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SUMMARY

A high-throughput organoid microinjection platform was
developed to study gastrointestinal physiology and the
microbiome. Monitoring and quantification of injected
microbes and other cargos was achieved by automated
imaging. Human fecal microbiota including highly oxygen-
sensitive anaerobic taxa were transplanted into the
organoid lumen and maintained over time in stable mono-
cultures or microbial communities.

BACKGROUND & AIMS: The human gut microbiota is
becoming increasingly recognized as a key factor in homeo-
stasis and disease. The lack of physiologically relevant in vitro
models to investigate host–microbe interactions is considered a
substantial bottleneck for microbiota research. Organoids
represent an attractive model system because they are derived
from primary tissues and embody key properties of the native
gut lumen; however, access to the organoid lumen for experi-
mental perturbation is challenging. Here, we report the devel-
opment and validation of a high-throughput organoid
microinjection system for cargo delivery to the organoid lumen
and high-content sampling.
METHODS: A microinjection platform was engineered using
off-the-shelf and 3-dimensional printed components. Microin-
jection needles were modified for vertical trajectories and
reproducible injection volumes. Computer vision (CVis) and
microfabricated CellRaft Arrays (Cell Microsystems, Research
Triangle Park, NC) were used to increase throughput and
enable high-content sampling of mock bacterial communities.
Modeling preformed using the COMSOL Multiphysics platform
predicted a hypoxic luminal environment that was functionally
validated by transplantation of fecal-derived microbial com-
munities and monocultures of a nonsporulating anaerobe.

RESULTS: CVis identified and logged locations of organoids
suitable for injection. Reproducible loads of 0.2 nL could
be microinjected into the organoid lumen at approximately 90
organoids/h. CVis analyzed and confirmed retention of injected
cargos in approximately 500 organoids over 18 hours and
showed the requirement to normalize for organoid growth for
accurate assessment of barrier function. CVis analyzed growth
dynamics of a mock community of green fluorescent protein–
or Discosoma sp. red fluorescent protein-expressing bacteria,
which grew within the organoid lumen even in the presence of
antibiotics to control media contamination. Complex microbiota
communities from fecal samples survived and grew in the
colonoid lumen without appreciable changes in complexity.
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CONCLUSIONS: High-throughput microinjection into organoids
represents a next-generation in vitro approach to investigate
gastrointestinal luminal physiology and the gastrointestinal
microbiota. (Cell Mol Gastroenterol Hepatol 2018;6:301–319;
https://doi.org/10.1016/j.jcmgh.2018.05.004)
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Microbiota; Anaerobic; Barrier Function; High-Content
Sampling.

See editorial on page 352.
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Tably dense and diverse microbial community. The
interactions between gut microbiota and host are becoming
increasingly recognized as key factors in homeostasis and
disease.3 Many studies have indicated that community im-
balances, known as dysbioses, are associated with the onset
and progression of diseases including diabetes,4 obesity,5–7

colorectal cancer,8–10 and inflammatory bowel disease.11

Despite tight statistical associations between dysbiosis and
disease, the ability to formally test cause-and-effect re-
lationships is severely limited by a lack of in vitro experi-
mental models that enable controlled interrogation of
host–microbe interactions.

Sequencing of the 16S ribosomal RNA (rRNA) gene is
used routinely to characterize microbial communities and is
a powerful tool to identify bacteria that may contribute to
disease.12 Although 16S rRNA gene sequencing provides a
signature of microbial composition within a community,
alone it is insufficient to define specific microbial mecha-
nisms that impact host biology. Germ-free (gnotobiotic) an-
imal models commonly are used to investigate host–microbe
interactions in a physiologically relevant system, but germ-
free animal models often are impractical for researchers to
use because of the scarcity of gnotobiotic facilities and the
high cost of gnotobiotic experimentation.13 In addition, the
inherent low-throughput nature of germ-free rodent studies
limits the ability to decipher the individual role that each
microbial species plays in health and disease.

A recent assessment of microbiota research in the United
States identified the development of high-throughput tools
as a key common unmet need for this field.14 With the
recognition of this problem, concerted efforts now are being
made to build a translational microbiome toolbox to create
innovative and high-throughput approaches to test detailed
mechanisms of host–microbe interactions.15 For instance,
engineering Bacteriodes thetaiotaomicron, Bacteriodes fra-
gilis, Bacteriodes vulgatus, Bacteriodes ovatus, Bacteriodes
eggerthii, and Bacteriodes uniformis with 6 different fluo-
rescent proteins enabled delineation of species within the
gut of mice, and showed that the priority of gut colonization
determines colonic crypt microbial occupancy.16 Similarly,
engineering-inducible promoters in Bacteroides has enabled
the study of host–microbe interactions through measure-
ment of commensal sialidase activity and liberation of
mucosal sialic acid, a nutrient for pathogens.17 Furthermore,
new methods have been developed that permit genetic
manipulation and analysis of genetically intractable bacteria
from the intestine.18 As these types of tools are being
increasingly developed to test mechanistic questions, and
studies are expanded to interrogate the thousands of
different microbes that inhabit the gut, high-throughput
in vitro models will be essential for these next-generation
microbiome studies.

Transplanting the complex microbial communities found
in the gut lumen to a physiologically relevant system in vitro
is particularly challenging because most microbes
comprising the human gastrointestinal (GI) microbiota are
highly sensitive to oxygen as shown by limited viability or
proliferative capacity in the presence of oxygen.19 A recent
study suggested that 50%–60% of the oxygen-sensitive
bacterial genera in the GI microbiota can produce resilient
spores and can be detected on specialized agar plates incu-
bated in an anaerobic environment,20 however, non-
sporulating anaerobes remain difficult or impossible to
cultivate in vitro and require an environment sufficiently
hypoxic for survival and growth.19 Minibioreactors without a
host cellular component have been built to cultivate fecal
samples in a hypoxic environment.20 This system increased
throughput by allowing up to 48 communities to be cultivated
per anaerobic chamber. Although this system proved suffi-
cient to stably culture complex communities, only 15%–25%
of the initial fecal operational taxonomic units (OTUs) were
observed, suggesting that other system components are
required to cultivate the full complexity of fecal microbiota.

Designing culture environments that possess a host
cellular component in combination with the physiologically
relevant luminal environment may enable more complex
communities to be cultivated while facilitating the study
of host–microbial interactions. Culturing techniques have
been developed that permit growth of primary intestinal
epithelium on 2-dimensional (2D) surfaces,21–23 however,
generating a steep oxygen gradient over a single cell layer in
monolayer cultures remains an engineering challenge owing
to the requirement of a constantly intact monolayer, which is
difficult to achieve in 2D cultures. Gut organoids, also known
as enteroids or colonoids,24 represent an alternative in vitro
system to culture fecal-derived microbiota by the virtue of
their morphologic, cellular, and physiologic properties that
are unavailable in 2D culture systems.

Organoids are microscale spherical structures composed
of an epithelial monolayer that surrounds a hollow lumen
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containing mucous and cellular debris, and serves as a
natural physical barrier to the ambient atmosphere.25

Organoids form in culture from isolated crypts or single
intestinal stem cells,25–29 retain long-term self-renewal
properties owing to stable intestinal stem cells compart-
ments (eg, crypt buds) interspersed between zones of
differentiated cells, and possess cell lineage ratios, polari-
zation, and cell migration patterns that mimic those found
in vivo.26 Clostridium difficile, a sporulating pathogenic
anaerobe, has been microinjected and monocultured for 12
hours in the organoid lumen, suggesting that the organoid
luminal environment can support oxygen-sensitive sporu-
lating taxa.30,31 Although organoids are a potentially suit-
able environment to model physiology of the gut lumen,
microinjection currently represents the most direct method
for delivering defined cargo to the lumen.32

In this study, we developed a high-throughput, organoid-
specific platform to study luminal physiology and the gut
microbiome. We leveraged advances in organoid culture,
microfabricated culture devices,33–35 computer vision
(CVis),33 and semiautomated microinjection technologies to
enable high-content sampling of a number of microinjected
cargos, including materials to study epithelial barrier integ-
rity and fecal isolates from human donors. The platform can
be extended to organoids derived from other tissues such as
the lung and stomach, and injectable cargos can be tailored to
study a broad range of topics related to gut epithelial biology
including microbe–microbe and host–microbe interactions,
nutrient transport, and barrier function.

