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Summary and Background 
Research in this study focuses on two related aspects 

of unit nonresponse (nonresponse by sampled members 
of study populations) in the rounds of the National 
Longitudinal Study of Adolescent Health (Add Health) 
(Chantala and Tabor, 1999): (i) round-specific 
nonresponse bias and its component contributions, and 
(ii) the statistical utility of alternative approaches to
adjusting sample weights for nonresponse.  This work is
part of four research studies funded by CDC-NCHS, at
the UNC Center for Health Statistics Research.

Nonrespondents in surveys can be classified 
according to the reason for nonresponse (Lessler and 
Kalsbeek, 1992): 1) Not Solicited (NS): Sample members 
are not solicited as perhaps their address is unknown, or 
they are out of the country; 2) Solicited but Unable (SUA): 
Sample members are contacted but decline to participate 
based on inability. Reasons include physical or language 
limitations; 3) Solicited but Unwilling (SUW): Sample 
members are contacted but refuse to participate for 
reasons such as lack of time or, apathy; and 4) Other 
Nonrespondents (OTH): Sample nonrespondents give a 
reason that does not fit in any of the previous categories. 
Examples are lost schedules and partial respondents 

Response outcome information and data to obtain 13 
different measures of health risk from Add Health are 
used to accomplish two main tasks in this study.  First, 
we estimate the round-specific nonresponse bias and its 
component contributions corresponding to the four 
nonresponse categories described.  The sign (negative or 
positive) of these components and the offsetting effects of 
some components on the overall bias is of particular 
interest.  Second, we compare the statistical effects of 
alternate sample adjustments for nonresponse on the bias 
and variance of study estimates. It is important to note 
here that we are examining the effects of nonresponse in 
IH1 and IH2 separately, and not the cumulative effects of 
nonresponse through these rounds. 

The Add Health Study Design 
The Add Health study (also known as the National 

Longitudinal Study Adolescent Health) was designed to 
identify predictors of adolescent risk behavior and 
quantify their prevalence.  The three rounds to the study 
began with a self-administered in-school survey (IS1, 
n=90,118).  Two in-person in-home interviews followed: 
IH1 (n=20,745) and IH2 (n=14,738).  The initial sample 
consisted of 80 high schools and 52 "feeder schools" that 

sent students to the selected high schools.  Systematic list 
sampling with probabilities proportional to size (PPS) was 
used to select the 80 high schools.  The measure of size 
was based on their enrollment as listed on the QED, a 
database thought to be the most comprehensive available 
list of schools in the United States (Tourangeau, 1999). 
For each high school, a middle school was selected as the 
school that “fed” the most students into its entering class. 
A number of the high schools also had grades 7-8 and so 
did not require selection of a feeder school.   

All students at the selected schools were asked to take 
part in IS1. Approximately 200 students from each 
selected school were asked to complete IH1 and nearly all 
respondents to IH1 were approached for IH2.  The 
implicit stratification (sampling from a sorted list) 
resulted in a sample that was nearly representative of all 
schools in the US. The PPS sampling achieved an almost 
self-weighting core sample for the in-home portions. 
Oversampled ethnic groups, twins, siblings, disabled 
youths, and adopted youths augmented this core sample. 
Only the core sample was considered in this analysis.   

Data collection for IS1 started in September 1994 and 
ended in April 1995.  From April to December 1995, IH1 
interviews were conducted.  From April to August 1996, 
respondents to IH1 were approached for IH2.  The overall 
response rate was 78.9% for IH1 and 88.2% for IH2 
(20,745 and 14,738 completed interviews, respectively).   

The outcome parameters selected for estimation are 
rates of risk for a number of student health factors. These 
included the percentage of students who: in the last 12 
months, smoked (Smoked), drank alcohol (Drank), were 
drunk (Drunk), were in a physical fight (Fought), skipped 
school without an excuse (Skipped), lied to their parents 
(Lied), and, in the past week, were inactive (Inactive), had 
poor appetite (No Appetite), felt depressed or blue 
(Depressed), felt too tired to do things (Tired), did not feel 
a part of their school (Isolated), felt unhappy at school 
(Unhappy), and felt unsafe at school (Unsafe). These 
outcome variables were chosen because they are 
important public health indicators of risk and were 
comparably measured in IH1 and IH2.  

