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Abstract 
There is a growing requirement worldwide for low-cost, reliable, and green electricity. 

From 2000 to 2015, the total installed capacity worldwide of solar photovoltaics (PV) 

increased from 4 GW to 227 GW, and is worth more than £75 billion annually. Solar 

photovoltaics are available in a multitude of technologies such as various morphologies 

of silicon, perovskite, organics, and other semiconducting technologies. However, a 

common issue regardless of technology is a spectral mismatch, where the incident solar 

irradiance does not equally match the range in which the semiconductor efficiently 

absorbs photons, and a second issue is degradation of polymeric components from UV 

photons. Ultimately critical failure of a solar module can occur due to the degradation of 

polymeric glues in the module, which allows for the ingress of water which rapidly leads 

to failure. Even before the critical failure, transmission of light is reduced due to the 

polymeric components becoming discoloured under UV irradiation to a yellow and brown 

colour due to the formation of organic radicals and short chain alkenes.  

Glass front sheets are used for the transmission of light to the active semiconducting 

material in a PV module whilst providing environmental, chemical and physical protection. 

Spectral mismatch and polymeric damage can be ameliorated through absorption of 

ultraviolet (UV) photons in the glass layer of the PV module. Incorporation of particular 

cations, in specific oxidation states into a glass matrix can afford strong UV absorption, 

and no visible or infrared (IR) absorption allowing for the protection of the polymeric 

species within the module with no reduction in transmission of lower-energy photons 

required by the PV cell for conversion to electric current. Furthermore, broadband visible 

emission can be induced from the absorption of UV photons with careful selection and 

preparation of the cations in the glass matrix, which allows a better spectral matching 
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from the incident (and re-emitted) radiation and the absorption profile of the 

semiconductor.  

This thesis describes the effects of certain cations with d0, d10 and s2 electron 

configurations in silicate glasses. Investigations into the optical, structural and chemical 

properties of doping silicate (soda lime silica and borosilicate) glasses with cations of 

titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten (d0), zinc 

(d10), bismuth, lead and tin (s2) ions. Shifts in the absorbance profiles of doped and base 

glasses were measured by UV Visible IR absorption spectroscopy. These measurements 

were conducted in conjunction with UV Visible IR fluorescence emission and excitation 

spectroscopy measurements, by which the oxidation state(s) and fluorescence profiles of 

the dopants can be elucidated. X-Ray diffraction (XRD) was undertaken to confirm the 

amorphous nature of the materials prepared. Raman spectroscopy was used to 

investigate the structure of the glasses and to determine whether changes occurred upon 

addition of the dopants studied. Electron paramagnetic resonance spectroscopy (EPR) 

and X-Ray Absorption Near Edge Structure (XANES) measurements were performed to 

elucidate the oxidation state/s of the dopants within the glasses. X-Ray fluorescence 

(XRF) spectroscopy was carried out to measure the proportions of oxides within the 

glasses and confirm that the melt-quench regime did not result in excessive volatilisation 

of materials or other contamination. Differential scanning calorimetry (DSC) was used to 

determine the glass transition temperature (Tg) of the prepared glasses.  

Keywords: Fluorescence spectroscopy, UV VIS IR spectroscopy, transition metal, post-

transition metal, silicate, photovoltaic 
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1 LIMES Project and Sheffield Hallam University Aims 

1.1 LIMES 
The LIMES (Light Innovative Materials for Enhanced Solar Efficiency) project was a 

collaboration between six members, led by RISE (Research Institutes of Sweden) 

compromising of the former Glafo and SP technical research institute of Sweden. In 

addition, including Sheffield Hallam University, GB, Johnson Matthey, GB, Solar Capture 

Technologies, GB, along with Agencia Estatal Consejo Superior de Investigaciones 

Cientificas (CSIC), ES.  

The aim of the project was to develop glass with greater functionality than that which is 

currently commercially available for PV solar front sheets. One of the major objectives 

was to transmit / emit more of the desirable wavelengths of light to the active component 

of a solar module, whilst providing enhanced UV protection and still providing at least the 

same chemical resistance and mechanical protection that are currently available. The 

glass used in PV modules is typically 3 mm thick and can comprise up to 97% of the 

weight of the module. The LIMES project aimed towards developing 1 mm, thermally 

toughened glass, with enhanced optical, mechanical and chemical properties, and to 

demonstrate a cost effective PV module with enhanced performance over a 30 year 

projected life cycle. This comprised five key performance indicators: 

1 – Produce 1 mm thick glass applicable for PV solar modules 

2 – Measure of the thermal tempering through impact testing according to IEC 61215 

3 – Measure of the optical properties with Tvis > 99% and Tsol > 98% 
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4 – Demonstrate high efficiency is retained after accelerated environmental testing with 

a minimum of 95% of the maximum power point as compared with the efficiency prior to 

accelerated environmental testing 

5 – Decrease the cost of PV modules by 10%, from raw materials through to installation 

 

1.2 Sheffield Hallam University 
 

While the consortium-wide project focussed on the previous key performance indicators, 

this PhD project completed at Sheffield Hallam University (SHU) comprised optically 

active doped glasses for photovoltaic applications. This manuscript details the work 

undertaken at SHU, and not the wider project work.  

Glasses with optically active dopant additions have been studied in the LIMES project. 

These absorb deleterious UV light whilst converting and re-emitting a proportion of those 

absorbed UV photons as visible light, and subsequently into increased photon energy 

available for conversion by the solar cells. Glasses have been developed with increased 

mechanical and chemical resistive properties. Novel glass compositions developed within 

the LIMES project give enhanced resistance to cracking by a factor of three relative to 

commercially available glasses, and with enhanced chemical resistance by a factor of 

four. With the increased optical, chemical and mechanical properties of the glasses 

developed, the use of thinner glass front sheets is enabled, reducing the weight and cost 

of PV modules. This has been exploited through a patent application [1] and a publication 

[2].  
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Two main bodies of work were completed focussing on d0 cations comprising transition 

metal oxides of titanium, zirconium, hafnium, niobium, tantalum, molybdenum and 

tungsten outlined in Chapter 4. Chapter 5 details a second set of dopants of s2 

configuration such as bismuth, lead and tin oxides, whilst Chapter 6 shows results from 

prepared PV modules made within the wider LIMES project with glass compositions 

developed from this PhD project. Chapter 7 describes the additional cost of dopant 

additions, and suggestions for future work.  

The aims of the project outlined within this manuscript are to study the effects of doping 

silicate glasses with transition and post transition metals to modify the UV absorption 

edge to protect polymer layers within PV modules. Further to this, visible luminescence 

of the glasses from the absorption of UV light will be characterised.  
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2 Solar Energy, Photovoltaics and Silicate Glasses 

2.1 Energy and CO2 Emissions 
The Paris accord published in 2016, signed by 195 countries, aimed to prevent the global 

average temperature raising above 2.0°C relative to preindustrial levels [3]. To minimize 

the impact of anthropomorphic climate change, CO2 emissions must be reduced. This 

can be achieved, in part, by increased use of solar photovoltaic energy [4]. While there 

are forms of electricity generation which have lower emissions of CO2 per kWh [5,6] they 

are not applicable to every environment. Onshore wind and hydroelectricity both require 

high initial capital investment of £1000-1700 per kW and £800-6500 per kW respectively 

[7,8]. Solar energy has a similar barrier to entry with, assuming 14% efficiency for a c-Si 

PV system with battery storage, £3000-5000 installed cost per kW [9], there are 

commercial examples exceeding 20% efficiency [10] which reduces the cost per watt over 

the lifetime of the module. 

