, | U0, t) | and sup,z | W0(t, z) | tests were 0-90 and 056, respectively. Schoenfeld's
test which partitions the time axis into two intervals (0,0-8) and (0-8, oo) and h into
three groups (0,1,2), (3,4,5) and (6,7,8,9) had estimated power of about 0-65.

3. WORKED EXAMPLES

3 1 . General
We now apply the proposed techniques to two familiar data sets. In our illus-
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trations, the p-value for the supremum-type test is always based on 10000 realizations,
though 1000 are recommended for general use. In each graphical display, the observed
process is indicated by a solid curve and 20 simulated processes are plotted in dotted
curves. The /rvalue for the supremum test is also shown on the graph. The dotted
curves are unavoidably crowded, though distinguishable when plotted successively on
an X-window.

3-2. Mayo liver disease data
The Mayo Clinic developed a database for 418 patients with primary biliary cir-

rhosis (PBC), a fatal chronic liver disease. These data are tabulated in Appendix D. 1 of
Fleming & Harrington (1991). As of the date of data listings, 161 patients had died.
The PBC data were used by Dickson et al. (1989) to build a Cox model for the natural
history of the disease with five covariates, log(bilirubin), log(protime), log(albumin),
age and oedema. The covariates are mildly correlated, all correlation estimates being
smaller than 0-35. The parameter estimates for the five covariates are, respectively,
0-871, 2-380, -2-533, 0039 and 0-859, the respective estimated standard errors being
0083, 0-767, 0-648, 0008 and 0-271. The Mayo PBC Model has played an extremely
important role in the liver disease research.

In Figure 4.6.5 of Fleming & Harrington (1991, p. 183), raw martingale residuals
from a model with the discrete covariate oedema and three of the four continuous
variables, log(bilirubin), log(protime), log(albumin) and age, are plotted against the
omitted variable. Approximate linearity of each of the four scatterplot smoothers pro-
vides support for the selected transformations, but departures from the linear fit in the
right-hand tail are noticeable for log(protime) and age due to some outlying covariate
values (Fleming & Harrington, 1991, p. 184). It is difficult to make an objective conclu-
sion from this figure regarding the functional forms.

s,
.£ °

E
-> O
«-• fN
-— I

i
3

10 15

Bilirubin

20 25

Fig. 1. Plot of cumulative martingale residuals versus bilirubin in the Cox
model with bilirubin, log(protime), log(albumin), age and oedema for the Mayo

PBC data.
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Fig. 2. Plot of cumulative martingale residuals versus log(bilirubin) in the Mayo
PBC Model with log(bilirubin), log(protime), log(albumin), age and oedema.

Figure 1 of the present paper plots the cumulative martingale residuals against bili-
rubin in the Cox model with bilirubin, log(protime), log(albumin), age and oedema.
The deliberate use of the untransformed bilirubin is clearly inappropriate. The fitted
model vastly overestimates the hazards for the very low end of the bilirubin values and
underestimates the hazards for most of the remaining bilirubin values. This pattern
suggests a logarithmic transformation. As shown in Fig. 2, log(bilirubin) is a much
better functional form, though by no means perfect. Additional analyses indicate that

o.

"0
o

1 I ^

v'^rv
/>-value = 0-002

4 6 8

Years of follow-up

10 12

Fig. 3. Plot of standardized score process versus time for log(protime) in the Mayo
PBC Model.

Downloaded from https://academic.oup.com/biomet/article-abstract/80/3/557/230970
by Univ of North Carolina at Chapel Hill Health Sci Lib user
on 28 March 2018



566 D. Y. LIN, L. J. WEI AND Z. YING

the functional forms for the remaining covariates are satisfactory, the p-values of the
supremum tests all being greater than 030. Furthermore, the plot of the cumulative
martingale residuals against the risk index ji'Z suggests that the exponential link func-
tion is reasonable, the /j-value of the supremum test being 0-272.

Figure 3 displays the score process for log(protime), revealing violation of the pro-
portional hazards assumption. This finding confirms an earlier conclusion reached by
Therneau et al. (1990), who used the critical values of supo^u^, \B°(u) | without adjust-
ing for the dependence of covariates. The same computer run gave p-values of 0114,
0-448, 0-473 and 0031 for the proportional hazards tests with respect to log(bilirubin),
log(albumin), age and oedema, respectively, indicating nonproportional hazards for
oedema. The overall test sup,If./-'(/?),.,.}' | U0,t) |, where the summation is over the
range j = 1, . . . , 5, yielded a /rvalue of 0009. The nonproportionality may be corrected
by introducing time-varying covariates or by stratifications, which we shall not pursue
here.