Method 
Bias Profile: To examine the bias and its components 

arising out of two rounds of Add Health, we used the 
Hansen-Hurwitz model for quantifying nonresponse bias. 
This model is a function of the nonresponse rate and the 
difference between respondents and nonrespondents, as 
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seen below.  Our model presumes that one wishes to 
estimate the proportion (P) of all members in a 
population who possess some trait (e.g., at risk to an 
adverse health outcome), and that 

r nr100 100(1 )λ λ= −  
percent of the population would be respondents if 
sampled. If rP  and nrP  respectively denote the proportion 
of those in the respondent and nonrespondent subgroups 
who possess the trait, and rP̂  is an unbiased estimator of 

rP  based on respondent data alone but making no effort 
(for now) to adjust for nonresponse in estimating P, then 
since r r

ˆE( P ) P=  and r r r nrP P (1 )Pλ λ= + − , the bias due to 
the overall nonresponse in the sample can be written as, 

o r
ˆB Bias( P )≡ =

r
ˆE( P ) P− = nr r nr( P P )λ −   . (1) 

Beyond this expression for the total bias due to 
nonresponse, Groves (1989) noted that one can view total 
bias of rP̂  as the sum of components due to various 
categories of (i.e., reasons for ) nonresponse; i.e., that  

C C
( c ) ( c )

o c nr r nr
c 1 c 1

B B ( P P )λ
= =

= = −� �   (2) 

where ( c ) ( c )
c nr r nrB ( P P )λ= −  and ( c )

nrλ  and ( c )
nrP  are, 

respectively, the proportion of the population and the 
proportion of members with the trait in the c-th 
nonrespondent category.   

For any nonrespondent domain, d, (i.e., over all 
nonrespondents or each of the C nonrespondent 
categories) one can estimate dB  as ( d ) ( d )

d nr r nr
ˆˆ ˆ ˆB ( P P )λ= − , 
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nrP , and rP , respectively, and each 
term with a prime (‘) denotes a Horvitz-Thompson (1952) 
estimator of a population total; i.e., an estimator of the 
form n

i i
i

w z�  where iw is the (unadjusted) sample weight 

and iz is the measurement whose population total is 
being estimated by summing over the sample of size n.  
Each estimated bias is thus a nonlinear function of five 
estimated totals.  Following the computational strategy 
suggested by Woodruff (1971), a Taylor Series linearized 
variance estimate for each 

dB̂ .will be of the form,  
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where hm  is the number of sample PSUs in the h-th 

primary stratum and *
hq α  is the weighted sum (among all 

respondents in the α -th sample PSU in the h-th stratum) 
of the Taylor linearized variate corresponding to the five 
totals defining dB . A comparable approach was followed 
in developing the point estimate and its variance for the 
difference, d 1d 2dB Bδ = − , between the domain bias for 
IH1 ( 1dB ) and the bias for the same domain in IH2 (

2dB ).  
The estimate of dδ  in this case is a function of ten 
estimated totals and thus requires a different linearized 
variate for the variance formula.   

Comparison of IH2 Nonresponse Adjustments: 
Estimation in most randomly chosen samples requires that 
one weight subjects with the inverse of their inclusion 
probability (Horvitz and Thompson, 1952).  These 
weights are often calculated by the following steps.  1) 
The raw, or pre-adjustment weight is the inverse of the 
selection probability, which depends on how the sample 
was selected.  2) This weight is then multiplied by a 
factor, called a nonresponse adjustment, to account for the 
subjects' estimated probability of response, or “response 
propensity.” 3) These nonresponse-adjusted weights may 
be calibrated to known population subgroup totals by 
multiplying them by a post-stratification adjustment.  
Given our focus on calculating the nonresponse 
adjustment, we exclude the post-stratification adjustment 
from further consideration. We will use post-adjustment 
weight to refer to the product of the pre-adjustment weight 
and the nonresponse adjustment. We compare variations 
of two approaches to estimating a respondent’s response 
propensity in adjusting for IH2 nonresponse: (i) the 
weighting class adjustment (WCA) estimates the 
probability using subgroup response rates from the study, 
and (ii) response propensity modeling (RPM) adjustment 
uses a fitted logistic model with the response outcome as 
the dependent variable.  The nonresponse adjustment is 
then obtained as the inverse of the model-derived estimate 
of the response propensity. 

