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Summary

The prognostication of head and neck squamous cell carcinoma (HNSCC) is largely based upon the tumor size and location
and the presence of lymph node metastases. Here we show that gene expression patterns from 60 HNSCC samples
assayed on cDNA microarrays allowed categorization of these tumors into four distinct subtypes. These subtypes showed
statistically significant differences in recurrence-free survival and included a subtype with a possible EGFR-pathway
signature, a mesenchymal-enriched subtype, a normal epithelium-like subtype, and a subtype with high levels of antioxidant
enzymes. Supervised analyses to predict lymph node metastasis status were approximately 80% accurate when tumor
subsite and pathological node status were considered simultaneously. This work represents an important step toward the

identification of clinically significant biomarkers for HNSCC.

Introduction

Tumors of head and neck, which include the upper aerodigestive
tract (oral cavity, oropharynx, hypopharynx, and larynx), account
for over 40,000 cases of cancer per year in the US (Jemal et
al., 2002; Landis et al., 1999). The most common histology of
head and neck tumor is squamous cell carcinoma. The main
prognostic variables of head and neck squamous cell carcinoma
(HNSCQC) are the location and size of the tumor, the presence
of distant metastasis, and the presence of cervical lymph node
(LN) metastasis (Andersen et al., 1994; Sessions et al., 2002).
About 40%-50% of patients with advanced disease (Stage lll
and IV) recur, and approximately 80% of recurrences occur

within the first two years (Jones et al., 1992; Takes et al., 1997).
Most of the clinical decisions regarding therapy are commonly
based upon clinical staging, which relies on nodal status and
tumor size. No biomarkers analogous to the estrogen receptor
or HER2 in breast cancers, or c-KIT in gastrointestinal stromal
tumors, exist for HNSCC patients, suggesting that genomic
profiling studies may be useful for identifying new biomarkers
with prognostic or predictive value.

Gene expression analyses have proven to be a useful tool
for the classification of human solid tumors arising from a single
organ site (Garber et al., 2001; Huang et al., 2003; Perou et al.,
2000) or from different sites (Ramaswamy et al., 2001). These
organ site-specific studies have typically subclassified tumors

used to assist in tfreatment decisions for HNSCC.

SIGNIFICANCE

Despite the aggressive multimodality freatment of HNSCC patients with surgery, chemotherapy, and radiation therapy, approximately
40%-50% of patients with advanced disease recur. To date, there are no reliable biomarkers to predict who will have poor clinical
outcome. In this study, we identified four distinct subtypes of HNSCC tumors based upon patterns of gene expression that showed
clinically distinct behaviors and which showed different patterns of EGFR pathway activation, even within EGFR-expressing tumors.
This finding could prove important for the selection of patients for treatment with EGFR inhibitors. In addition, we identified an expression
signature that could predict the presence of lymph node metastases using the primary tumor from the time of diagnosis. If these
data can be validated on independent cohorts, then these gene expression patterns will provide valuable information that can be
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into relatively homogenous groups based upon their gene ex-
pression patterns and have shown that these groupings can
predict clinical outcomes (Alizadeh et al., 2000; Bhattacharjee
et al., 2001; Dhanasekaran et al., 2001; Garber et al., 2001;
Sorlie et al., 2001). Furthermore, lymph node metastasis status
can sometimes be predicted from the gene expression patterns
of primary tumors (Huang et al., 2003; MacDonald et al., 2001),
which could spare many patients from unnecessary lymph node
dissections. Here we have analyzed the gene expression pat-
terns of 60 HNSCC tumors and identified distinct subtypes of
HNSCC with different clinical outcomes. Many of the patterns
identified in this study have also been seen in other tumor stud-
ies focused on breast and lung carcinomas (Garber et al., 2001;
Perou et al., 2000), and some have been seen in other airway
epithelial studies (Ha et al., 2003; Hackett et al., 2003). In addi-
tion, we were able to identify patterns of expression that could
predict the presence of LN metastases in HNSCC tumors using
profiles that have been shown to be involved in metastasis
predictions in breast cancers (Huang et al., 2003; van ’t Veer
et al., 2002). These common patterns suggest that tumors from
different sites may share similar cells of origin or common path-
ways for tumorigenesis and metastasis.

Results

Class discovery for HNSCC

Sixty HNSCC samples were assayed using Agilent cDNA mi-
croarrays containing 12,814 human genes. Patient demograph-
ics are presented in Table 1 and the individual patient/tumor
characteristics are presented in Supplemental Table S1 (see
http://www.cancercell.org/cgi/content/full/5/5/489/DC1;
http://dragon.med.unc.edu/pubsup/HN/). To characterize the
diversity of HNSCC tumors, we performed an “intrinsic” analysis
and identified 582 cDNA clones whose expression optimally
reflected patterns of expression intrinsic to the tumors (Bhatta-
charjee et al., 2001; Garber et al., 2001; Perou et al., 2000;
Sorlie et al., 2003). Using this gene set, we analyzed 74 samples
in a two-way average-linkage hierarchical clustering analysis
(Figure 1 and see Supplemental Figure S1 for the complete
cluster diagram). The cluster analysis identified at least four
groups/subtypes within the 60 tumors based upon the sample
associated cluster dendrogram (Figure 1B), which were desig-
nated as Groups 1 through 4 based on the dendrogram
branches. As expected, all 11 intrinsic pairs used for this analysis
were closely grouped together on terminal branches of the clus-
ter associated sample dendrogram.

