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ABSTRACT

Long before scientists learned to grow miniature organs from human
cells in a dish, biological research was performed using organisms that
were accessible: garden peas, sea urchins collected at low tide, newt
eggs, and flies circling rotten fruit. These organisms help us to
understand the world around us, attracting and inspiring each new
generation of scientists with the promise of mystery and discovery.
Subsequent studies repeatedly showed that fundamental biological
mechanisms discovered in such simple organisms are conserved in
more complex organisms, including humans. Yet, biologists are
increasingly being tasked with problem solving rather than being
allowed to follow the path of discovery. Here, we provide examples of
important lessons learned from research using selected non-vertebrate
organisms. We argue that, for the purpose of understanding human
disease, simple organisms cannot and should not be replaced solely
by human-cell-based culture systems. Rather, these organisms serve
as powerful discovery tools for new knowledge that may subsequently
be tested for conservation in human-cell-based culture systems. In this
way, curiosity-driven biological research in simple organisms has and
will continue to pay huge dividends in both the short and long run for
improving the human condition.

KEY WORDS: C. elegans, Drosophila, Invertebrates, Sea urchin,
Yeast

Introduction

The emphases and directions of medical practice are influenced not
only by scientific evidence but also by factors such as financial
interests and societal trends. For example, interventions such as
cupping, the application of suction cups to the skin, have gained
popularity not due to scientific evidence (Lee et al., 2011), but based
on popular figures promoting the practice. In contrast, impactful
progress in medicine invariably follows major advances in
biological understanding due to scientific discovery. Examples
extend from Pasteur’s recognition of the infectious basis of many
diseases to the recent discovery of CRISPR/Cas9-based genome
editing (see Box | for a glossary of terms) (McNutt, 2015; Porter,
1961). Such advances in our understanding of biology have driven
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revolutionary advances in medicine, in addition to the incremental
and unsteady progress that medicine typically makes. Despite this
history of success, science is increasingly being tasked to focus on
problem solving rather than discovery (Fang and Casadevall, 2010;
Hand et al., 2013; Minogue and Wolinsky, 2010). It is therefore with
a sense of urgency that we write this article to defend the winning
strategy of ‘discovery first’.

Our understanding of human diseases and the ability to treat them
hinges on a foundation of knowledge about basic biology. This
knowledge has been gained largely by research using organisms that
are experimentally tractable in ways that humans or human cells can
never be. Those who do not know the history of yeast, flies and other
non-vertebrate organisms and their contributions to biomedicine
may consider such studies as unworthy of participation or of
funding. Given the growing excitement about human stem-cell-
based cell culture systems, particularly organoids (Box 1), some
may argue that organisms that do not recapitulate all of the
complexity of humans will cease to be useful in the near future. This
line of thought is not only incorrect but could hamper scientific
progress.

In this article, we highlight the continuing value of curiosity-
driven research, with a focus on widely used non-vertebrate
experimental organisms. These are often referred to as ‘model
organisms’ (Box 1) to highlight their utility in discovering and
understanding fundamental biological principles that also apply to
other organisms, particularly humans, and to mechanisms of
disease. Although we use this term for the remainder of the
article, we wish to emphasize that research using such organisms
need not be motivated solely for the purpose of modeling human
biology or human disease.

We will illustrate the utility of each model organism with seminal
historical examples, rather than providing a comprehensive
overview. We hope to motivate the reader to look into additional
contributions. Indeed, it is hard to think of an aspect of biology that
has not benefited from studies in model organisms, be it behavior
(e.g. Kravitz and Fernandez, 2015), aging (e.g. Kenyon, 2011) or
memory (e.g. Dubnau and Tully, 1998). Highlighting past
achievements will not necessarily encourage future work.
Therefore, we also discuss potential future breakthroughs that
might come from curiosity-driven research in model organisms.
This is not to say that we disagree with the well-supported
contention that no one can predict at the time of discovery how
applicable findings from basic research will turn out to be. For
example, John S. Dexter, investigating mutant notched wings of
fruit flies (Dexter, 1914), could not have predicted the prominent
role of the Notch cell surface receptor in cancer (Nowell and Radtke,
2017; Ranganathan et al., 2011). We do not have such foresight
either. Nonetheless, it is worth pondering what more we can learn
from model organisms, particularly in the era of human stem cells,
organoids and facile genome editing using CRISPR/Cas9-based
technologies.
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Box 1. Glossary

Centrosomes: multi-protein structures that determine spindle polarity in
mitosis through their function as primary microtubule-organizing centers
of the cell.