Energy generated from the sun, via the photoelectric effect, is inexhaustible, clean and 

widely available. The first demonstration of the photoelectric effect was by Edmund 

Becquerel in 1839. Little research happened until the 1950’s, when development of 

silicon-based solar cells became a viable method for energy harvesting on satellites. 

Considerable research took place during and after the oil crisis of the 1970’s, this led to 

the development of new low-cost materials such as III-V thin films (GaAs and InP), 

amorphous silicon, CIGS (CuInGaSe2) and CdS/CdTe based solar devices. In 1988, the 

first dye sensitised solar cell (DSSC) was created by Gratzel and O’Regan, with the 

incorporation of an organic dye affording cost reductions of 50% relative to silicon solar 

cells [11]. The first demonstration of a perovskite based solar cell occurred in 2009, 
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initially with an efficiency of 3.8% [12]. As of March 2018, the most efficient perovskite 

solar cell afforded an efficiency of 22.1% [10,13]. Solar energy has the potential to be 

completely environmentally friendly, and to increase energy security without the 

geopolitical issues sometimes arising with fossil fuels such as the Suez Crisis and the 

1990’s oil crisis as a response to the Iraqi invasion of Kuwait.  

From the years 2000 to 2015 total installed solar PV capacity increased from 4 GW to 

227 GW, a factor of 57 [14], and is worth more than £75 billion annually [9]. However, it 

is not without serious limitations at present, generally in the form of energy storage and 

effective scaling for greater deployment [15]. Even with the dramatic increase of installed 

capacity, solar PV contributes only 1.5% of all electricity used globally [16]. Other forms 

of renewable energy also arise primarily from the sun - such as wind, wave, hydropower 

and biomass.  

This section will give an overview of the different parts of the solar spectrum. It will cover 

how modifying this spectrum can confer a two-fold benefit in the context of PV modules: 

(i) more efficient use of the solar spectrum; and (ii) increasing the service lifetimes of 

photovoltaic modules. An overview of the photovoltaic effect will be given, with how 

different types of PV modules take advantage of this. Finally, this section will discuss the 

limitations of current PV modules, and methods that are available to overcome or mitigate 

these issues.  

2.1.1 Solar Spectrum 

Sunlight in space consists of a continuum of electromagnetic radiation from X-rays 

through to radio waves (in particular circumstances it may also include gamma rays), 

however, this study focused on ultraviolet (UV), visible (VIS) and infrared (IR) 
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wavelengths. Figure 1 shows the solar spectrum, and the variation of intensity as a 

function of wavelength and height above sea level on Earth. The black line (AM0) shows 

the wavelengths and intensities of photons emitted by the sun, this closely follows a black 

body emitting at 5250°C, with characteristic wavelengths present of hydrogen [17]. The 

AM1.5 spectrum shows that particular wavelengths are absorbed by molecules in the 

atmosphere, such as O2, O3, H2O and CO2. The AM1.5 spectrum which is the average 

solar energy on the earth’s surface at a zenith angle of 48.2° [18]. The solar spectrum is 

different at high altitude, and in space. Our research has focused on land-based PV 

modules. Although H2O absorbs IR photons over a greater range, and therefore has more 

impact regarding climate change, CO2 is the primary issue of anthropomorphic emissions. 

The solar spectrum shown in Figure 1 is at sea level, the relative proportions of 

wavelengths varies as a function of altitude, and zenith angle on earth relative to the sun, 

and in outer space UV wavelengths constitute a greater proportion. The research herein 

focused on silicon based solar modules for terrestrial applications, however, it would also 

be relevant to any PV module which suffers from UV damage. 

This study aims to modify the spectral profile which the contents of a PV module will be 

exposed to through doping soda lime silica cover glasses with transition and post-

transition metal oxides. Importantly, this includes absorbing and converting ultraviolet 

(UV) photons to photons with longer visible wavelengths and re-emitting a proportion of 

them, which provides a two-fold benefit; (i) protects the PV module from UV degradation 

[19–21], (ii) produces photons which are available for absorption by the PV cell and hence 

provide additional electricity generation [22–24].  
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Within this study ultraviolet (UV) will be defined as the wavelengths corresponding to 

50000 cm-1–26000 cm-1 (200 nm-380 nm), visible photons corresponding to 26001 cm-1–

12800 cm-1 (380 nm–780 nm), and infrared (IR) as 12801 cm-1–3300 cm-1 (780 nm–3000 

nm). In this study graphs will primarily be presented in wavenumbers for clarity within the 

UV portion of the graph, and, where appropriate, a second nanometre scale will be added.  

 

Figure 1 AM1.5 irradiation profile, AM0 is shown for comparison 

AM0 is the solar irradiance in space at the top of the atmosphere, this is broadly similar 

to a blackbody emitter. AM1.5 corresponds to the irradiance at ground level with a solar 

zenith angle of 48.2°, this approximates the yearly average of latitudes within Europe, 

North America, China, Japan and Northern India. AM1.5 is used as a standardised 

measure for testing of photovoltaic module efficiency [18].  
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2.1.2 Photovoltaic Module Construction 

Figure 2 demonstrates a typical crystalline silicon (c-Si) solar cell construction similar to 

those shown in Figure 4; this study is focused on modifying the front soda lime silica (SLS) 

glass front sheet as the technology is also applicable to other types of PV materials such 

as perovskite (shown in Figure 3) and dye sensitised solar cells. Various glues are utilised 

for the encapsulant layer, notably polyvinyl butyral (PVB), thermoplastic polyurethane 

(TPU), and ethylene vinyl acetate (EVA), while the back sheets are either aluminium or 

polyvinyl fluoride (known as Tedlar®) [21]. These backsheets are selected for a 

combination of aesthetics, protection from the environment, and light reflectivity. 

 

Figure 2 Typical c-Si solar PV module construction  
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Figure 3 Typical planar n-i-p perovskite solar PV module construction 

 

 

Figure 4 Solar modules mounted on solar trackers [25] 
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Table 1 Cost breakdown of silicon solar modules 

Component Cost% [26] 

Frame 20.1 

Glass 8.3 

EVA 2.7 

Si Wafer 48.0 

Stringing 3.7 

Backsheet 7.5 

Junction Box 9.7 

 

Silicon based solar modules typically weigh between 15 and 25 kg depending on 

manufacturer [27]. Typical c-Si panels are 1.4 m2 – 1.7 m2 and 4 cm deep, with an average 

of 72 cells within the entire module [28]. The silicon semiconductor is the most expensive 

component shown in   
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Table 1, while the glass front sheet and frame may be up to 97% of the weight [27]. PV 

modules have a desired service lifetime of 20-30 years, however, in high UV areas this 

may be reduced due to polymeric damage [29]. During the service lifetime c-Si PV 

modules degrade between 0.6 - 2.5% per year depending on service conditions and 

manufacturer [29,30]. A major cause of failure before the expected service lifetime of PV 

modules is delamination, due to UV induced degradation of the encapsulant layers, 

allowing water to ingress and corrode the materials within [19]. Even before delamination 

occurs, the EVA layer can discolour turning yellow and ultimately brown reducing 

transmission of incoming light, contributing to reduced efficiency [20]. Absorption of 

damaging UV photons within the glass front sheet can increase the service lifetimes of 

PV modules. Absorption of high-energy UV photons can give two effects; (i) the energy 

converting to phonons (heat), (ii) fluorescence / downconversion to visible photons. Within 

the module of all commercial modules, there are polymeric components, which undergo 

UV induced degradation. 