The subtype of tumors on the far left (Group 1, red dendro-
gram branch) showed the highest expression of the genes in
Figures 1C and 1E. Contained within Figure 1C were the genes
for Bullous Pemphigoid Antigen 1, P-Cadherin, Laminin vy 2,
Collagen XVll-a, and two other Laminin subunits (« 3 and B 2).
These first four genes are also present in the gene set that
define the breast “basal-like” tumor subtype (Perou et al., 2000),
which is a group of breast tumors that display basal-epithelial
cell characteristics and show poor patient outcomes (Sorlie et
al., 2001, 2003). The Figures 1C and 1E patterns also share
significant expression similarity with the lung squamous carci-
noma pattern of Garber et al. (2001), which showed high expres-
sion of Bullous Pemphigoid Antigen 1, Collagen XVIl-a, FGF-
BP, and Kallikrein 10. The other defining gene set for this tumor

Table 1. Overall clinical characteristics of HNSCC patients

Age

Median (range) 56 yr (30-77)
=40 4 (7%)
>40 56 (93%)
Sex

Male 53 (88%)
Female 7 (12%)
Ethnicity

White 37 (62%)
Black 18 (30%)
Others 5 (8%)
Tobacco use

Yes 58 (97%)
No 2 (3%)
Alcohol use

Yes 51 (85%)
No 9 (15%)
Tumor sites in head and neck

Oral cavity 15 (25%)
Oropharynx 14 (23%)
Hypopharynx 7 (12%)
Larynx 24 (40%)
Clinical Stage

-1l 11 (18%)
Il 14 (23%)
v 35 (58%)
Clinical cervical ymph node metastasis
Positive 33 (55%)
Negative 27 (45%)

Pathological cervical lymph node metastasis

Positive 26 (43%)
Negative 14 (23%)
Unknown 20 (33%)
Pathological differentiation

Well 10 (17%)
Moderate 39 (65%)
Poor 11 (18%)

subtype (Figure 1E) contained genes involved in desmosome
function (Desmocollin 2, Desmoglein 3, and Cytokeratin 14) and
a homeobox gene that has been implicated in controlling the
expression of cell adhesion molecules (BarH-like homeobox 2)
(Edelman et al., 2000). Immunohistochemical (IHC) analysis of
these tumors for gene products from Figure 1E showed that all
16 tested had high expression of Cytokeratin 14 and 14/16 were
positive for Desmoglein 3 (Figures 2E and 2F), while the other
tumor subtypes showed much less consistent expression of
these proteins (Figure 2G).

It is well known that the epidermal growth factor receptor
(EGFR) pathway is important for HNSCC (Endo et al., 2000;
Grandis, 1998). The gene set in Figure 1E contained at least
three genes from this pathway including TGF«, FGF-BP, and
MMK6. TGFa is a ligand for EGFR and a critical activator of
the EGFR pathway in HNSCC (Endo et al., 2000; Grandis, 1998).
FGF-BP is a promoter of angiogenesis that is induced by EGF




in vitro and induced by the ectopic expression of MMK®6, which
is a MAP kinase kinase that can be downstream of EGFR (Harris
et al., 2000). Among the 60 tumors that were analyzed by
microarray, 56 were also analyzed by immunohistochemistry
(IHC) for the presence of EGFR and for the Tyr-1173 phosphory-
lated form of EGFR (see Supplemental Table S1 at http://www.
cancercell.org/cgi/content/full/5/5/489/DC1). Of these 56 tu-
mors, 54 were positive for EGFR expression and 35/54 of the
EGFR-expressing tumors were also positive for P-Tyr-1173-
EGFR. Among the Group 1 tumors, all tested were IHC positive
for EGFR and a high percentage (15/19, 79%) were positive for
P-Tyr-1173-EGFR (50% of Group 2, 75% of Group 3, and 38%
of Group 4 tumors were positive for P-Tyr-1173-EGFR). These
data suggest that EGFR signaling is typically active in Group 1
and 3 tumors. These data also show that not all EGFR+ tumors
have activated EGFR, which is likely influenced by the presence
of ligands like TGFa.

The subtype of tumors on the center dendrogram branch
(Group 2, blue branch) showed the highest expression of the
genes in Figure 1F. Many of these genes are typically produced
by fibroblasts/mesenchymal cells including Vimentin, Syndecan
2, Lysyl-oxidase, and four Collagen subunits (Perou et al., 2000).
This subtype also tended to show low expression of the gene
sets that defined the other subtypes, namely the clusters in
Figures 1C, 1D, and especially 1E (Figure 2G). IHC for Vimentin
across our cohort of tumors identified eight tumors where the
malignant cells were positive for Vimentin staining; of these
eight tumors, four (4/19, 21%) were in Group 1 and four (4/12,
33%) were in Group 2 (Figure 2H). In addition, 7/14 of Group
2 tumors were pathologically described as poorly differentiated,
which suggests that this subtype is characterized by either the
presence of fibroblasts and a strong desmoplastic response,
and/or these tumors may have undergone an epithelial to mes-
enchymal transition.

The subtype of tumors identified by the pink dendrogram
branch (Group 3) contained the three normal tonsillar epithelium
samples and eleven tumors and was defined by the consistent
expression of the Figure 1D pattern. Figure 1D contains the
genes for Microsomal Glutathione S-Transferase 2, Cytokeratin
15 that identifies the basal cell layer of stratified squamous
epithelia (Figure 2A; Lloyd et al., 1995), and Cytokeratin 4 that
identifies the suprabasal layer of stratified squamous epithelia
(Figure 2D; van der Velden et al., 1993). These three genes were
recently identified in a microarray study on HNSCC progression
and shown to be expressed at lower levels in HNSCC tumors
versus normal epithelium (Ha et al., 2003), which is precisely
what was observed here. Only 6 of the 47 tumors tested for
Cytokeratin 15 expression by IHC were positive; however, 5 of
these 6 tumors were in Group 3 (Figures 21 and 2J).