Chromatin: DNA complexed with associated proteins, particularly
histones.

Cleavage furrow: the constriction that cleaves the cell between the
separated sister chromosomes at the end of mitosis.

Conditional mutants: mutants that show the phenotype of interest only
under specific conditions.

CRISPR/Cas9: clustered regularly interspaced short palindromic repeat
(CRISPR)/CRISPR-associated protein 9. This term is used to refer to a
genome editing tool.

Differential interference contrast (DIC): a type of microscopy that uses
polarized light to distinguish subcellular features in transparent objects.
Epigenetic regulation: alteration in gene transcription due to changes
in chemical modification of DNA or associated proteins.

Epistasis: a genetic analysis method in which the phenotype of a mutant
defective in two genes of interest is compared to the phenotype of single
mutants in each gene. The results can be used to infer the order in which
the products of the two genes act in a biological pathway.

Genetic screen: an experimental technique in which individuals are
selected from a mutagenized population based on a specific phenotype.
Mechanical fragmentation: method used to cut sea urchin zygotes into
viable fragments containing different nuclear makeups to, for example,
dissect the contribution of nucleus vs cytoplasm.

Mendelian ratio: the ratio of genotypes or phenotypes in the progeny
when a trait is inherited according to the law of Mendel.

Mendelism: inheritance of traits according to the laws of Mendel.
Microinjection: injection of foreign substances into cells. Microinjection
of sea urchin zygotes can be used, for example, to knock down gene
expression with antisense morpholino oligonucleotides.

Model organism: experimentally tractable organism used to understand
fundamental biological mechanisms that also apply to other organisms of
interest.

Organoid: an in vitro 3D cellular cluster derived exclusively from primary
tissue, embryonic stem cells or induced pluripotent stem cells (iPSCs)
that is capable of self-renewal and self-organization, and that exhibits
similar organ functionality as the tissue of origin. Definition accredited to
Fatehullah et al., 2016.

Polyspermy: fertilization with more than one sperm per egg.

Position effect variegation (PEV): a phenotype whereby cells with the
same genotype sometimes exhibit different phenotypes because of
transcriptional inactivation of a gene that is abnormally juxtaposed to
heterochromatin.

The historical impact of model organism research

Biological research was historically driven by curiosity about the
natural world. The four model organisms discussed below — yeast,
fruit fly, worm and sea urchin — came into use for practical reasons,
such as the ease of rearing or their natural abundance. We describe
examples of their contributions and discuss their attributes that have
enabled investigators to ask questions that would be impractical or
impossible to address using mammalian experimental systems.

Yeast

We owe a great deal of our understanding of eukaryotic biology to
two species of yeast: Saccharomyces cerevisiae (budding yeast) and
Schizosaccharomyces pombe (fission yeast). They have been
standout model organisms largely because of their simple life
cycles and suitability for large-scale genetic analyses as described
below. The relevance of such simple cells to the biology of complex
organisms might not be obvious, but, as we discover time and time
again, fundamental biological mechanisms are largely the same in
simple and more complex organisms, as nicely illustrated by two
influential studies (Table 1).
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The first study asked a simple but fundamental question: which
genes control how one cell becomes two? Leland Hartwell and his
colleagues recognized that the way budding yeast grew and divided
would allow the identification of mutants that are defective in the
cell division cycle by simply observing the cells (Hartwell et al.,
1970, 1973). The researchers took advantage of a useful feature of
yeast. Because yeast can grow at different temperatures, one can
isolate conditional mutants (Box 1) in which a gene product is active
at a low temperature but becomes inactive at a high temperature.
These temperature-sensitive conditional mutants could be grown
and propagated at the low temperature and their defects examined
after a shift to the high temperature. Because yeast cells are small
and easy to grow, Hartwell and his colleagues were able to isolate
many temperature-sensitive mutants (Fig. 1 A). By simply observing
cells at the high temperature, these researchers identified mutants
that were blocked at different stages of the cell cycle (Fig. 1B). This
genetic screen, combined with genetic tools such as epistasis
analysis (Box 1), allowed Hartwell and colleagues to identify
virtually all of the genes involved in controlling the cell division
cycle, or the ‘CDC genes’ (Hartwell et al., 1970, 1973). A parallel
analysis led by Paul Nurse and colleagues using similar methods
identified the CDC genes in fission yeast (Lee and Nurse, 1987,
Nurse, 1975).

