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Integrated genomic analyses of ovarian
carcinoma
The Cancer Genome Atlas Research Network*

A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will
improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA
expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the
DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian
cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent
somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA
copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian
cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional
signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or
BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is
defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian
cancer pathophysiology.

Ovarian cancer is the fifth-leading cause of cancer death among
women in the United States; 21,880 new cases and 13,850 deaths were
estimated to have occurred in 20101. Most deaths (,70%) are of
patients presenting with advanced-stage, high-grade serous ovarian
cancer2,3 (HGS-OvCa). The standard treatment is aggressive surgery
followed by platinum–taxane chemotherapy. After therapy, platinum-
resistant cancer recurs in approximately 25% of patients within six
months4, and the overall five-year survival probability is 31% (ref. 5).
Approximately 13% of HGS-OvCa is attributable to germline muta-
tions in BRCA1/2 (refs 6, 7), and a smaller percentage can be accounted
for by other germline mutations. However, most ovarian cancer can be
attributed to a growing number of somatic aberrations8.

The lack of successful treatment strategies led the Cancer Genome
Atlas (TCGA) researchers to measure comprehensively genomic and
epigenomic abnormalities on clinically annotated HGS-OvCa samples
to identify molecular abnormalities that influence pathophysiology,
affect outcome and constitute therapeutic targets. Microarray analyses
produced high-resolution measurements of mRNA expression,
microRNA (miRNA) expression, DNA copy number and DNA pro-
moter methylation for 489 HGS-OvCa tumours, and massively parallel
sequencing coupled with hybrid affinity capture9,10 provided whole-
exome DNA sequence information for 316 of these samples.

Samples and clinical data
This Article reports the analysis of 489 clinically annotated stage-II–
IV HGS-OvCa samples and corresponding normal DNA (Sup-
plementary Methods, section 1, and Supplementary Table 1.1).
Patients reflected the age at diagnosis, stage, tumour grade and sur-
gical outcome of individuals typically diagnosed with HGS-OvCa.
Clinical data were current as of 25 August 2010. HGS-OvCa speci-
mens were surgically resected before systemic treatment but all
patients received a platinum agent and 94% received a taxane. The
median progression-free survival and overall survival of the cohort are
similar to those in previously published trials11,12. Twenty-five per
cent of the patients remained free from disease and 45% were alive

at the time of last follow-up, whereas 31% experienced disease pro-
gression within six months of completing platinum-based therapy.
The median follow-up time was 30 months (range, 0–179 months).
Samples for TCGA analysis were selected to have .70% tumour cell
nuclei and ,20% necrosis.

Coordinated molecular analyses using multiple molecular assays at
independent sites were carried out as listed in Table 1. The data set
analysed here is available at the TCGA website (http://tcga-data.nci.
nih.gov/docs/publications/ov_2011), in two tiers: open access and
controlled access. Open-access data sets are publicly available,
whereas controlled-access data sets, which include clinical or genomic
information that could identify an individual, require user certifica-
tion as described on the aforementioned website.

*Lists of participants and their affiliations appear at the end of the paper.

Table 1 | Characterization platforms used and data produced
Data type Platforms Cases Data access

DNA sequence of exome Illumina GAIIx*{ 236 Controlled
ABI SOLiD{ 80 Controlled

Mutations present in exome 316 Open
DNA copy number/genotype Agilent 244K1I 97 Open

Agilent 415K1 304 Open
Agilent 1MI 539 Open

Illumina 1MDUO" 535 Controlled
Affymetrix SNP6* 514 Controlled

mRNA expression profiling Affymetrix U133A* 516 Open
Affymetrix Exon# 517 Controlled
Agilent 244K** 540 Open

Integrated mRNA expression 489 Open
miRNA expression profiling Agilent** 541 Open
CpG DNA methylation Illumina 27K{{ 519 Open
Integrative analysis 489 Open
Integrative analysis with
mutations