Materials and Methods
Automated Imaging System

Microinjection hardware was fitted within a Precision
Plastics (Beltsville, MD) enclosure mounted on an Olympus
IX81 (Japan) inverted microscope outfitted with a ProScan
(Prior, Cambridge, England) automated stage and controller.
Images were acquired by an ORCA-03G (Hamamatsu,
Hamamatsu City, Shizuoka, Japan) high-speed camera at
parameters controlled through HF204 or HF202 (Prior)
automated shutters and a HF108IX3 (Prior) filter wheel. The
system was controlled using custom image acquisition
software (MathWorks, Natick, MA) and MicroManager (Vale
Lab, UCSF).36

Microinjection Hardware Custom Fittings
Custom adaptors were 3-dimensionally (3D) printed to

house a commercially available MM-89 (Narashigi, Tokyo,
Kant�o, Japan) motor-drive manipulator within the confines
of a microscope-mounted atmospheric regulating chamber.
The physiologic chamber was necessary to preserve bio-
logical function of organoids during injection, high
throughput, and time-lapse imaging. A spacer was 3D-
printed to increase the clearance between the rear wall of
the chamber and the NO-PIX-3 (Narashigi) manipulator
mounting bar. Pilot studies showed that pneumatically
driven microinjectors were best suited to remotely deliver
nanoliter cargo loads within the chamber constraints. The
Pico-spritzer III (Parker-Hannifan, Mayfield Heights, OH)
was suitable for use within the IX81 chamber with a low
rate of valve malfunction occurrences, which can lead to
pressure build-up and needle rupturing. A custom control
arm was 3D-printed to orient the injection needle holder
perpendicular to the MM-89 shaft collar and parallel to the
stage, facilitating vertical needle articulation. A stage insert
with a compression fitting was 3D-printed to hold CellRaft
Array (CRA) devices tightly and reduce stage position error
when devices were moved in and out of the microinjection
platform.36 All computer-aided design files for 3D-printed
fittings are available in the Supplementary CAD files.

Optimized Microinjection Needle Processing
To generate microinjection needles tailored to organoid

microinjection, 1-mm filament capillaries (World Precision
Instruments, Sarasota, FL) were pulled to a fine point using
a P-2000 (Sutter, Medical Technologies, Atlanta, GA) laser-
based micropipette puller at parameters modified from
the standard “bee-stinger” needle production protocol to
reduce the diameter of the needle point.37 A 90� bend was
formed in the needle body approximately 1.5 cm from the
needle tip by heating the needle body with an open flame
while horizontally suspended, allowing the bend to form by
gravity. The needle pulling process produced microscopic
defects that impaired efficient organoid microinjection. To
remove the defects, the needle aperture was polished
through 6 minutes of wet-etching in 5% hydrogen fluoride
(HF). The needle tip subsequently was submerged in so-
dium bicarbonate to neutralize the HF coating the needle
tip. To prevent HF and sodium bicarbonate from traveling
up the internal filament into the needle body and contami-
nating cargos, compressed air was fed into the needle body
as the tip was submerged in all solutions.

Colonoid Culture and Expansion
Crypts were isolated from the colons of adult (age,

10–16 wk) wild-type (WT) or chicken beta-actin promoter
with CMV enhancer:DsRED (constitutively DsRED express-
ing) male mice reared on Bed-o’-cobs (Anderson’s Lab
Bedding, Maumee, OH) and fed a soy-free, grain-based diet
(Envigo, Huntingdon, Cambridgeshire, United Kingdom) as
described.38 In brief, the whole colon was resected, flushed
with cold phosphate-buffered saline (PBS), opened longitu-
dinally, and then treated with isolation buffer.38 After 90
minutes, whole crypts were released from the tissue by
gentle shaking and then collected by centrifugation at
1000 � g. Crypts were embedded in laminin-rich Cultrex
hydrogel (Corning, USA) at approximately 4 crypts/mL.
Colonoids were expanded in 50% L-WNR media and 50%
LCM media produced according to established protocols
with the minor modification of removing antibiotics during
the conditioning phase to prevent carryover into organoid
cultures.39 In these studies, we used media shown to pro-
duce colonoids containing all of the native differentiated
lineages.39 For passaging, colonoids were dissociated into
small cell aggregates by digesting in TrypLE (Gibco) sup-
plemented with 10 mmol/L Y-27632 (Selleck) for 4–6 mi-
nutes. Cold serum (10% vol/vol) was added to the
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dissociated cells to quench enzymatic activity. For injection
experiments, large aggregates were excluded before culture
by passing dissociated colonoids through a 40-mm filter.
Organoids were grown for 72 hours before injections were
performed and sampled by 168 hours to prevent over-
growth that could compromise luminal integrity. Aggregate
concentration was quantified visually (fragments/volume)
by microscopy. All protocols for animal use were reviewed
and approved by the University of North Carolina Institu-
tional Animal Care and Use Committee.
Plating Colonoids on CRA Devices
Colonoid fragments were added to CRA reservoirs at 1.5

fragments per raft in L-WNR culture media and centrifuged
at 51 � g for 5 minutes at 4�C to deposit fragments on the
rafts. After centrifugation, the culture media was aspirated
gently so as not to disrupt fragments, and 150 mL of Cultrex
(Trevigen, Gaithersburg, MD) was added per cm2 of array
surface. A second centrifugation for 5 minutes at 51 � g was
used to ensure hydrogel-embedded fragments were depos-
ited at the bottom of the raft. The hydrogel was allowed to
polymerize at 37�C for 30 minutes before 200 mL of L-WNR
culture media supplemented with 10 mmol/L Y-27632 was
added per cm2 of array surface. Media was exchanged every
72 hours.39 Y-27632 was included only in the media at
initial plating. Colonoids were grown until they occupied
approximately 80% of each raft (typically 72 hours after
plating) before injection assays.
Computer Vision Identification of Organoids
Organoids were cultured on CRAs (Cell Microsystems,

Research Triangle Park, NC), which are microculture devices
that contain approximately 15,000 wells in a 2.0-cm2 foot-
print.33,40 Organoids were passaged and dissociated to small
fragments, which were plated on CRAs such that there was a
density of approximately 1 organoid/well. When organoids
had grown to a point they showed a defined luminal space
(w3 days), the entire CRA was tile-imaged using a MATLAB
(Mathworks, Natick, MA) automated imaging script, which
operated the MMCore application programming interface
component of the open-source MicroManager (Vale Lab,
UCSF) automated microscope controller.36 Autofocus was
used to correct for variations in the flatness of the CRAs. To
determine whether an organoid suitable for injection was
contained on a raft, individual images of each raft were
evaluated by the novel CVis algorithm OrganoidMorph (see
Supplementary Program Files). The OrganoidMorph image
analysis pipeline was developed in the open-source compu-
tational image analysis platform CellProfiler (Broad Institute
of MIT and Harvard).41 OrganoidMorph identifies the con-
tents in each raft using a Gaussian mixture model that
identifies positive from negative pixels.42 This creates a bi-
nary image mask of the fluorescent signal. The size and shape
of the mask then is filtered using threshold cut-off values that
are consistent with organoid morphology. The location of
organoids that passed the OrganoidMorph filtering algorithm
was logged automatically so that it could be returned to
easily for microinjection. The luminal compartment was
identified by inverting the signal within the colonoid area
and segmenting by Otsu’s method thresholding (supple-
mentary software: OrganoidMorph.cpproj).