The identification of the CDC genes defined a new problem: how
do they work in concert to guide cell proliferation, perhaps the
most basic of life’s processes? Combining molecular biology and
genetics in yeast, and with contributions from other model
organisms (e.g. sea urchins; see below), the roles of the different
CDC gene products were discovered. These advances came with the
realization that the genes that control the cell cycle are largely
conserved from yeast to human (e.g. Hartwell et al., 1970, 1973;
Nurse, 1975). An exceptionally good example of this evolutionary
conservation is the gene encoding cyclin-dependent kinase 1
(CDK1); the human CDK gene was first identified by its ability to
substitute for the yeast version and allow yeast that were mutant for
CDC28 (CDKI homolog) to continue dividing (Lee and Nurse,
1987). The regulation of CDK1 by inputs from many of the CDC
genes governs the progress of the cell cycle. Moreover, the impact of
yeast studies extended in many directions, raising questions such as:
how is cell proliferation regulated during development; how do
disruptions in this regulation derail proliferation control in cancer;
and how can drugs modulating the function of CDC genes be used
to treat cancer (Table 1)?

In another example, a simple observation in budding yeast ignited
research in the field of protein secretion, which is of central
importance to cellular function (Novick et al., 1980; Novick and
Schekman, 1979). The isolation of the first secretory (SEC)
mutants, in the laboratory of Randy Schekman, was made
possible because of the realization that protein secretion is
required to build a cell wall outside the cell membrane (Novick
and Schekman, 1979). Subsequently, secretion-defective yeast
mutants were recognized to be denser than their wild-type
counterparts. This trait was used to isolate mutants in additional
secretory pathway components using gradient sedimentation
(Novick et al., 1980). Again, the genes identified provided the
foundation for the mechanistic dissection of protein secretion. The
resulting understanding of how an intricate system of membranous
vesicles traffics proteins from the inside to the outside of cells also
led to our understanding of other processes, such as how nerves
signal to one another through the release of neurotransmitters. Yeast
studies thus provided an entrée into a new area of cell biology
(Table 1).
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Table 1. Studies on non-vertebrate eukaryotic model organisms that were recognized by Nobel prizes in Physiology or Medicine in the last

25 years*

Model organism Awardees

Year of award; citation from nobelprize.org

Representative references

Yeast, sea *Leland H. Hartwell,
urchin, clam *Tim Hunt and *Paul of the cell cycle”
M. Nurse
Yeast **James E. Rothman, *Randy

W. Schekman and **Thomas
C. Sudhof
Yoshinori Ohsumi

system in our cells”

for autophagy”
Edward B. Lewis. *Christiane
Nusslein-Volhard and *Eric
F. Wieschaus
**Bruce A. Beutler and *Jules
A. Hoffmann
Jeffrey C. Hall, Michael
Rosbash and Michael
W. Young

D. melanogaster

development”

rhythm”

2001; “for their discoveries of key regulators

2013; “for their discoveries of machinery
regulating vesicle traffic, a major transport

2016; “for his discoveries of mechanisms

1995; “for their discoveries concerning the
genetic control of early embryonic

2011; “for their discoveries concerning the
activation of innate immunity”

2017; “for their discoveries of molecular
mechanisms controlling the circadian

Evans et al., 1983; Hartwell et al., 1970, 1973; Hunt
et al., 1992; Lee and Nurse, 1987; Nurse, 1975;
Standart et al., 1990; Standart and Hunt, 1990

***Balch et al., 1984; ***Block et al., 1988; ***McMahon
et al., 1995; Novick et al., 1980; Novick and
Schekman, 1979

***Mizushima et al., 1998; ***Takeshige et al., 1992

***Lewis, 1978; Nusslein-Volhard and Wieschaus, 1980

Lemaitre et al., 1996; Poltorak et al., 1998

***Bargiello et al., 1984; ***Hardin et al., 1990;
***Konopka and Benzer, 1971; ***Zehring et al., 1984

Brenner, 1974; Ellis and Horvitz, 1986; Sulston and
Horvitz, 1977; Yuan et al., 1993

Fire et al., 1998

***Greider and Blackburn, 1985; ***Szostak and

C. elegans *Sydney Brenner, *H. Robert 2002; “for their discoveries concerning
Horvitz and *John E. Sulston genetic regulation of organ development
and programmed cell death™
*Andrew Z. Fire and *Craig 2006; “for their discovery of RNA
C. Mello interference — gene silencing by double-
stranded RNA”
Tetrahymena, Elizabeth H. Blackburn, Carol 2009; “for the discovery of how
yeast W. Greider and Jack chromosomes are protected by

W. Szostak

Blackburn, 1982

telomeres and the enzyme telomerase”

*Awardees whose work in the model organism is discussed in this article, listed in the order in which their work is discussed. **These awardees shared the prize
for work in experimental models other than non-vertebrate eukaryotic organisms; their representative works are cited (***) but not discussed in this article. Source:

https:/www.nobelprize.org/.