The WCA corrects for nonresponse by dividing the 
sample into subgroups, or weighting classes, and 
adjusting the pre-adjustment weight by the inverse of its 
subgroup response rate.  This rate serves as the estimated 
response propensity for each respondent in the subgroup.  
Kalton (1983) demonstrated that the bias of the WCA 
estimator will go to 0 when adjustment cells are chosen 
such that they are internally homogenous; i.e., 

g ,r g ,nrP P= ; ∀ g,.  Furthermore, the size of the bias 

without adjustment, as compared to the bias with WCA, is 
a function of the correlation between the estimator for the 
respondents in a given cell and the response rate for that 
cell.  Thus, it is ideal to form the cells based on factors 
that predict cell response rates and will have similar 
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outcomes for respondents and nonrespondents.  These 
groupings are often defined by the sample clusters or 
strata as they are easily accessible and all response rates 
are known (Lessler and Kalsbeek 1992). This method may 
overestimate the variance (Kalton 1983), which can be 
compensated for by either post-stratification or a weight 
trimming processes (Kalton 1983, Potter 1988). 

The RPM adjustment process estimates response 
probabilities by fitting a logistic model for the response 
outcome; i.e., an indicator of response status.  A criticism 
of the WCA is that it may not fully utilize the data that are 
available to the researcher, as it fails to take into account 
covariates of the outcome variables as well as variables 
tied more directly to the response mechanism (Sarndal, 
1986).  Sarndal found that inclusion of such covariates in 
forming a regression model of the probability of response 
could reduce the bias of associated estimates.   

Many variables may be used as predictors in such a 
model.  Unfortunately, such methods can produce extreme 
values for the weights, requiring further trimming.  The 
model developed by Deville and Sarndal (1992) imposes 
bounds on the adjustment factor using a logit based 
model; for a unit k, the nonresponse adjustment factor is 

)Ax(     )-(1  +  1)-(u
)Ax(     )-u(1  +  1)-(u  = )( a

k

k
k λ

λλ
′

′

exp
exp

�

��  where xk is the 

vector of predictor variables, u ,�  are bounds on 
 )( ak λ , u < 1 < � , and ][ )-1)(1-(u / )-(u = A �� .   Parameters 

λ, are estimated using 0, = T - )(a  d  x xkkks λ�  where 

T x  is a control data vector and d k  is the existing weight.  
This model takes the logit model and adds restrictions, 
however it does not allow one to choose the lower bound 

1    ≥�  for nonresponse adjustment, which would be 
desirable.  (Folsom and Singh, 2001).   

The generalized exponential model developed by 
Research Triangle Institute (RTI) (Folsom and Singh, 
2001) does this by using the model 
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adjustment factor, with the parameters λ estimated as 
before, but using an iterative process.  Also, kkk uc ,,�  can 
be chosen separately for each group of observations.  As 
with WCA, these weights add variability to the estimates 
and can increase the sample variance even while reducing 
the bias.  An advantage of this process is that the weights, 
since already restricted, do not require subsequent 
calibration.  Also, the restrictions can be used to produce 
weights appropriate for nonresponse adjustment. 

The software used to generate all RPM weight 
adjustments was developed at RTI (Folsom and Singh 
2001).  They provided a SAS macro, GEM5.sas, which 
features nonresponse adjustment as well as post-
stratification and extreme value censoring.  In our study, 
only the nonresponse portion was used.  

The user-specified parameters for the RTI macro 
included a list of predictors for which to adjust, the 
dataset, a unique subject identifier, an indicator for 
response status, and the existing weights and bounds to 
put on the returned adjustments.  A dataset with subject 
identifiers and their calculated adjustment based on their 
responses to the predictors was returned. 

