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The Fourier flexible form and its derived expenditure system are introduced. Subject to 
smoothness conditions on the consumer’s true indirect utility function, the consumer’s true 
expenditure system must be of the Fourier form over the region of interest in an empirical 
investigation. Arbitrarily accurate finite parameter approximations of the consumer’s true 
expenditure system are obtained by dropping all high-order terms of the Fourier expenditure 
system past an appropriate truncation point. The resulting finite parameter system is tractable in 
empirical studies. The reader who is primarily interested in applications need only read the 
second and fifth sections. The remainder of the article is concerned with the verification of these 
claims and an investigation of some aspects of the bias in Translog specifications. 

1. Introduction 

Much recent work on the specification of empirical expenditure systems 
has focused on an attempt to find an (indirect) utility function whose derived 
expenditure system will adequately approximate systems resulting from a 
broad class of utility functions. Examples of this approach are in Diewert 
(1974) and Christensen, Jorgenson and Lau (1975). The (indirect) utility 
function chosen for this task is termed a flexible functional form. 

There are two methods for approximating a function that are used 
frequently in applications. These are Taylor’s series approximations and the 
general class of Fourier series approximations. As examples of the latter, 
there is the familiar sine/cosine expansion and the possibly less familiar 
Jacobi, Laguerre, and Hermite expansions. The work in flexible functional 
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forms appearing to date has used a Taylor’s expansion as the approximating 
mechanism. 

Taylor’s theorem only applies locally. It applies on a neighborhood of 
unspecified size containing a specified value of the argument of the function 
being approximated - the commodity vector of a direct utility function or 
income normalized prices of an indirect utility function. The local 
applicability of the approximation suffices to translate propositions from the 
theory of demand into restrictions on the parameters of the approximating 
expenditure system; see especially Christensen, Jorgenson and Lau (1975) in 
this connection. However, Taylor’s theorem fails rather miserably as a means 

of understanding the statistical behavior of parameter estimates and test 
statistics; see especially Section 2 of White (1980). If one insists on using 
Taylor’s theorem as a means of understanding statistical behavior one is lead 
into an algebraic morass; see Section IV of Simmons and Wierserbs (1979) 
for an example. 

The reason for this failure is that statistical regression methods essentially 
expand the true function in a (general) Fourier series - not in a Taylor’s 
series. As the sample size tends to infinity, a regression estimator 0 of the 
typical sort converges to that parameter value f?* which minimizes a measure 

of average distance g(6) of the form 

~We)=j PCf*(x),f(x,e)lw(x)dx, 
!T 

where p(y, j) is a measure of the distance between the true and predicted 
values of the dependent variable determined by the estimation procedure, 3 is a 
set containing all possible values of the independent variable, and w(x) is a 
density function defined on 3 giving the relative frequency with which values 
of the independent variable occur as sample size tends to infinity [Souza and 
Gallant (1979)]. This is precisely the defining property of a (general) Fourier 
approximation of .f* (x) by f (x, 0). A Fourier approximation attempts to 
minimize the average prediction bias B(0). 

Due to this fact, Fourier series methods permit a natural transition from 
demand theory to statistical theory. The classical multivariate sine/cosine 
expansion of the indirect utility function leads directly to an expenditure 
system with the property that the average prediction bias may be made 
arbitrarily small by increasing the number of terms in the expansion. The key 
fact which permits this transition is that the classical Fourier sine/cosine 
series expansion approximates not only the indirect utility function to within 
arbitrary accuracy in terms of the YZ norm but also its first derivatives. 

The Fourier expenditure system is used as a vehicle to study potential 
biases resulting from the use of the Translog expenditure system. The 
Translog test of the theory of demand based on the equality and symmetry 
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of coefftcients as reported in Christensen, Jorgenson and Lau (1975) is 
repeated using the Fourier expenditure system. Their result is confirmed. The 
asymptotic power curve of the Translog test of additivity is derived in terms 
of Fourier parameters. Parameter settings compatible with the data of 
Christensen, Jorgenson and Lau are used to obtain tabular values for the 
power curve of the Translog additivity test. Substantial bias is found. The 
power curve exceeds the nominal significance level of the test when the null 
hypothesis is true and is relatively flat with respect to departures from the 
null case. 

2. Multi-indexes and multivariate Fourier series 

The notion of multi-indexes materially reduces the complexity of the 
notation required to denote high-order partial differentiation and 

multivariate Fourier series expansions. A multi-index is an N-vector with 
integer components. For example, 

k’=(5,2,7) or k’=(-4,0,6). 

The length of a multi-index is defined as 

Let 1 be a multi-index with non-negative components. Partial 
differentiation of a function f(x) is denoted as 

D”f= 
($“I’ 

dxfl~X;2...~Xp)~ 

For example, the multi-index 

A’ = (5,2,7) 

generates the fourteenth-order partial derivative 

Differentiation is taken in a generalized sense [Rudin (1973, ch. 6)] in the 
literature cited in the later sections. Our preference is to sacrifice some 
generality in exchange for simplicity. Now if f possesses continuous partial 
derivatives of all orders up to and including I A I* in the classical sense then 
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the classical notion of differentiation and the generalized notion are 
coincident for our purposes [Rudin (1973, sect. 6.13)]. The classical notion 
and the requisite continuity are imposed on the symbol D”f throughout. 

A typical term of a multivariate Fourier series expansion is 

eik’“=cos(k’x)+isin(k’x), 

where i denotes the imaginary unit. For example, if k’ = ( - 4,0,6) then 

e ik’“=cos(-4x1+6xj)+isin(-4x,+6x,). 

A multivariate Fourier series expansion of order K is denoted as 

c akeik’x’ 
Ikl*~h' 

The sum is over those multi-indexes k whose length 1 k I* is less than or equal 
to K. The ak are complex valued coefficients of the form 

ak = uk + iv,, 

where uk and vii are real valued. 
Excepting the multi-index 0 = (0, 0, . . .,O)‘, the multi-indexes k with 1 kl*zK 

will occur in pairs of opposite sign - k, - k. Thus the restrictions 

a, real valued, ak=d_,, 

or equivalently, 

vg =o, Uk=U_k, vk= -V-k, 

will cause 

c akeik’* 
Ikl*SK 

to be real valued. That is, with these restrictions, 

aoeio’” = uo, 

which is real valued, and 

akeik’x+a_ke-ik’x= 2u, cos (k’x) - 2v, sin (k’x), 

which is real valued. 



A.R. Gallant, The Fourierjlexible form 215 

The notation C, k,, $ K a,eik’” is conventional but it conceals some structure 

which is useful later. A more useful form results when the sum ElkI tgs &eik’x 
is re-expressed as a double sum 

The idea is to construct a sequence of multi-indexes {k,} and choose values 

of A and .7 such that 

{k: jkl*~K}c{jk,: a=1 ,..., A;j=O, +I ,..., fJ}. 

The doubly indexed sum may contain more terms than the singly indexed 
sum but this causes no problems as the coefficients in the extra terms may be 
set to zero to obtain equality. 

The requisite sequence of multi-indexes, 

{k,: 1x=1,2 ,..., A}, 

may be constructed from the set 

X={k: 1 kl*sK} 

as follows. First, delete from X the zero vector and any k whose first non- 

zero element is negative; i.e. (0, - 1,l) would be deleted but (0, 1, - 1) would 
remain. Second, delete any k whose components have a common integral 
divisor; i.e., (0,2,4) would be deleted but (0,2,3) would remain. Third, 
arrange the k which remain into a sequence 

{k,: u=1,2 ,..., A}, 

such that ( k, I* is non-decreasing in c1 and such that k,, k,, . . ., k, are the 
elementary vectors. The sequence {k,} is displayed in table 1 for N =3 and 
K=3. 