The subtype of tumors in the far right dendrogram branch
(Group 4, green branch) showed high expression of the genes
in Figure 1G, many of which are antioxidant-induced enzymes
that are involved in xenobiotic metabolism including Glutathione
S-Transferase M3, Thioredoxin Reductase 1, Glutathione Per-
oxidase 2, Aldo-Keto Reductase 1, and two genes involved in
the pentose phosphate cycle (Transaldolase 1 and Phosphoglu-
conate Dehydrogenase). These exact same six genes were
recently shown by Hackett et al. (2003) to be more highly ex-
pressed in the epithelium of smokers than nonsmokers. These
data suggest that either these tumors have a more dramatic
and sustained response to cigarette smoke than the other three

groups, or that Group 4 subtype patients were current and
active smokers.

To assess the significance of the overlaps between our data
and the selected gene lists described from other studies, we
performed a “simulation analysis” to determine the likelihood of
finding this degree of gene overlap by chance (see Experimental
Procedures). A simulation was performed by randomly selecting
a set of genes from the entire set of 12,814. The number selected
was set to the number of genes in our subset being tested.
These randomly selected gene sets were then compared with
the corresponding published gene set, the overlap determined,
and then the entire process was repeated 10,000 times. In the
final step, the actual number of overlapping genes between our
lists and the published lists were compared to the simulated
distributions. Using this analysis, we determined that the likeli-
hood of obtaining the six gene overlap between the smoking-
associated gene set of Hackett et al. (2003) and our intrinsic
gene list was p < 0.01, and p < 0.0001 if we use just the 21
genes present in Figure 1G (which we believe to be the most
appropriate subset to base this calculation upon). We also per-
formed a “simulation analysis” for the gene subset present in
Figure 1D where we compared this subcluster to the “normal
versus tumor” list from Ha et al. (2003), which gave p < 0.05
for the entire intrinsic list and p < 0.0001 if we use the subset
in Figure 1D only.

We also profiled four HNSCC-derived cell lines with these
data displayed to the left of the tumor-associated cluster dia-
gram (Figure 1). The cell line data was included in a separate
cluster analysis and was median centered using both the cell
lines and tumors, while the tumor data presented in Figure 1
was median centered using only the tissue samples. This was
done because the cell lines were very different in expression
from the tissue samples, and by median centering the cell lines
relative to the tumors, direct comparisons could be more readily
made. When compared directly to the tumors, the cell lines did
not show any of the dominant patterns of gene expression that
were seen in the tumors, even though these lines were derived
from primary HNSCC samples.

Correlation of expression subtypes
with clinical parameters
The median follow-up time on our HNSCC cohort was 16 months.
Because of this relatively short follow-up, we used recurrence-
free survival (RFS) as our primary endpoint where we define an
“event” as the time to disease relapse or death. In our cohort,
there were 18 patients who either died or had a recurrence. We
first examined our intrinsic subtypes by univariate modeling for
RFS using Cox regression analysis based upon the dendrogram
branching pattern in Figure 1B; we first divided the samples
into two subsets based upon the first major dendrogram branch,
which combines Groups 2-4 into a single category versus Group
1 (p = 0.03). The second logical grouping based upon the
dendrogram has Group 1 and Group 2 as separate entities and
combines Groups 3 and 4 in a single category (p = 0.017).
Finally, we examined each group separately (p = 0.02 for the
four groups). Figures 3A and 3B are Kaplan-Meier plots of RFS
curves for the intrinsic subtypes; in Figure 3A we divided the
samples into Group 1 versus Groups 2-4 as was done above
(log rank p = 0.02), and Figure 3B shows Group 1 versus Group
2 versus Groups 3 and 4, which gave a log rank p = 0.04.
Tumor subsite (hypopharynx versus other 3 sites, p = 0.01),
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Figure 1. Intrinsic gene set cluster analysis of 60 HNSCC samples

An intrinsic analysis of 11 paired head and neck epithelial samples was performed and identified 582 cDNA clones that were analyzed using a two-way
hierarchical clustering analysis.
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Figure 2. Immunohistochemical analysis of HNSCC samples

Normal tonsillar epithelium (A-D) and HNSCC samples (E-L) were analyzed by IHC for proteins from the intrinsic gene set and from the EGFR pathway.
A: Normal epithelium stained for Cytokeratin 15 showing basal layer staining.

B: Normal epithelium stained for Cytokeratin 14.

C: Normal epithelium stained for Desmoglein 3 showing plasma membrane staining.

D: Normal epithelium stained for Cytokeratin 4 showing suprabasal staining.

E: Tumor HNO2-0408B (Group 1) stained for Cytokeratin 14.

F: Tumor HN02-0408B stained for Desmoglein 3.

G: Tumor HNO1-0446B (Group 2) stained for Cytokeratin 14.

H: Tumor HN03-0102B (Group 2) stained for Vimentin.

I: Tumor HN02-0478B (Group 3) stained for Cytokeratin 15.

J: Tumor HN02-0493B (Group 3) stained for Cytokeratin 15.

K: Tumor HN02-0408B (Group 1) stained for EGFR.

L: Tumor HN02-0408B stained for the Tyr-1173 phosphorylated EGFR. Magnification for all images was 100X.

Figure 1. (continued)

A: Scaled-down version of the complete cluster diagram (also available as Supplemental Figure S1).

B: Close-up of the experimental sample-associated dendrogram with the intrinsic pair samples identified by the horizontal black lines. Each sample is color-
coded according to its tumor subtype.

C: P-cadherin containing gene cluster.

D: Gene set containing Cytokeratin 15, which is enriched in normal tonsillar epithelium and Group 3 tumors.

E: Gene set containing TGF-a and Cytokeratin 14, enriched in Group 1 tfumors.

F: Collagen-containing gene set present in Group 2 tumors.

G: Antioxidant and xenobiotic metabolism-related gene set. The genes in red represent genes discussed in the text.
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Figure 3. Kaplan-Meier survival analysis analyzed using a log-rank test

The samples were grouped according to the major dendrogram branches
presented in Figure 1 and analyzed using recurrence-free survival as the
endpoint (where an event is either a disease recurrence or death).