The comparative analysis of alternative weighting 
adjustments was conducted by first generating a number 
of weighting class (WCAx) and propensity (RPMx) 
weights using different variables to either form the classes 
or predict the response outcome, and then multiplying 
them times the pre-adjustment weight to yield the post-
adjustment weight used for estimation.  Second, bias, 
variance and mean squared error (mse) for the health risk 
estimates were calculated using each of these weights.  

Generating alternative adjustments for IH2 
nonresponse: Each IH1 respondent was categorized by its 
IH2 response status.  Further calculations used only IH1 
data. A nearest-neighbor bootstrap multiple imputation 
macro was used for missing values of predictor and 
weighting cell variables  (Quade 2001).   

The first adjustment, “WCA1,” was the NORC 
weighting class nonresponse adjustment, utilizing 
weighting classes formed by the respondents’ school and 
gender (Tourangeau, 1999).  This was calculated by 
dividing the sample into 264 weighting cells (132 schools 
by 2 genders), and giving a nonresponse adjustment factor 
to each.  For the thh  weighting class the adjustment was 

computed as, hweighted total
h

weighted resp h

n
n

ϕ −

−

= or 
weighted RR

1
λ

.  

The second adjustment, “RPM1,” was generated 
using RTI’s propensity modeling macro, with school and 
sex as predictors so as to be comparable to WCA1.  The 
weights were calculated by adding the necessary 
parameters to the macro, which then returned the dataset 
of the calculated adjustment factors  (Chen, 2001).   

To produce the adjustment, “RPM2,” we identified 
several demographic variables, then ran a forward-
selection logistic model in SAS v8.01 using these 
demographics as predictors and IH2 response as outcome 
(SAS Users Guide, 1999).  Variables significant at 
α =0.05 were placed as predictors into RTI’s GEM 
modeling macro (Chen, 2001; Odom, 2001). For 
comparison, “WCA2” was created using the significant 
predictors found in creating RPM2 to split the subjects 
into weighting classes.   

The adjustment “RPM3” was created using a best-fit 
model that included IH1 demographics and a number of 
health-related variables not specifically tied to the 13 risk 
factors we studied. The health variables we used had a 
low level of item nonresponse and were likely to be 
correlated with both the outcome measures and response 
likelihood.  As above, forward-selection was used to 
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determine significant predictors to place into the GEM 
macro. Although the health variables may be unavailable 
to researchers in cross-sectional studies, they allowed us 
to examine the usefulness of data collected in earlier 
waves to adjust for nonresponse. The final adjustment 
alternative, “None,” was simply the IH2 pre-adjustment 
weight with no adjustment for IH2 nonresponse. 

Calculating components of the mse: The full set of 
IH1 data with the final IH1 pre-adjustment weight was 
used to calculate 13 health-risk measures.  Each IH1 
respondent was labeled with his IH2 response status.  
Nonresponse bias corresponding the each of the six 
alternative weights was estimated as, *

k r ,k nr ,None
ˆ ˆ ˆB P P= − , 

the difference between the estimated outcome using the k-
th adjustment weight applied to respondent data (

r ,kP̂ ) and 
the outcome using the pre-adjustment weight applied to 
IH2 respondent and nonrespondent data (

nr ,NoneP̂ ). The 
magnitude of the bias for each adjustment was then 
ranked for each outcome variable and averaged among the 
health risk measures. Proc Surveymeans (SAS Users 
Guide, 1999) was used to calculate the standard errors of 
the 13 health risk estimates for each of the nonresponse 
weights. Last, estimated mse for estimates obtained from 
each adjusted weight were calculated as 2 2mse bias se= +  
and compared as a percent difference to the mse resulting 
from using IH2 respondent data with no nonresponse 

adjustment ( nonemse ); k None

None

mse mse
100

mse
� �−

∆= � �
� �

.  For each 

health-risk measure, the ∆  measures were ranked. An 
average rank was computed for each adjustment.   
 