These genetic screens in yeasts (Fig. 1A) have changed the face of
modern science and stimulated subsequent genetic analyses that
allowed researchers to place genes in functional pathways even when
insight into the biochemical properties of the gene products was
lacking (e.g. Garvik et al., 1995). The resulting deep understanding of
cell cycle regulation and membrane biology underpins many
branches of modern biology and has guided medical research and
biotechnology. For example, our understanding of protein secretion
from yeast allowed us to manufacture recombinant human insulin for
therapeutic purposes (Nielsen, 2013) and small-molecule inhibitors
of WEEL, a regulator of CDK 1, are being assessed in clinical trials for
cancer (Matheson et al., 2016).

Drosophila

How does one choose examples to adequately illustrate the impact
of a model organism that is responsible for the confirmation of
Mendelism (Box 1), the discovery of the first mutation and the
demonstration that genetic traits are carried on chromosomes? The
fruit fly Drosophila melanogaster has taught us many fundamental
biological mechanisms, thanks to powerful genetic tools, which
include phenotypic tractability, special ‘balancer’ chromosomes
that allow long-term maintenance of lethal mutations, high
fecundity and short life cycle, and the dedication of early fly
geneticists, who learned to recognize every bristle on the fly or to
detect the subtlest of deviations in wing shape or eye color. Many
regulatory pathways studied in modern biology were either
discovered in Drosophila or organized into regulatory circuits as a
result of studies in Drosophila. For instance, although studies in
mammals identified the Ras oncogenes (and others), we owe our
understanding of their function to genetic studies of eye
development in Drosophila, which revealed that Ras transmits
signals from receptor tyrosine kinases (Simon et al., 1991; similar
insights from worms are discussed below). Indeed, many signaling

pathways of central interest to both normal biology and disease
research bear the names of the genes discovered in Drosophila by
scientists such as Christiane Niisslein-Volhard, Eric F. Wieschaus
and colleagues, including hedgehog (Nisslein-Volhard and
Wieschaus, 1980), Notch (Dexter, 1914; Fig. 2A,B) and Toll
(Table 1). Toll was identified as a gene that functions in the
establishment of dorsal/ventral polarity in the Drosophila embryo
(Anderson et al., 1985a,b). The elegant genetic dissection of Toll
function helped outline an elaborate pathway, which extended from
extracellular signals to the activation of key conserved transcription
factors, including NF-xB (called Dorsal in flies) and its relatives
(Roth et al., 1989; Sen and Baltimore, 1986; Steward, 1989).
Subsequently, it was shown that the same signaling system triggers
an innate immune response in Drosophila through the work of Jules
A. Hoffmann and his colleagues, and that this signaling system is
the core component of innate immunity in mammals (Lemaitre
etal., 1996; Poltorak et al., 1998). This pivotal discovery promoted a
dramatic shift in the study of immunology from an emphasis on
adaptive immunity to the more conserved innate system,; the ratio of
PubMed search results for ‘innate immunity’ vs ‘adaptive
immunity’ was 1285:2860 in 1980 and 4423:2658 in 2017.
Moreover, we now appreciate that NF-xB family transcription
factors regulate almost all aspects of cell biology, from proliferation
to inflammation and cell death (Zhang et al., 2017).