2.1.2.1 Photovoltaic Effect 

The photovoltaic effect is the process of conversion of a photon into an electron-hole pair, 

which can then be used to generate electricity.  

Four basic steps are required for the generation of energy from light: 

1. Absorption of photons in a semiconducting material  

2. Creation of charge carriers, an electron-hole pair, by breaking bonds between 

atoms in the material 

3. Separation of these charge carriers before they are able to recombine  
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4. Transportation of the charge carriers through electrical contacts and movement 

through a circuit to generate work 

A photon of energy equal to or slightly higher than the bandgap of the semiconductor is 

absorbed (1), exciting an electron to the conduction band (2). Due to the nature of 

semiconductor junctions, the electron can only move towards the negative terminal and 

the hole moves in the opposite direction (3). The hole is the propagation of the ‘empty’ 

covalent bond to the positive metal contact. The election can pass through a circuit to 

extract work from the system (4). This process is schematically outlined in Figure 5. 

Inefficiency or failure of any of these processes will lead to poor, or zero conversion 

efficiency. This is why production of commercial PV modules is an interdisciplinary 

challenge, involving multiple selections of materials and components which work 

harmoniously to produce an effective module that can extract energy from the system.  

 

Figure 5 Schematic of photovoltaic effect at a simple p-n junction 
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2.1.3 Silicon Semiconductors for Photovoltaic Modules 

Since silicon is a poor conductor of electricity dopants are added to increase conductivity, 

through the introduction of phosphorous (n-doping) or boron (p-doping) the conductivity 

can be increased by a factor of 106, Table 2 outlines the differences between p and n-

type semiconductors. 

Table 2 Comparison of p and n-type semiconductors 

p-type semiconductors n-type semiconductors 

• Majority of carriers are holes • Majority of carriers are electrons 

• Minority of carriers are electrons • Minority of carriers are holes 

• Group III dopants (B, Al, Ga, In) • Group V dopants (N, P, As) 

• Fermi level is close to valence band • Fermi level is close to conduction 
band 

 

Figure 6 demonstrates the process of developing a depletion region across the p-n 

junction. Initially at the p-n junction, the free charge carriers, as represented by the torus 

and rectangle, which combine leading to a depletion zone. Due to the lack of charge 

carriers within this depletion zone a positive region exists within the n-doped silicon, and 

a negative region forms in the p-doped silicon, this gradient corresponds to 0.7 V. The 

internal electric field across the p-n junction causes electrons to direct towards the n-

doped silicon and holes towards the p-doped silicon. While this is the most basic interface, 

commercial semiconductors have more complex architectures, which overcomes the 

Shockley-Queisser limit. Ojo et al have shown experimentally a single photon can 

generate more than one electron hole pair, and state a higher short-circuit current density, 

Jsc, above the Shockley-Queisser limit of a single p-n junction is achievable [31]. The 
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graded bandgap induced by the method by Ojo and Dharmadasa effectively acts as 

multiple p-n junctions which more efficiently splits the electron-hole pairs, and in turn 

confers greater efficiency to the PV module. 

 

Figure 6 Propagation of a potential gradient at a p-n junction, top is the initial state of the 
system, an electron and hole combine to create a depletion zone with a positive to 
negative gradient 

At p-i-n junctions, where there is a layer of intrinsic or insulating material sandwiched 

between the p and n type semiconducting layers, are more advanced than a simple p-n 

Figure 7 Absorption coefficient of silicon in cm as a function of wavenumber 
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junction. The p-i-n junction leads to a more effective internal electric field, which reduces 

the likelihood of recombination of the electron hole pair. Various other junctions have 

been developed, and while beyond the scope of this project, the reader is directed to the 

following resources [32–34].  

The absorption coefficient of silicon varies with wavelength, with the absorption much 

weaker in the UV than in the visible and IR regions as shown in Figure 7. Due to the low 

absorption, low conversion efficiency and harmful effects of UV light on a PV module, 

there is an urgent need to convert these photons into more efficient and useful 

wavelengths. There are several properties which are required for effective PV materials 

and devices. Efficient light absorption over a large wavelength range, with the peak of 

absorption being close to the bandgap of the material. This provides the greatest 

conversion efficiency within the PV module.  

The materials used within a PV module need to be low cost, and readily available for 

large-scale production. Silicon solar cells are particularly beneficial due to the high 

abundance of the metal on earth, and the methods of purification are suitable for the end 

use. Perovskite materials are beginning to be used as PV devices, while originally they 

had poor conversion efficiency and had poor environmental stability, modern materials 

do not suffer these issues. Tandem perovskite - silicon PV modules have been 

demonstrated to have 9% higher photoconversion efficiency with 30% lower 

environmental impact [35], and these are particularly suitable to incorporate other 

technologies such as quantum dots [36]. 

PV modules are required to have high environmental stability in regard to light, moisture, 

and temperature, with environmentally friendly technologies for production of the 
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semiconductor. Thin film technology, especially deposition methods such as 

electroplating use low temperature, low concentration and readily scalable methods to 

produce PV modules [37]. Novel work at Sheffield Hallam University has been undertaken 

in thin film technologies, with graded bandgap CdTe showing efficiencies of up to 18.5% 

[31]. CdTe is an important material for the future of solar energy harvesting with a 2 µm 

thick layer able to absorb over 90% of photons with energies higher than 11,700 cm-1 

(lower than 855 nm) [37]. The morphology of CdTe thin films can be readily controlled 

and even stir rate of the electroplating solution has a significant impact on the final film, 

and hence optical properties [38]. 

The semiconductors used in PV modules are required to have a low recombination level 

of electron hole pairs. A reduction in the recombination level results in a greater proportion 

of photons inducing a current, thereby increasing efficiency of the module [39].  

2.1.4 Types of Photovoltaic Modules 

There is a multitude of available technologies for PV materials, and while silicon based 

modules dominate the market, emerging technologies such as thin film CdTe or copper-

indium-gallium-selenide (CIGS), and organic based PV modules are all available 

commercially. These were initially developed in the 1970’s but recent advancements in 

their efficiencies are making them more commercially viable. The efficiency of perovskite 

materials, in particular, has shown dramatic efficiency increases, from 3.8% in 2009 to 

22.1% in 2016. Silicon dominates the market for several reasons, firstly it is one of the 

most abundant elements available on earth, with over 90% of the Earth’s crust being 

composed of silicate minerals [40]. There are various technologies available for the 
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purification and production of silicon wafers, for example the Czochralski process, that 

result in comparatively low cost materials with well-defined properties.  

Single crystal, non-concentrator, silicon PV modules have efficiencies of up to 25.6% [41] 

however, efficiencies have stagnated over the last 15 years with only small further 

efficiency gains. The efficiency rate of change shown in Figure 8 on the emerging PV 

technologies such as perovskite, quantum dot and dye sensitised solar cells, are much 

steeper showing significant and rapid advancements, and are poised to become 

commercially available over the next decade. Tandem solar cells are also to become 

increasingly efficient and commercialised within the next 5-10 years. Various technologies 

and their efficiencies are outlined in Figure 8 [10]. 

2.1.5 First, Second and Third Generation Solar Cell Modules 

Solar cell technologies have been divided into three distinct generations. The first 

generation were typically based on silicon wafers, with an efficiency of between 15-20% 

[42]. Silicon based solar cells still dominate the market, accounting for 87% of global PV 

sales [16] due to the mature technology and robustness, with polycrystalline silicon itself 

accounting for 63% [43]. The silicon wafer used in these PV modules are between 200-

250 µm thick, which accounts for 50% of the cost of the module [43]. However, absorption 

of solar photons occurs within the first tens of microns of the silicon. Therefore, reducing 

the thickness of the absorbing layer will reduce the cost.  