The sum 

is real valued if the restrictions 

aOct real valued, aj,=a_j,, 



216 A.R. Gallant, The Fourierjlexible form 

Table 1 

The sequence {k;} for N = 3 and K = 3. 

Ik,l*= 1 2 3 

(LO,O) (1, LO) (LL 1) (0,1,2) 
(0, LO) (LO, 1) (1, - 1, 1) (0,-L 1) 
ao, 1) (O,L 1) (LL - 1) (LZO) 

(1, -LO) (1, - 1, - 1) (1,0,2) 
(LO, - 1) (2, LO) 
(0% 1, - 1) (-LO, 1) 

ml, -2) 
(0,2, - 1) 
(1, -2,O) 
(1.0, -2) 
(2, -LO) 
(2,0, - 1) 

are imposed; equivalently, if 

V -0 oa- ) uja=u_jcl, Vja= --O-jar 

where 

aja = ujn + iv. 
JE’ 

‘X=1,2,..., A, j=O, +l, *2 ,..., *J. 

With these restrictions 

i i ajaeijdx= 5 
i 

uo,+2 i [uj,cos(jk;x)-vj,sin(jk;x)] . 

a=1 j=-J @_=1 j=l I 

3. Fourier series approximation of an indirect utility function 

Let q denote an N-dimensional vector of commodities, let p denote the 

vector of corresponding (rental) prices, let Y denote the consumer’s ‘income’ 
or expenditure on the N commodities during the period under consideration, 
and let x=p/Y be the vector of normalized prices. Finally, let g*(x) denote 
the consumer’s true indirect utility function. 

The consumer’s utility is maximized when expenditures are allocated 
according to the expenditure system (Roy’s identity) 

Pi4ily= iil xi(dlaxi)g* tx) 1 
-1 

xi talaxi)g* tx )? i = 1,2,. . ., N, 

provided certain regularity conditions are satisfied [Diewert (1974)]. No 

formal use is made here of these regularity conditions but it is required that 
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the formula for the expenditure system make sense. Therefore, it is assumed 

that g*(x) has continuous partial derivatives and that 

for all x E%” where !Z is the region of approximation; the overbar denotes 

closure of a set. Throughout, functions g(x) are used to approximate g*(x), a 

Translog for example. There may be no guarantee that (a/8xi)g(x)<0 over 
the region of approximation. To prevent technical difficulties later on, the 
following conventions are adopted. With respect to the expenditure system 
formula only, if (8/8xi)g(x) > 0 set (8/8x,)g(x)= 0, define l/O= co, and define 
0. cc = 0. With these conventions, expenditure shares will always be between 
zero and one. 

The scaling of the data is important. A Fourier series is a periodic function 

in each of its arguments and an indirect utility function is not. A Fourier 
series approximation of g*(x) can be made as accurate as desired on a 
region 3 which is completely within the cube Xr’i [0,2rr] but the 
approximation will diverge from g*(x) on XjL i [O, 2n] -% due to its 
periodic nature, the so-called Gibb’s phenomenon. One compensates for this 
feature of Fourier series expansions by resealing the units of the commodities 
so that the income normalized prices are between 0 and 2x. Specifically, let 
(x;, Y,) with I; > 0 be the interval of incomes over which an approximation is 
desired and let (pli,pUi) with pli>O be the price intervals. Having made these 
choices, rescale the units of the commodities and the prices per unit such 
that the resealed prices satisfy 

The region of approximation is, then, 

xEiFl (PtilLPuilY1)= i (xil,xiu). 
i=l 

It is emphasized that the resealing step cannot be omitted in applications. 
Should one prefer to use the original units when reporting results one can 
return to them by reverse scaling after the coefficients of the expansion have 
been estimated. 

A familiar method for obtaining an expenditure system for empirical work 
is to set forth an indirect utility function g(x) which is thought to adequately 
approximate g*(x) and then apply Roy’s identity, 

N 

1 

-1 

Pi4ily= C xi(alaxi)g(x) xi talaxi )g tx )7 i=1,2 ,..., N, 
i=l 
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to obtain the approximating expenditure system. One can see from Roy’s 
identity that if this approach is to succeed it is actually the partial derivatives 
of the indirect utility function which need to be accurately approximated by 
the partial derivatives (2/dxi)g(x) and not just the function g*(x). The 
starting point for an orderly attack on the problem along these lines is to 
find some measure of distance between g*(x) and g(x) which takes 
derivatives into account. A global approximation over ?& is sought so the 
measure should be global. A measure which satisfies these requirements is 
the Sobolov norm, defined next. 

Sobolov norm. If 1 sp < co let W”,P(%) denote the collection of all complex 
valued functions f(x) with L 1 LPf [Pdx < m for all ,4 with 12 (* 5 m; for 
f E W”,p(X) define 

( > 
l/P 

Ilfll _ l%P,E = ,,,Em~ PflPdx . 

If p = 00 let W”*” (X) denote the collection of all complex valued functions f 
with sup,,% I D”f 1 <ccforall~with\~)*~m;forf~W~~~(X)let 

A Fourier series expansion has the ability to approximate the consumers’ 
true indirect utility function g*(x) as closely as derived in Sobolov norm, 
1 Ips cc. Our work is motivated by this fact. It follows directly from 
Corollary 1 of Edmonds and Moscatelli (1977) and is formally stated as 
follows : 

Theorem 1. Let rnz2 and for each multi-index k set 

where i denotes the imaginary unit and suppose that f E Wm*p(X) for some 
pz 1. Then there is a sequence of coefficients {ak} such that 

lim f - c 
II 

akvk 

II 

=o, 

K:-rm Ik(*$K m- l,P.9 

for all p with f E Wm.p(X), 12~5 a. The sequence of coeficients does not 
depend on p. When f is real valued the restriction ak =a_, does not qflect the 

validity of the result; the overbar denotes the complex conjugate of ak. 
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This result motivates the consideration of a series expansion of the form 

&/*SK ak eik’x as an approximation to the consumers’ indirect utility function 
g*(x). An equivalent form is C:= 1 x3= _J ajc,e ijkax as was seen in the previous 
section. Experience acquired in other contexts suggests that the number of 
sine/cosine terms in a Fourier approximation of a non-periodic function can 
be reduced considerably if a linear term b’x is included. As seen later, if a 
quadratic term x’Cx is included as well then curvature restructions may be 
imposed. 

Fourier flexible form. In light of these remarks, consider as an 
approximation of g*(x), 

A J 

g,(x)=a,+b’x++x’Cx+ C 1 ajaeijkhx, 

a=1 j=-J 

where 

A 

aja=LjE, C= - 1 ao,k.k;, 
a=1 

and a,, a,,, and b are real valued. The derivatives of gK(x) are 

(d2/dxdx’)g, (x) = - i 
J 

a,, + C j2ajaeijkiX k,kL. 
a=1 j= -J 

> 

Recall that A and J are functions of K as described in the previous section. 
It will be necessary to extend Theorem 1 slightly so that it meshes with 

asymptotic theory in subsequent sections. The problem centers in the 
sequence of independent variables {x,}. Following Malinvaud (1970) and 
Gallant and Holly (1980) a reasonable assumption in regression situations is 
that the limit of an average of the form (l/n)C:= 1 f (x,) can be computed as 

lim (l/n) i f(xl)=j f(x)dp(x), 
n-tm t=1 L-r 

where p(x) is a probability distribution giving the relative frequency with 
which values of the independent variable occur as sample size tends to 
infinity. (The computation is assumed to be valid for all continuous f(x) 
that are dominated by some fixed p integrable function b(x) [Gallant and 
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Holly (1980)].) Consequently, a modification of Theorem 1 to cover a 
measure of distance based on p is required. 