Unusual as it may seem, bristles on the leg of a fly helped us
understand how the activity of genes is epigenetically regulated
(Box 1). The regions that looked different within the chromosomes
of' moss and Drosophila were recognized in the early 1900s: densely
stained heterochromatin and less densely stained euchromatin
(Passarge, 1979). Continuing investigations showed that genes in
heterochromatin were transcriptionally repressed and that this
repression could be passed on to the next generation of cells
(Brown and Nur, 1964). Surprisingly, the discovery of the
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Fig. 1. The basis for a genetic screen for budding-yeast cell-cycle
mutants. (A) A genetic screen in yeast. Mutagenized yeast cells are cultured
onreplica plates. One plate is incubated at the low temperature to allow growth,
whereas the other is incubated at a high temperature. Conditional mutants that
fail to grow at the high temperature (arrows) are thus selected against when the
plates are incubated at the high temperature. Microscopic analysis of the high-
temperature plate identifies conditional mutants that are blocked in the cell
cycle. These mutants, which retain the ability to grow at low temperature, are
then isolated from the low-temperature plate for subsequent analysis, which
includes complementation tests with wild-type genes to identify the gene
responsible for the phenotype (Forsburg, 2001). (B) A budding-yeast cell cycle,
based on xxxxxx from Hartwell et al., 1970, 1973. A mother cell produces a
daughter by growing a bud that enlarges and eventually separates from the
mother. Different stages of the cell cycle can be scored by the shape and size
of the cells. For instance, the onset of DNA replication corresponds to the
emergence of a bud. Mutants in CDC28, encoding the major cyclin-dependent
kinase, arrest with a ‘small bud’, unable to enter a new cell cycle.

underlying mechanisms of epigenetic inheritance involved studies
of flies’ bristles. The accurate formation of a set of leg bristles on
male Drosophila, called the ‘sex comb’ for their role in mating

(Fig. 2C,D), depends on the mechanisms that form heterochromatin.
Mutations that result in the formation of additional sex combs
identified a number of genes, with names like Polycomb and extra
sex combs (Hannah-Alava, 1958; Reute and Spierer, 1992).
Subsequent analyses demonstrated that these genes encode
proteins that work together to regulate the addition or removal of
chemical modifications to and from histones, the proteins that bind
DNA and determine how chromatin (Box 1) is packaged (Piunti and
Shilatifard, 2016). Another assay in Drosophila allowed the
isolation of additional chromatin-modulating genes. The red color
of the fly eye requires the expression of the gene white, which
encodes a pigment transporter (O’Hare et al., 1984; Sullivan et al.,
1974). Translocation of the white gene near heterochromatin (for
example by a chromosome rearrangement) can produce flies with
eyes that show ‘variegation’, whereby white patches appear next to
normally pigmented red patches (Fig. 2E,F; e.g. Qi et al., 2006).
This process is known as position effect variegation (Box 1), and it
happens because of changes in chromatin state, so that the white
gene locus is in the heterochromatin state and thus transcriptionally
inactive in some cells but not others, whereas the DNA sequence of
the gene remains unchanged (Ebert et al., 2004). This phenotype
illustrates how epigenetic regulation determines gene expression
profiles, not on the basis of DNA sequence changes, but on the
basis of chromatin state. Founder cells with an epigenetically
inactive white gene produce daughter populations that form a
white patch in the eye, whereas neighboring cells with a
transcriptionally active white gene are red. Mutations that suppress
the formation of these white patches are called suppressors of
variegation, or Su(var) mutations, and their discovery identified
additional chromatin-modulating genes and gene regulatory
networks (Ebert et al., 2004; Reute and Spierer, 1992; Sinclair
et al, 1983). For example, Su(var)3-9 encodes a histone
methyltransferase and Su(var)2-5 encodes a protein, now called
heterochromatin protein 1 (HP1), that binds to histones methylated
by Su(var)3-9 (Aagaard et al., 1999; Ebert et al., 2004; Eissenberg
and Elgin, 2014; Eissenberg et al., 1990; James and Elgin, 1986;
Rea et al., 2000; Tschiersch et al., 1994). Polycomb, Su(var)3-9 and
HP] are just three of many genes with crucial roles in maintaining
cell identity through epigenetic regulation of gene expression that
were discovered in Drosophila. Their initial identification in
Drosophila subsequently led to the characterization of their
highly conserved counterparts in humans, where they also
regulate transcription and influence many aspects of cell identity,
physiology and pathogenesis (Allis and Jenuwein, 2016; Lanzuolo
and Orlando, 2012; Piunti and Shilatifard, 2016; Schuettengruber
et al., 2007; Timms et al., 2016).

TM3/+

Su(var)3-9/+

Fig. 2. Drosophila mutants to illustrate landmark studies. (A,B) Wild-type (A) and Notch mutant (B) wings showing notched (arrow) wing blades.