309 Open

Production centres: *Broad Institute, {Washington University School of Medicine, {Baylor College of
Medicine, 1Harvard Medical School, IMemorial Sloan-Kettering Cancer Center, "HudsonAlpha
Institute for Biotechnology, #Lawrence Berkeley National Laboratory, **University of North Carolina at
Chapel Hill, {{University of Southern California. Extra data are available for many of these data types at
the TCGA data coordinating centre.
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Mutation analysis
We performed exome capture and sequencing on DNA isolated from
316 HGS-OvCa samples and from matched normal samples for each
individual (Supplementary Methods, section 2). Capture reagents
targeted ,180,000 exons from ,18,500 genes totalling ,33 mega-
bases of non-redundant sequence. Massively parallel sequencing on
the Illumina GAIIx platform (236 sample pairs) or ABI SOLiD 3
platform (80 sample pairs) yielded ,14 gigabases per sample
(,9 3 1012 bases in total). On average, 76% of coding bases were
covered in sufficient depth in both the tumour and the matched
normal samples to allow confident mutation detection (Supplemen-
tary Methods, section 2, and Supplementary Fig. 2.1). We annotated
19,356 somatic mutations (,61 per tumour); these are classified in
Supplementary Table 2.1. Mutations that may be important in HGS-
OvCa pathophysiology were identified by searching for non-
synonymous or splice site mutations present at significantly increased
frequencies relative to background, by comparing mutations in this
study to those in the Catalogue of Somatic Mutations in Cancer and
Online Mendelian Inheritance in Man, and by predicting the muta-
tions’ impacts on protein function.

Two different algorithms (Supplementary Methods, section 2)
identified nine genes (Table 2) for which the number of non-
synonymous or splice site mutations was significantly more than that
expected on the basis of mutation distribution models. Consistent
with published results13, TP53 was mutated in 303 of 316 samples
(283 by automated methods and 20 after manual review), and
BRCA1 and BRCA2 had germline mutations in 9% and 8% of cases,
respectively, and showed somatic mutations in a further 3% of cases.
We identified six other statistically recurrently mutated genes: RB1,
NF1, FAT3, CSMD3, GABRA6 and CDK12. CDK12 is involved in
RNA splicing regulation14 and was previously implicated in lung
and large-intestine tumours15,16. Five of the nine CDK12 mutations
were either nonsense or indel, suggesting potential loss of function,
and the four missense mutations (Arg882Leu, Tyr901Cys, Lys975Glu
and Leu996Phe) were clustered in its protein kinase domain. GABRA6
and FAT3 both appeared as significantly mutated but did not seem to
be expressed in HGS-OvCa (Supplementary Fig. 2.1) or fallopian tube
tissue, so it is less likely that mutation of these genes has a significant
role in HGS-OvCa.

We compared mutations from this study with mutations in the
Catalogue of Somatic Mutations in Cancer17 and Online Mendelian
Inheritance in Man18 databases to identify more HGS-OvCa genes that
are less commonly mutated. These comparisons yielded 477 and 211
matches, respectively (Supplementary Table 2.4), including mutations
in BRAF (Asn581Ser), PIK3CA (Glu545Lys and His1047Arg), KRAS
(Gly12Asp) and NRAS (Gln61Arg). These mutations have been shown
to have transforming activity, so we believe that these mutations are
rare but important drivers in HGS-OvCa.

We combined evolutionary information from sequence alignments
of protein families and whole vertebrate genomes, predicted local
protein structure and selected human SwissProt protein features

(Supplementary Methods, section 3) to identify putative driver muta-
tions using CHASM19,20 after training on mutations in known onco-
genes and tumour suppressors. CHASM identified 122 missense
mutations predicted to be oncogenic (Supplementary Table 3.1).
Mutation-driven changes in protein function were deduced from
evolutionary information for all confirmed somatic missense muta-
tions by comparing protein family sequence alignments and residue
placement in known or homology-based three-dimensional protein
structures using MutationAssessor (Supplementary Methods, section
4). Twenty-seven per cent of missense mutations were predicted to
affect protein function (Supplementary Table 2.1).

Copy number analysis
Somatic copy number alterations (SCNAs) present in the 489 HGS-
OvCa genomes were identified and compared with glioblastoma mul-
tiforme data (Fig. 1a). SCNAs were divided into regional aberrations
that affected extended chromosome regions and smaller focal aberra-
tions (Supplementary Methods, section 5). A statistical analysis of
regional aberrations21 (Supplementary Methods, section 5) identified
eight recurrent gains and 22 losses, all of which have been reported
previously22 (Fig. 1b and Supplementary Table 5.1). Five of the gains
and 18 of the losses occurred in more than 50% of the tumours.