Second generation solar cells employed thin films of absorbing layers to reduce the price 

and reduce the cost per Watt. Deployment of second-generation solar cells is now 

happening at significant quantities [44]. The main technologies include amorphous silicon 

(a-Si), CdTe thin films and copper-indium-gallium-diselenide (CIGS).  
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Up to 99% less semiconducting material is required to absorb the same amount of light 

in thin film devices than in a corresponding c-Si cell [16], with layers between 1-4 µm thick 

[45,46]. a-Si solar cells are the most developed second-generation PV module, due to 

both the wide availability and comparative ease of fabrication (continuous chemical 

vapour deposition). However, due to the lower efficiency than traditional c-Si systems 

[47], it is only suitable for application in specific conditions where curved surfaces are 

required [48]. 

Third generation solar cells are primarily in the research and development stage, however 

some devices are beginning to be commercialised. The new PV systems include 

concentrating photovoltaics [49,50], dye sensitised solar cells [44] and organic solar cells 

[51]. Concepts are being developed to complement third generation PV systems such as 

quantum dot [41,52] and upconversion / downcoversion technology [53,54]. Third 

generation technologies, on the graph in Figure 8, highlighted as emerging PV, show the 

sharpest efficiency gradient within the past 10 years. The technology is rapidly developing 

and shows significant promise.  

Multi-junction solar cells, or tandem solar cells, are PV modules with multiple 

semiconducting materials with differing responses to wavelengths layered together. This 

allows for a broader absorption of sunlight. While a single junction of Si has a maximum 

efficiency limit of 33.1% [55], multiple layers in conjunction of different bandgaps can 

overcome this limit. However, there are still technological hurdles to be bypassed with 

this approach, and the increased difficulty in manufacture offsets the gains in efficiency. 

For non-terrestrial purposes tandem PV modules have proven popular where weight is a 

significant issue such as aerospace [35].  
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Figure 8 NREL best research cell efficiencies over time. Open blue square denotes 
multicrystalline silicon solar cells, which are currently 22-23% efficient [10] 
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2.1.6 Limitations of Photovoltaic Modules by Component 

Each component of a PV module, as illustrated in Figure 2, has limitations that reduce 

the overall PV module efficiency. The issues are caused either by absorption or 

transmission being inefficient or non-existent, or by the component having a high cost. 

Modification of the encapsulant glass layer can improve all of the issues outlined below. 

 

2.1.6.1 Glass Front Sheet 

2.1.6.1.1 Absorbance and Transmission 

All soda lime silica glass contains some quantity of Fe2O3, whether deliberately added or 

present as an impurity. While section 2.2.4.1.5.5 will give detailed coverage on the 

theoretical basis for the optical absorption of iron species in glass, for brevity here, Fe3+ 

absorbs in the UV and blue regions and Fe2+ absorbs more strongly in the red and IR 

regions. The precise values of absorptivity are affected by factors including concentration 

of iron species, the glass composition and the redox ratio – as given by Equation 1; 

𝛴
𝐹𝑒2+

𝐹𝑒 (𝑡𝑜𝑡)
=

[𝐹𝑒2+]

[𝐹𝑒2+] + [𝐹𝑒3+]
 

Equation 1 

Whilst Fe2+ and Fe3+
 in glass strongly shift the UV absorption towards the visible, 

beneficially protecting the polymeric layers from UV damage, the visible and IR optical 

transitions parasitically absorb photons that could otherwise be converted by the 

photovoltaic material. Absorptions in the UV to visible from 27,250 cm-1 (366 nm) to 

21,550 cm-1 (464 nm) corresponding to Fe3+, and strong absorptions within the IR centred 

at 10,380 cm-1 (963 nm), 7490 cm-1 (1335 nm), and 4950 cm-1 (2020 nm) corresponding 
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to Fe2+ [56,57], limit the effectiveness of doping with iron for solar control. Absorptions 

such as these from 0.01mol% Fe2O3 in silicate glass can cause a 1.1% loss in module 

output power, and a 9.8% loss for a 0.1mol% Fe2O3 doped silicate glass front sheet [58]. 

Reduction of the concentration of iron oxides in glass is therefore a requirement to more 

effective photovoltaic panels, and has been employed industrially.  

Ti3+ gives a strong crystal field band centred at 20,000 cm-1 (500 nm) which extends to 

10,000 cm-1 (1000 nm) [59], directly reducing the transmission properties of soda lime 

silica front sheets in a PV module. The asymmetry of the band originates from Jahn-Teller 

effects observed in d1 and d6 oxidation states, i.e. Ti3+ and Fe2+. When combined into one 

glass, Fe2+ and Ti3+ display a charge transfer band at 24,000 cm-1 (416 nm), with stronger 

absorption than the sum of the individual components. However, Ti3+ is unlikely to occur 

under standard float glass melt conditions. The charge transfer band corresponding to 

Fe2+ → Ti3+ centred at 24,000 cm-1 (416 nm) strongly affects the UV absorption edge [59] 

and is significantly more deleterious for PV module efficiency.  

Any absorption by the cover glass of photons able to induce the photovoltaic effect will 

directly reduce the efficiency of the PV module. Minimising the quantity of iron species 

and reduced forms of titanium will lower the visible absorption but also reduce the UV 

absorption leading to increased rate of reaction for UV induced polymeric damage. 

Therefore alternative compounds need to be introduced into the soda lime silica matrix to 

fulfil the desirable UV absorption characteristics whilst having minimal or no absorption 

within the visible and NIR regions. 



47 
 

 

Figure 9 Typical UV VIS IR absorption curves for increasing Fe2O3 concentration in 
soda lime silica glasses [57] 

 

Figure 9 shows the typical absorption profiles of increasing mol% Fe2O3 content in SLS 

glasses [57]. Glass front sheets require low iron content i.e. below 0.09wt% [58,60], with 

increasing iron content the efficiency of the module is decreased due to competitive 

absorption of the photons in the cover glass. For glass containing 0.01% Fe2O3 this 

equates to a loss of 1.1% [58]. However, photons of light above 27,500 cm-1 (below 360 

nm) induce damage to the polymeric components within the PV module [19]. Therefore, 

removal of all the iron oxides is both technologically difficult [61] and negatively affects 

the long-term reliability of the PV module. There is therefore a requirement for minimising 

the quantity of Fe species with the addition of novel optically active dopants to absorb UV 

photons but without visible or near-IR absorption. 
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2.1.6.1.2 Reflectivity 

Reflectivity of the cover glass also reduces the number of available photons for the 

generation of energy. In fixed PV systems (without solar tracking) around 20% of the 

available photons are lost per day due to reflection of the glass [43]. This can be 

ameliorated with anti-reflective coatings [62], usually processed through a sol-gel route 

by dip coating or a spinning technique [63]. The long term stability of the coating is highly 

dependent on the initial surface conditions, and is suitable over a narrow wavelength 

range and incident angle [63]. For example, for the complete transmission of 18,181      

cm-1 (550 nm) photons, a coating refractive index of 1.22 with a thickness of 112.7 nm is 

required; however, photons of different wavelengths will suffer some reflection. Stronger 

adhesion of the coating to the underlying glass is possible through vacuum processing, 

however, this is cost prohibitive for large areas and large volumes. Etching of borosilicate 

glasses has been demonstrated to modulate the reflective properties of a flat panel [64]: 

as fewer photons were reflected a greater proportion were transmitted, from a maximum 

transmission (Tmax) of 92% to a Tmax% of 98%.  