3-3. Stanford heart transplant data
The Stanford heart transplant data as of February 1980 were described by Miller &

Halpern (1982). Out of the 157 patients who are included in our analysis, 55 were cen-
sored as of the date of data listings.

We first fit a Cox model with covariate age only. The parameter estimate is 0030
with an estimated standard error of 0011. The omnibus test yields a /rvalue of 0045,
discrediting the assumed model. The proportional hazards test turns out nonsignificant
(p-value = 0-244). As shown in Fig. 4, the model misspecification lies in the functional
form of the covariate. The observed pattern of the cumulative martingale residuals is
'opposite' to that shown in Fig. 1 and calls for addition of the squared term. Note that
checking the link function is equivalent to checking the function form of the covariate
when there is only one covariate.

-2 l

U

/(-value = 0016

10 20 30 40 50 60

Age

Fig. 4. Plot of cumulative martingale residuals versus age in the Cox model with
age only for the Stanford heart transplant data.
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When age2 is added to the model, the />-value for the omnibus test jumps from 0045 to
0-313 and that of the supremum test for the functional form of age from 0016 to 0-499.
The supremum test for the link function is not significant (/7-value = 0-322). Individual
proportional hazards tests give /rvalues of 0-134 and 0108 for age and age2, respectively,
and the /rvalue for the overall test is 0118. Due to a high correlation between age and
age2, the observed supremum values of the standardized score processes for the two
covariates are both over 60. The use of the critical values from sup0;gu<1 \B°(u) \, for
example 1-628 for the 001 significant level, would result in very misleading conclusions.

4. REMARKS

We have confined our attention to time-independent covariates. Allowing Z to vary
over time not only enables one to study time-varying risk factors, but also provides a
flexible way of adjusting for nonproportional hazards. The score process in the pres-
ence of time-dependent covariates can be expressed as

i=i Jo

One can again check the proportional hazards assumption by examining the score pro-
cess. The Gaussian process for simulations is obtained from (2-4) with the replacement
of the Z, by the Z,(.). In theory, one may also extend the techniques described in §2-3
and 2-4 to the setting of time-dependent covariates. The resulting procedures are of
little practical use, however, because one cannot plot the partial-sum process against a
time-varying covariate or risk index in a two-dimensional graphical display.

The ideas presented in this paper can be applied to relative risk regression models
with other link functions and also to parametric survival models. The martingale resi-
duals in those two settings were considered by Barlow & Prentice (1988) and Therneau
et al. (1990). For noncensored data, Su & Wei (1991) used cumulative sums of ordin-
ary residuals to check the generalized linear model.

Recently, McKeague & Utikal (1991) developed goodness-of-fit methods for the Cox
model by comparing an estimator of a doubly cumulative hazard function under the
assumed model with a fully nonparametric estimator of the same function. They
derived a Schoenfeld-type test. It would be valuable to construct a supremum test by
simulating their null process, as we have done here.
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APPENDIX 1

Weak convergence ofn~2Wz andn~^W2

We begin with a tightness lemma.

LEMMA 1. Let

£,(*, /) = « 4 1 ['q(Z,,s) dM,(s)I{Zt «S z),
i=l Jo

Downloaded from https://academic.oup.com/biomet/article-abstract/80/3/557/230970
by Univ of North Carolina at Chapel Hill Health Sci Lib user
on 28 March 2018



568 D. Y. L I N , L. J. W E I AND Z. Y I N G

where q and Z, are bounded, without loss of generality, by 1. Then £„ is tight in

Proof. For simplicity, assume p — 1. We first show that £, is tight in ®([—1,1] x [0,r0]) for
any T0 such that AO(T0) < oo, by applying Theorems 1 and 3 and the remark on p. 1665 of
Bickel & Wichura (1971). To do so, it suffices to verify that, for /, < t < t2 and z, < z < z2 with
p r { Z e [zi,z)} ^ l /« and pr{Z e [z, z2)} ^ 1/w, the following two inequalities hold:

E[{rPn(zuz;tut)}
2{TPn(zuz;t,t2)}

2) ^ K(t2- t)(t - t^ [zuz)}, (AH)

where K > 0 is some constant and

,z2;tt,t2) = «-*J [%(Z,, , 6

The proofs for ( A l l ) and (Al-2) were given in Technical Report #111 from Department of
Biostatistics, University of Washington, and will not be shown here due to pressure on space.