Definition. If 1 Sp < GO, f~ Wm~p(%) and ~1 is a probability distribution 
defined on !Z with a bounded probability density function, let 

If p=cc and ~EW~~~(Z”-), let 

Corollary. Let the probability distribution p defined on $5 have a bounded 

probability density function. Let rnz2 and let the true indirect utility function 

g* E Wm,p(5?) for some pz 1. Then there is a sequence of coefficients such that 

for all p with f E WP,m(X), 15~5 CO. 

The standard definition of a flexible function form is that it can provide a 
second-order approximation to an arbitrary twice differentiable g*(x) at any 
given point x* [Diewert (1974)]. One can see by inspecting the form of C 
that this definition is satisfied by the Fourier flexible form for A large 
enough. However, no useful statistical properties flow from this definition. As 
White (1980, sect. 2) points out, when parameters are estimated by regression 
methods the estimated flexible form need not provide a second-order 
approximation to g*(x) at any point in X and even if it did, the point of 
approximation is not known. As his examples show, we are not speaking of 
small discrepancies, the errors can be quite large. We argue that a flexible 
functional form ought to meet a higher standard: Given a region X of the 
user’s choosing, given g*(x) thrice continuously differentiable on an open set 
containing %“‘, and given E > 0 of the user’s choosing, a flexible form g, ought 
to be able to satisfy 

JJYg*-D”g,lPdP<c, all lsp<cc, 

)D”g*(x)-D”g,(x)I<&, all x~b, 
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for all partial derivatives D” up to and including the second order. In a later 

section we show that interesting statistical properties flow from this 
definition. But for now, consider the implications for the approximation of 
the elasticities of substitution. 

The partial elasticity of substitution may be computed from an indirect 
utility function as 

gij CXkgjk Cxkgik CCXkgkmXm 
k k -___-~ 

gi gi + m L!” ’ 
n 

where gi and gij denote elements of (a/ax)g(x) and (a’/axax’)g(x), 
respectively [Diewert (1974)]. Let a:(x) correspond to the true indirect 

utility function and let aijK(x) correspond to a flexible form which satisfies 
our proposed definition. Now oij, considered as a function gi, g,,, xk, is 
uniformly continuous over any cube of the form -a 5 gi S - b < 0, c S gij 5 d, 
0 < e 5 xk 55 The true indirect utility function satisfies bounds of this sort for 
all x E .$E whence so must gK(x) for some K (by choosing E sufficiently small). 
Then it follows that given E>O of the users choosing there is a K with 

I0$(X)-oijK(X))<&, all XEfZ. 

Global approximation to within arbitrary accuracy of the elasticities of 
substitution appears to us to be a far more appealing property than equality 
at a single point. 

The main propositions of the neoclassical theory of consumer demand may 
be summarized by the statement that the matrix, with typical entry 

is a symmetric,\ negative semi-definite matrix where 4 (p, Y) is the consumer’s 
(Marshallian) demand system [Varian (1978, sect. 3.7)]. If (a/axi)g,(x)<O 
for all x EX (monotonicity) and (a2/&ax’)gK(x) is positive semi-definite for 
all XEX (convexity), and Roy’s identity is used to obtain q(p, Y) then this 
matrix will be symmetric and negative semi-definite for all XE.% [Diewert 
(1977)]. It is of interest, then, to be able to impose these conditions on g,. 

To impose convexity on g, let the limit of summation J on j be an even 
number, say 21, and rewrite the Fourier indirect utility function as 

g,(x)=a,+b’x+ ‘$ pu,(k;x), 
a=1 
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p,(z)= --+a,,~~ + f uiaeij-. 
j= 

Convexity is imposed by setting 

a oo= - i: C,,c,,~ 
s=-I 

21 

a=l,2 )..., A, 

ujm = ( - l/j’ ) i cscxC,-j,n' Lx = 1,2,. . ., A, j=l,2 ,..., 21, 
s=-I 

where the free parameters satisfy 

Cja=C_j,, a=l,2,..., A, j=l,2 ,..., I, 

cjz = 0, G!=1,2,..., 4 IjI>Z. 

To see this, observe that the Hessian of gK(x) is 

(a2/axax’)g(x)= ; (d2/dz2)~,(k&xP,k~~ 
3=1 

and a suffkient condition for a positive semi-definite Hessian is that, for 
each 01, 

But, under the restrictions, 

(d2/dz2)pL,(z)= -aON- j =g,, ujd2 eijz 

= $J 
j= -21 

( C cs,cs_j.,)eij= 
s=-I 

= i ‘5’ c,,c_ paeiPz+iS: 

s=-I p=-21-s 
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=( ,~,csmeisz)( i c_paeeipz) 
p= -I 

The restriction is sufficient for g,(x) to be a convex function; it is not 
necessary save in the case when A 5 N. In view of the fact that the restriction 
is only sufficient for convexity and that, in turn, convexity is only sufficient 
for consistency with the theory of demand in conjunction with monotonicity, 
one would not likely invoke convexity without testing it as a hypothesis. It 
is, however, a plausible restriction which reduces the number of parameters 
by about one-half when it can be invoked. As yet a convenient means of 
imposing monotonicity has not been found. 

One might note in passing that when the Fourier flexible form is written 
as 

g,(x)=a,+b’x+ i p,(kAx), 
Cl=1 

one sees that it is an additive indirect utility function not in prices per se but 
in price indexes k;x; note that b can be decomposed as Ct= 1 /I, k, for large 
enough A. Thus, the elements of a multi-index k, can be thought of as the 
weights of a price index. 

4. The Fourier expenditure system: An expenditure system with arbitrarily 
small average prediction bias 

As noted earlier, a common method for obtaining an expenditure system 
for empirical work is to apply Roy’s identity to a flexible functional form. If 
the Fourier flexible form is chosen the resulting expenditure system has a 
feature which distinguishes it from other flexible form expenditure systems. 
When estimated, it will approximate the true expenditure system to within an 
average prediction bias which may be made arbitrarily small by increasing 
the number of terms in the Fourier expansion. This claim is verified in this 
section. 

Assume that the observed expenditures and normalized prices are 



where 

f*(x)= 
[ 

~ xj (a/axi)g* (X) 
1 

-1 

i=l 

xN - 1 @/ax, - 1 k* tx 
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generated according to the stochastic specification 

Yt=f*(xt)+et, t-l,2 ,..., n, 

and 

Y= 

Note that y and f* are (N - 1)-dimensional; the expenditures on the Nth 
the observed expenditure and commodity are obtained from 1 -CrZr’ yi for 

from 1 -CCr’ f;(x) for the predicted expenditure. Let the errors e, be 
independent and identically distributed each with zero mean vector and 
variance-covariance matrix C. 

The Fourier expenditure system, obtained by applying Roy’s identity to 

k(x), is 

Xibi+ 5 J 

- aOmx’ k, + i 1 jajaeijkhX kiaxi 

_fi(x,Q= 
.=1 j= -J 

b’x+ ; 
J 

1 ) 
- aOlrx’kGl + i 1 jajcreijkhX kkx 

a=1 j= -J 1 
i=l,2 ,..., N-l. 

The system is homogeneous of degree zero in its parameters and is therefore 
not identified without normalization; setting b, = - 1 is a convenient 
normalization rule. Let 

a, = h,, a,,, . . ., a,,)‘, c( = 1,2, . .) A. 

The parameters of the system are 

6=(bl,b, ,..., b,_,, a;,a; ,..., at)‘, 
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a vector of length IV-l+A(l+J). There are N-1+,4(1+25) free 
parameters in the vector since the complex parameters have both a real and 
an imaginary part. 