2.1.6.1.3 Weight 

The typical dimensions of a domestic PV panel are 1.4 m2 – 1.7 m2, with glass cover layer 

3-4 mm thick [28]. The density of commercial PV SLS glass is ~ 2.52 g/cm3 [65], therefore 

the average weight of glass may be between 14-24 kg and comprises some 97% of the 

total module weight [27]. Due to these weight constraints, heavy support structures are 

required, further adding to the weight and installation costs of the module [15]. The weight 

restricts exploitation of portable off grid PV modules, and the volume of glass used bears 

an environmental and energy cost. To melt 1 kg of soda lime silica glass at 1450°C 
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requires 2500 – 2800 kJ, depending on composition and furnace type [66]. These factors 

result in the glass cover layer constituting between 20-30% of the price of a solar module 

[9] shown in   
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Table 1. To simply reduce the thickness of the glass front sheet is not practical, as the 

optical properties are directly affected by the thickness of the glass sheet according to 

Beer-Lambert law, and mechanical properties can also be affected. Common soda lime 

silica glass products such as float glass have strengths of the order of 14-70 MPa, 

however, the theoretical strength may be up to 13-14 GPa for fine silica fibres. The large 

difference arises from surface defects on the glass which act as stress concentrators, 

allowing a relatively small load to form a crack and ultimately cause critical failure of the 

glass product. For a thinner piece of glass to have the same crack resistance, the surface 

must be more pristine than a corresponding thicker piece of glass. Surface flaws typically 

extend only 1-10 µm, but they reduce the strength of glass to around 1% of the theoretical 

value [67]. 

2.1.6.2 First Polymeric Glue Layer 

EVA glue is the most commonly used polymer for c-Si based PV modules with 80% of 

PV modules encapsulated by EVA [68]. The structure of EVA is given in Figure 10. The 

primary roles of the glue is to offer electrical insulation, structural support and high optical 

transparency in the visible region with transmission >91%. However, the polymer 

undergoes UV degradation over time, initially causing discolouration of the polymer due 

to oxidation and free radical formation, and ultimately to delamination of the PV module 

[19]. The oxidation and formation of free radicals lead to the production of acetic acid, the 

formation of aldehydes and ketones, along with volatile gasses such as methane, carbon 

dioxide and carbon monoxide [19]. Degradation processes form alkenes of various 

lengths, which have strong absorptions within the UV, fragmentation of the chain lengths 
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cause a broadening of these absorption bands. The acetic acid formed also has a catalytic 

effect of the yellowing caused by UV photons in the EVA polymer [69].  

 

Figure 10 Chemical structure of EVA copolymer 

This is the primary cause of efficiency reduction and failure for Si based PV systems [29]. 

As the EVA becomes brittle, the mechanical structural support between the cover glass 

and the glue layers begin to fail, eventually leading to water ingress. The dissolved 

minerals within the water can short the circuit and reduce the effectiveness of the 

semiconducting layer: this affects all types of semiconductor [39,70,71]. UV filtering glass 

cover layers which absorb photons of energy greater than 28,500 cm-1 (lower than 350 

nm) effectively reduce the rate of UV induced discolouration and subsequent degradation 

of the PV module. 

2.1.6.3 Photon Absorbing Layer 

All semiconductors have a range of wavelengths close to their bandgap over which they 

most efficiently convert photons into electricity; photon energies that do not fall within this 

range are inefficiently converted or not absorbed at all. The bandgap of silicon is 1.1 eV 

(8872 cm-1 or 1127 nm), and as shown in Figure 7 absorption by silicon in the visible and 

UV is significantly lower. Modulating the number of photons with energies in the range 
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that can be converted, through upconversion and / or downconversion, is a promising 

technology in third generation solar modules. This is discussed in section 2.1.4.  

The cost of the wafer in c-Si PV modules constitutes around 48% of the total price [9] as 

shown in   
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Table 1, thin film Si based systems use up to 99% less material, and are subsequently 

cheaper, however the lower efficiency offsets the cost per watt. Promising research into 

thin film technologies may be found here [32,72]. Electrically conductive layers on glass 

(indium tin oxide or fluorine doped tin oxide) allows for the growth of thin film 

semiconductors in a low cost manner such as electrodeposition. Electrodeposition 

confers several cost saving measures such as self-purification of raw materials [31], it is 

a low cost and highly scalable method of production. 

2.1.6.4 Second Polymeric Glue Layer 

The second encapsulant glue layer as shown in Figure 2 undergoes UV induced damage 

in the same manner as the first encapsulant glue layer, albeit to a lower degree as a 

proportion of the UV photons have been absorbed either by the first glue layer or reflected 

by the c-Si layer. However, enough of the photons pass through to induce damage to this 

glue layer and lead to the same processes outlined in section 2.1.6.2. 

2.1.6.5 Backsheet 

Backsheets are used to protect the PV module from light and moisture, and act as an 

electrical insulator. The colour of the backsheet can impact the module efficiency, with 

white backsheets reflecting light back into the semiconductor, this increasing the current 

flow [73]. Backsheets are commonly either aluminium or polyvinvyl fluoride (e.g. Tedlar®) 

[21].  

During operation backsheets undergo UV induced degradation, yellowing the polymer 

over time. An increase in the yellowing increases the overall temperature of the module, 

giving a two-fold negative effect. Firstly the higher temperatures decrease the efficiency 

of the module and secondly the heat increases the rate of degradation of the module [21]. 



54 
 

As with the EVA layer, as accumulated UV induced damage increases in the backsheet, 

the likelihood of delamination and water ingress increases, ultimately leading to module 

failure [29]. UV absorption in the glass cover layer may reduce the damage, leading to 

longer services lifetimes. 

2.1.7 Front Sheet Modifications 

Several technologies are being developed for use within PV modules, involving the 

functionalisation of the glass front sheet, such as the following: 

2.1.7.1 UV Control 

While it is not technologically or commercially feasible to remove all of the iron content in 

flat glass production, a reduction in the total quantity of iron can minimise the efficiency 

loss of the PV module. In order to maintain the UV protection of the polymeric layers 

dopants, alternative dopants such as d0 and d10 ions may be added [74,75]. Dopants such 

as Ti4+ or Bi3+ exhibit strong UV absorption and visible fluorescence emission [76–78], 

while having no visible or near-IR absorption bands, giving a two-fold benefit to the PV 

modules’ long term stability and efficiency. 

Bulk doping of glasses to induce visible fluorescence from absorbed UV light is a method 

for enhancing the performance of next generation solar cells. Bulk glass doping confers 

several advantages over coatings or field assisted solid state ion exchange techniques 

[79,80], in particular ease of fabrication, and it does not require secondary and expensive 

techniques. Doping of soda lime silica glasses offers multiple advantages; UV control, 

visible emission, and modulation of the refractive index to reduce reflection losses.  
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Akin to bulk doping of cover glasses for optical modulation, quantum dots such as bismuth 

doped aluminosilicates [81,82] or CdSe [54], may be used as downconverting / 

upconverting materials for PV systems. Quantum dots offer the ability, as with fluorescent 

cover glass, to be easily retrofitted into existing technology and readily enhance the 

efficiency of the PV module.  

Glass ceramic based encapsulant layers can offer fluorescence [83] giving the same 

advantages as bulk doped glass and quantum dots. Through control over the size of the 

crystals, transparency may be high whilst providing enhanced mechanical and chemical 

properties [84]. Investigations into glass ceramics for photovoltaic applications are 

beyond the scope of this thesis. 