It remains to show tightness at the endpoint, i.e., for any e > 0, there exist n0 and r0 such
that

pr{sup |£,(*,*)-£,(*,*) I > e } < e , (Al-3)
z,s»t

for all n ̂  n0 and t ^ r0. Rearrange {Z,} to make it increasing in i. Then

sup \L(z,t)-L(z,n)\ *s sup
Z,t > To

[
1=1 J T0

q{Zhs)dMi{s)

By a similar argument as in the proof of Wichura's inequality (Shorack & Wellner, 1986, pp.
876-7), we can show that, for sufficiently large n,

prjsup

which can be made arbitrarily small by choosing T0 large enough. This completes the proof. •

We now use Lemma 1 to show that nAiWz is tight. Since n^Wz and n~^Wz are asymptotically
equivalent, it suffices to show the tightness of n~ilW2. Let

An(t,z) = f
k=\ Jo

z){Zk - Z(P0,s)}X0(s)ds.

Then

n-^(t,z)=n^t \{f{Z,)I(Z, < z)-g(f30,u,z)}dM,(u)
i=\ Jo

/=! Jo

From Lemma 1, the first term is tight. By the law of large numbers, An converges to some non-
random function. Thus the second term is also tight since

[
/=! Jo

converges in distribution.
Conditional on {X,,A,,Z,}, the only random components in W2 are the independent stan-

dard normal variables {G;}. Thus, it is easy to get moment inequalities similar to ( A l l ) and
(Al-2), from which the tightness of n^Wz follows.
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For fixed t and z, Wz{t,z) is essentially a sum of independent zero-mean random vectors. It
then follows from the multivariate central limit theorem and the above tightness result that the
process n~'Wz(. > •) converges to a zero-mean Gaussian random field. Furthermore, conditional
on {Xh A,-,Z,}, the process n^Wz is zero-mean Gaussian with a covariance function that will be
shown next to converge to the same limit as that of n~'Wz.

Let us rewrite fVz(t,z) as

i=i Jo
where

h,(fi, t, z, u) = I(u < t){f(Z,)I(Z, < z) - g(0, u, z)} - A'm(t, z){Z, - Z(J3, u)}.

It then becomes clear that the covariance function for n"' Wz is

(Al-5)

Now due to the strong consistency of 0 and Ao(.) (Tsiatis, 1981; Shorack & Wellner, 1986,
p. 304),

E\n-l{W,(t,z)- 1V,'(t,z)

almost surely, where

W,'{t,z) = t rhl(p0,
i=i Jo

Therefore, conditional on {X,,A,,Z,}, the asymptotic covariance function for n~)iWz is

«"' t f °°A/(A.'..z..") ^ / ( « ) f °°A/(A. '2, z2,«) ^ / ( « )
;=ijo Jo

= «"' i f hl(/30,tuzuu)hl{P0,t2,z2,u)dN,(u),
i=\ Jo

which converges almost surely to (Al-5) by the law of large numbers since y/(M
is the intensity function of N,(u).

APPENDIX 2

Weak convergence ofn~1Wr andn~*Wr

Proving the tightness of n~^Wr is similar to but considerably more complicated than proving
the tightness of n~^Wz. We again refer the interested reader to our Technical Report for details.
On the other hand, exactly the same arguments used in Appendix 1 for getting the tightness of
n~*Wz can be applied to n~^Wr. The weak convergence of ri~^Wr and n~^Wr to the same limiting
Gaussian process can then be verified by showing that their finite-dimensional distributions are
asymptotically the same.

APPENDIX 3

Consistency of supremum tests
Consistency of sup,21 Wz(t, z) \. We claim that the omnibus test based on sup/|21 Wz{t, z) \ is

consistent against the general alternative that there do not exist a constant vector /?0 and a
function Ao(.) such that \{t; z) = \,(r) ep'°z for almost all t > 0 and z generated by the random
vector Z. Let H be the distribution function of Z. Under the alternative hypothesis, J3 —> 0'
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and Ao(?) —» \X'(u)du, where the integral is over (0,0, and where /?* is some constant vector
and A'(-) is a deterministic function (Lin & Wei, 1989). To prove that the omnibus test is con-
sistent, it suffices to show that asymptotically sup,z \n'] lV:(t,z) | is nonzero under the alterna-
tive hypothesis. By some simple arguments, n~x Wz{t,z) converges almost surely to

[ f(x)E{Y(u)\x}{X(u;x)-ept'xX'(u)}dH(x)du,
J X ^ Z,U ^ t

which will be nonzero for some t and z under the alternative. This establishes our claim.