Let 3 be a random matrix of order (N - 1) x (N- 1) with &(3-S*) 
bounded in probability for some positive definite matrix S*. The Seemingly 
Unrelated Nonlinear Regressions estimator of 0 [Gallant (1975)] is e^ which 
maximizes 

where 

s”(e)= (fin) i S(Y&3JQ 
1=1 

Subject to regularity conditions stated in Souza and Gallant (1979) e^ 
converges almost surely to that value 8* which minimizes the average 
prediction bias 

The Corollary of Theorem 1 and Theorem 2, below, taken together imply 
that the average prediction bias .B(e*) of the Seemingly Unrelated Nonlinear 
Regressions estimator of the Fourier expenditure system may be made as 
small as desired by taking A and J sufficiently large. 

Theorem 2. Let g* E W’s* (a) with continuous (a/ax,)g*(x)<O for all XE$? 
and let f*(x) be the corresponding expenditure system. Let p be a probability 
distribution on 3” with a bounded probability density function. Let 
g,(x, 8,, e2,. . ., 0,) be a sequence of functions with continuous partial 
derivatives in x and let f,(x,Q,, e2,. . ., 0,) be the corresponding expenditure 
system. Let the triangular array 

,minimize 

aK(el, e2,. . ., 4)=&(f*-fK)‘(S*)-1(f*-fK)dPV 
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for K = 1,2,...; note Oz, need not equal t3zK+1. lf there exists a triangular 
array {gi,,:i=1,2 ,..., K;K=1,2 ,... } such that &(x)=gK(x,e,,.,&. ,..., OK,,,) 
satisfies gK E W2v2 (X) and 

then 

lim NV,K,e;,,,. . .,e;.K)=o. 
K-W 

Proof First it is shown that 

lim ~(81,K,82,K,...,BK,K)=o. 
K-ta, 

By hypothesis, (a/Zx,)g* (x)56 ~0 for all x ~9’. Now the convention that a 
positive (8/8xi)gK(x) is to be set to zero when forming JK(x) merely improves 
the approximation and it remains true that lim)Ig*--g,II,,,,,=O after the 
modification. Expenditure shares are bounded by one whence If,?(x) 
-J K(~)152 for all XE~!‘;. Further, 

lim 1 Ixi(a/axi)g*(x)-xi(alaxi)gK(x)I dp 
9 

Now (X, p) is a finite measure space so that convergence in Yip1 (X, p) implies 
convergence in measure. Thus, xi(8/8xi)gK(x) converges in measure to 
xi(3/axi)g*(x) as K-+cc for i=l,2,..., N. It follows immediately that the 

expenditure shares J,(x) converge in measure to f;(x). Since If* -J, I2 is 
dominated by 4, the dominated convergence theorem for convergence in 
measure implies 

N-l 

lim C j If:-J,I’dp=O. 

Let 6 be the largest eigenvalue of (S*)- ‘. Then 

N-l 

0~lim&?K(8,,K,..., 8K,K)~lim6 1 J IfT-J;.Kj2dP=0. 
i=l PT 
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The theorem follows from the fact that (O:,K,. . .,O&) minimizes 

BK(&,..., 13,) whence 

O~lim~~(8:,.,...,elli,.)rlimW,(8,,. ,..., 8,,,)=0. 0 

This is an extremely powerful result. Let us appeal to a time series analogy 
in order to make our point forcefully. If a stationary time series has a 
bounded spectral density which is bounded away from zero as well then this 
time series has an infinite autoregressive representation in mean square 

2 

lim d 5 u~x,-~--~~ =0, t=O +1 +2,... , _ , _ 
K-m k=O 

That is, the autoregressive model exhausts the possibilities. It usually suffices 
to truncate at some K and lit 

akx,_k=e, 
k=O 

in applications. Granted that in practice one may be able to lit an 
autoregressive/moving average model which tits as well with fewer 

parameters but, in principle, there is no need to. 
The analogy is perfect. Say one is, willing to presume that the true indirect 

utility function is twice continuously differentiable over 9. Then, quite 
simply, the Fourier expenditure system exhausts the possibilities. There is no 
need to consider anything else if one is willing to accept 

lim j (f*-fK)‘(S*)-l(f*-fK)dp=O 
K-+oo 3 

as the appropriate measure of distance. One should expect that it would 
suffice to truncate at some K and fit f,(x, e) in applications. Granted that in 
practice one may be able to use a CES, Translog, etc., and tit as well with 
fewer parameters but, in principle, there is no need to. 

5. Computational considerations 

In the computations it is more convenient to work with sine/cosine 
representations than with the exponential representations of the previous 
sections. Recall that 4 denotes an N-vector of commodities, p the N-vector of 
corresponding prices, Y income, x the income normalized prices x =p/X and 
y an N - 1 vector of budget shares (yi =piqi/Y, i= 1,2,. . ., N - 1). Recall 



228 A.R. Gallant, The Fourier flexible form 

also that the data have been scaled so that 0 <xii 5 xi 5 xiu <2x for 

i=l,2,..., N. It is re-emphasized that the scaling step cannot be omitted. 
The Fourier flexible form and its derivatives may be written as 

=Uo+b’X++X’CX + g Uoa+ i [l.dj,COS~k~X)-Uj,SiIl~k~X)] , 
a=1 i j=l I 

=b+Cx-2 $ i j[uj,sin(jk;x)+oj,cos(jk;x)]k,, 
or=1 j=l 

=- u,,+2 C j2[uj,cos(jkhx)-Uj,sinGkhx)] 
j=l 

where 

C= - i u,,ak,k;, 
a=1 

and uo, uOa, uj., ujrr are real valued. The correspondence with the notation of 
the previous sections is 

a Oa = uom x=1,2 )...) A, 

aj,, = uja + iuj,, cc=1,2,..., A, j=l,2 ,..., J, 

a- ja=Uja- lUj@, c( = 1,2,. . .) A, j=l,2 )...) J. 

When parameter estimates are in hand the quantities typically of interest 
in a demand study are obtained from these derivatives as follows. The 
ordinary (Marshallian) demand system is 

4(P, Y)=Cx’(alax)gK(X)l-l(a/aX)gK(X). 

Writing q for q(p, Y), Bg for (8/8x)g,(x), and V2g for (a2/8xax’)gK(x) all 
evaluated at the point x = p/Y we have 
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WP’MP~ Y)= (P’w-‘c~2g-qx’v2g- (x'Vg)qq'l, 

@/~Yh?(P, Y)= -CwJP’MlA Y)lx. 

From these expressions and Slutsky’s equation the derivatives of the 
compensated (Hicksian) demand curve are 

@l~P’MvJ)l”=g(x)= C(Wp’)q(p, Y)lV-xq’). 

Let 

P=diag(p,,p,,...,p,), Q =diag kl,q2,. . ., qN). 