A: K-M analysis of Group 1 versus Groups 2-4 combined.

B: K-M analysis of Group 1 versus Group 2 versus Groups 3 and 4 combined.

age (p = 0.05), and histological differentiation (p = 0.04) were
also prognostic factors when using Cox regression analysis and
RFS as the endpoint; however, we did not find any significant
associations between the clinical parameters and our intrinsic
subtypes by way of contingency table analyses. We also exam-
ined what parameters would make the best bivariable model
and determined that the top two models were (1) 3 intrinsic
groups (Group 1 versus Group 2 versus Groups 3 and 4) and
hypopharynx subsite (p = 0.03 and p = 0.046, model chi-
square = 10.04, p = 0.007) and (2) 3 intrinsic groups and histo-
logical differentiation (p = 0.04 and p = 0.01, model chi-
square = 10.91, p = 0.004). This finding is in agreement with
the lack of correlation between our intrinsic classification and
the clinical parameter. We also performed SAM (Tusher et al.,
2001) supervised analyses to determine if any tumor subsite of
origin showed distinctive expression features and found that
no subsite showed a distinctive expression pattern (data not
shown). Due to the small number of deaths in our cohort (15
deaths), the only parameters that were significant predictors of
overall survival were tumor subsite (hypopharynx versus other

Table 2. Lymph node metastasis prediction accuracies

PAM KNN-Euclidean
Clinical LN; 55 tumors 58%; 159 genes 60%; 200 genes
Path LN; 38 60%; 2047 genes 57%; 100 genes
Clinical LN No OC; 40 53%; 55 genes 58%; 50 genes

Path LN No OC; 24° 83%; 1548 genes 83%; 500 genes

°All analyses were conducted using a 10-fold cross validation analysis, ex-
cept for the “Path LN No Oral Cavity” predictor, which was done using a
leave 23% (6) out analysis

3 sites, p = 0.027) and our 3-class intrinsic classification (p =
0.04) when using Cox regression analysis and a cutoff of p <
0.05 to determine statistical significance.

Lymph node metastasis prediction
The presence or absence of lymph node metastases is one of
the most important predictors of disease outcome in HNSCC
patients (Andersen et al., 1994). All 55 of the primary tumors
that we analyzed had known clinical lymph node (LN) metastasis
status, and 38 also had pathological LN status (26 LN positive
and 12 LN negative). The five tumors that were recurrence at
the primary sites were excluded from these LN analyses. To
develop a predictor for LN metastasis status, we utilized two
different supervised statistical analyses. Our predictors included
(1) a simple gene selection method coupled to sample predic-
tions made using an Euclidian correlation to the K-Nearest
Neighbors (KNN) of a given sample (K = 3) (Dudoit et al., 2002)
and (2) PAM analysis as described by Tibshirani et al. (2002).
Starting with clinical LN status as the supervising parameter,
we obtained a prediction accuracy of 60% (KNN) and 58%
(PAM) when performing a 10-fold cross validation analysis (Ta-
ble 2 and see Experimental Procedures). Because clinical LN
status can differ when compared to pathological LN status, we
also tested pathological LN status as the supervising parameter
and obtained an accuracy of 57% (KNN) and 60% (PAM).

These low accuracies are likely due to the complex nature
of metastasis, which is influenced by biological, temporal, and
anatomical features. In particular, there is some evidence that
the different subsites of HNSCC origins can contribute to clinical
differences (Freier et al., 2003; Huang et al., 2002). Therefore,
we examined the individual sample predictions made by our
pathological metastasis predictors and noticed that 7/13 (KNN)
and 6/13 (PAM) mistakes were made on the oral cavity-derived
tumors. The observation that approximately half of the mistakes
were made on a single subsite suggested that this subsite might
be distinct from the others, or more heterogeneous, and there-
fore we removed the oral cavity-derived tumors from our analy-
sis and trained a predictor using only the other three subsites
(i.e., oropharynx, hypopharynx, and larynx). When using clinical
node status (minus oral cavity) as supervision, we obtained an
accuracy of 53% and 58%; however, when using pathological
node status, we obtained an accuracy of 83%. These data suggest
that even though there were no consistent expression differ-
ences that differentiated among the subsites, the oral cavity
samples were different from the other three subsites or were
more heterogeneous than the other subsites when it comes to
expression patterns.

In order to visualize the transcriptional complexity of the
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X87344

interleukin 7 J04156

carbohydrate N-acetylglucosamine-6-O sulfotransferase 2 BF477523
chemokine C-X-C motif ligand 11 BC005292

tryptophanyl-tRNA synthetase BF795451

complement component 1, r subcomponent AK024951
complement component 1, r subcomponent X04701
complement component 1, s subcomponent J04080
complement component 1, s subcomponent X06596

B-factor, properdin BC004143

guanylate kinase 1 BC006249

apolipoprotein L, 1 AF019225

epithelial cell transforming sequence 2 oncogene AK027713
CAC38621
NTF2-like export factor 1 BC003410
AF092132
carnitine O-octanoyltransferase AF073770
hypothetical protein MGC24665 AL523157
bone morphogenetic protein 7 osteogenic protein 1 BE395650
DnadJ Hsp40 homolog, subfamily C, member 3 AW772531
glioma-amplified sequence-41 BG211486
thymopomtm uUoso0ss
N, 5--mett ase 1 BF439104
muIS homolog 6 E. coli BC004246
MCM7 minichromosome maintenance deficient 7 S. cerevisiae Al285101
centromere protein A, 17kDa AL560982
ubiquitin-conjugating enzyme E2C U73379
kinesin-like 5 mitotic kinesin-like protein 1 X67155
ADP-ribosylation factor-like 6 interacting protein BG399003
MAD2 mitotic arrest deficient-like 1 yeast BG527529
acid phosphatase 1, soluble AL573837
MCM3 minichromosome mamtenance deflclent 3 S. cerevisiae AU124152
nuclear pore complex protein AJ29574
replication factor C activator 1 5, 36.. SkDa AL525471
androgen receptor M20132
serine/threonine kinase 6 AF011468
chromosome condensation-related SMC-associated protein 1 D63880
hypothetical protein LOC51319 BC006982
von Hlp? el-Lindau binding protein 1 Al082015
dishevelled associated activator of morphogenesis 2 AL596702