We used GISTIC21,23 (Supplementary Methods, section 5) to
identify recurrent focal SCNAs. This yielded 63 regions of focal amp-
lification (Fig. 1c; Supplementary Methods, section 5; and Sup-
plementary Table 5.2), including 26 that encoded eight or fewer genes.
The most common focal amplifications encoded CCNE1, MYC and
MECOM (Fig. 1c; Supplementary Methods, section 5; and Sup-
plementary Table 5.2), each of which was highly amplified in more
than 20% of tumours. New tightly localized amplification peaks in
HGS-OvCa encoded the receptor for activated C-kinase, ZMYND8;
the p53 target gene IRF2BP2; the DNA-binding protein inhibitor ID4;
the embryonic development gene PAX8; and the telomerase catalytic
subunit, TERT. Three data sources—Ingenuity Systems (http://www.
ingenuity.com/), ClinicalTrials.gov (http://clinicaltrials.gov) and
DrugBank (http://www.drugbank.ca)—were used to identify possible
therapeutic inhibitors of amplified, overexpressed genes. From this
search, we found that 22 genes that are therapeutic targets, including
MECOM, MAPK1, CCNE1 and KRAS, are amplified in at least 10% of
the cases (Supplementary Table 5.3).

GISTIC also identified 50 focal deletions (Fig. 1c). The known
tumour suppressor genes PTEN, RB1 and NF1 were in regions of
homozygous deletions in at least 2% of the tumours. Notably, RB1
and NF1 also were among the significantly mutated genes. One dele-
tion contained only three genes, including the essential cell cycle
control gene CREBBP, which has five non-synonymous and two read-
ing frame shift mutations.

mRNA and miRNA expression and DNA methylation
analysis
We combined expression measurements for 11,864 genes from three
different platforms (Agilent, Affymetrix HuEx and Affymetrix U133A)
for subtype identification and outcome prediction. Individual platform
measurements suffered from limited, but statistically significant, batch
effects, whereas the combined data set did not (Supplementary
Methods, section 11, and Supplementary Fig. 11.1). Analysis of the
combined data set identified ,1,500 intrinsically variable genes24

(Supplementary Methods, section 6) that were used for non-negative
matrix factorization consensus clustering. This analysis yielded four
clusters (Fig. 2a and Supplementary Methods, section 6). The same
analytic approach applied to a publicly available data set from ref. 25
also yielded four clusters. Comparison of these two sets of four clusters
showed a clear correlation (Supplementary Methods, section 6, and
Supplementary Fig. 6.3). We therefore conclude that at least four
robust expression subtypes exist in HGS-OvCa.

Table 2 | Significantly mutated genes in HGS-OvCa
Gene No. of mutations No. validated No. unvalidated

TP53 302 294 8
BRCA1 11 10 1
CSMD3 19 19 0
NF1 13 13 0
CDK12 9 9 0
FAT3 19 18 1
GABRA6 6 6 0
BRCA2 10 10 0
RB1 6 6 0

Validated mutations are those that have been confirmed with an independent assay. Most of them are
validated using a second independent whole-genome-amplification sample from the same tumour.
Unvalidated mutations have not been independently confirmed but have a high likelihood to be true
mutations. An extra 25 mutations in TP53 were observed by hand curation.
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We termed the four HGS-OvCa subtypes ‘immunoreactive’, ‘dif-
ferentiated’, ‘proliferative’ and ‘mesenchymal’ on the basis of gene
content in the clusters (Supplementary Methods, section 6) and pre-
vious observations25. T-cell chemokine ligands CXCL11 and CXCL10
and the receptor CXCR3 characterized the immunoreactive subtype.
High expression of transcription factors such as HMGA2 and SOX11,
low expression of ovarian tumour markers (MUC1 and MUC16) and
high expression of proliferation markers such as MCM2 and PCNA
defined the proliferative subtype. The differentiated subtype was
associated with high expression of MUC16 and MUC1 and with
expression of the secretory fallopian tube maker SLPI, suggesting a
more mature stage of development. High expression of HOX genes
and markers suggestive of increased stromal components such as for
myofibroblasts (FAP) and microvascular pericytes (ANGPTL2 and
ANGPTL1) characterized the mesenchymal subtype.