Computer Vision Quantification
of Injected Cargos

To identify the fluorescent cargos that were micro-
injected into the organoid lumen, images were analyzed by
CVis (supplementary software: OrganoidCargo.cpproj).
Specifically, the fluorescent signal area of each image was
identified by Otsu thresholding, which is a computational
method that decides positive and negative pixels.43 Masks
were generated from the positive fluorescent signal and the
area and mean pixel intensity within the mask was
measured. These values (intensity � area) were normalized
to t ¼ initial values for each organoid, and integrated (mean
intensity � area) to account for volumetric changes.
Assessing Efficiency of the Microinjection Device
Efficiency of the platform was assessed by targeting

DsRED colonoids of various size and morphology for
microinjection with 0.4 nL ± 0.8% of 70 kilodaltons
fluorescein conjugated dextran (Thermo Fisher, Waltham,
MA). Colonoids were grown for 72 hours on a CRA device
and identified using the OrganoidMorph pipeline. Five
hundred identified colonoids were randomly targeted and
microinjection was attempted with the duration of each
attempt recorded. Microinjection success was assessed
by fluorescent microscopy and recorded immediately
after each attempt. Microinjection success and duration
was related to colonoid size and monolayer width post
hoc based on the CRA address of colonoids targeted for
microinjection.
Retrieving Bacteria From the Organoid Lumen
Live microbes were retrieved from the colonoid lumen

by passing intact organoids through a 30-gauge needle (BD
Biosciences, Franklin Lakes, NJ), disrupting the surrounding
monolayer. Whole colonoids were retrieved from culture
platforms by pipetting and suspended in sterile Dulbecco
Phosphate Buffered Saline (Gibco, Waltham, MA) before
loading into a standard syringe (BD Biosciences). Organoids
transplanted with anaerobic species were suspended in
anoxic DPBS intact and transferred into an anaerobic
chamber (COY, Grass Lake, MI) before passage through a 30-
gauge needle.
Bacterial Cultivation
Aerobic bacteria strains (Escherichia coli NC101 and

Yersinia pseudotuberculosis YPIII) were cultivated in Luria
broth shaken at 240 rpm or on broth agar plates. E coli
NC101 transformed with pEGFP was grown at 37�C in
medium containing 10 mg/mL carbenicillin. E coli NC101
transformed with pRZT3 was grown at 37�C in medium
containing 10 mg/mL tetracycline. Y pseudotuberculosis



Figure 1. Robotically articulated colonoid microinjection maintains atmospheric control facilitating long-term sampling
of large batches of colonoids. (A) Organoids grown from adult stem cells in 3D culture form complex monolayers organized
around a hollow, mucus-filled lumen cavity analogous to the colon lumen. (B) 3D-printed customized fittings were used to
mount robotic microinjection hardware within an atmospheric imaging chamber of an automated imaging system. (C) A 90�
bend in the injection needle allows for vertical articulation of the microinjection needle, minimizing hydrogel disruption and
needle breaking during injections. (D) Wet etching mechanically pulled borosilicate capillaries produces clean, fine aperture
needles capable of injecting large batches of organoids without disturbing monolayer integrity. (E) Computer vision made and
measured the area of masks from images of the smallest droplets of fluorescent cargo delivered reproducibly by 5 replicate
needles, facilitating volume estimation. (F) Optimized needles produce varying volumes at the same injection duration (black)
but similar minimal volumes when the minimal duration reproducibly delivering cargo from each needle is used (blue). (G)
Organoid-microbe injections can be performed visually by locating an organoid of interest (1), aligning the needle to the
organoid lumen (2), articulating the needle against the organoid monolayer distorting its appearance (3), puncturing the
monolayer and injecting cargo (4), and retracting the needle from the organoid lumen (5) to visualize specific transplantation of
DsRED-expressing E coli within the lumen (needle tip is marked with an asterisk). EpCAM, Epithelial cell adhesion molecule;
Muc2, Mucin 2; Ortho, Orthogonal view; RFP, Red Fluorescent Protein.
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YPIII containing the PfrdA::gfp vector was grown at 30�C on
media supplemented with 20% tryptone and 10 mg/mL
chloramphenicol. Bifidobacterium adolescentis was isolated
from the stool of a healthy patient (National Center for
Biotechnology Information BioProject ID PRJNA291486).
The strain was maintained in anaerobic conditions until the
time of injection.44 B adolescentis was grown from frozen
glycerol stocks (-80�C) in oxygen-depleted De Man, Rogosa
and Sharpe broth supplemented with 0.2% cysteine over-
night in an anaerobic chamber (5% CO2, 10% H2, 85% N2)
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at 37�C without agitation. Fecal microbiota communities
were processed or retrieved from the organoid lumen in an
anaerobic chamber, plated on MRS medium and incubated
in the anaerobic chamber (5% CO2, 10% H2, 85% N2) at
37�C, or were cultured aerobically at 37�C.

High-Resolution Imaging of Microinjected
Colonoids

Green fluorescent protein (GFP)-expressing E coli NC101
was grown to stationary phase (overnight) before approxi-
mately 1500 colony-forming units (CFUs)were injected into 5
CAG:DsRED colonoids grown on 50-mm tissue culture dishes.
Colonoids were fixed 2 hours after injections with 4.0%
paraformaldehyde before injected E coliwas observed within
the colonoid lumen using an Olympus FV1000MPE upright
confocal microscope. A 20�/1.00W immersion objective was
used to collect 1024� 1024 pixel Z-stacks at 2.0-mm intervals
through each organoid with sequential detection of E coli
(GFP), colonoid epithelium (DsRED), and nonspecific debris
(40,6-diamidino-2-phenylindole) with Kalman averaging of
2–4� line scans. The detector and laser setting were adjusted
to account for signal attenuation resulting from variable
colonoid size and imagingdepth. ImageJ (National Institutes of
Health, Bethesda, MD) was used to adjust brightness and
contrast for optimal visualization.45

Mock Community Response to
Media Antimicrobials

WT colonoids were grown for 72 hours on a CRA device
separated into 4 discrete media chambers. Chambers were
treated with either chloramphenicol, tetracycline, both an-
tibiotics, or no antibiotics. Lysogeny broth (LB) mono-
cultures of E coli K12-expressing DsRED and Y
pseudotuberculosis–expressing enhanced green fluorescent
protein (EGFP) were grown to stationary phase (overnight
for E.coli, 48 hours for Y pseudotuberculosis). Equal volumes
of stationary phase cultures were mixed, diluted in LB to
Figure 2. (See previous page). Increasing microinjection thro
organoid morphology, and injection success. (A) Inert high-m
no signal observed in the adjacent areas. (B) Inert cargos are reta
(C) CellProfiler computational image analysis pipelines were used
during the 18-hour time course and quantified the area and mean
from fluorescent inert cargos deceased over time to approxim
signal doubled during the 18-hour time course as the organoid
observed area shows relative stability, suggesting that the ine
protocols were optimized to grow organoids on 2.5-cm2 microfa
rafts separated by 50-mm walls regularly addressed to facili
cytometry pipelines can identify DsRED fluorescent organoids
morphologies into lumen and epithelial monolayer compartmen
(n ¼ 1681 rafts), allowing for >96% accurate lumen identificati
tribution with an average of 18,511 ± 5916 mm2. (K) Organoid
average of 16.4 ± 9.3 mm. (L) The area and morphology of 500
each for microinjection with 0.36 nL of 7 kilodaltons of FITC-d
the lumen of successfully injected organoids with fluorescen
injections. (M) Successfully injected organoids were larger (1
(9142 ± 8970 mm2). (N) Organoids with wider monolayers we
organoids (74.1 ± 35.6 s). (O) Organoids larger than 18,000 mm
highest efficiency and accuracy with all targeted organoids of t
Auto, Automated; Int, Integrated; MI, Microinjection; Min, Minim
20%, and washed repeatedly in LB by centrifugation at
18,000 � g for 15 minutes to remove residual antibiotics. A
total of 20 mL of the mixed sample was loaded into injection
needles and transferred to the injection apparatus. Injection
droplets were collected in sterile media and plated on se-
lective LB agar plates to measure microbial cargo load
before targeting colonoids greater than 100 mm in diameter
for microinjection. After injections, additional injection
droplets were collected in sterile media and plated on LB
agar plates to ensure similar microbial cargo loads were
delivered during the injection process. Two hours after in-
jection, successfully injected organoids were retrieved from
each condition and luminal contents were cultured to assess
transplant efficiency. The remaining colonoids were imaged
fluorescently at 30-minute intervals for 24 hours before
retrieval and luminal contents were cultured to assess mi-
crobial growth. As controls for antibiotic activity, 10-mL
samples of the organoid culture media from each condition
collected 2 hours, 24 hours, and 48 hours after injections
were collected and used to seed conventional broth cultures
treated with tetracycline or chloramphenicol.