Consistency o / sup r | X,/(Z,)/(Z,•< z)M,| and related tests. For simplicity, assume/= 1.
Consider the following alternative: X(t; z) = \(t)g(z) but there does not exist a (3 such that
g(z)/e0 z is a constant for all the z in the support of H. To prove the consistency of the test
based on supz | X /(Z, ^ z)M, |, where the summation is over / = 1,...,«, it suffices to show
that asymptotically

sup
2 1=1

is nonzero under the alternative hypothesis. Note that n'x X /(Z,- ^ z)M, converges almost
surely to

J^ ^ e>'txE{Y(t)\x}\^x-j{t)}\{t)dH{x)dt,

where

= Sg(x)E{Y{t)\x}dH(x) = \{g{x)/e0"x}ef>"xE{Y{t)\x}dH(x)
lel)tixE{Y{t)\x}dH(x) Up"xE{Y{.t)\x}dH{x)

Let x* be the maximizer of g{x)/ep x. Then, under the alternative hypothesis,

g(x')/ep"x - J(t) > 0

(Hardy, Littlewood & Polya, 1934, p. 136). Thus, the test is consistent.
As a by-product of the foregoing result, the supx | IVj(x) \ test is consistent against misspecifi-

cation of the functional form for Zy provided that the components of /? for the remainder of Z
converge to the true values. Arguments similar to those of Struthers & Kalbfleisch (1986) indi-
cate that the asymptotic bias of (/3,,... ,/?y_i,/3,+],... ,$p) is generally small if there is no addi-
tional model misspecification and if Z, is independent of all other covariates. It also follows
from the arguments of the previous paragraph that the sup, | W,(x) \ is consistent against mis-
specification of the link function in the form of g{0"Z), where g is not exponential.

Consistency o/sup, || f/(/3, 0 || and related tests. We claim that the sup, || U0, t) ||, or

test is consistent against the nonproportional hazards alternative: A(f; z) = \{t)ee(l)z, where
6{t) is not time-invariant. It is straightforward to show that «~'t/(/3, 0 —* h(/3',t) under this
alternative, where

E{ns)e«"Z) E{Y(s)
E{ Y(s) eeM'z} E{Y(s)e»'z}

If h{0*,t) = 0 for all t, then n(0(t), t) = /x(/T, 0 for all t, where

1,t)=E{Y(t)e"'zZ}/E{Y(t)e*'

Since dfj.(r},t)/dr] is positive definite, fj.(6(t),t) = n(0',t) implies 6{i) — 0'. Thus, our claim is
true.

Downloaded from https://academic.oup.com/biomet/article-abstract/80/3/557/230970
by Univ of North Carolina at Chapel Hill Health Sci Lib user
on 28 March 2018



Checking the Cox model 571

APPENDIX 4

Computational methods

We now discuss numerical issues in implementing the omnibus test So, which is computation-
ally the most complicated procedure. For simplicity of presentation, assume that Z is univari-
ate. Denote the distinct values of {Z,,...,Zn} by {Z,*,... ,Z'n.}. Note that sup, x \wo(t, x) \ —
max,y| wo(Xj, Z-) |. Thus, it is straightforward to calculate the supremum. When computing
max,, | wo(Xj,Zj) | for each realization of Wo(.,.), one can avoid any calculations of orders
higher than n'n by using the following algorithm.

If the data are sorted in the ascending order of the failure times and if there are no ties, then

where

>?\Xj,z:) = ZA,{i(z, < z-) -g(p,x,,z;)}Gh

A,Yk(Xl)exp0'Zk)I(Zk < Z'){Zk - Z0,X,)}/S(o)0,Xl),

i=\

1=] k=\

Since g and Q do not involve {G;}, they only need to be evaluated outside the simulations.
Computing g is trivial. Note that

Q{xpz;) = Qix^z;) + £ Aj^x^xp 0'zk)i(zk < z;){zk -
k=\

This recursive relationship enables one to evaluate {Q(Xj,Z');i = 1 , . . . , « ' ; j = 1, • • • , « }
efficiently.

Note now that w^ does not involve X} and Z,* and can be calculated before the maximiz-
ation. Also note that

iz;)-g(p,xpz;)}Gr

With the use of this recursive relationship, evaluating {w^\Xj,Z');i = 1,.. . ,«'; j — \,...,n} is
of order n'n. Thus, computing max,y | wo(XJt Z-) | is an n'n process given the input of g and Q.

The aforementioned formulae can also be used when there are tied failure times; however,
one should skip the maximization step for those Xj's that are equal to the XJ+l's. The extension
to the multiple covariate setting is straightforward. Computation can become quite extensive if
there exists a very large number of distinct covariate patterns.

Calculations of the /^-values for the supremum tests described in §§2-3—2-5 are considerably
simpler than that for the omnibus test. Since one is always dealing with one-parameter pro-
cesses, all those graphical and numerical procedures can be implemented in a short period of
time.

Computer software implementing the proposed methods is available from D. Y. Lin.
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