Findings and Discussion   

Bias Profile: Estimates of bias for IH1 and IH2 
nonresponse in each of 13 measures of health risk 
prevalence are presented in Table 1.  One notes from 
Table 1 that the magnitude of both total bias and its 
components for these health indices rarely exceeds 1% in 

either IH1 or IH2, which is small relative to the sizes of 
the prevalence rates which varied mostly from 20% to 
80%.  Indeed, all but two of the 26 relative total biases, 
each computed as the estimated total bias divided by the 
full-sample estimated rate, were less than 2%.  Over a 
quarter of all estimates (8 of 26 total bias and 25 of 104 
bias components) were nonetheless found to be 
statistically significant from zero.  

In both IH1 and IH2, the direction of these estimated 
biases often differed by nonresponse reason.  All 26 SUW 
(refusal) bias estimates were positive, and all but four NS 
(not solicited) biases were negative (none statistically 
significant). Directions were mixed for the other 
categories, with 16 SUA (unable) and 13 OTH bias 
estimates being positive.  These patterns suggest that 
health risk for those not locatable in Add Health is 
somewhat higher than for respondents.  Alternatively, 
refusals are at lower risk than respondents, presumably 
failing to see the need to report their lower risk behavior. 
Finally, based on the number of statistically significant 
results, component biases in order of importance were 
SUW and NS (each 10), SUA (4), and OTH (1). 

Contributions of the components to total bias reveal 
that the greatest magnitude in total biases is seen (“Lied” 
and “No Appetite”) when all components are the same 
sign.  Contrastingly, the sum of positive and negative 
components offsets the total bias.  Most intriguing are the 
three instances (“Unsafe” for IH1 and “Fought” and 
“Unhappy” for IH2) where total bias is not significant 
and two component biases are significant in the opposite 
directions.  In these instances the relatively strong 
opposite effects are keeping the total bias in check, and it 
suggests that altering this balanced state by inducing new 
nonresponse preventive strategies (e.g., extensive 
tracking to reduce NS bias) might have the unintended 
effect of increasing the magnitude of the total bias due to 
nonresponse, thus making sample estimates more biased 
than they were. 

 
 
Table 1:  Estimates of Nonresponse Bias (in Percentage Points) for IH1 and IH2 Percent Estimates of Health Risk  

  IH1    IH2 
Variable TOTAL NS SUA SUW OTH  Variable TOTAL NS SUA SUW OTH 
Inactive -0.15  -0.11  -0.04  0.00  0.01   Inactive -0.02 -0.07 -0.02 0.05 0.01 
Smoked 0.58  -0.09  0.24  0.37  0.05   Smoked -0.39 -0.30 -0.21 0.17 -0.04 
Drank 0.98  -0.05  0.41  0.61  0.02   Drank 0.09 -0.09 -0.06 0.23 0.01 
Drunk 0.08  -0.20  0.11  0.17  0.01   Drunk -0.07 -0.04 -0.14 0.14 -0.03 
Fought 0.41  -0.04  0.04  0.64  -0.23   Fought -0.34 -0.34 -0.18 0.23 -0.05 
Skipped 0.13  -0.14  0.02  0.27  -0.02   Skipped -0.79 -0.57 -0.26 0.08 -0.04 
Lied 1.20  0.14  0.37  0.41  0.27   Lied 0.66 0.14 0.16 0.35 0.01 
No Appetite 0.82  -0.12  0.34  0.38  0.22   No Appetite 0.31 -0.09 0.16 0.28 -0.03 
Depressed 1.23  0.11  0.05  0.80  0.27   Depressed 0.05 -0.16 0.06 0.15 -0.01 
Tired 0.52  -0.01  0.15  0.38  0.01   Tired 0.39 0.04 0.07 0.34 -0.06 
Isolated -0.18  -0.34  0.09  0.14  -0.08   Isolated -0.31 -0.34 -0.08 0.19 -0.07 
Unhappy 0.03  -0.29  0.10  0.15  0.07   Unhappy -0.32 -0.30 -0.19 0.18 0.00 
Unsafe 0.10  -0.33  -0.04  0.52  -0.05   Unsafe -0.15 -0.27 0.05 0.10 -0.03 