Increased DNA methylation and reduced tumour expression
implicated 168 genes as epigenetically silenced in HGS-OvCa samples
compared with fallopian tube controls26. DNA methylation was
correlated with reduced gene expression across all samples (Sup-
plementary Methods, section 7). AMT, CCL21 and SPARCL1 were
noteworthy because they showed promoter hypermethylation in the
vast majority of the tumours. Unexpectedly, RAB25, previously
reported to be amplified and overexpressed in ovarian cancer27, also
seemed to be epigenetically silenced in a subset of tumours. The
BRCA1 promoter was hypermethylated and silenced in 56 of 489
(11.5%) tumours, as previously reported28 (Supplementary Fig. 7.1).

Consensus clustering of variable DNA methylation across tumours
identified four subtypes (Supplementary Methods, section 7, and
Supplementary Fig. 7.2) that were significantly associated with differ-
ences in age, BRCA inactivation events and survival (Supplementary
Methods, section 7). However, the clusters demonstrated only modest
stability.

Survival duration did not differ significantly for transcriptional sub-
types in the TCGA data set. The proliferative group showed a decrease
in the rate of MYC amplification and RB1 deletion, whereas the immu-
noreactive subtype showed an increased frequency of 3q26.2
(MECOM) amplification (Supplementary Table 6.2 and Supplemen-
tary Fig. 6.4). A moderate, but significant, overlap between the DNA
methylation clusters and gene expression subtypes was noted
(P , 2.2 3 10216, chi-squared test, adjusted Rand index of 0.07;
Supplementary Methods, section 7, and Supplementary Table 7.6).

A 193-gene transcriptional signature predictive of overall survival
was defined using the integrated expression data set from 215 samples.
After univariate Cox regression analysis, we found that 108 genes were
correlated with poor survival and that 85 were correlated with good
survival (P-value cut-off of 0.01; Supplementary Methods, section 6,
and Supplementary Table 6.4). We validated the predictive power of
this gene expression signature on an independent set of 255 TCGA
samples (Fig. 2b) as well as on three independent expression data
sets25,29,30. Each of the validation samples was assigned a prognostic
gene score, reflecting the similarity between its expression profile and
the prognostic gene signature31 (Supplementary Methods, section 6).
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Figure 1 | Genome copy number abnormalities. a, Copy number profiles of
489 HGS-OvCa, compared with profiles of 197 glioblastoma multiforme
(GBM) tumours47. Copy number increases (red) and decreases (blue) are
plotted as a function of distance along the normal genome (vertical axis, divided
into chromosomes). b, Significant, focally amplified (red) and deleted (blue)
regions are plotted along the genome. Annotations include the 20 most

significant amplified and deleted regions, well-localized regions with eight or
fewer genes, and regions with known cancer genes or genes identified by
genome-wide loss-of-function screens. The number of genes included in each
region is given in brackets. FDR, false-discovery rate. c, Significantly amplified
(red) and deleted (blue) chromosome arms.
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Kaplan–Meier survival analysis of this signature showed statistically
significant association with survival in all validation data sets (Fig. 2c
and Supplementary Methods, section 6).

Non-negative matrix factorization consensus clustering of miRNA
expression data identified three subtypes (Supplementary Fig. 6.5).
Notably, miRNA subtype 1 overlapped the mRNA proliferative sub-
type and miRNA subtype 2 overlapped the mRNA mesenchymal
subtype (Fig. 2d). Survival duration differed significantly between
miRNA subtypes: patients with miRNA subtype-1 tumours survived
significantly longer (Fig. 2e).

Pathways influencing disease
Several analyses integrated data from the 316 fully analysed cases to
identify biology that contributes to HGS-OvCa. Analysis of the fre-
quency with which known cancer-associated pathways harboured
one or more mutations, copy number changes or changes in gene
expression showed that the RB1 and PI3K/RAS pathways were
deregulated in 67% and 45% of cases, respectively (Fig. 3a and Sup-
plementary Methods, section 8). A search for altered subnetworks in a
large protein–protein interaction network32 using HOTNET33 iden-
tified several known pathways (Supplementary Methods, section 9)

including the NOTCH signalling pathway, which was altered in 22%
of HGS-OvCa samples34 (Fig. 3b).