Figure reproduced from Casso et al., 2011, with copyright permission from the publisher. (C,D) Sex combs on the front legs of a male D. melanogaster (arrows in
C) are magnified in D. In polycomb mutants, anterior/posterior patterning is disrupted, resulting in sex combs appearing also on the middle and hind legs.
Reproduced under a Creative Commons license from Wikicommons and with permission from http:/flymove.uni-muenster.de. See also Weigmann et al., 2003.
(E,F) Suppression of eye color variegation, from Qi et al., 2006. Variegation of eye color (F; juxtaposition of patches of white and red) is suppressed in
heterozygotes of a mutation in Su(var)3-9, a gene that encodes an enzyme that methylates lysine 9 of histone H3 (E; uniformly red). TM3 is a balancer
chromosome and serves as a ‘wild type’ control. Reproduced with copyright permission from the publisher.
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Caenorhabditis elegans

Studies of C. elegans development, like those in Drosophila, led to
breakthroughs in our understanding of cellular signaling. Early
researchers of C. elegans took advantage of the transparent bodies
of these small nematodes and used simple polarization or
differential interference contrast (DIC) optics (Box 1) to track the
fate of cells as an embryo developed (Brenner, 1974; Sulston and
Horvitz, 1977). What they learned was the remarkable conservation
of cell fate decisions from worm to worm. In fact, cell behavior is so
rigid in this organism that Sydney Brenner, John Soulston, Bob
Horvitz and colleagues were able to construct an accurate lineage
map of all post-embryonic cell divisions and cell deaths (Fig. 3;
Sulston and Horvitz, 1977). This was a gold mine for geneticists
looking for mutants that deviated from the wild-type pattern of cell
division and cell death. C. elegans are hermaphrodites and can be
mated to themselves (much like Mendel’s garden peas) to produce
progeny, typically in large numbers and in the expected Mendelian
ratios (Box 1) (Brenner, 1974). These and the other benefits of
C. elegans have led to many fundamental insights into biology,
including the identification of the regulators of Ras signaling that
arose from the first cloning of the Ras gene (Beitel et al., 1990; Han
and Sternberg, 1990; Sternberg and Han, 1998), the discovery of
RNA interference (RNAI; Fire et al., 1998; Table 1) and of the first
microRNA (Lee et al., 1993; Wightman et al., 1993). The discovery
of RNAIi by Craig Mello, Andrew Fire and colleagues came on the
heel of prior recognition that experimental addition of exogenous
RNA could interfere with the expression of the corresponding
endogenous genes in plants and worms (Sen and Blau, 2006). Some
of the results, such as the finding that both sense and anti-sense
strands had the same repressive effect, however, could not be
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explained by the prevailing model that exogenous RNA interfered
with gene function simply by hybridization with the endogenous
RNA. Instead, C. elegans studies showed that double-stranded RNA
acted catalytically to suppress gene expression, thereby spearheading
a field that now has wide applications in basic research, biomedicine
and pest control, among others (Perrimon et al., 2010).

A key disease-relevant field that C. elegans genetics research
pioneered is programmed cell death. Apoptosis, a form of
programmed cell death, was first recognized in mammalian cells
(Kerr et al., 1972) and it was known that enzymes called caspases
were important for executing this cellular process. But it was not until
Bob Horvitz and colleagues took a genetic approach to analyzing
programmed cell death during worm development that our
understanding of apoptosis truly advanced. These researchers
exploited the invariant sequence of cell division and cell death
during C. elegans development to screen for mutants in which too
many or too few cells died (e.g. Ellis and Horvitz, 1986). Further
studies led to the isolation of the gene that encodes the key caspase,
ced-3 (for cell death mutant number 3) (Yuan etal., 1993). C. elegans
studies thus identified the genes that match mammalian caspase
genes. Using genetic analysis in C. elegans, the enzymes that trigger
and execute apoptosis were placed in an ordered pathway and their
activators and repressors were identified (Metzstein et al., 1998).
These efforts laid the foundation for a deeper understanding of
apoptosis in mammalian systems (Table 1).