The uncompensated price elasticities are 

IIM =Q- ‘C(WJP%(P, Y)lP, 

and the compensated price elasticities are 

where in each case the row index indexes quantities and the column index 
indexes prices. The income elasticities are 

vy= -Q-‘C@Pp’)q(p, VIP- 

It remains to estimate the parameters of gK(x) in order to use these formulas. 
The parameters of the Fourier flexible form are estimated by fitting the 

Fourier expenditure system to budget share data. In computations, it is 
advantageous to recognize that each expenditure share is actually the ratio of 
two linear functions of the parameters. To see this, rewrite the Fourier 
expenditure system in terms of sines and cosines 

( xibi- 1 
a:', { j:l 

Q&‘k,+ 2 1 j[Uj, sin GkiX) + Uja COS (j&X)] 

i >i 

ki,,Xi 

where i=l,2,..., N - 1 and b,= - 1. A convenient arrangement of the 
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parameters is obtained by setting 

Q,,, =(br, b,, . . ., b,- 1 I’, 

t+,, = @&, Uln, via, UZa, VZa,. . .) UJa, vJa)‘r 

and 

e= (qo,, e;,,, e;,,, . . ., e;,,)‘, 

which is a vector oflength N-l+A(1+2J). For i=1,2,...,N-1, let 

Ni, = an N - 1 vector with xi in the ith position 

and zeroes elsewhere, 

and for i = N, let 

N,, = the zero vector of length N - 1. 

For i = 1,2,. . ., N, let 

Ni,= - (ki,xi)[x’k,, 2sin (k&x), 2~0s (k;x),. ., 

2Jsin(Jk;x),2Jcos(Jk;x)], 

and 

Nf = (Nf,, Nf,, N;,, . . ., NIA). 

Note that N; is a vector of length N - 1 +A (1+2J). 

Let 

Then each expenditure share is given by 

fi(X,e)=Nle/(-x,+o’e), i=1,2 ,..., N-l, 

and the expenditure system is given by 

f(x,e)=(-x,+D’e)-‘N/e, 
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where 

(N-l)x[N-l+A(1+25)]. 

Fitting the system by Seemingly Unrelated Nonlinear Regressions [Gallant 
(1975)] is straightforward but three features deserve comment. The first is 
thatoanalytic derivatives are easily computed as 

so that one should prefer to use a nonlinear optimization algorithm which 
uses analytic derivatives to one which estimates them numerically. The 
second is that one can exploit the fact that the Fourier expenditure system is 
the ratio of two linear functions to obtain starting values for the 
optimizations. The third is that there can be linear dependencies of the form 
N;6=N;6=... = Nk6 = D’6 =0 which hold for some fixed 6 at every data 
point in the sample. These last two points need further discussion. 

Neglecting errors, we have that 

y,=N;B/(--x,+D’8), i=1,2 ,..., N-l, 

which may be rewritten as 

i=l,2 ,..., N-l. 

This latter may be fit by Seemingly Unrelated (linear) Regressions. (It would 
be interesting to study the properties of Three Stage Least Squares 
estimators for this model.) Good starting values may be obtained by fitting 
this linear system by Seemingly Unrelated Regressions with across equation 
constraints imposed and with the varianceecovariance matrix set to the 
identity matrix. In other words, lit the system by Ordinary Least Squares 
with across equation constraints imposed and use the resulting parameter 
estimates as starting values for the nonlinear optimizations. 

The problem of a linear dependency which holds for each data point, 

N;cYi=N;6=...=N~6=D’6=0, x=x*, t=l,2 ,..., n, 

is handled the same as in linear regression. Choose a j for which aj is a non- 
zero element of 6 and delete the jth element of N;, N;,. . ., Nk, D’, and 0 to 
remedy the problem. This is equivalent to imposing the constraint that ej=O. 
If the problem persists, repeat and delete another column. 
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Bear in mind that the parameters of the Fourier flexible form are of no 
intrinsic interest in and of themselves. One is attempting to estimate the 
surfaces (~Y/ax’)g* (x) and (#/8x8x’)g* (x) accurately, not the parameters of 
se(x). If some parameters are indeterminate in a given data set it is of no 
consequence. Carrying this observation further, one may try various values of 
J and A and deletions of some k, using hypothesis testing as an aid in an 
attempt to obtain an adequate lit with as few parameters as possible. 

Convexity may be imposed on the Fourier flexible form as was shown 
previously. For computations the convexity restriction should be expressed 
as a functional dependency, 

e=g(P), 

and the Jacobian of the transformation, 

is required [Gallant (1975, sect. 2)]. These two functions defy description 
despite the fact that it is easy to code them at sight using the formulas of 
section 3. The solution to this dilemma is simply to publish the code itself 
and skip the formulas for g(p) and G(p). Accordingly, the appendix gives the 
(IBM) FORTRAN code. Referring to the appendix, the index J of the 
Fourier flexible form must be even. On entry to CONVEX, RHO =p, NN 
= N, IAA = A, and II = J/2; LR and LG give the dimensions of RHO, G, and 
DELG as declared in the calling program ~ RHO(LR), G(LG), 
DELG(LG, LR). On return, G=g(p) and DELG= G(p). The arrangement of 

the elements of p is 

p(O)=(b,,b,,...,b,-,)‘, 

and 

P(a) = (P&r Pla, 41cO P2m q2m. . .) PIa* 4ra)‘~ 

P = (P{o,, P[1,, p;2p. . ‘> #&J” 

with I = J/2, a vector of length N-I + A(1 + 21). The correspondence with 
the notation of section 3 is 

Coa = Poor, c1= 1,2,. . ., A, 

c,, = P,, + L cr=1,2,..., A, s=l,2 ,..., I, 

c - sa = P,, - iq,,, 0!=1,2,..., A, s=l,2,...,1. 



A.R. Gallant, The Fourier flexible form 233 

Starting values for the constrained optimizations are obtained by finding p0 

to minimize [B-g(p)]‘[B-g(p)] using Ordinary Nonlinear Least Squares 

where e^ is the unconstrained estimate of 0. 
By way of illustration, for 

(S)_’ = 
47086.7 22362.8 

22362.8 

the data of the appendix scaled so that 

max (xi1 : t = 1,2,. . ., n} = 6, i = 1,2,3, 

the multi-indexes, 

A =4, J =2, i = 1 for durables, i = 2 for non-durables, and i= 3 for services, 
one obtains the results reported in table 2. There is no rounding in (s)-’ or 
the data of the appendix so that one should be able to reproduce these 
results exactly. With the unconstrained fit monotonicity holds at every data 
point and convexity fails at 29 of the 44 data points. Monotonicity holds at 
every data point when convexity is imposed. A test for convexity is to reject 
if 

L= -2~~s,Cg(Lw-~,(8^)1 

= - (2)(44)[ - 1.4179 +0.84330] = 50.564 

exceeds a chi-square critical point with 8 degrees freedom [Souza and 
Gallant (1979)]. Convexity is rejected at the 1% level. By way of comparison, 
a Translog tit has s,(l)= -2.4146. 

6. A test of the theory of demand 

There have been many studies that have tested the theory of demand 
statistically. A concise account of these studies is found in the introduction of 
Christensen, Jorgenson and Lau (1975). Setting aside the well-known 
problems with the use of aggregate data for such tests, there remains the 
problem of bias induced by the choice of a functional form for the 
expenditure system. Rejection of the null hypothesis implies rejection of 



234 A.R. Gallant, The Fourierjlexiblefbrm 

Table 2 

Fourier lit to the data of Christensen, Jorgenson and Lau (1975). 