 

 
Bolded items indicate 
significant difference 
from zero. 
NS:      Not Solicited     
SUW:  Solicited But   
            Unwilling 
SUA:  Solicited But 
           Unable    
OTH:  Other   
           Nonrespondents
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        Table 1 also suggests that biases from IH1 and IH2 
are somewhat different.  The magnitude of IH1 total 
biases were generally greater than IH2 biases.  Bias 
components in the two rounds appear to be less different.  
One possible explanation is that the process 
circumstances surrounding these two rounds were 
dissimilar.  Nonresponse in IH1 occurred in the context 
of a first attempt to collect data from a largely 
unsuspecting sample.  Here, the potential respondent 
knew relatively little about the study and what the 
interviewer was requesting, suggesting that apprehension 
and study credibility may have been key considerations 
by potential respondents, whereas in IH2 a second 
request for help through study participation was made, 
thus making respondent burden a major consideration to 
the response decision maker. 
      Comparison of IH2 Nonresponse Adjustments: 
Comparison of (remaining) total bias and of the variance 
implications of adjustment options applied to IH2 
respondents is presented in Tables 2-5.  The measures of 
total bias presented in Table 2 confirm from Table 1 the 
variable but relatively modest magnitude of bias due to 
round-specific attrition in the Add Health sample.  
Observing the ranks of the magnitude (absolute value) of 
biases for each approach (Table 3) reveals the relative 
bias-reduction capability of each adjustment option, 
although individual biases and bias differences among 
approaches are usually small.  A rank of “1” indicates the 
smallest remaining bias magnitude and “6,” the largest.  
Comparison of mean ranks revealed that there was no 
clear winner among the approaches but that the two RPM 
approaches with the demographic predictors (RPM1 and 
RPM2) performed best in reducing bias and that, as 
expected, making no adjustment was statistically the 
least beneficial.  Both WCA approaches were moderate 
in their level of performance.  Most surprising was the 
somewhat unpredictable utility of the RPM3 approach.  
For all but three risk measures it was either the best or 
the worst performer among approaches. Table 4 indicates 
limited differences in the impact on the variance of 
estimates of health risk, with the average of estimated 
standard errors identical to four decimal places.  With 
negligible differences in the effect of adjustment on the 
variance component of the mse, the performance of these 
methods relative to the no-adjustment approach are 
shown in Table 5.  As expected, the percent relative 
differences reported here are mostly negative (indicating 
reduction in the mse by adjusting for nonresponse), 
ranging from 0% to nearly -20% (for “Skipped”).  An 
explanation for the positive relative differences is not 
apparent. 

 
 
 

Table 2  Estimated Bias for IH2 Estimates Using 
Alternative Weight Adjustments 

  Adjustment 
Variable WCA1 RPM1 WCA2 RPM2 RPM3 None 
Inactive 0.0002 0.0001 0.0001 0.0001 0.0002 -0.0003
Smoked -0.0030 -0.0030 -0.0022 -0.0023 -0.0003 -0.0035
Drank 0.0029 0.0028 0.0025 0.0026 0.0043 0.0015 
Drunk 0.0003 0.0003 0.0006 0.0006 0.0023 -0.0006
Fought -0.0019 -0.0014 -0.0008 -0.0008 0.0006 -0.0029
Skipped -0.0057 -0.0058 -0.0050 -0.0049 -0.0034 -0.0076
Lied 0.0078 0.0078 0.0076 0.0074 0.0081 0.0075 
No Appetite 0.0035 0.0033 0.0038 0.0038 0.0041 0.0037 
Depressed 0.0010 0.0007 0.0016 0.0016 0.0020 0.0008 
Tired 0.0045 0.0044 0.0047 0.0045 0.0047 0.0041 
Unhappy -0.0029 -0.0029 -0.0024 -0.0023 -0.0016 -0.0036
Isolated -0.0021 -0.0020 -0.0021 -0.0019 -0.0012 -0.0027
Unsafe 0.0000 0.0002 -0.0007 -0.0006 0.0001 -0.0011