Published studies have shown that cells with mutated or methylated
BRCA1 or mutated BRCA2 have defective homologous recombination
and are highly responsive to PARP inhibitors35–38. Fig. 3c shows that 20%
of our studied HGS-OvCa samples had germline or somatic mutations in
BRCA1/2, that 11% lost BRCA1 expression through DNA hypermethy-
lation and that epigenetic silencing of BRCA1 was mutually exclusive of
BRCA1/2 mutations (P 5 4.4 3 1024, Fisher’s exact test). Univariate sur-
vival analysis of BRCA1/2 status (Fig. 3c) showed better overall survival
for BRCA1/2 mutated cases than BRCA1/2 wild-type cases. Notably,
epigenetically silenced BRCA1 cases had survival similar to BRCA1/2
wild-type HGS-OvCa tumours (respective median overall survivals of
41.5 and 41.9 months, P 5 0.69, log-rank test; Supplementary Methods,
section 8, and Supplementary Fig. 8.13b). This suggests that BRCA1 is
inactivated by mutually exclusive genomic and epigenomic mechanisms
and that patient survival depends on the mechanism of inactivation.
Genomic alterations in other homologous recombination genes that
might render cells sensitive to PARP inhibitors39 discovered in this study
(Supplementary Methods, section 8, and Supplementary Fig. 8.12)
include amplification or mutation of EMSY (also known as C11orf30)
(8%), focal deletion or mutation of PTEN (7%), hypermethylation of
RAD51C (3%), mutation of ATM or ATR (2%), and mutation of
Fanconi anaemia genes (5%). Overall, homologous recombination
defects may be present in approximately half of all HGS-OvCa cases,
providing a rationale for clinical trials of PARP inhibitors targeting
tumours with these homologous-recombination-related aberrations.

Comparison between the complete set of BRCA inactivation events
and all recurrently altered copy number peaks revealed an unexpectedly
low frequency of CCNE1 amplification in cases with BRCA inactivation
(8% of BRCA altered cases had CCNE1 amplification whereas 26% of
BRCA wild-type cases did; Q 5 0.0048, adjusted for false-discovery
rate). As previously reported40, overall survival tended to be lower for
patients with CCNE1 amplification than for patients in all other cases
(P 5 0.072, log-rank test; Supplementary Methods, section 8, and
Supplementary Fig. 8.14a). However, no survival disadvantage for
CCNE1-amplified cases (P 5 0.24, log-rank test; Supplementary
Methods, section 8, and Supplementary Fig. 8.14b) was apparent when
looking only at BRCA wild-type cases, suggesting that the previously
reported CCNE1 survival difference can be explained by the higher
survival of BRCA-mutated cases.

Finally, we used a probabilistic graphical model (PARADIGM41) to
search for altered pathways in the US National Cancer Institute
Pathway Interaction Database42, and found that the FOXM1 tran-
scription factor network (Fig. 3d) is significantly altered in 87% of
cases (Supplementary Methods, section 10, and Supplementary Figs
10.1–10.3). FOXM1 and its proliferation-related target genes, AurB
(AURKB), CCNB1, BIRC5, CDC25 and PLK1, were consistently over-
expressed but not altered by DNA copy number changes, indicative of
transcriptional regulation. TP53 represses FOXM1 after DNA damage43,
suggesting that the high rate of TP53 mutation in HGS-OvCa contri-
butes to FOXM1 overexpression. In other data sets, the FOXM1 path-
way is significantly activated in tumours relative to adjacent epithelial
tissue44–46 (Supplementary Methods, section 10, and Supplementary Fig.
10.4) and is associated with HGS-OvCa22 (Supplementary Methods,
section 10, and Supplementary Fig. 10.5).