Relating Fluorescent Signal to Microbial Load
Colonoids were injected with increasing loads of fluo-

rescent inert and microbial cargos and imaged before
sampling the luminal contents. WT colonoids were grown in
the presence of tetracycline for 72 hours in conventional
culture devices allowing larger colonoids to be cultivated. E
coli K12-expressing DsRED and E coli NC101-expressing
EGFP were grown to stationary phase (overnight) in LB
containing tetracycline. Equal volumes of stationary phase
cultures were mixed, diluted in LB to 20%, and washed
repeatedly in LB by centrifugation at 18,000� g for 15
minutes to remove residual antibiotics. The washed micro-
bial sample was diluted to 50% in 70 kilodaltons of Alexa
Fluor 647–conjugated dextran (Thermofisher). A total of 20
mL of the mixed sample was loaded into injection needles
and transferred to the injection apparatus before 12
ughput using computer vision to quantify cargo retention,
olecular-weight fluorescent cargos fill the organoid lumen with
ined long term as the organoid expands in size over 18 hours.
to create masks of the fluorescent signal of images collected
intensity of the signal. (D) The mean signal intensity observed

ately half of the original intensity. (E) The area of fluorescent
expanded in size. (F) Integrated fluorescent signal across the
rt cargo was retained within the organoid lumen. (G) Culture
bricated culture array devices containing retrievable 200-mm2

tate downstream sampling. (H) Modified CellProfiler image
and automatically segment identified organoids of varying

ts. (I) Automated organoid identification was >95% accurate
on. (J) Organoid cross-sectional area showed a bimodal dis-
monolayer width also shows a bimodal distribution with an
DsRED-expressing organoids was quantified before targeting
extran solution, which could be observed specifically within
ce signal observed outside the organoid of unsuccessful
9,642 ± 8970 mm2) than unsuccessfully injected organoids
re injected in shorter intervals (51.1 ± 35.6 s) than thinner
2 with monolayers >15-mm wide were microinjected with the
hat range successfully microinjected in 39.1 ± 12.5 seconds.
um.
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organoids were targeted for microinjection at 4 different
durations (24 ms, 48 ms, 72 ms, and 96 ms). All injected
organoids were imaged before 6 organoids from each
microinjection duration were collected and luminal contents
were cultured to assess the delivered microbial load. The
remaining colonoids were fluorescently imaged at 30-
minute intervals for 24 hours before retrieval and luminal
contents were cultured to assess microbial growth.

Stool Sample Preparation
A stool sample (100 mL) from a healthy human host

(University of North Carolina Institutional Review Board:
15-2133) was homogenized in sterile, anoxic PBS (1.0 mL)
inside the confines of an anaerobic chamber. The homoge-
nized stool sample then was subject to differential centri-
fugation (5 minutes at 1000 � g), filtration through 5.0-mm
syringe filters (filter 1; Millipore, Darmstadt, Germany; filter
2; GE, Boston, MA), or left unprocessed. Samples (100 mL)
were stored at -80�C until subjected to DNA isolation and
16S rRNA gene amplicon sequencing (see later).

Colonoid Fecal Microbiota Transplantation
A homogenized healthy donor stool sample was pro-

cessed using a 5.0-mm Millipore syringe filter and loaded
into injection needles in anaerobic conditions. Needles were
transferred immediately to the injection apparatus and
tested to verify reproducible cargo delivery before targeting
a single colonoid in individual wells of a 96-well plate for
injection. Colonoid injections that were off-target or showed
observable leakage were used as controls, and wells with a
single successful injection were sampled to assess microbial
colonization by 16S rRNA gene amplicon sequencing and
culturing. Colonoid injections were completed within an
hour of removing needles from the anaerobic chamber.
Retrieved fecal microbial communities were split by volume
and cultured anaerobically and aerobically on MRS broth
agar plates to determine the colonoid microbial load.

DNA Isolation
DNA from stool samples was isolated using a DNeasy kit

(Qiagen, Venlo, Netherlands) as directed. DNA from
microbe-associated colonoids was subject to the Qiagen
DNeasy kit protocol with an additional 5-minute bead-
beating step at room temperature to facilitate separation
of bacteria from colonoids and improve cell lysis. Isolated
DNA was subject to spectrophotometric quantification via
NanoDrop (Thermo Fisher), assessing both quantity (ABS
260 nm) and purity (260/280 nm ratio).

16S rRNA Gene Amplicon Sequencing
Total DNA (12.5 ng per sample) was amplified using

primers consisting of the locus-specific sequences targeting
the V3–V4 region of the bacterial 16S rRNA gene.46 Primer
sequences contained overhang adapters appended to the 5’
end of each primer for compatibility with the Illumina San
Diego, CA sequencing platform. Complete primer sequences
were as follows: forward: 50-TCGTCGGCAG:CGTCAGATG
TGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA-30; reverse:
50-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTAC
HVGGGTWTCTAAT-30.

Polymerase chain reaction (PCR) mixes contained 12.5
ng of total DNA, 0.2 mmol/L of each primer, and 2� KAPA
HiFi HotStart ReadyMix (KAPA Biosystems, Basel,
Switzerland). The thermal profile for the amplification of
each sample had an initial denaturing step at 95�C for 3
minutes, followed by 28 cycles of denaturing of 95�C for
30 seconds, annealing at 62�C for 30 seconds, and a 30-
second extension at 72�C. After cycling, a 5-minute
extension at 72�C was performed, and a final hold at
4�C. Each 16S rRNA gene amplicon was purified using the
AMPure XP reagent (Beckman Coulter, USA). Illumina
dual-index barcodes (index 1[i7] and index 2[i5]; Illumina)
were added to each amplicon target using a limited-cycle
PCR program. The thermal profile for the amplification
of each sample had an initial denaturing step at 95�C for 3
minutes, followed by a denaturing cycle of 95�C for 30
seconds, annealing at 55�C for 30 seconds, and a 30-
second extension at 72�C (8 cycles), a 5-minute exten-
sion at 72�C, and a final hold at 4�C. The final libraries
were purified again using the AMPure XP reagent (Beck-
man Coulter Brea, CA), quantified via the Quant-IT Pico-
Green dsDNA Assay Kit (Thermo Fisher), and normalized
before pooling. The DNA library pool then was denatured
with NaOH, diluted with hybridization buffer, and heat-
denatured before loading on the MiSeq reagent cartridge
(Illumina) and on the MiSeq instrument (Illumina). Auto-
mated cluster generation and paired-end sequencing with
dual reads were performed according to the manufac-
turer’s instructions.
Sequencing Data Analysis
Multiplexed paired-end fastq files were produced from

the sequencing results of the Illumina MiSeq using the
Illumina software configureBclToFastq. The paired-end
fastqs were joined into a single multiplexed, single-end
fastq using the software tool fastq-join. Demultiplexing
and quality filtering was performed on the joined results.
Quality analysis reports were produced using the FastQC
software. Bioinformatics analysis of bacterial 16S amplicon
sequencing data was conducted using the Quantitative In-
sights Into Microbial Ecology (QIIME) software.46 OTU
picking was performed on the quality-filtered results using
pick_de_novo_otus.py. Chimeric sequences were detected
and removed using ChimeraSlayer in the QIIME pipeline. a
Diversity and b diversity analysis were performed on the
data set using the QIIME routines: a_rarefaction.py and
b_diversity_through_plots.py.47,48 Summary reports of
taxonomic assignment by sample and all categories were
produced using QIIME summarize_taxa_through_plots.py
and summarize_otu_by_cat.py.

Colonoid Anaerobe Monoculture Assay
B adolescentis were cultured until the cells reached late-

log growth (OD, 600 nm; OD600nm ¼ w0.6) before loading
injection needles with 20 mL of culture inside an anaerobic
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chamber. Loaded needles were transferred immediately to
the microinjection apparatus and tested to verify repro-
ducible cargo delivery before targeting a single colonoid in
individual wells of a 96-well plate for injection. Colonoid
injections that were off target or showed observable leakage
were used as controls while wells with a single successful
injection were sampled over 60 hours and subjected to
quantitative PCR targeting of the B adolescentis 16S rRNA
gene and cultured in MRS broth access B adolescentis ac-
tivity and validate activity organoids.

Statistics
Normalcy of colonoid morphology was assessed by

D’Agostino–Pearson and Shapiro–Wilk normality tests.
Monolayer width and the cross-sectional area of 1827
colonoids grown on 3 CRA devices and quantified by
OrganoidMorph did not show normal distribution by either
test at an a level of .05. Colony counts from agar plates were
compared by the Tukey–Kramer method with an a level of
.05. Droplet volumes were compared between needles by
the Tukey–Kramer method at an a level of .05. No statistical
method was used to predetermine sample size and experi-
ments were nonrandomized. All analyses were performed
using GraphPad Prism 7 (GraphPad Software, La Jolla, CA).