Figure 4. Hierarchical clustering analysis of the genes that were predictive of the presence or absence of lymph node metastases in HNSCC tumors

The 500 genes that were associated with prediction of pathological nodal status in HNSCC tumors derived from the larynx, hypopharynx, and oropharynx

(no oral cavity tumors) were used in a two-way clustering analysis across the 26
positive samples are labeled in red.

samples. The node-negative samples are labeled in green and the node-

A: Scaled-down version of the complete cluster diagram (also available as Supplemental Figure S2).

B: Close-up of the interferon-regulated gene seft.
C: Close-up of the set of genes associated with cell proliferation rates.

metastasis prediction lists that were generated separately dur-
ing each round of cross validation (CV), we compiled a list of
the 500 genes that were the most frequently occurring across
the 10 runs of the cross validation nodal predictors (see Experi-
mental Procedures). We then used this gene set in a hierarchical

clustering analysis on the 26 tumors with pathological node
status and that were not from the oral cavity (Figure 4 and Supple-
mental Figure S2 at http://www.cancercell.org/cgi/content/full/
5/5/489/DC1). This analysis sorted the samples into approxi-
mately four dendrogram branches and placed 6/8 of the LN(-)




samples into a common dendrogram branch; the two LN(-)
samples that sorted to the left branch correspond to the two
that were misclassified using our predictors. These six LN(-)
samples were characterized by the high expression of many
genes involved in immune functions (CXCL9, CXCL10, CXCL11,
HLA-C) and interferon signaling (STAT1, MX1, and ISG15). Re-
cent expression profiling studies of lymph node metastasis sta-
tus in breast cancers also identified genes involved in immune
and interferon functions as being predictive of metastasis status
(Huang et al., 2003) and demonstrated that the 11 genes shown
in red in Figure 4B were exactly shared between our study and
the study of Huang et al. (2003); a “simulation analysis” showed
that this degree of overlap is likely significant at the p < 0.0001
level when using the gene subset present in Figure 4B as the
basis for assessing overlap. Caspase 4 was also shared be-
tween these two studies, and the LN(-) HNSCC samples also
showed high expression of Caspase 1. This surprising similarity
across different data sets validates the findings of each study
and suggest that immune cell function may play a role in the
metastatic process.

As expected, there were also genes whose expression
tended to be higher in the LN(+) tumors, especially the tumors
contained within the dendrogram branch near the center that
was entirely composed of LN(+) samples. Included in this gene
set were STK6, RFC, MAD2, ECT2, and CENPA (Figure 4C);
these five genes are of importance because they were present
in the distant recurrence predictor of van’t Veer et al. for breast
cancer (van 't Veer et al., 2002). In the van’t Veer et al. and our
study, the high expression of these genes was seen in the
tumors that have metastases or that will go on to form distant
metastases. Finally, some of the other genes in Figure 4C are
known proliferation-associated genes including MCM3, MCM?7,
and Kinesin-like 5 (Perou et al., 1999, 2000; Sorlie et al., 2001).

Discussion

Head and neck squamous cell carcinomas show significant
heterogeneity in their clinical behavior that cannot presently be
predicted using the current set of clinical markers; therefore,
the development of new biomarkers for survival predictions
would be valuable. Previous microarray-based studies of HNSCC
have primarily focused on tumor versus normal patterns of ex-
pression (EI-Naggar et al., 2002; Hwang et al., 2003; Leethanakul
et al., 2003). Others have suggested that there might be sub-
types of HNSCC (Belbin et al., 2002); however, to date no study
has shown statistically significant differences in clinical out-
comes between subtypes of HNSCC based upon gene expres-
sion patterns. Here we identified four distinct subtypes of
HNSCC based upon an “intrinsic analysis” and showed that
these subtypes had differences in recurrence-free survival and
overall survival. These expression signatures are revealing of
the complex biology that underlies HNSCC; however, these data
will need to be confirmed by further research and by functional
assays.

The tumor subtype with the worst outcome was the Group
1 tumors that were characterized by the high expression of
TGF«, which is known to associate with poor clinical outcomes
in HNSCC (Endo et al., 2000; Grandis, 1998; Quon et al., 2001).
Most HNSCC tumors express EGFR (54/56 tested here were
EGFR+ and see Figure 2K); however, there is additional evi-
dence that suggests the Group 1 tumors have an activation of

the EGFR pathway. This evidence includes the genes contained
within Figure 1E, which includes a major ligand of EGFR (TGFa),
a kinase that is in the downstream signaling cascade of EGFR
(MKK®), and an angiogenic switch molecule induced by EGF
(FGF-BP) (Harris et al., 2000). In addition, 15/19 of the Group
1 subtype tumors tested by IHC were positive for the Tyr-1173
phosphorylated form of the EGFR (Figure 2L), which has been
used in the research settings as a marker for activation of EGFR
(Heimberger et al., 2002). These data suggest that Group 1
patients should be evaluated for benefits from EGFR inhibitor-
containing treatment regimens.