2.1.7.2 Antireflective Coatings 

Reflective losses can be minimised by the application of an antireflective (AR) coating. 

Coatings are applied either through a vapour deposition process [85] or a dip coating or 

spinning technique [67]. Minimising the reflective losses results in a greater intensity of 

photons available for PV energy generation. The high cost of coating glasses currently 

limits the application of this technology. However, advances in AR coatings with added 

functionality such as self-cleaning and fluorescent systems can offset the high cost 

through enhanced efficiency and lower maintenance costs [43,85]. Up to 20% of all 

available photons are reflected in a fixed array PV system [43], however, with 

antireflective coatings and optical metamaterials, a 4% increase, under standard test 

conditions, can be observed due to an increased flux of photons available [86]. 
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2.1.7.3 Luminescent Downshifting Front Sheets 

Bismuth oxide (Bi2O3) has shown promise in phosphate laser glasses for its NIR emission 

at 7700 cm-1 (1300 nm) from 12,500 cm-1 (800 nm) excitation [87]. Experiments have 

shown that this process can be ascribed to transitions of Bi+, as the isoelectronic 

compounds Tl0 and Pb0 display similar luminescent behaviour [88]. However, for effective 

UV to visible conversion bismuth must be in the Bi3+ valence [89]. Bismuth is a multivalent 

ion, and can exist in oxidation states from 3- to 5+, and therefore, careful control of the 

oxidation state is required for effective luminescent downshifting sheets.  

Luminescent downshifting front sheets (LDS) are a more attractive technology for third 

generation solar cells compared to improving the electronic components within the 

module. Various technologies have been developed which improve the efficiency of PV 

modules such as thin-films or graded bandgap materials, although commercialisation is 

comparatively low relative to the dominance of silicon based PV modules [90]. LDS front 

sheets are applicable to be added to any type of solar cell in which UV light degradation 

occurs [91–93], and the passive approach does not interfere with the architecture of the 

module. LDS technology was first proposed in 1979 by H.J Hovel, and with non-optimised 

optical components, plastic sheets containing organic dyes, gave an efficiency increase 

of between 0.5 and 2.0% in photoconversion [94]. Similar values for the effect of LDS 

layers on the efficiency increase of PV modules have been calculated by C.P. Thomas at 

1.5% [95] with organic dyes using a modified Shockley model. An LDS layer has been 

utilised in CIGS modules to give a 1.8% efficiency increase in short circuit current density 

(Jsc) [91]. Studies using nanoparticle phosphor coatings on the glass front sheet have 

been undertaken with silica particles doped with up to 3wt% Eu3+, the combination of the 
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anti-reflective properties of the nanoparticles and the LDS effect gave a total Jsc increase 

of 5.17% using multiple species of phosphor in Si phosphors [96], and with a YVO4: Bi3+ 

/ Eu3+ complex coating gave a 4% increase in Jsc [97]. LDS technology proves to be 

particularly beneficial in PV modules and garners much research interest in the solar 

energy community [98]. Combined with bulk doping of SLS glasses, LDS is the technique 

utilised in this study. 

2.1.7.4 Electrically Conductive Layer for Electrodeposition of Semiconductors 

Indium tin oxide (ITO) or fluorine doped tin oxide (FTO) layers coated onto silicate glass 

allow for the electrodeposition of semiconducting materials directly onto the glass layer. 

The coated glass is the cathode in the electroplating system, with a Pt wire being the 

anode. A solution containing the required ions, usually CdSO4 and TeO2, with a current of 

around 2 V and 1 mA, is used to reduce the ions onto the glass surface, growing the 

semiconductor device [32,37]. This method of production allows for lower quantities of 

expensive semiconductors to be used, while conferring other benefits such as low cost 

processing methods. It is highly scalable and is self-purifying, allowing for the use of lower 

purity raw materials [32].  

 

2.1.7.5 Replacement of Backsheet 

One possible method to remove issues with backsheet degradation is to replace the 

polymer backsheet with a second glass sheet. Such modules are called bifacial PV 

modules, and one is schematically represented in Figure 11. Bifacial PV modules are now 

beginning to be commercialised. The backsheet in these modules is replaced by a second 

glass sheet, allowing for absorption of light arriving from both sides. This increases the 
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efficiency of the module due to the additional absorption of photons. Bifacial PV modules 

are suitable for vertical installation, reducing the size footprint of the system, and 

particularly useful for building integrated PV (BIPV) modules.    

 

Figure 11 Bifacial PV module, typically installed vertically or at 45° 
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2.2 Glass Structure and Properties 
2.2.1 Definition of Glass 

Glass is an often-misunderstood material; in the general public lexicon, glass usually 

refers to soda lime silica type glasses, namely windows and drinking glasses. However, 

in the technical sense glass refers to a state of matter and is not specific to any particular 

material, element or compound. Glasses exist in metallic [99,100], organic [101–103] and 

non-silica based systems [104]. While there are multiple definitions of a glass, the current 

definition of ‘glass is a non-equilibrium, non-crystalline condensed state of matter that 

exhibits a glass transition. The structure of glasses is similar to that of their parent 

supercooled liquid (SCL) and they spontaneously relax towards their SCL state. Their 

ultimate fate, in the limit of infinite time, is to crystallise’ [105] is the most comprehensive 

definition to date. The formation method to produce the glass is not a defining metric 

either, glasses can be produced from the traditional melt quench method, or more modern 

sol-gel [106–108] or vapour deposition methods [109]. Glass has been the driving 

technology for vital research in many disciplines, including biology (microscope lenses), 

chemistry (glassware), and astronomy (telescope lenses).  

Modern life would not be possible without glass, from communications in the form of fibre 

optic cables [110] and mobile phone screens, to insulation (fibreglass), to medical 

applications (bioglass and bone repair [111,112]) and to energy applications (radioactive 

waste immobilisation [113,114] or solar glass [54,115]). This has led some to postulate 

the modern world may be defined as the glass age [116] akin to the bronze age or space 

age. Glass has always had cultural significance, originally in the form of decorative beads 

from ancient Egypt [117] to renaissance cathedrals stained glass displays [118,119]. 
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Glass art continues to the modern era with artists such as Patchen and Chihuly, as well 

as books published on the topic [120]. Modern architecture would not be possible without 

glass; the unique combination of properties glass provides, results in contemporary 

buildings having large glass facades. Notable examples include the botanical garden of 

Curitiba, Brazil and 30 St. Mary Axe (the Gherkin), England. 

2.2.2 Structure of Glass 

In crystalline solids, atoms have a highly ordered structure with the bond angle and bond 

lengths at specific lengths dependent on the material, and this short-range order extends 

in all planes of direction. Discrete repeatable units of the crystal are called the unit cell, 

and these unit cells allow for Bragg diffraction. There are two defining characteristics of a 

glass: no glass has long-range periodic order (i.e. glasses are amorphous according to 

their X-ray diffraction patterns). In addition, all glasses exhibit a time dependent glass 

transition temperature (Tg) which is determined by a reversible transition from a brittle 

‘glassy’ state to a viscous or ‘rubbery’ state as the temperature is increased. Glasses are 

thermodynamically unstable and will, in infinite time, revert to a crystalline form. A glass 

is not a true solid due to its thermodynamic instability: a substance in a true solid state 

has an atomic configuration that is time independent. Glasses do not retain their shape 

and will spontaneously start to relax, for soda lime silica glasses (Tg ~ 550°C) relax over 

geological time scales [121], whereas some organic glasses (Tg ~ 20-50°C) relax within 

hours [105]. The rate of flow of soda lime silica type glasses is in the order of 0.1 nm in 

1010 years [121]. 
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2.2.2.1 Silicate Glass – Vitreous Silica 

Early structural studies relied on studying vitreous silica as a model compound for 

glasses. The theory of Goldschmidt [122] stated that glasses are likely to form if the ionic 

radius of the cation in RnOm is within the range 0.2-0.4, as this tends to form tetrahedral 

motifs. However, this theory failed to state why the tetrahedral configuration was 

favourable for glass formation and it was purely empirical. Following this, Zachariasen 

wrote a paper explaining why certain coordination numbers favour glass formation 

behaviour [123]. In this paper, it is stated that silicate crystals readily form glasses instead 

of devitrifying after a melt-quench process, and thus forming a three dimensional network. 