Unconstrained 0 

b, -0.56604 
b, - 0.602 11 

UOI -0.0088414 
u11 0.016430 
1’11 0.00093173 
U2I 0.00065799 
021 -0.0041358 

uoz 0.18283 
U12 0.12537 
L’12 -0.27185 
u22 0.0090124 
c22 - 0.0090039 

%3 0.054104 
u13 0.10203 
L’13 - 0.094070 
U23 -0.014374 
c23 -0.014726 

UO4 -0.019725 
u14 - 0.028701 
L’14 -0.0054340 
u24 - 0.0037969 
L’24_ -0.011059 
s,(O) -0.84330 

Convexity constrained p 

b, - 0.40262 
b, - 0.95697 

PO1 0.13908 
PI I -0.018227 
41, - 0.083372 

PO2 0.069018 
PI2 - 0.029077 
YIZ 0.18589 

PO3 0.28863 
PI3 - 0.032041 
q13 - 0.076370 

PO4 0.055923 
PlS 0.054243 
q14 0.022656 

s,[g(fi)] - 1.4179 

either the choice of a functional form or rejection of the theory of demand or 
both. The implication of a significant test statistic is unclear; rejection of the 
theory of demand is not necessarily implied. Of these studies, the most 
interesting is that of Christensen, Jorgenson and Lau (1975) because it 
attempts to evade this problem by using a flexible functional form in an 
attempt to reduce model specification bias. They reject the theory of demand. 
As noted, the data is aggregate so that the theory is not seriously threatened 
but, nonetheless, it is of interest to repeat these tests with the Fourier flexible 
form in an attempt to demonstrate that their significant test statistics can be 
attributed to specification bias. 

Following along the same lines as Christensen, Jorgenson and Lau, a test 
of the theory of demand may be constructed as follows. Let 
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where fi(x,tI) is the Fourier expenditure share of the ith commodity. Note 
that if 

then 

f (XT &,02,. . -, e,-,)=f(X,e). 

Following previous usage, the restriction 

is termed the hypothesis of equality and symmetry here. 

A test statistic for the hypothesis, 

may be constructed from the Seemingly Unrelated Nonlinear Regression 
estimator. Let 3 be the random matrix of section 4. The unconstrained 

estimator is (or, &, . . ., ON _ 1 ) which maximizes 

S, a, f4, . . ., e,-,)=(1/n) i 4~ t, xt, S,el, b, . . ., eN - 1 ), 
I=1 

where 

S(Y, X, s, 4, hr.. ., e,_1)=-~[y-f(x,e1,e2,...,eN-1)]~s-1 

x~~--f(x,e,,e~,...,e~-~)i. 

The constrained estimator is 6 which maximizes s,(e) as defined in section 4. 
The test statistic for equality and symmetry is 

L= -2n[s,(8^)-s,(8,,8^,,...,8,_,)]. 

One rejects the null hypothesis when L exceeds the upper c( x 100 percentage 
point of a chi-square random variable with (N -2)(N - 1 + A (1 + 25)) 
degrees of freedom. 

The Fourier expenditure system was fitted to the data of Christensen, 
Jorgenson and Lau (1975). These data were obtained from Tibibian (1980) 
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and are given in the appendix. The multi-indices employed were 

k=(;)> (%)? (4) (i)> (i), f), (I>, 
A = 7 and J = 1. These choices result in an estimate of ,Z which is one-half the 
magnitude of C estimated fro.m Translog nonlinear least squares residuals; 
equality and symmetry constraints having been imposed in both cases. 
Fourier scaling as discussed in section 3 is used to estimate C with the 

Fourier expenditure system; with the Translog, prices are scaled so that each 
series xi = piiY has a mean of one. There is a singularity with these data which 
is accommodated by fixing a,,, at zero as discussed in the previous section; 
the degrees of freedom of the test statistic are 22. 

The computed value of the test statistic for equality and symmetry is 

L= -2(44)(-0.89053+0.12783)=67.117, 

which is significant at a level of 1%. After a correction for serial correlation 

the statistic is 

L= -2(44)(-0.91160+0.18207)=64.198, 

which is significant at a level of 1%. 
One concludes that the rejection of the theory of demand reported in 

Christensen, Jorgenson and Lau cannot be shown to result from a bias in 
favor of rejection induced by a choice of the Translog functional form. One 

is not permitted to conclude that the Translog expenditure system is free of 
bias from these tests, only that a bias has not been demonstrated in this 

instance with these data. In fact, a test of the theory of demand against an 
unspecified alternative is not a convenient setting in which to deal with the 
question of bias. The number of parameters is large, computations are 
therefore extremely costly, and there is no convincing means to parameterize 
the alternative. The Translog test for an additive indirect utility function is a 
much more tractable setting for an examination of bias. In the next section, a 
substantial bias is discovered. 

7. The power curve of the translog additivity test 

If the true indirect utility function is additive then additivity may be 
imposed on the Fourier flexible form without affecting the ability of the 
Fourier expenditure system to approximate the true expenditure system. This 
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fact allows the determination of an analytic expression for the power curve of 
the Translog test of additivity in terms of the parameter f3* of the Fourier 

expenditure system. This power curve turns out to be shallow and biased in 
favor of rejection. The details follow. 

Suppose that the indirect utility function is additive, 

The same expenditure system will result regardless of the choice of strictly 
increasing function F so it is impossible to distinguish between additivity and 
explicit additivity, 

g*(x)= i: gxw, 
a=1 

from expenditure data. Therefore, only the stronger hypothesis of explicit 
additivity is considered here. (The same is, of course, true of homotheticity 

and homogeneity; the same expenditure system results in either case.) 
An explicitly additive form of the Fourier indirect utility function results 

when A is set to A =N; recall that the first N multi-indices k, are the 
elementary vectors. With A =N the Fourier indirect utility function may be 
rewritten as 

N J 

g(x)= C U, + b,x, -&x,Z + C ajae’jxu 
a=1 j= -J 

The Corollary of Theorem 1 may be applied successively to conclude that 

there are coefficients such that 

By the triangle inequality, 

lim 11 g* -g 11 
J-C.2 

1,2,q; g IIg,*-&lIlJ,p=o~ - dl- 

Thus, the hypotheses of Theorem 2 are satisfied and the Fourier system is 
seen to retain the ability to approximate the true utility system with 
arbitrarily small average prediction bias. 
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The Translog indirect utility function yields expenditure shares 

fi(x,A)= 
( 

cq+ F Bijlnxj 
)I( 

-I+ $j p,jhXj , 

j= 1 j=l > 

i=l,2 )...) N-l. 

There are N - 1 + N (N + 1)/2 free parameters, 

The dependent parameters are 

N-l 

a,=-l- c aj, 
j=l 

flji =flij for i< j, 

PMj = ,il Pij. 

The hypothesis of explicit additivity for the Translog expenditure system 
takes the form fiij = 0 for i # j. This hypothesis may be represented as 

where H is of order [N(N- 1)/2] x [N- 1 +N(N+ 1)/2] and is obtained 
from the identity of order N - 1 + N (N + 1)/2 by deleting the N - 1 + N rows 

corresponding to a,,. . ., aN- 1 and j?r r,. . ., PNN of i. 
As before, let $(S- S*) be bounded in probability. The Seemingly 

Unrelated Nonlinear Regressions estimator of 2 is f which maximizes 

s,G)=(lln) i s(yt,xl,3,j.), 
1=1 

where 

Then, as for 0, ;2^ converges almost surely to that value A” which minimizes 
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To approximate B(n), one may use B(J, 19*) where 

The argument runs as follows. Note that 

and B’(n) is bounded over n by 6(N - 1)(2)2 where 6 is the largest eigenvalue 

of (S*)-‘. As seen in the previous section, %?(O*) may be made arbitrarily 
small by taking A and J sufficiently large independently of the value of 1 E A. 
Thus, I” can be computed as that value of I which minimizes .@(n,e*) and 
the error of approximation may be made arbitrarily small by taking A and J 
sufficiently large. 