The expression profiling of breast tumors has also identified
distinct tumor subtypes that predicted patient outcomes, with
one of the most aggressive subtypes (basal-like) showing the
high expression of Bullous Pemphigoid Antigen 1, P-Cadherin,
Laminin y 2, and Collagen XVII-« (Sorlie et al., 2001, 2003), and
with many of these same genes also being highly expressed in
lung squamous carcinomas (Chung et al., 2002; Garber et al.,
2001). The Group 1 subtype was also distinguished by the high
expression of these four genes. In both breast and HNSCC,
tumors showing the high expression of these four genes showed
poor patient outcomes. These data suggest that either these
genes are causative of poor outcomes or they are expressed
by a distinct cell type(s) that consistently gives rise to aggressive
tumors.

The other three HNSCC subtypes also showed distinct ex-
pression profiles, some of which have been seen in complemen-
tary airway epithelial microarray studies. The Group 2 tumors
showed a strong mesenchymal cell signature due to the pres-
ence of many fibroblasts and a lack of epithelial expression-
based differentiation features, and some may have even under-
gone an epithelial to mesenchymal transition (Figures 1F, 2G,
and 2H). The Group 3 tumors contained the normal tonsil epithe-
lium samples and corroborated the normal versus HNSCC study
of Ha et al. (2003). The Group 3 tumors were also almost exclu-
sively the only Cytokeratin 15-positive tumors as assayed by
IHC (5/6 CK15-positive tumors were in this subtype). It is inter-
esting to note that the protein expression patterns of Cytokera-
tins 14 and 15 were similar in normal tonsillar epithelial samples
(Figures 2A and 2B) but were quite distinct in HNSCC tumors,
with most (41/47) HNSCCs being positive for Cytokeratin 14
and only a handful (6/47) being positive for Cytokeratin 15. In
addition, the Group 3 tumors showed the fewest patient RFS
events (one), which is similar to what was seen in lung carcino-
mas where the group of tumors that clustered nearest the normal
lung samples showed the best outcomes (Garber et al., 2001).

The Group 4 tumors showed an expression pattern that
was very similar to the pattern of gene expression induced by
exposure to cigarette smoke (Hackett et al., 2003). These data
suggest that the Group 4 tumors either have a sustained re-
sponse to cigarette smoke or that patients in the Group 4 sub-
type are current smokers. The majority of our cohort has a heavy
smoking history (all but two were smokers); however, the time
from the last cigarette smoke exposure to the time of tissue
collection was not available so we cannot determine if this is
an acute or sustained response pattern. In addition, these data
suggest that there could be variations within smokers in the
ability to respond to cigarette smoke. Finally, we also profiled
four primary HNSCC-derived cell lines and saw that none of
these cell lines showed the dominant patterns of expression
that defined the tumor subtypes. This finding is similar to our




earlier comparisons of breast tumors to breast cell lines where
significant differences between cell lines and tumors were ob-
served (Ross and Perou, 2001).

There have been a few studies to suggest that metastases
show similar profiles to the primary tumors that they arose from
(Garber et al., 2001; Perou et al., 2000), suggesting that the
biological properties of a primary tumor can reflect the proper-
ties of its metastases (Ramaswamy et al., 2003). To take this
one step farther, some have shown that the presence of metas-
tases at the time of surgery can be predicted based upon gene
expression patterns present in the primary tumor (Huang et al.,
2003). The accuracy of our HNSCC “metastasis predictor” when
using pathologically determined nodal status was approximately
60%, but was improved to 83% when one of the four tumor
subsites was removed from the analysis (oral cavity). Our find-
ings support the hypothesis that lymph node metastasis status
can be predicted using the gene expression patterns of the
primary tumor. Our pathological node status predictor gene
set also showed significant similarities with other microarray
analyses of the metastatic processes in breast tumors. Namely,
we identified a likely STAT1-regulated gene cluster (Darnell,
1997; Lehtonen et al., 1997; Perou et al., 1999) as being useful
in predicting lymph node metastasis status, as did the study of
Huang et al. (2003), and we identified a “proliferation” signature
that shared many genes with the distant recurrence predictor
of van 't Veer et al. (2002). These similarities in which the high
expression of identical genes are predicting similar behaviors
across HNSCC tumors and two breast tumor data sets identifies
common pathways and/or genes that could be playing similar
roles in epithelial tumor metastasis.

In summary, this work has identified a number of important
biological differences among HNSCC samples that could have
an impact upon clinical treatment regimens and patient out-
comes if these patterns are validated on additional cohorts. In
particular, we identified discriminatory patterns of expression
in our HNSCC tumors that were previously seen in microarray
analyses of epithelial tumors of the breast and lung (Garber et
al., 2001; Huang et al., 2003; Perou et al., 1999, 2000; Sorlie
et al., 2001; van 't Veer et al., 2002), in airway tissue and tumor
studies (Ha et al., 2003; Hackett et al., 2003), and a pattern
associated with activation of the EGFR pathway. The agreement
between our study and these other studies done on HNSCC and
different tumor sites (and done on different microarray platforms)
validates the biological insights obtained here. This study, there-
fore, can serve as a central point to tie all of these studies
together into a common framework and has added new patterns
and complexities. The patterns identified here should be evalu-
ated on new and independent cohorts, and if confirmed, will
represent an important new set of biomarkers for HNSCC prog-
nostication and prediction of clinical outcomes.