Results
Development of an Organoid Injection System

The apical side of the gut epithelium is exposed to a
complex mixture of luminal contents including nutrients,
microbiota, metabolites, and indigestible material. Although
there is merit to using the organoid lumen to model gut
physiology, the apical surface of the organoid epithelium is
inaccessible because the organoid epithelial monolayer
creates a barrier to the luminal space (Figure 1A). Material
can be introduced into the organoid lumen by incubating
fragments of dissociated organoid with compounds that
then passively are enveloped into the organoid as the lumen
reforms.32 Although this technique can be effective, it lacks
precision in that there is no control over the quantity of
material that can be delivered to the organoid. Moreover,
this strategy cannot be used to introduce materials into the
lumen of mature organoids. Microinjection is an alternative
approach that offers the ability to accurately, reproducibly,
and precisely place a wide variety of cargos into the orga-
noid lumen. However, microinjection is technically chal-
lenging and requires a high level of expertise that limits its
broad use by investigators.

By using common hardware with some simple modifi-
cations, we developed a semi-automated, high-throughput
organoid microinjection system that can be easily repro-
duced in many laboratories. To develop this system, con-
ventional remote-controlled microinjection hardware and a
fluorescent microscope fitted with an automated stage and
imaging system were combined in a single platform
(Figure 1B). The system is contained within a physiologic
chamber to maintain appropriate temperature and CO2

levels to support long-term organoid viability for time-
intensive experiments (Figure 1B). Three 3D-printed
custom fittings were engineered to enable precise needle
articulation over organoids cultured in conventional tissue
culture plates or CRAs for high-throughput applications
(Figure 1B) (CAD files are available in the Supplementary
Materials).35,49

Needle approach for pronuclear or zebrafish embryo
microinjection typically occurs at an approximately 45�

angle. These angles are incompatible with the use of mul-
tiwell plates because the walls of the wells prohibit needle
articulation. In addition, diagonal needle approaches result
in an unacceptable level of needle breakage when moving
the needle through the hydrogel that surrounds the orga-
noid. To circumvent these issues, microinjection needles
were fashioned from glass capillaries, then heated and bent
to a 90� angle, allowing for a vertical needle approach to
organoid targets (Figure 1C). Positioning of the needle over
the target organoid did not obstruct the microscope visual
field owing to the inverted orientation of the objective lens
and optical clarity of the needle.

Accurate and reproducible microinjection requires high-
quality glass microneedles. We found that needle con-
struction techniques for conventional zebrafish embryo
microinjection produced needles that were not suitable
for organoid microinjection and required substantial
optimization.37 Specifically, needle taper and tip length were
increased to promote smooth entry and exit from the
organoid and rapid resealing. Needle bore diameter was
optimized to 1 mm to reduce the size of epithelial puncture
and enable reproducible nanoliter injections (Figure 1D).
Preliminary attempts to inject organoids showed that
microforged needles were highly susceptible to retention of
cellular material, resulting in a high incidence of clogging
and impaired insertion and removal of needles in subse-
quent injection attempts. At the microscopic level, the bo-
rosilicate needles are littered with microscopic defects,37

which we surmised caused retention of cellular material
on the needles after injection. Wet etching using HF was
adapted to remove these defects and produce a smooth
external needle tip.37 A high internal pressure was main-
tained in the needle body during wet etching to reduce
build-up of acid or salt residues that might cause clogging or
contaminate cargos. These microneedle design features
proved essential for efficient and reproducible high-
throughput microinjection into organoids.
Validating the Organoid Injection System
Precise and reproducible microinjection volumes are

critical for quantitative studies. The minimal microinjection
volume was determined for the organoid-optimized needle
design by injecting single droplets of aqueous fluorescein
isothiocyanate (FITC)-conjugated dextran into oil
(Figure 1E). The accuracy of 5 different microinjection
needles was tested by imaging injection droplets, measuring
the cross-sectional area of single-injection droplets using
CVis, and calculating the spherical volumes of each droplet
(Figure 1E). Optimized microinjection needles were capable
of reproducibly delivering 0.2 nL ± 1.4% of cargo. Each
0.2-nL droplet is approximately half the theoretical lumen
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volume of a 100-mm–wide organoid. Injection duration is a
property of pneumatic injection systems that changes in-
jection volumes. Although the injection duration necessary
to produce a 0.2-nL droplet varied from 24 to 51 ms be-
tween 5 different needles, there was little variability in
droplet volume (<1%). This indicates that variation in
needle tip geometry requires fine-tuning of injection dura-
tions to produce extremely small volumes. In contrast,
longer injection durations of 200 ms produced consistent
2.0-nL droplets from 5 different needles with minimal
variation (±2.1%) (Figure 1F). These data show that highly
consistent volume droplets can be generated between 0.2
and 2.0 nL when modulating the injection duration.

When diagonal needle approaches are used for micro-
injection the needle tip can be observed in the focal plate of
the target. When using a vertical needle approach the needle
is not visible in the focal plane of the organoid until the
puncture. The 90� articulation of the microinjection needle
required a modified workflow to efficiently microinject
organoids (Figure 1G). Visual cues caused by light refraction
off of the needle tip enables alignment above the organoid
(Figure 1G.1); the needle tip then is advanced until it
touches the top surface of the organoid (Figure 1G.2). As the
needle contacts the organoid exterior, deflection and
bending of the epithelial monolayer are visualized as
creasing and stretching of the organoid perimeter
(Figure 1G.3). Once punctured, the organoid retracts to its
original diameter and cargo is delivered by pneumatic pulse
(Figure 1G.4). After needle retraction, creases in the orga-
noid monolayer are no longer observed (Figure 1G.5). If
cargo is fluorescent, imaging then can be performed
(Figure 1G.6) (Supplementary Video 1).

Based on the diameter of the needle tip (1 mm), we es-
timate that an approximately 5- to 10-mm hole (about 1 cell
thickness) is generated as a result of the puncture through
the epithelium. To evaluate whether cargo remained in the
organoid lumen after needle withdrawal, luminal retention
of an inert 70-kilodalton fluorescein-dextran impermeable
to the membranes and intercellular junctions was
assessed.50 Immediately after injection, the fluorescent
dextran quickly diffused and equilibrated throughout the
luminal space (Figure 2A). Over time, signal intensity
decreased as the organoid grew and expanded (Figure 2B;
Supplementary Video 2). Although the decrease in fluores-
cent cargo might result from leakage, it was hypothesized
that the reduction in fluorescent signal was owing to
increased luminal volume, effectively diluting the fluores-
cent cargo with organoid growth. To test this, CVis
measured the mean intensity and area of the florescent
signal every 30 minutes for 18 hours (Figure 2C). Although
the mean intensity decreased to approximately half of the
original intensity during the 18-hour time course, the signal
area doubled (Figure 2D and E). When the signal intensity
was integrated over the observed area, the normalized
signal was shown to remain constant over the 18 hours
(Figure 2F). These data indicate that the injected cargo was
effectively retained in the organoids and suggests there is
unappreciable leakage from the needle puncture.
Automated Computer Vision Facilitates High-
Throughput Organoid Identification, Injection,
and Quantification of Injected Cargos

Major limitations to efficient and high-throughput micro-
injection are manual identification of organoids suitable for
injection, and the manual tracking and quantification of car-
gos after injection. To address these problems a CVis program
was developed to automatically identify suitable organoids
cultured on a CRA. CRAs are commercially available micro-
culture well arrays that enable efficient imaging, identifica-
tion, and position recall of thousands of organoids in a small
footprint (Figure 2G).33,35 There are approximately 15,000
microwells in a 2.0-cm2 area of the microfabricated device.
Passaged organoids were randomly seeded using a Poisson
distribution such that there was approximately 1 organoid
per 200-mm2microwell (Figure 2G). Organoidswere cultured
for 3 days to achieve a population of organoids that were of a
practical size for injection. The CRAwas imaged in brightfield
and fluorescence channels using MATLAB scripts, which
serially collected indexed images of individual rafts. Images of
each raft then were processed through OrganoidMorph, a
custom computational image analysis pipeline developed in
the open-source platform CellProfiler with a simple user
interface.33,41 The total organoid area and luminal area were
measured using CVis, and the monolayer width was deter-
mined by subtracting the overlapping area (Figure 2H;
Supplementary Video 3). The organoid area and monolayer
width metrics for each organoid were associated with a spe-
cific address on the CRA to enable automated recall for
microinjection. To validate OrganoidMorph identification,
CVis-identified organoids were compared with manually
identified organoids (Figure 2I). Automated organoid identi-
fication in approximately 15,000 CRA wells took approxi-
mately 2 hours and was more than 95% accurate. Lumen
segmentation was 96.8% accurate based on comparison with
manual measurements (Figure 2H and I). These data show
that a CVis pipeline can be used to accurately and efficiently
identify the location of hundreds of organoids, and quantify
their morphology to identify subsets of organoids suitable for
injection.