Discussion
This TCGA study provides a large-scale integrative view of the aberra-
tions in HGS-OvCa. Overall, the mutational spectrum was surprisingly
simple. Mutations in TP53 predominated, occurring in at least 96% of
HGS-OvCa samples; and BRCA1 and BRCA2 were mutated in 22% of
tumours, owing to a combination of germline and somatic mutations.
Seven other significantly mutated genes were identified, but only in
2–6% of HGS-OvCa samples. By contrast, HGS-OvCa demonstrates a
remarkable degree of genomic disarray. The frequency of SCNAs
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Figure 2 | Gene and miRNA expression patterns of molecular subtype and
outcome prediction in HGS-OvCa. a, Tumours from TCGA and ref. 25
separated into four clusters on the basis of gene expression. b, Using a training
data set, a prognostic gene signature was defined and applied to a test data set.
c, Kaplan–Meier analysis of four independent expression profile data sets,
comparing survival for predicted higher-risk patients versus lower-risk
patients. Univariate Cox P value for risk index included. d, Tumours separated
into three clusters on the basis of miRNA expression, overlapping with gene-
based clusters as indicated. D, differentiated; I, immunoreactive; M,
mesenchymal; P, proliferative (red font indicates high degree of overlap).
e, Differences in patient survival among the three miRNA-based clusters.
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stands in striking contrast to previous TCGA findings in glioblas-
toma47, where there were more recurrently mutated genes with far
fewer chromosome arm-level or focal SCNAs (Fig. 1a). A high preval-
ence of mutations and promoter methylation in putative DNA repair
genes, including homologous recombination components, may
explain the high prevalence of SCNAs. The mutation spectrum marks
HGS-OvCa as completely distinct from other ovarian cancer histolo-
gical subtypes. For example, clear-cell ovarian cancer tumours have
few TP53 mutations but have recurrent ARID1A and PIK3CA muta-
tions48–50; endometrioid ovarian cancer tumours have frequent
CTNNB1, ARID1A and PIK3CA mutations and a lower rate of TP53
(refs 49, 50); and mucinous ovarian cancer tumours have prevalent
KRAS mutations51. These differences between ovarian cancer subtypes
probably reflect a combination of aetiological and lineage effects, and
represent an opportunity to improve ovarian cancer outcomes through
subtype-stratified care.

Identification of new therapeutic approaches is a central goal of the
TCGA. The ,50% of HGS-OvCa tumours with homologous recom-
bination defects may benefit from PARP inhibitors. Beyond this, the
commonly deregulated pathways, RB, RAS/PI3K, FOXM1 and
NOTCH, provide opportunities for therapeutic treatment. Finally,
inhibitors already exist for 22 genes in regions of recurrent amplifica-
tion (Supplementary Methods, section 5, and Supplementary Table
5.3), warranting assessment in HGS-OvCa cases where the target
genes are amplified. Overall, these discoveries set the stage for
approaches to the treatment of HGS-OvCa in which aberrant genes
or networks are detected and targeted with therapies selected to be
effective against these specific aberrations.

METHODS SUMMARY
All specimens were obtained from patients with appropriate consent from the
relevant institutional review board. DNA and RNA were collected from samples
using the Allprep kit (Qiagen). We used commercial technology for capture and
sequencing of exomes from whole-genome-amplified tumour DNA and normal
DNA. DNA sequences were aligned to NCBI Build 36 of the human genome;
duplicate reads were excluded from mutation calling. Validation of mutations
occurred on a separate whole-genome amplification of DNA from the same
tumour. Significantly mutated genes were identified by comparing them with
expectation models based on the exact measured rates of specific sequence lesions.
CHASM20 and MutationAssessor (Supplementary Methods, section 4) were used to
identify functional mutations. GISTIC analysis of the circular-binary-segmented
Agilent 1M feature copy number data was used to identify recurrent peaks by
comparison with the results from the other platforms, to determine likely plat-
form-specific artefacts. Consensus clustering approaches were used to analyse
mRNA, miRNA and methylation subtypes as well as predictors of outcome using
previous approaches47. HOTNET33 was used to identify portions of the protein–
protein interaction network that have more events than are expected by chance.
Networks that had a significant probability of being valid were evaluated for
increased fraction of known annotations. PARADIGM41 was used to estimate
integrated pathway activity, to identify portions of the network models differentially
active in HGS-OvCa.
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