Sea urchins

Classical forward genetics is not the only tool in the biologist’s
toolkit. Research into the embryonic development of marine
invertebrates, such as the sea urchin, provides an excellent
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Fig. 3. C. elegans cell-lineage map and multi-vulva mutants. (A) Experiment and data that led to the discovery of RNAI, summarized from Fire et al., 1998.
(B) Cell-lineage map of C. elegans. Reproduced under a Creative Commons license from Kimble and Seidel, 2013. (C,D) Wild-type and multi-vulva (Muv)

mutant worms. *

indicates the vulva; arrows point to ectopic vulvae. Figures modified and reproduced under a Creative Commons license from de la Cova and

Greenwald, 2012. Specification of the vulval fate occurs through Ras/MAPK signaling (Kornfeld, 1997; Sundaram and Han, 1996). Mutants in which this pathway
is misregulated can show the Muv phenotype (e.g. Gu et al., 1998), which led to the discovery of regulators of Ras/MAPK signaling.
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example of how combining biochemistry and cell biology results in
a powerful discovery strategy. The practical advantages of using sea
urchins attracted many researchers: low cost and relative ease of
maintenance (Sluder, 2016); availability of a large quantity of sperm
and eggs to enable biochemical studies; rapid, nearly synchronous
cell cycles (40-90 min depending upon the temperature) that allow
one to study multiple divisions in a short time; and optical
transparency of the eggs of some species, useful for imaging. Sea
urchin zygotes are remarkably robust and tolerate, for example,
mechanical fragmentation or microinjection (Box 1) (Heasman,
2002). The publicly available genome sequence of some species
provides access to genes of interest (Cameron et al., 2015; Sea
Urchin Genome Sequencing Consortium et al., 2006) and genome
editing in zygotes with CRISPR/Cas9 has been reported (Lin and
Su, 2016).

Sea urchin gametes and zygotes have been studied since the late
1800s. Theodore Boveri used polyspermy (Box 1) to force a fertilized
egg to divide its contents unequally into daughter cells. He analyzed
the resulting abnormal zygotes and, with crisp deductive logic,
Boveri considered and then discarded each cellular component as the
bearer of genetic information until he identified the structures that we
now call chromosomes (Boveri, 1974). Boveri’s chromosome theory
of inheritance was beautifully complemented by Mendel’s work as
re-discovered by Sutton (Sutton, 1903) and was amply supported by
Morgan’s experimental data from Drosophila (Morgan, 1911). Since
then, many fundamental insights into cell biology have been gained
using sea urchin gametes and zygotes. These include the
identification of bindin, a protein that facilitates egg-sperm
interactions for fertilization (Glabe and Vacquier, 1977; Vacquier
and Moy, 1977); an understanding of how complex changes to the
cytoskeleton and cell membranes are orchestrated to form a cleavage
furrow (Box 1) (Pollard, 2004); the identification of gene regulatory
networks that control early zygotic development (Davidson et al.,
2002); understanding how centrosomes (Box 1) are assembled and
duplicated (reviewed in Sluder, 2014); and the discovery of the cyclin
proteins that drive the cell cycle in sea urchin zygotes and also in clam
embryo extracts (Evans et al., 1983; Hunt et al., 1992; Standart et al.,
1990; Standart and Hunt, 1990). We, the authors, still remember the
excitement at the recognition that the cyclins that drive cleavage in sea
urchin zygotes are homologous to the CDC proteins that drive the cell
cycle in yeast (Booher and Beach, 1988; Hagan et al., 1988). These
and many other findings from sea urchin models paved the way for
subsequent discoveries in mammalian systems.

Concluding remarks

As useful as model organisms are, they are not human, and have
their limitations. Three-dimensional (3D) cell-culture model
systems, such as organoids derived from human stem cells, have
been much-heralded because they are the only human-cell-based
model system to recapitulate the cellular complexity of tissues
(Huch et al., 2017). Challenges exist, such as high cost and the
phenotypic variability in traits, including organoid size, shape,
cellular composition and 3D architecture, even when the organoids
are produced under identical conditions (Huch et al., 2017), but
these may be overcome as the technology matures. Lab-grown
organoids should be useful for toxicity testing and for the generation
of tissues for biobanks, but experts doubt that they will replace
animal models as discovery tools (Bredenoord et al., 2017). We
would go further to argue that organoids will not and should not
replace non-vertebrate model organisms as discovery tools. We, the
authors, speculate that the best use of organoids may be to transfer
knowledge acquired in model organisms to humans. Given this
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position, what do we think are future discoveries that could be
expected from curiosity-driven research in model organisms?