This network consists of tetrahedra connected at all four corners, with the bond length 

essentially the same as in the corresponding SiO2 crystal, but the bond angle varying as 

shown in Figure 12. 

Figure 13 shows a scanning tunnelling micrograph (STM) of a film of silica displaying both 

vitreous and crystalline phases, experimentally displaying Figure 12. Zachariasen also 

stated that no oxygen atom can be linked to more than two cations, and all tetrahedra are 

corner sharing and not face or edge sharing. This theory has been widely accepted and 

is known as the random network theory. The four rules derived by Zachariasen, for a 

compound of formula AmOn, wherein A is a cation and O is an oxygen, are: 

• An oxygen atom is linked to no more than two glass forming atoms of A 

• The coordination number of the glass forming atoms is small, either 3 or 4 

• The oxygen polyhedra share corners with each other, and do not share edges or 

faces 

• At least three corners are shared 
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It therefore follows that the oxides of formulas A2O and AO do not satisfy any of the rules. 

Oxides A2O3 (e.g. B2O3) satisfy the rules providing the oxygen atoms form triangles 

around each central A atom. For AO2 (e.g. SiO2) and A2O5 (e.g. P2O5) type oxides the 

rules are satisfied if the oxygen atoms form tetrahedra around each A atom.  

 

 

 

 

 

 

 

 

Figure 12 Schematic structures of crystalline and amorphous silica, note the fourth Si-O 
bond is above the silicon atom. Black circle – Si, White circle – O. [124] 

 

Figure 13 STM image of a silica film, with crystalline (left) and vitreous (right) phases 
observed [125] 
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While the lack of long-range periodic order appears to preclude the idea that glasses have 

a definite structure, it is the short to medium range order which gives rise to the 

macroscopic properties. 

The coordination number of cations within the vitreous network determines how the 

‘building blocks’ or structural motifs will arrange, i.e. into tetrahedra, triangles, octahedra. 

These structural motifs exhibit order within the range of several atoms [126]. The 

coordination number (CN) of the cations within a glass structure determine whether they 

are network formers (CN=3 or 4) such as Si, B, P, Ge, As, Be, or network modifiers 

(CN≥6) which reduce the connectivity of the network, such as Na, K, Ca or Ba. There also 

exists a subset of intermediate cations which, depending on their CN, either reinforce the 

network (CN=4) or loosen the network (CN≥6) but cannot readily form a glass alone 

[123,124]. The ways in which the individual structural motifs are connected together 

induce randomness into the network by variation of the bond angles and bond rotation. 

These structural motifs can be determined through Fourier Transform Infrared (FT-IR) 

and Raman spectroscopies [126,127]. 

2.2.2.2 Alkali - Silicate Glass 

Due to the prohibitively high temperature required to melt pure silica (2200°C), fluxes and 

modifiers are added to reduce the melting temperature to more accessible temperatures. 

These additions modulate the properties (chemical durability, colour, viscosity, and 

mechanical properties amongst others). In order to reduce the melting temperature 

sodium oxide (Na2O) is added: this gives a twofold change to the network. Firstly, it 
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reduces the connectivity of the glass network by introducing non-bridging oxygens 

(NBOs) as demonstrated in Figure 14, which significantly reduce the viscosity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Arrangement of ions in Na2O-SiO2 glass. Na2O ruptures oxygen bridges and 
the larger Na+ ions are located within the interstitial cavities [128] 

 

 

Figure 15 Qn tetrahedra in a silicate glass, grey = Si, red = O 
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NBOs reduce the connectivity of the silicate glass network, and thus reduce the viscosity. 

Through Raman spectroscopy, this reduction in connectivity can be quantified by 

measuring the Qn speciation [129]. Q4 refers to a SiO4 tetrahedra fully coordinated to four 

other SiO4 tetrahedra, and inversely Q0 indicates that the SiO4 tetrahedron is bonded to 

no other SiO4 tetrahedra, as shown in Figure 15. Determination of the concentration of 

each of the five possible Qn
 units can be used to characterise the connectivity of the 

network. The relative concentrations of each of the Qn
 structures are dependent on the 

concentration of the modifier ion, as shown in Figure 16 [130]. Between 0 and 15mol% of 

M2O (where M= alkali), Q4 tetrahedra are preponderant. Upon further addition of alkali 

oxide to 20-40%, the Q4 concentration decreases while Q3 concentration increases to a 

maximum at ca. 32% alkali oxide. Q1 and Q2 conformations become dominant towards 

50+% concentration of M2O.  

Figure 16 Effect of R2O concentration on the relative concentration of Qn units in R2O-
SiO2 glasses  
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Greaves proposed a modified random network model (MRN) [131] suggesting in an alkali 

silica glass, the overall structure is composed of two interlocking sublattices. One is 

comprised of network formers (i.e. SiO2) and the other is inter-network regions or 

percolation channels, consisting of network modifiers (i.e. Na2O). This is demonstrated 

schematically in Figure 17. Structures shown in Figure 17 occur when the volume fraction 

of the modifier oxide ≥16%. Ionic transport is more readily supported by the percolation 

channels as the activation energy decreases with increasing modifier content. At low 

concentrations of modifier oxide the ratio between self-diffusion and ionic conductivity (i.e. 

correlation factor, f) is not associated. Upon increasing the modifier concentration ≥16%, 

the correlation factor plateaus at a value close to one. This has been calculated and 

measured experimentally [131,132]. 

 

Figure 17 MRN schematic of a 2-dimensional oxide glass. Covalent bonds are shown 
by the solid lines and ionic bonds are given in dashed lines. The shaded regions 
represent disclinations (line defects) which pass through the non-bridging bonds. The 
percolation channels of the modifier are shown with a white background [131] 
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2.2.2.3 Alkali – Alkaline Earth -Silicate Glass 

In order to improve the chemical durability whilst maintaining a technologically available 

melting temperature ternary silicate glasses (R2O-RO-SiO2) are made. Soda lime silica 

glasses constitute the majority of technological and commercial glasses. Of the order of 

95% of commercial glass production is oxide based glasses, with the majority silica based 

[133]. Generally, the composition for soda lime silica glasses falls within the ranges 10-

20mol% Na2O, 5-15mol% CaO and 70-75mol% SiO2, and other minor additives modulate 

the optical, chemical and mechanical properties. These additives are strongly affected by 

the soda lime silica network and it is therefore imperative to understand the topology of a 

soda lime silica glass before the structure is further convoluted upon the addition of other 

components. 

As shown in Figure 18 every R2+ ion must be connected to two NBOs to balance the local 

charge. This provides a stronger linkage than the corresponding R+ ion, and R2+ cations 

are thus bonded more strongly into the network and are relatively immobile. Replacement 

of the more mobile R+ ions by less mobile R2+ ions reduces the overall mobility of the 

Figure 18 Schematic of 2-dimensional structure for soda lime silica type glass. Note a 
fourth oxygen atom would be located above each silicon atom in the 3-dimensional 
structure [147] 
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network and hence improves the chemical durability significantly, whilst also contributing 

to decreasing the viscosity of the molten glass.  