Experimental procedures

Patient biopsy samples and the common reference

sample for array hybridization

Sixty fresh frozen HNSCC samples were obtained from the University of
North Carolina at Chapel Hill (UNC) Tissue Procurement Core Facility from
patients undergoing surgery at the UNC Hospital and who consented to
have their tumor tissue used for cancer research using an Institutional Review
Board approved protocol. Fifty-five tumor samples were collected from the
primary tumor (labeled B in Figure 1), and five tumor samples were collected
from a local recurrence at the primary tumor site (labeled R in Figure 1). For

one primary tumor, an associated lymph node metastasis was also available
(labeled L in Figure 1). Patient clinical information can be found in Supplemen-
tal Table S1 (http://www.cancercell.org/cgi/content/full/5/5/489/DC1) and
patient demographics are presented in Table 1. These patients were hetero-
geneously treated in accordance with the standard of care dictated by their
disease stage. Staging and treatment planning were determined by consen-
sus of the UNC Head and Neck Tumor Board. Clinical staging (55 tumors)
of the neck was determined by clinical exam and contrasted CT or MRI
imaging, while pathologic staging (38 tumors) was determined by routine
H&E staining of neck nodes in patients undergoing a neck dissection.

We also profiled three normal tonsillar epithelium samples that were
collected from three pediatric patients following routine tonsillectomy and
four HNSCC primary tumor-derived cell lines (UNC7, UMSCCA1, CAL27,
and JHUO022). Each experimental sample (tumor, normal, or cell line) was
assayed versus a common reference sample consisting of a pool of total
RNA derived from a randomly chosen subset of 30 of the HNSCC samples.
This tumor pool reference strategy has been successfully used in another
profiling study (van 't Veer et al., 2002). In total, 78 experiments were per-
formed using three separate preparations of the common reference pool.

RNA preparations, labeling, and microarray hybridizations

Total RNA was purified from each sample using the Qiagen RNeasy Midi
Kit according to the manufacturer’s protocol (Qiagen, Valencia, CA) and
25-50 milligram of tissue per sample. The integrity of the RNA was deter-
mined using the RNA 6000 Nano LabChip Kit and an Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA). Ten micrograms of total RNA were
amplified per sample, using an Arcturus RiboAmp RNA Amplification kit
(Arcturus, Mountain View, CA) with the following modifications. Amino-allyl-
UTP (aa-UTP) was used in the in vitro transcription step to perform an
“indirect” labeling of the amplified RNA (aRNA). Rather than using the sup-
plied IVT Master Mix as provided, we added aa-UTP into the IVT NTP mix
at a ratio of aa-UTP:UTP of 4:1. For indirect labeling of aRNA, 10 pg of the
common reference amplified RNA (aRNA) was labeled with a Cy3 Monofunc-
tional Reactive Dye (Amersham Biosciences, UK) and 10 ug of aRNA from
each experimental sample was labeled using a Cy5 Monofunctional Reactive
Dye. The dye was quenched with 4 M hydroxylamine (Sigma, St. Louis, MO)
after a 1 hr incubation and unincorporated dye molecules were removed
using a Qia-Quick PCR Purification Kit.

The labeled common reference and individual experimental samples
were combined along with 20 pg of COT-1 DNA (GIBCO-BRL), 20 ng of
polyA DNA, and 20 pg of yeast tRNA and hybridized to a 12,814 gene Agilent
Human 1 cDNA microarray (Agilent Technologies). The reaction mix was
hybridized on the array overnight at 65°C in 3X SSC. The microarrays were
then washed using 2X SSC/0.025% SDS, followed by 1Xx SSC, and finally
a 0.2X SSC wash. Washed arrays were quickly scanned on an Axon 40008
Scanner. Image analysis was accomplished using GenePix Pro 4.0. The raw
data (.gpr files) tables were uploaded into the UNC Microarray Database,
which is a mirror of the Stanford Microarray Database (Sherlock et al., 2001).
A global, linear normalization was performed to adjust the Cy3 and Cy5
channels (Sherlock et al., 2001). All microarray raw data tables are available at
the UNC Microarray Database (https://genome.unc.edu/), at the supporting
website for this paper (http://dragon.med.unc.edu/pubsup/HN/), and in the
Gene Expression Omnibus under the accession number of GSE686 (sub-
mitter C. Perou).

Statistical analysis of microarray data

Intrinsic gene set analysis

The background subtracted, normalized log2 ratio of red over green intensity
values were first filtered to select genes that had a signal intensity of at least
1.5-fold above background in both the Cy5 and Cy3 channels. Only genes
that met these criteria in at least 80% of the 60 tissue samples were included
for subsequent analysis. Next, we corrected for the systematic bias that
may have been introduced by using different batches of the common refer-
ence before further statistical analyses. We used “Distance Weighted Dis-
crimination/DWD” as described in Benito et al. (2004) on the two largest
sets of samples assayed using two different batches of common reference
(one reference batch used only eight samples, which is too few to perform
the correction). Next, we performed an intrinsic analysis as described in
Sorlie et al. (2003) by assaying spatially distinct pieces of the same tumor.
We used ten tumor pairs that were separate pieces and RNA preparations




of the same tumor, one tumor pair that was a tumor and its lymph node
metastasis, and designated two of the three normal tonsillar epithelia sam-
ples as a pair. Using this sample set, we searched for genes that were the
least variable within pairs and that were variable across different samples
by computing for each gene the average “within-pair variance” (the average
of the variance within each tumor pair) and the “between-subject variance”
(the average of the variance across all pairs not assessed for within pair
variance). We then computed the ratio D = (within-pair variance)/(between-
subject variance) and declared those genes with the smallest values of D
to be intrinsic. The choice of a D value cutoff was set at one standard
deviation below the average (using the “Intrinsic Gene Identifier v1.0” by
Max Diehn/Stanford University). This analysis resulted in the selection of
582 clones representing 547 genes. We finally used these 582 clones to
perform a two-way average linkage hierarchical cluster analysis using the
program “Cluster” (Eisen et al., 1998) with the data being displayed relative
to the median expression for each gene (i.e., median centering of the rows).
The cluster results were then visualized using “Treeview.”