 
 

Table 3  Ranks of Estimated Biases for IH2 Estimates  
Using Alternative Weight Adjustments 
  Adjustment 
Variable WCA1 RPM1 WCA2 RPM2 RPM3 None 
Inactive 5 3 1 2 4 6 
Smoked 5 4 2 3 1 6 
Drank 5 4 2 3 6 1 
Drunk 2 1 3 4 6 5 
Fought 5 4 3 2 1 6 
Skipped 4 5 3 2 1 6 
Lied 5 4 3 1 6 2 
No Appetite 2 1 4 5 6 3 
Depressed 3 1 5 4 6 2 
Tired 4 2 6 3 5 1 
Unhappy 4 5 3 2 1 6 
Isolated 5 3 4 2 1 6 
Unsafe 1 3 5 4 2 6 
Mean Rank 3.85 3.08 3.38 2.85 3.54 4.31 

 
 

Table 4  Estimated Standard Errors for IH2 
Estimates Using Alternative Weight Adjustments 
  Adjustment 
Variable WCA1 RPM1 WCA2 RPM2 RPM3 None 
Inactive 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 
Smoked 0.0102 0.0102 0.0101 0.0101 0.0102 0.0101 
Drank 0.0134 0.0134 0.0135 0.0135 0.0135 0.0135 
Drunk 0.0122 0.0121 0.0122 0.0122 0.0122 0.0122 
Fought 0.0104 0.0104 0.0102 0.0102 0.0102 0.0102 
Skipped 0.0125 0.0125 0.0126 0.0126 0.0127 0.0125 
Lied 0.0093 0.0093 0.0092 0.0092 0.0092 0.0092 
No Appetite 0.0073 0.0073 0.0072 0.0072 0.0072 0.0072 
Depressed 0.0081 0.008 0.008 0.008 0.008 0.008 
Tired 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 
Unhappy 0.0075 0.0075 0.0076 0.0076 0.0076 0.0075 
Isolated 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 
Unsafe 0.0123 0.0123 0.0123 0.0123 0.0124 0.0123 
Mean Standard 
Error 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 
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Table 5  Estimated Percent Relative Difference  
in Mean Squared Errors for IH2 Estimates Using 
Alternative Weight Adjustments * 
  Adjustment 
Variable WCA1 RPM1 WCA2 RPM2 RPM3 
Inactive 1.23 0.45 0.32 -0.4 0.06 
Smoked -1.36 -2.18 -6.52 -5.97 -9.11 
Drank 3.06 2.71 2.12 2.43 8.92 
Drunk -0.34 -0.75 0.27 0.25 4.33 
Fought -0.73 -2.77 -6.89 -7.27 -6.79 
Skipped -11.12 -10.4 -13.9 -14.4 -19.3 
Lied 4.37 3.16 0.32 -1.83 5.78 
No Appetite -0.31 -4.34 1.38 1.47 4.18 
Depressed 1.16 -1.29 2.56 2.76 5 
Tired 5.52 2.86 7.5 5.41 6.7 
Unhappy -6.45 -6.63 -9.3 -10.1 -12.9 
Isolated -3.36 -3.36 -3.71 -4 -6.54 
Unsafe -0.75 -0.84 -0.66 -0.67 -0.08 
Mean Rank 3.62 2.85 2.92 2.31 3.31 

*Relative to the mse of estimates using a pre-adjustment weight 
 
Continuing Work  

Since nonresponse carries over from one round to 
the next, future profiling of bias will examine the 
cumulative effects of attrition through IH1 and IH2.  
This assessment is expected to yield biases of larger 
magnitude as attrition across two rounds approaches 
30%.  Because of the unusual dynamics with component 
biases, we will next explore the feasibility of using 
multinomial logistic models to predict response 
propensities and adjust weights.  Finally, we will explore 
revising our estimates of variance under the WCA and 
RPM approaches to handle differential implications of 
these adjustments on the TSL variance estimates.   
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