If one assumes that the random vectors u,= (&xi)‘, t= 1,2,. . ., 
independently and identically distributed and does not condition on 
sequence x,, t= 1,2,. . ., then the Wald test and the Lagrange multiplier 

for the hypothesis 

h(A”)=O, 

are 
the 
test 

are distributed asymptotically as non-central chi-squared random variables 
each with N (N - 1)/2 degrees of freedom [Souza and Gallant (1979)], the 

non-centrality parameter is 

where 

CC” = nil”‘H’(Hl’“H’)-l H1”/2, 

Y”= (l/n) E C(a/a~‘)f(x,,~“)l’(S*)-’ 
1=1 

x [z + 6(x,, 2, e*)uxt, 20, e*)] (s*)- l[(a/anyj- (x., LO)], 

” N-lN-1 
- (l/n) C 1 C 6i(x*v A”, e*)s*ij(az/alal’)fj(x,, no), 

f=l i=l j=l 

6 txt, ~0, e*) = f (x,, e* ) - f (x,, A” ), 
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and S*ij denotes the elements of S*-‘. The asymptotic non-null distribution 
of the analog of the likelihood ratio test is also given in Souza and Gallant 
(1979), but it does not have a tabled null distribution in this case. Thus, it is 
of no practical importance. The arguments supporting the substitution of 
f (x, 0*) for f*(x) in these formulas are similar to those supporting the use 
of .?#(A, 0*) for W(1). 

The choice of S* for use in these formulas presents somewhat of a 
problem. The simplest choice is to take S* =C which is equivalent to 
assuming that either C is known or that it may be estimated with negligible 
bias. It is, of course, always possible to obtain C with negligible bias, one 

need only fit a polynomial in x of suitably high degree to each expenditure 
share yi and compute S from the residuals [Gallant (1979)]. The alternative 
approach is to assume that S was computed from translog residuals and 
account for the resulting bias. For example, one might compute S from 
nonlinear least squares residuals subject to the equality and symmetry across 
equation constraint. This is equivalent to taking S=Z in the Seemingly 
Unrelated Nonlinear Regressions method whence 

s* = c + 16 (x, ;.oo, 0*)&(x, A”“, e*)dp, 
X 

where A” minimizes 

J 6)(x, i, t?*)S(x, A, 8*)dp. 

Another possibility is to compute S from unconstrained Translog residuals. 
In view of the variety of choices available for S* and the additional 
complexity entailed, it seems that the simplest choice S* = C contributes more 
to understanding. From the data of the appendix, a variancecovariance 
matrix c was computed from Fourier expenditure system residuals with 
equality and symmetry imposed on the fit; A =7 and J = 1. This variance- 

covariance matrix was resealed upward by a factor of two. 
A smooth transition between the extremes of additivity and its absence 

was obtained as follows. The parameter 8* was computed by fitting the 
Fourier expenditure system to the data of the appendix by Seemingly 
Unrelated Nonlinear Regressions with this choice of C, with equality and 
symmetry imposed, and with the constraint 

imposed. The choice K =0 yields the null case. The remaining lines of table 3 
correspond to increasingly larger values of K and the last line corresponds to 
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an unconstrained tit. These parameter choices are realistic in that they yield 
expenditure shares in accord with the expenditure shares in the data of the 

appendix as revealed by visual inspection of plots of observed and predicted 
shares against time. 

The Translog test of explicit additivity (with equality and symmetry as a 
maintained hypothesis) is seriously flawed as seen in table 3. The actual size 
of the test is much larger than the nominal significance level of 0.010 and the 
power curve is relatively flat compared to the power of a test based on the 

Fourier expenditure system. The Translog power curve does increase locally, 
as one might expect, but it falls off again as departures from the null case 
become more extreme. 

Table 3 

Tests for an additive indirect utility function. 

K 

Fourier 

Non-centrality Power 

Translog 

Non-centrality Power 

0.0 0.0 0.010 8.9439 0.872 
0.00046 0.0011935 0.010 8.9919 0.874 
0.0021 0.029616 0.011 9.2014 0.884 
0.0091 0.63795 0.023 10.287 0.924 
0.033 4.6689 0.260 14.268 0.987 
0.059 7.8947 0.552 15.710 0.993 
0.084 82.875 1.000 13.875 0.984 
Unconstrained 328.61 1.000 10.230 0.922 

An interesting observation follows from the results of this section. Suppose 

that the consumers’ indirect utility function were truly additive in some set of 
price indexes wbx, /I= 1,2,. . ., B. Then the indirect utility function 

g,(x)=%+ i qJb$?X)~ 
&9=1 

where 

.I 

up (2) = b,z -$.z,~z~ + 1 ajoe+, 
j=J 

would have all the properties of the Fourier flexible form. The role of the 
multi-indexes k, in the Fourier flexible form is to add more and more price 
indexes khx so that eventually all based are covered, so to speak. Each index 
is then expanded in a univariate Fourier series augmented by a quadratic. 
The annoyance associated with this intuitive view of the Fourier flexible form 

JOE-C 
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is that some of the k, have negative entries whereas one usually thinks of 
price indexes as having positive entries. Oddly enough however, in our 
specification searches those k, with negative entries were discarded in favor 
of others with positive entries on the basis of reduction in residual sum of 
squares. 

Appendix 

C 

C 

10 
C 
C 

20 
C 
C 

C 
C 

C 

C 

C 

C 

C 
C 
C 
C 

Table A.1 

Convexity constraint. 

SU@ROUTINE CONVEXlRHC,hh,IAA.II,LR~LG~G.DELG) 
IMPLICIT REAL*8 (A-ti.O--L.Sl 
REAL+8 RHOlLR~.GlLG~~DELGlLG.LR~.RECS.IMCS.RECSJ.IWCSJ.RETJ~IMTJ 
CHECK FOR ADEOUATE STORAGE SPACE. 
IFlLR.LT.Nk-I+IAA*11.2+II)) RtTURN 
IFlLG.LT.NN-l+IAA+ll.4+1 I) 1 RETURN 
CLEAR ACCUMULATORS. 
00 10 I=l.LG 
GlI )=O.DO 
DO 10 J=I,LR 
DELG1I.J1=O.D0 
COPY 6 FROM RHO TO G. THE NORTHUEST CGRhEE OF OELG IS THE 
IOENT ITY. 
LIU=NN-1 
DO 20 I=l.LIM 

GlI)=RHC(I1 

DELGlI,I~=l.DO 

LOOP 40 STEPS THROUGH THE RCYS OF G AND OELG. 
IA INDEXES A-J-ALPHA, C-S-ALPHA, AND C-S-J-ALPHA WHERE ALPHA=IA. 
DO 40 IA=l.lAA 
IRA0 IS THE STORAGE LOCATICN OF C_O_ALPHA IN THE VECTOR RHC. 
ITAO IS THE STORAGE LOCATICN OF A-O-ALPHA IN THE VECTOR G. 
IRAO=NN+l1+2tII)+lIA-1) 
ITAO=NN+ll+4*II)*lIA-1) 
LIH=2+Ix+l 
00 40 L=I.LIH 
J INDEXES A_J_ALPHA. 
J=L-1 
A_J_ALPHA=COEF*SUW1C_S_ALPHA+CONJlC_S-J_ALPUAl:S=O.+-l.....CIl~. 
COEF=- 1 .DO 
IFlJ.GT.0) COEF=-l.OO/GFLOATlJ*+2) 
LOOP 30 IS THE ACCUMULATIGh LCCP CVEY THE INDEX 5. 
DO 30 K=l,LIH 
IS INDEXES C-S-ALPHA. ISJ INDEXES C-S-J-ALPHA. 
IS=K-I I-l 
ISJ=IS-J 
IFlIABSlISJI.GT.111 GO TC 30 
IRECS IS THE LOCATION OF THE REAL PART OF C-S-ALPHA IN RHG. 
IIMCS IS THE LOCATICN OF THE IMAGIhARY PART OF C_S_ALPHA. 
IRECSJ IS THE LOCATION OF THE REAL PART OF C-S-J-ALPHA. 
IIMCSJ IS THE LOCATION OF THE IMAGIhARY PART OF C-S-J-ALPHA. 
IRECS=l RAO 
IFlIS.NE.0) IRECS=IRAO+2*IAElSl IS)-1 
IFlIS.NE.0) IIMCS=IRECS+l 
IRECSJ=IRAO 
IFIISJ.NE.O) IRECSJ=IRA0+2tIAElS11SJ~-1 
IF(ISJ.NE.0) IIMCSJ=IRECSJ+l 