Supervised microarray analyses

To investigate relationships between gene expression patterns and patient-
associated parameters, we performed supervised analyses to identify gene
sets that correlated with clinical parameters and then tested the ability of
these sets to make reliable predictions (Huang et al., 2003). In each case,
we utilized two different statistical methods to train a gene expression pre-
dictor for a single parameter (e.g., lymph node metastasis status). These
methods included a K-Nearest Neighbor (KNN) metric that uses a Euclidian
correlation coefficient to determine the distance of a sample to its three
nearest sample neighbors (Dudoit et al., 2002) and Prediction Analysis of
Microarray (PAM) (Tibshirani et al., 2002). To select genes for the K-Nearest
Neighbor method, we used our own version of a gene selection method that
was first described by Dudoit et al. (2002); the KNN genes were identified
in the training set according to the ratio of between-group to within-group
sums of squares (Dudoit et al., 2002). The top n ranked genes were used
during each round of cross validation. The size of the gene subset was
increased for subsequent rounds of CV. The set of n top-ranked genes that
gave the highest average prediction accuracy during CV was also determined
and reported. Gene selection for PAM was completed as described in Tib-
shirani et al. (2002).

For all but one nodal predictor, we performed a 10-fold cross validation
(CV) analysis to iteratively optimize the list of genes and to determine predic-
tion accuracies. Each round of CV would begin by splitting the samples into
a training set (90% of the samples) and a test set (10% left-out samples),
with gene selection and training being performed on the 90% and then used
to predict the status of the withheld 10%. This was repeated 10 times, each
time using a different 10% subset and a different gene set. Our reported
prediction accuracies are the average of these iterative cycles of prediction.
The one parameter that had a different test was pathological node status
trained on just the three tumor subsites (oropharynx, hypopharynx, and
larynx with the oral cavity samples not included); due to the importance of
this predictor, we performed a 23% cross validation analysis where 6 of the
26 samples were withheld, and then a predictor was trained on the 20
samples and applied to the 6 samples. This was repeated 10 times with our
reported prediction accuracies reflecting the average of the predictions made
onto the withheld 60 samples. The genes presented in Figure 4 and Supple-
mental Figure S2 (http://www.cancercell.org/cgi/content/full/5/5/489/DC1)
are a statistical tabulation of the list of genes that predicted pathological
nodal status in the three subsites (no oral cavity); to derive this list, we
compared each of the 10 lists generated in each round of the 23% cross
validation analysis and saved the score for each gene during each round.
We then summed the scores for each gene across all rounds and sorted
this list to get the top 500 (this list was not used for any predictions but was
used for the cluster analysis).

Statistical analysis of clinical correlates

Cox regression was used to examine the impact of covariates (intrinsic
subtypes, age, sex, ethnicity, tumor subsite, clinical stage, and LN status)
on three different endpoints. These endpoints were: (1) time to disease
recurrence (or progression), (2) recurrence-free survival (defined here as the
time to disease recurrence or death), and (3) overall survival (defined as time
to death). The Kaplan-Meier (or product limit) method was used to estimate
these survivorship-type functions. We also used Fisher’s exact test for data
categorized into two by two contingency tables. Nonparametric one-way

analysis of variance or Wilcoxon rank-sum tests (using normal scores) were
used on continuous variables to evaluate the possible difference in response
across the two (or more) categories. These statistical analyses were performed
using SAS statistical software, Version 8.2, SAS Institute Inc. (Cary, NC).
Simulation analysis

The simulation was performed by randomly selecting a set of genes from
the entire set of 12,814. The number randomly selected was set to the
number of genes in our subset being tested. This randomly selected set
was then compared for overlap, with the corresponding gene sets that were
mentioned from published studies. The number of genes found in the overlap
was recorded and the process was repeated 10,000 times. In the final step,
the actual amount of overlap was compared between our gene sets and the
published gene sets, and this was compared to the simulated distribution.
This comparison gives the likelihood of finding co-occurrences by chance.
The simulation was performed independently for each of the three gene sets
thought to have a significant overlap.

Immunohistochemistry

Formalin-fixed and paraffin-embedded tissue blocks from (at most) 56 tu-
mors were available for immunohistochemistry (IHC) staining. 5 wm tissue
sections were deparaffined with xylene and dehydrated with sequential
washes of 100%, 95%, and 70% ethanol, and endogenous peroxidase
activity was blocked with a 3% hydrogen peroxidase solution. For EGFR
IHC, the tissues were digested with Proteinase K and then incubated with
a rabbit polyclonal antibody against the epidermal growth factor receptor
(EGFR) using the DAKO EGFR PharmDx kit at the recommended antibody
dilution (K1494, Carpinteria, CA). The sections were next incubated with
polymer labeled HRP-goat anti-mouse antibody. For other antibodies, the
samples were digested with Proteinase K and then steamed for antigen
retrieval with citrate buffer (pH 7.0) for 30 min. The antibodies used included
Cytokeratin 15 (1:100 dilution, LHK15, Novocastra Laboratory Ltd, UK), Cytoker-
atin 4 (1:200, 6B10, Novocastra), Cytokeratin 14 (1:500, MS-115-P1, NeoMark-
ers, Fremont, CA), Desmoglein 3 (1:30, 32-6300, Zymed Laboratories, CA),
phosphorylated-EGFR-Tyr1173 (1:200, 44-794, Biosource, Camarillo, CA),
and Vimentin (1:50, 18-0052, Zymed). These sections were next incubated
with biotin-conjugated goat anti-mouse IgG (Vector Laboratories) and then
strepavidin-conjugated HRP followed by the development of HRP activity
using the ABC kit and substrate (Vector Laboratories). The slides were finally
counterstained with 50% hematoxylin and examined by light microscopy
on a Leica microscope at 100X magnification. A three-point scoring system
was used where 0 = invasive tumor cells present in the sample and no
staining seen; 1 = invasive tumor cells present and weak intensity staining
and/or <20% of cells stained; and 2 = invasive tumor cells present with
strong staining in >20% of cells.
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