Anecdotally, microinjection efficiency is highly variable
between organoids of different sizes, shapes, luminal vol-
umes, and monolayer widths. Average monolayer widths
and cross-sectional areas from approximately 1800 orga-
noids from CAG:DsRED mice were determined automatically
by OrganoidMorph CVis analysis and the data were binned
according to width and area (Figure 2J and K). To test
whether distinct morphologies were more suitable for
microinjection, approximately 500 organoids with different
monolayer widths and cross-sectional areas were targeted
for microinjection with 0.4 nL of membrane-impermeable
70-kilodalton fluorescein-dextran (Figure 2L). Microinjec-
tion was scored as successful if FITC signal was contained
entirely within DsRED-positive cell boundaries immediately
after injection, or as unsuccessful if FITC signal was
detectable outside of organoid boundaries (Figure 2L).
Organoid cross-sectional area, which is a proxy for luminal
volume, was correlated positively with successful
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microinjection and injection efficiency (microinjection time
vs area) (Figure 2M). The smallest organoid successfully
injected measured 10,000 mm2. In general, organoids with
cross-sectional areas of less than 10,000 mm2 were not
suitable for microinjection. Approximately 50% of organo-
ids with cross-sectional areas between 10,000 mm2 and
approximately 18,000 mm2 were injected successfully;
100% of organoids with more than 18,000 mm2 cross-
sectional areas were injected successfully. In contrast,
there was no significant correlation between microinjection
success and monolayer width (Figure 2N). However, there
was a positive correlation between injection speed and
monolayer width for organoids with monolayers wider than
approximately 15 mm. When organoid monolayers were
more than 15 mm, each injection took an average of 39.1 ±
12.5 seconds, whereas monolayers less than 15 mm2 took an
average of 82.2 ± 14.4 seconds to inject (Figure 2O). These
data provide important organoid morphology metrics and
guidelines to increase the efficiency and success of organoid
microinjection.
Growth Dynamics of Transplanted Microbial
Communities and Colonoid Barrier Integrity
Can Be Monitored by Computer Vision

A number of studies have piloted monoculture of bacteria
in the lumen of organoids.30,50–56 We sought to explore
whether our high-throughputmicroinjection system could be
used to culture microbial communities in the lumen of colo-
noids, which are organoids derived from colonic epithelium,
and whether CVis could be used to monitor growth dynamics
of fluorescently labeled bacteria within a community. An
inoculum of approximately 1500 nonpathogenic E coliNC101
constitutively expressing GFP was injected into 5 individual
colonoids to assess whether the fluorescent signature could
be detected bymicroscopy. Confocal microscopy showed that
the GFP-expressing E coli NC101 could be detected easily
(Figure 3A). Orthogonal views of image projections invariably
showed a large E coli NC101-GFP signal in close proximity to
the colonoid monolayer (Figure 3A; Supplementary Video 4).
Amock community of 2different traceable bacterial species,E
coli–expressing DsRED and Y pseudotuberculosis–expressing
GFP, was injected into colonoids, detected by fluorescence
microscopy, and monitored over time to determine whether
growth dynamics of each species could be quantified by CVis.
Comparable with E coli NC101-GFP alone, E coli K12-DsRED
and Y pseudotuberculosis–GFP could be readily imaged
together in the same organoid by epifluorescencemicroscopy
at 2, 12, and 24 hours after injection (Figure 3C). There were
no appreciable changes observed in epithelial thickness,
budding, or growth rate after organoid lumen colonization.

Contamination of culture media owing to off-target in-
jection, needle leakage, or minor leakage out of the colonoid
lumen would compromise colonoid cultures and complicate
analysis of injected microbial communities. To address this
issue, 2 different antibiotics, tetracycline and chloram-
phenicol, were added to the colonoid media to inhibit
growth of free bacteria outside of the organoid lumen. E coli
K12-DsRED was resistant to tetracycline and Y
pseudotuberculosis–GFP was resistant to chloramphenicol.
To test the efficacy and specificity of antibiotics added to the
media, an inoculum of approximately 1500 of each fluo-
rescent strain was injected into 10 colonoids per antibiotic
condition, 5 mL of media was collected over time, cultured
for 24 hours, then cultures were assessed qualitatively for
bacterial growth and fluorescent signature. Although there
was no apparent bacterial contamination observed visually
in the colonoid culture media at any time point, small
amounts of active tetracycline-resistant and
chloramphenicol-resistant microbes could be cultured from
all conditions 2 hours after the injections (Figure 3D).
Neither strain could be cultured from media collected at 24-
hour or 48-hour time points when both tetracycline and
chloramphenicol were used, indicating the antibiotics were
effectively controlling contaminating bacteria outside of the
colonoid lumen.

To determine if the growth of the mock community could
be monitored quantitatively over time, 40 colonoids were
injected with approximately 1500 E coli K12-DsRED and
approximately 1500 Y pseudotuberculosis–GFP bacteria, and
fluorescence signal was quantified by time-lapse CVis every
30 minutes (Figure 3B). The integrated DsRED and GFP
intensity within the colonoid lumen steadily increased over
the 24-hour time course (Figure 3E), suggesting both strains
of bacteria in the community were growing. Although
colonoids were exposed to antibiotics in the media, the data
show only a modest decrease in fluorescence. A powerful
feature of the CRA platform is that the contents of each raft
can be retrieved individually for downstream analyses.35 To
determine whether bacteria were active and growing within
the colonoid lumen, each colonoid injected with the mock
community was retrieved from the CRA, and the number of
live bacteria was quantified by colony formation assays
(Figure 3F). No significant difference was observed in the
number of bacteria cultured from the luminal contents of
colonoids retrieved 2 hours after injection, suggesting that
the majority of the microbial load was retained in the
colonoid lumen (data not shown). Twenty-four hours after
injection of the mock community, significantly more bacte-
rium were retrieved from all colonoids, indicating growth
within the colonoid lumen (Figure 3F). These findings show
that growth dynamics of different bacterial species within a
community can be monitored in the colonoid lumen by
fluorescent signature and colony forming assays.

We next wanted to determine whether the signal level of
fluorescent proteins expressed by bacteria could be corre-
lated directly to the microbial load. Forty-eight colonoids
were transplanted with 24-, 48-, 72-, or 96-ms injections
consisting of approximately 800, approximately 1350,
approximately 1700, or approximately 2000 K12-DsRED
bacteria, approximately 200, approximately 300, approxi-
mately 500, or approximately 700 NC101-EGFP bacteria, as
measured respectively, and 70 kilodalton dextran as an in-
ternal reference to monitor barrier function. Forty-five of
the 48 attempted injections were successful (93.75%).
Signal from both E coli strains as well as the inert dextran
could be observed immediately after microinjection and
throughout the 24-hour incubation time. There was no
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apparent loss of barrier function as determined by a
consistent signal from fluorescent dextran (Figure 3G). The
transplanted bacteria showed increased growth as
measured by CFUs over the 24-hour period, and the fluo-
rescent signal from each strain also showed a steady in-
crease in the integrated DsRED and GFP intensity regardless
of starting load (Figure 3H). As predicted from the visual
observations, the integrated signal produced by the inert
dextran remained steady during the 24-hour time course,
indicating that epithelial barrier function was preserved
(Figure 3I). The ratio of CFU to intensity showed a nonlinear
relationship, indicating that integrated fluorescence signals
cannot be used to directly measure luminal microbial loads,
but can serve as a proxy for growth (Figure 3J and K).
The Colonoid Lumen Supports the Growth of
Aerobic and Obligately Anaerobic Human
Microbiota Taxa