C 

C 

C 

C 

C 

C 

C 

C 

C 
C 
C 
C 

30 
40 
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Table A.l--continued 

COMPUTE REAL ANO IMAGINARY PARTS OF C_S_ALPHA ANO C-S-J_ALPHA. 
RECSERHOL IRECS) 

IYCs=O.OO 

IF(IS.GT.0) IMCS=RHO~IIWCS) 

IF( IS.LT.01 IWCS=-RHOtI IYCSB 
RECSJ=fiHOLIRECSJT 
I MCSJ=O.OO 
IF(ISJ.GT.0) IMCSJ=RHO(IINCSJ) 
IF(ISJ.LT.0) IMCSJ=-RHCLIIYCSJ~ 
COMPUTE THE REAL PART CF COEF*C_S_ALPHA*CONJTC_S-J-ALPHA) AN0 
ITS DERIVATIVES NITM RESPECT TO THE REAL Ah0 IMAGINARY PARTS 
OF C-S-ALPHA AN0 C-S-J-ALPHA. THESE ARE ACCUMULATED IN G AND 

OELG RESPECTIVELY. IT IS THE STORAGE LOCATICh OF THE REAL PART 
OF A_J_ALPiiA IN THE VECTGR G. 
IT=ITAO 
IF(J.NE.01 IT=ITAO+2*J-1 
G(ITl=G(IT~+COEF*~RECStRECSJ*LYCSJ+lNCS*INCSJ~ 
OELGt IT. IRECSl=OELG( IT, IRECS)+COEF+RECSJ 
IFIIS.GT.0) OELG(IT.IINCS~=OELG(IT.IIMCSl+COEF*INCSJ 
IF(IS.LT.0) OELG~IT.IICCS~=OELG~IT.IINCS~-CCEF*lNCSJ 
OELG(IT.IRECSJ)=OELG~IT.IRECSJ~+CGEF~RECS 
IF(ISJ.GT.0) OELG(IT~IINCSJl=OELG~IT.IINCSJ~+CGEF*INCS 
IFtISJ.LT.01 OELGt IT. IINCSJ)=OELG~IT.IINCSJ)-COEF1IYCS 
IF J=O THEN A-J-ALPHA HAS h0 IWAGIhAGY PART. 
IF(J.EQ.0) GO TO 30 
COMPUTE THE IMAGINARY PART CF COEF*C_S_ALPHA*CONJ(C_S-J_ALPtiAT Ah0 
ITS DERIVATIVES YITH RESPECT TC THE REAL AhD IMAGINARY PARTS 
OF C-S-ALPHA AhO C-S-J-ALPHA. THESE IRE ACCUMULATED IN G AND 
OELG RESPECTIVELY. IT IS THE STCRAGE LGCATION CF T+lE IMAGINARY 
PART OF A_J_ALPHA IN THE VECTOR G. 
IT=IT+l 
G(IT)=G(IT)+COEFCL-RECS*INCSJ+IMCS*RECSJ~ 
DELGT IT. IRECS)=OELGL IT.IRECS~-COEFIIWCSJ 
IF(IS.GT.0) OECG(IT~IINCS~=bELG(IT.IIt4CS~+COEF~RECSJ 
IF( IS.LT.0) JELG(IT.1 IYCS)=DELG(IT.IIHCSi-CCEFtCECSJ 
DELGL IT.IRECSJ)=OELG( IT. IRECSJ)*COEF+IMCS 
IF(ISJ.GT.OJ DELG(IT.IIYCSJ~=DELG~IT.IIMCSJ~-COEF*RECS 
IF(ISJ.LT.0) DELG(IT,IIMCSJ~=OELG~IT,IINCSJ~+CGEF*RECS 
CCkTINUE 
CONTINUE 
RETURN 
END 
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Year Quantity Price 
- 

Quantity Price Quantity Price 

1929 28.9645 33.9 98.1 38.4 96.1 31.6 

1930 29.8164 32.2 93.5 36.4 89.5 32.1 

1931 28.9645 31.4 93.1 31 .I 84.3 30.9 

1932 26.8821 23.9 85.9 26.5 77.1 28.8 

1933 25.3676 31.3 82.9 26.8 76.8 26.1 

1934 24.6104 27. 7 88.S 30.2 7b .3 26.8 

1935 22.3387 28.8 93.2 31.5 79.5 26.8 

1936 24.1371 32.9 103.8 31.6 83.8 27.2 

1937 24.1371 29.0 107.7 32.7 86.5 28.3 

1938 26.6928 28.4 109.3 31.1 83.7 29.1 

1939 26.40@8 30.5 115.1 30.5 86.1 29.2 

1940 27.0714 29.4 119.9 30.9 88.7 29.5 

1941 28.4912 28.9 127.6 33.6 91.8 30.8 

1942 29.5325 31.7 129.9 39.1 95.5 32.4 

1943 28.6806 38.0 134.0 43.7 100.1 34.2 

1944 28.8699 37.7 139.4 46.2 102.7 3b.l 

1945 28.3966 39.0 150.3 47.8 106.3 37.3 

1946 26.6928 44.0 158.9 52.1 116.7 38.9 

1947 28.3966 65.3 154.8 58.7 120.8 41.7 

1948 31.6149 60.4 155.0 62.3 124.6 44.4 

1949 35.8744 50.4 157.4 60.3 121.4 46.1 

1950 38.9980 59.2 161.8 60.7 132.8 47.4 

1951 43.5414 60.0 165.3 65.8 137.1 4Y.9 

1952 48.0849 64.2 171.2 66.6 140.8 52.6 

1953 49.8833 57.5 175.7 66.3 145.5 55.4 

1954 53.1016 68.3 177.0 66.6 150.4 57.2 

1955 95.4680 63.5 185.4 66.3 157.5 58.5 

1956 58.8756 62.2 191.5 67.3 164.8 60.2 

1957 61.6206 56.5 194.8 69.4 170.3 62.2 

1958 65.3122 66.7 196.8 71.0 175.8 64.2 

1959 65.7854 63.3 205.0 71.4 184.7 66.0 

1960 68.6251 73.1 208.2 72.6 192.3 68.0 

1961 70.6129 72.1 211.9 73.3 200.0 by.1 

1962 71 .ss94 72.4 218.5 73.9 208.7 70.4 

1963 73.5472 72.5 223.0 74.9 217.6 71.7 

1964 77.2387 76.3 233.3 75.8 229.7 72.8 

1965 81.9715 82.3 244.0 77.3 240.7 74.3 

1966 87.4615 84.3 255.5 80.1 251 .b 76.5 

1967 93.8981 81.0 259.5 81.9 264.0 78.8 

1968 99.5774 81.0 270.2 85.3 275.0 82.0 

1969 106.7710 94.4 276.4 89.4 287.2 86.1 

1970 109.1380 8S.0 282.7 93.6 297.3 90.5 

1971 115.2900 88.5 287.5 96.6 306.3 95.8 

1972 122.2000 100.0 299.3 100.0 322.4 100.0 
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Table A.2 

Data of Christensen, Jorgenson and Lau (1975).” 

Durables Non-durables Services 

“Source: Tibibian (1980). 
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