One obvious answer concerns the inner workings deep within the
cell. For example, all cells, regardless of origin, need to make
proteins, but also must get rid of proteins that are no longer needed.
Genetic studies in budding yeast, complemented by biochemical
and structural analyses, are providing us with exquisite details on
how the protein machines responsible for destroying other proteins
are assembled (e.g. Li et al., 2017; Sokolova et al., 2015). Likewise,
we anticipate that studies in yeast and other model organisms may
provide a deeper understanding of how proteins are synthesized,
how they are modified with different chemical moieties, and how
they are transported across and out of the cell. For such dissection of
fundamental cellular processes, stem cells or organoids are neither
required nor cost effective. Additionally, as with examples
described in this article, we expect fundamental insights gleaned
from model organisms to lead to better understanding of biology in
all organisms, including humans.

Moving beyond cell biology to whole-animal biology, two
examples illustrate the kind of new knowledge that can be gained
from studying the biology of model organisms. An interesting
question that has interested biologists for many years is how
organisms, and the organs within them, attain their characteristic
size. The Drosophila Hippo kinase pathway acts as a growth
rheostat that fine tunes the balance of proliferation and cell death
during development, thereby helping organs attain their correct size
and shape. It does so by regulating the transcription factor Yorkie
(Yki; YAP in human), the targets of which include genes that
regulate cell proliferation and apoptosis (Hariharan, 2015; Irvine
and Harvey, 2015). The latest twist in the Hippo signaling tale
involves Drosophila insulin-like peptide 8 (Dilp8), a peptide
hormone secreted by injured tissues (Colombani et al., 2012; Garelli
etal., 2012). Secreted Dilp8 accumulates in the circulatory system of
the fly, from where it finds its way to the brain and stimulates
neurons that subsequently repress the production of the molting
hormone, thereby postponing the next stage in fly development.
This signaling throughout the animal allows injured organs more
time to grow and catch up in size relative to their undamaged
counterparts. Strikingly, dilp8 mutant flies lose coordinated organ
growth, such that wings are mismatched in size (Garelli et al., 2012).
dilp8 was recently found to be a transcriptional target of the Hippo
pathway (Boone et al., 2016). The current thinking is that Hippo not
only fine tunes growth within a tissue, but also acts via Dilp8 to
delay development until organs at distant sites in a body are matched
in size. When the pathway is functional, wing growth on opposite
sides of the body is coordinated. Subsequently, the Hippo pathway
has emerged as an important regulator of the growth needed to repair
injured tissues in a variety of organisms, including vertebrates
(Hong et al., 2016; Patel et al., 2017; Zhang and Del Re, 2017).
Given these roles, it is not surprising that the Hippo pathway — first
discovered in Drosophila —is also increasingly implicated in growth
control in human cells and in the development of many human
cancers (Hong et al.,, 2016; Patel et al., 2017). This example
highlights how a strategy of ‘discovery first’ can be of tremendous
benefit to biomedicine.

C. elegans provides another example of a model in which new
insights about biology remain to be made. C. elegans
hermaphrodites can produce sperm or egg, but not both
simultaneously. A recently published study found that fatty acids
(FAs) in the gut can alter the germline of hermaphrodites to
stimulate production of either oocytes or sperm (Tang and Han,
2017). FAs exert their effect by altering the level of myristic acid
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(a form of FA) in the germline, which in turn affects the level of
myristoylation, a process in which myristic acid is covalently
attached to proteins. One protein controlled by myristoylation turns
out to be the MAP kinase MPK-1, which determines germ-cell fate
(Tang and Han, 2017). This biological phenomenon is conserved in
Caenorhabditis remanei, a worm species that lives as male or
female and not as a hermaphrodite, where the knocking down of the
myristic acid processing enzyme ACS-4 can masculinize
genetically female worms into producing sperm.

What do these examples tell us about what the future might hold?
They illustrate the complex interconnections between the germline
and the soma through nutrients and signaling in worms, and a
complex system of growth control and tissue repair that involves
multiple organs and many secreted hormones in flies. They
exemplify how model organisms can be used to understand how
multiple organ systems interact inside an intact body, and to identify
molecules that mediate these interactions. Such a deep
understanding of biology and its complexities, we argue, will
provide a basis for future breakthroughs in medicine. It will be a
long time, if ever, before we can model complex interactions in
organoids or cultured cells. Until then, it is curiosity-driven research
in model organisms that will continue to satiate our appetite for
understanding the wonderful and mysterious natural world that we
live in.
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Summary: Although biologists are increasingly being tasked with problem solving rather than discovery, curiosity-driven research using
AQ16 model organisms has and will continue to pay dividends for improving the human condition.
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