Investigating interactions of native microbial commu-
nities with the host epithelium in culture is technically
challenging and many times impossible because native
enteric microbial communities are dominated by obligate
anaerobic species, which are difficult or impossible to
cultivate in vitro.19 Because of the relatively small colonoid
lumen volume, which is surrounded by oxygen-metabolizing
epithelium, it was hypothesized that the colonoid lumen
might be sufficiently hypoxic to cultivate the complex
anaerobic microbial communities found in the human gut.
Direct measurement of luminal oxygen in very large human
organoids derived from induced pluripotent stem cells has
been performed using an oxygen microprobe,55 however,
these microprobe tips are far too large to directly measure
Figure 3. (See previous page). The colonoid lumen forms a
growth. (A) GFP-expressing E coli can be visualized after micro
in the bottom of the lumen cavity in all colonoids observed. (B) Th
microbe compatibility was investigated using a CRA device to
cycline and/or chloramphenicol. Colonoids from each well were
DsRED-expressing E coli resistant to tetracycline and GFP-ex
Injected colonoids were monitored over time by live fluoresce
microbial growth by colony formation on conventional agar p
observed within the lumen of successfully injected colonoids d
preventing off-target growth by excess bacteria delivered to
discovered in culture media treated with chloramphenicol and
analysis showed an increase in integrated DsRED and EGFP
injected colonoids, suggesting an increase in DsRED- and EGF
culosis colonies were recovered from the lumen of colonoids
droplet, suggesting the colonoid lumen protected the injected m
culture media (n ¼ 10 colonoids in each condition). Significan
correlating with increased integrated fluorescence signal. (G) Flu
cargo could be observed within the lumen of successfully inject
NC101 colonies were recovered from colonoids collected 24
immediately after microinjection, suggesting that both microbes
each injection duration). (I) Computational analysis showed an in
injected colonoids, suggesting an increase in DsRED- and EGF
stable integrated Alexa Fluor 647 signal, suggesting that deli
recovered NC101 colonies to integrated EGFP signal varied sig
gesting that integrated EGFP signal cannot be used to directly m
ratio of recovered K12 colonies to integrated EGFP signal varie
suggesting that integrated EGFP signal cannot be used to d
phenicol; FU, follow-up evaluation; Int, integrated; Tet, tetracyc
oxygen in most organoids derived from primary tissues.
Therefore, a computational model was developed to estimate
the oxygen concentration using dimensions of a represen-
tative colonoid (Figure 4A). Monolayer thickness and luminal
volume was modeled based on this colonoid, and empirically
determined oxygen diffusion and oxygen consumption rates
were applied to the model57 (Figure 4A). COMSOL multi-
physics modeling suggested that the lumen of colonoids has
an estimated 10% atmospheric O2 (w180 nmol/L) reaching
the apical surface of the organoid owing to respiration by the
enclosing epithelial monolayer (Figure 4A and B). The model
is remarkably consistent with oxygen levels measured in
Human Induced Pluripotent Stem Cell-derived organoids
where luminal oxygen was measured at approximately 8%
and media levels at 18%.55

Although complex communities of human GI microbes
can be easily acquired by stool sampling from donors, un-
processed stool samples contain large particles that can clog
microinjection needles. We developed and validated a
method for processing stool samples such that they could be
loaded into microinjection needles without clogging the
small needle aperture or causing appreciable loss of com-
munity diversity (Figure 4C). Although centrifugation of
stool diluted in saline is a conventional method to prepare
fecal samples for transplantation into gnotobiotic animal
models, it was not sufficient to remove enough of the large
material that causes needle clogging. Two different
commercially available filters were used to filter stool
samples diluted in PBS, and the flow-through was compared
with untreated samples and centrifuged samples by 16S
amplicon sequencing. The results show little difference in
observed species between untreated, centrifuged, and filter
1, whereas there was an appreciable decrease in observable
discrete compartment compatible with specific microbial
injection into DsRED-expressing colonoids and appears to sit
e effects of antibiotics in the colonoid culture media on lumen
culture colonoids in 4 discrete reservoirs treated with tetra-
targeted for microinjection with a mixed microbial culture of

pressing Y pseudotuberculosis resistant to chloramphenicol.
nt imaging before lumen contents were harvested to assess
lates. (C) Fluorescent signal from both microbes could be
uring the entire time course. (D) Antibiotics were essential for
the media during microinjection with no active microbes
tetracycline 24 hours after microinjection. (E) Computational
fluorescence signal of raft images containing successfully
P-expressing microbes. (F) More E coli and Y pseudotuber-
from all media conditions compared with the input injection
icrobes from chloramphenicol and tetracycline delivered in the
tly more colonies were recovered from untreated colonoids,
orescent signal from both microbes as well as inert fluorescent
ed colonoids during the entire time course. (H) More K12 and
hours after microinjection compared with those collected

grew regardless of the delivered load (n ¼ 5–6 colonoids from
crease in integrated DsRED and EGFP fluorescence signal in
P-expressing microbes. Computational analysis also showed
vered dextran was well retained. (J) The measured ratio of
nificantly between the 2-hour and 24-hour time points, sug-
easure E coli NC101-EGFP microbial load. (K) The measured
d significantly between the 2-hour and 24-hour time points,
irectly measure E coli–DsRED microbial load. Chl, chloram-
line; Tx, treatment; Y pseudo, Y pseudotuberculosis.



Figure 4. Monolayer respiration makes the colonoid lumen a hypoxic environment capable of supporting the growth of
anaerobic enteric microbes. (A) COMSOL modeling suggests the lumen of the average colonoid (left panel) is maintained in a
state of hypoxia (right panel) resulting from respiration by the colonoid monolayer. (B) Modeling suggests that O2 levels
decrease rapidly from the basal to the apical colonoid surface to approximately 10% of atmospheric O2 levels (180 mmol/L).
(C) Stool filtered using a 5-mm polyethylene glycol membrane (filter 1) was compatible with microinjection needles and con-
tained the majority of species present in the unfiltered or conventionally processed (centrifuged) stool. (D) Stool filtered using a
5-mm polyethylene glycol membrane (filter 1) showed greater similarity to the unfiltered and conventionally processed stool
than stool filtered using a 5-mm polypropylene membrane. (E) Colonoid compatibility with human microbial populations was
investigated by loading a filtered healthy human fecal sample into a microinjection needle under anaerobic conditions before
30 colonoids were microinjected with approximately 0.2 nL of filtered stool. Injected colonoids were harvested across a 96-
hour time course and assessed for growth by colony formation in anaerobic and aerobic conditions. Cent, centrifuged;
PCA, principle component analysis.
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species when filter 2 was used. Similar trends were seen by
principal component analysis of the OTUs in which filter 1
samples closely clustered with OTUs in untreated samples
(Figure 4D). No needle clogging was observed when using
stool flow-through from filter 1, which was used to process
all stool samples before microinjection.

To determine whether aerobic and anaerobic commu-
nities could be transferred and cultivated within the colonoid
lumen, a simple workflow was developed that enabled
anaerobically collected stool samples to be efficiency injected
into colonoids similar to the high-throughput applications
described earlier. Essentially, stool samples were filtered and
loaded into the microinjection needles in an anaerobic
chamber, followed by microinjection of a 0.2-nL inoculum
into the lumen of colonoids (Figure 4E). This workflow was
used to evaluate the compatibility of the colonoid lumen with
fecal-derived microbial communities (Figure 5).

Fecal transplants were performed by injecting approxi-
mately 0.2 nL of the filtered stool sample into 30 murine
colonoids. At each specified time point, 5 of the colonoids
were collected and mechanically disrupted under anaerobic
conditions to release bacteria into a solution, which was
applied to broth plates for CFU assays (Figure 5A). There
was no apparent effect of colonization on colonoid viability
throughout the time course. After fecal transplantation,
increasing numbers of colonies were observed over time on
plates incubated in both aerobic and anaerobic conditions
(Figure 5B). Few or no colonies were recovered from off-
target injections, indicating that growth was specific to the
lumen environment (Figure 5C). To assess whether the



Figure 5. The colonoid lumen is compatible with patient-derived microbial communities and nonsporulating anaerobes.
(A) Few colonies were recovered from colonoids retrieved 6 hours after microinjection grown under anaerobic or aerobic
conditions, with increasing microbial loads recovered over time. (B) Significantly more anaerobic and aerobic colonies were
recovered from injected colonoids 12 hours after microinjection, with microbial loads peaking 72 hours after microinjection. (C)
Samples (10 mL) of the filtered stool collected and cultured under anaerobic conditions grew robustly as expected (top panel),
whereas unsuccessfully and noninjected samples produced no colonies in either atmospheric condition (lower panels). (D) The
composition of the microbial communities changed quickly after injection but remained stable throughout the 96-hour time
course with no significant shifts in 5 dominant phylum. (E) No significant changes were observed in the number of species
present in the microbial community after injection or incubation within the colonoid lumen. (F) The even composition of the
microbial community remained after injection and did not change significantly during the 96-hour time course. (G) Bifido-
bacteria, a genus containing nonsporulating anaerobes and aerobes, was a minor member of the healthy stool sample and was
detected at increased levels in the communities retrieved from colonoids. (H) Colonoid microinjection compatibility with
anaerobic nonsporulating microbes was verified by monoculture microinjection of B adolescentis quantified by 16s quanti-
tative PCR (qPCR) and culturing. (I) An increased abundance of B adolescentis was detected in successfully injected colonoids
by targeted qPCR 6 hours after microinjection and was maintained for 48 hours with no increase observed in unsuccessfully
injected colonoids. Active B adolescentis was recovered specifically from successfully injected colonoids by anaerobic
culturing throughout the 60-hour time course, suggesting that increases in 16S abundance resulted from growth within the
colonoid lumen. Bif. adol, B adolescentis.
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colonoid lumen could support stable fecal communities over
time, the remaining 5 colonoids from each time point were
subjected to 16S amplicon sequencing to monitor taxonomic
changes (Figure 5D). Although the Firmicutes represented
the most abundant phylum in the stool samples and colo-
noids at each time point, there was a notable expansion of
the relative abundance in Actinobacteria and Proteobacteria
phyla in the colonoids. Compared with stool, microbial
communities injected into colonoids and cultured over time
showed no significant difference in the number of observed
species or Shannon index, which is a quantitative metric to
describe the numbers and dominance of a species within a
community (Figure 5E and F). Together, these data show
that complex bacterial communities isolated from donor
fecal samples can be microinjected into the colonoid lumen
efficiently and cultivated over a 4-day period with little
change in the relative composition of the communities.

Obligate anaerobes can be subclassified as sporulating
anaerobes, which show some oxygen tolerance, or non-
sporulating anaerobes, which are highly intolerant to
oxygen.57 The diarrheal pathogen C difficile produces highly
resistant spores that can be transmitted through an oxygen-
rich environment to colonize a new host.19 C difficile has
been injected into organoids derived from hiPSc to study the
impact of C difficile toxins on host epithelium.30,58 We
wanted to test whether nonsporulating and highly oxygen-
intolerant species could survive and grow inside the colo-
noid lumen. Bifidobacterium is a gram-positive genus often
associated with anaerobic bacteria and was represented in
the healthy fecal microbiota sample. When the fecal micro-
bial community was microinjected into colonoids this genus
increased in relative abundance, suggesting it was growing
in the colonoid lumen (Figure 5G).

Although 16S rRNA gene amplicon sequencing indicates
the presence and relative abundance of bacterial taxa, it
does not access their viability. To validate whether non-
sporulating obligately anaerobe species of the Bifidobacte-
rium genera could survive and grow within the colonoid
lumen, a monoculture of B adolescentis, a highly oxygen-
intolerant species that is an early colonizer of the infant
gut,59 was microinjected into colonoids (Figure 5H). Sur-
vival and growth of B adolescentis in the colonoid lumen was
evaluated at 6, 12, 24, 48, or 60 hours after microinjection.
Because B adolescentis was not capable of growing on
plates60 activity was evaluated by culture capacity in
anaerobic broth and growth was evaluated by copy number
quantitative PCR for the B adolescentis 16S rRNA gene,
which can be used as a proxy for microbial load. Although
control injections exposed to oxygen were unable to grow in
culture at the earliest time point tested (6 hours), B ado-
lescentis could be cultured in broth through 3 days of
cultivation in the colonoid lumen (Figure 5I). There was an
approximately 4.5-fold increase in the relative abundance of
B adolescentis within the colonoid lumen between injection
(t ¼ 0) and 6 hours of cultivation (Figure 5I). Although B
adolescentis could survive through 3 days after injection,
there was a significant loss of 16S rRNA gene abundance at
2 days after injection, suggesting factors required for
growth had diminished. Together, these results indicate that
the colonoid lumen is sufficiently hypoxic to support sur-
vival and growth of nonsporulating anaerobes found within
the larger community of fecal microbiota.
Conclusions
In response to the call for high-throughput platforms

and physiologically relevant in vitro culture models to
study ‘unculturable’ taxa61,62 and their effect on GI physi-
ology, we developed and validated a semi-automated high-
throughput microinjection device that enables highly effi-
cient and reproducible injection of cargos into the lumen of
gut organoids. The microinjection device was married to
CVis algorithms and microculture arrays (CRAs) for high-
content sampling of inert and biological cargos injected
into the organoid lumen. The microinjection platform was
used to monitor and quantify the growth dynamics of mock
microbial communities harboring fluorescent reporter
genes. With the knowledge that the organoid lumen was
sufficiently hypoxic to support cultivation of more oxygen-
tolerant sporulating anaerobes such as C difficile,30,50 we
predicted that complex microbial communities containing
highly oxygen-sensitive nonsporulating anaerobes might be
able to be cultivated in the colonoid lumen. Indeed,
computational models suggested a 10-fold decrease in ox-
ygen concentration at the apical membrane of the organoid
owing to the oxygen-consumption rate of colon epithelial
cells and known oxygen diffusion properties. New methods
to prepare human fecal samples for microinjection were
developed and validated to functionally test whether
complex microbial communities would survive and persist
in the colonoid lumen. Microinjection of fecal samples into
the colonoid lumen showed efficient fecal microbial
transplantation based on similar relative abundance of taxa
compared with the transplanted fecal sample. In addition,
the microbial communities persisted over a 4-day period
with relatively little change in relative composition. As a
benchmark for functional anoxia of the colonoid lumen we
monotransplanted B adolescentis, a highly oxygen-sensitive
anaerobe, into the colonoid lumen and showed growth and
survival over a 4-day period. Together, these findings
strongly support the concept that the environment of the
organoid lumen can serve as a suitable model to investi-
gate many aspects of human fecal microbial communities.

Aside from the utility of this platform for the study of the
microbiome, our findings indicate that robust retention of
cargos injected into the organoid lumen will be useful for
screening compounds and toxins that impair epithelial
barrier function. Our high-content CVis applications show
the ability to monitor retention of membrane-impermeable
compounds in hundreds or thousands of organoids using
time-lapse imaging. A pioneering study using hiPSC-derived
organoids to study barrier function showed that C difficile
toxins disrupted the epithelial barrier resulting in a loss of
fluorescent membrane-impermeable probe.30 Although
these studies and our findings indicate that retention of
membrane-impermeable probes are useful for measuring
epithelial membrane integrity, our results indicate that the
fluorescent signal should be normalized to the organoid
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growth volume to account for loss of signal that could be
misinterpreted as a leaky epithelial barrier.

Organoids are not all created equal. Studies at the single-
organoid level have shown large variations in cell lineage
composition, gene expression, and function of trans-
porters.33,59 In a previous study we isolated 96 organoids at
different stages of ontogeny and showed that although
there was a stereotypical pattern of lineage gene expression
at early organoid development, mature organoids showed
highly variable gene expression consistent with heteroge-
neous ratios of cell lineages within the organoid.33 Func-
tional heterogeneity in organoids also has been shown in
high-throughput analysis of single organoids using a
swelling assay, which commonly is used to assess the
function of the cystic fibrosis transmembrane conductance
receptor.59,60 Interestingly, at the single-organoid level, 2
categories of organoids were observed: responders to
forskolin-induced swelling and nonresponders. Even within
each of these populations substantial variation in swelling
dynamics was documented. These findings highlight the
importance of designing organoid experiments with suffi-
cient biological and technical replicates to provide adequate
statistical power. Our microinjection and CVis platform
currently enables microinjection of approximately 90
organoids per hour with subsequent automated time-lapse
monitoring of injected cargos. Because the organoids are
injected in a physiologic chamber, data can be collected
continuously over several days, or the CRAs can be
returned to the conventional incubator and data can be
sampled by returning the CRA to the automated stage for
data sampling at specified time points. Although this
throughput likely is adequate for most experiments, the
data indicate that optimum throughput can be achieved by
culturing organoids to a point that the cross-sectional area
is more than 18,000 mm. Further optimization of automated
needle positioning in the center of the organoid, and z-plane
articulation during the puncture sequence, are predicted to
increase microinjection throughput substantially.

The ability to efficiently and reproducibly introduce a
variety of cargos into the organoid lumen is a significant
methodologic advance that will be useful to investigate a
broad range of topics related to luminal–epithelial physi-
ology, such as barrier function, nutrient absorption, drug
transport and metabolism, and the impact of dietary com-
pounds or pharmaceuticals on stem cell maintenance and
differentiation. Although this study focused on the analysis
of bacterial communities, our system could be easily
adapted to studies focused on the fungi, parasites, and vi-
ruses that impact human GI health.
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