2.2.2.4 Hydration and Dissolution of SLS glass 

The long-term chemical durability of soda lime silica glasses is determined by the rate of 

exchange and interdiffusion of alkali ions with protonic, generally hydronium ions H3O+, 

species from water. Dissolution behaviour is dependent on both the composition of the 

glass and the solution in which it resides. Five types of dissolution behaviour were 

observed by Hench and Clark [134] , type 1 corresponds to inert glasses in a neutral pH 

solution where there is a very thin (ca. 5 nm) surface hydration layer, this occurs in pure 

silica in deionised neutral water. Type 2 corresponds to durable glasses which form a 

diffusion limited hydrated layer in the order of 10 nm to circa 500 nm, which occurs in low 

alkali silicate glasses in pH < 9 solutions. Type 3 is the same as type 2 in the hydration 

layer and conditions but is distinguished by an additional layer of secondary phases that 

are redeposited onto the hydration layer. Type 4 corresponds to glasses with a high alkali 

content in which the hydration layer is not diffusion limited and leads to further dissolution. 

Type 5 is characterised by complete dissolution and observed in high pH solutions >10.  

The long term performance of glass products depends on the chemical resistance, the 

importance of chemical durability is shown by four ISO tests [135–138]. Glasses may 

exhibit strong chemical resistance to one of these tests but be susceptible to corrosion 

from another.  

In glasses containing highly mobile ions, notably alkali ions, ionic exchange between 

those R+ and acidic water (H3O+) can occur. This is the initial step in the dissolution of 

sodium silicate glasses [139]. The process is diffusion controlled so the depth of 



69 
 

penetration of hydronium ions into the glass increases with the square root of exposure 

to the solution. This ion exchange process is predominant initially but becomes self-

limiting at increasing hydration thicknesses [140].  

As congruent dissolution occurs at a constant rate, while ion exchange processes are 

proportional to the square root of time, the congruent dissolution process will begin to 

dominate over longer periods [141].  

 

Figure 19 Glass dissolution as a function of pH [142] 

The solution conditions affect the rate of dissolution greatly [143]. Factors which favour 

dissolution include a very large surface area, the solution is replenished constantly (or the 

volume is infinite), the solution is dilute in dissolved ions, and the pH remains constant at 

either extreme of the pH scale i.e. greater than 9 or lower than 3 as shown in Figure 19 

[142]. At the extremes of pH the Si-O bonds are affected directly resulting in differences 

in durability becoming negligible. Even the addition of alumina, which typically improves 

chemical durability, in strongly acidic solutions the Al-O bonds are broken leading to rapid 

dissolution of the network [140]. While beyond the scope of this work, glasses with phase 
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separation may exhibit different chemical durabilities with different orders of magnitude 

[144]. 

 

2.2.2.5 Minor Additives for SLS glass 

2.2.2.5.1 Al3+ 

In oxide crystals, aluminium ions are found in both tetrahedral and octahedral 

coordination [145,146]. In SLS type glasses the aluminium ions occur in aluminium-

oxygen tetrahedra almost exclusively, providing the R+ and R2+ content is eqimolar or in 

excess [147]. This is required for two reasons; firstly as Al2O3 provides only 1.5 oxygen 

atoms per aluminium atom, the oxygen provided by the R+ or R2+ oxides is needed to 

complete the two oxygen atoms per tetrahedra (giving Q4 speciation) [148]. Since the 

oxygen atom supplied by the R+ or R2+ is utilised as a bridging oxygen upon the addition 

of aluminium ions, it cannot be a NBO. Hence, for every one atom of aluminium one NBO 

is removed from the network, increasing network connectivity and chemical durability 

[149,150]. The second reason the R+ and R2+ ions need to be in excess for tetrahedral 

Al3+ ions to occur is to balance the local charge, as the effective charge for the AlO2
 

tetrahedra is -1 distributed over the anion which is balanced by either one R+ or two R2+ 

cations, demonstrated in Equation 2.  

[𝐴𝑙𝑂2]− + 𝑅+  ∝  2[𝐴𝑙𝑂2]− + 𝑅2+ 

 

Equation 2 Local charge balances of aluminium-oxygen tetrahedra 
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2.2.2.5.2 Mg2+ 

In aluminosilicate glasses modified by R2+ ions, Ca2+ and Mg2+ confer different local 

environments. Mg2+ has a smaller ionic radius than Ca2+, and the coordination number of 

Ca2+ is generally six-fold or seven-fold [151,152], whereas the coordination number of 

Mg2+ has been reported as being four, five or six-fold [153,154]. This suggests that Mg2+ 

may act as a classical network modifier or a network former. Mg2+ allows for the formation 

of more Al-O-Al bonds relative to Ca2+ in aluminosilicate glasses [155].  

 

2.2.2.5.3 K+ 

Potassium has been used as a glassmaking reagent since at least 1000AD [119], 

primarily in the form of wood ash. The raw materials in the production of wood ash glasses 

contained a higher amount of Fe2O3 and MnO, the resultant glasses were a deep green 

– blue colour [156].  

Potassium oxide is used as a flux in the same manner as sodium oxide, to lower the 

viscosity of the main glass former. As K+ has a lower field strength than Na+, the viscosity 

is higher with the same molar amount [157]. Recently the glass industry has utilised 

potassium to chemically strengthen the surfaces of glass and induce a stress profile [158]. 

See section 2.2.3.3.1.  

2.2.2.5.3.1 Mixed Alkali Effect 

In glasses, containing two different alkali ions the diffusivity of either component is orders 

of magnitude greater than in the corresponding glass with either of the alkali ions 

[159,160]. This is termed the mixed alkali effect. The mixed alkali effect decreases the 
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temperature at which viscosity is equal to 1012 Pa.S, the annealing temperature as shown 

by Figure 20. See section 2.2.3.1.2 for viscosity fixed points.  

 

Figure 20 Viscosity at 1012Pa.S at constant alkali molar concentration [161] 

 

2.2.2.6 Non-Negligible Components of Soda Lime Silica Glasses 

Since glass is used to transmit visible light into buildings, to transmit light through a PV 

module cover glass and to transmit photons through optical fibres, the colour of 

commercial glass is of great importance, with a great deal of research undertaken to fully 

understand the chromophores present in silicate glasses [61,78,162–164]. The main two 

chromophores present in soda lime silica glasses are iron and titanium; 
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2.2.2.6.1 Fe2O3 

In all commercial glasses Fe2O3 is present, either as a deliberate addition or as an 

impurity, particularly from the silica source [165]. Iron is usually present in glass in the 

oxidation states Fe2+ and Fe3+, with raw materials and melting conditions strongly 

affecting the Fe2+/Fe3+ redox ratio [163]. The content, redox ratio and environment of iron 

in the glass matrix can modulate the optical absorption in the UV, visible and IR regions 

[57,166].  

 

2.2.2.6.2 TiO2 

TiO2 is another polyvalent ion found in commercial glasses, with effects in the UV and 

visible regions [167]. Ti4+ in silicate glasses shifts the UV absorption edge towards the 

visible region due to the absorption of 2p orbitals from O2- ions to the d0 metal ion, inducing 

a fluorescence effect [74,78]. In the Ti3+ oxidation state an optical absorption around 

20,000 cm-1 (500 nm) occurs due to the 2T2g
-2Eg transition of the 3d electron [167].  

2.2.2.6.3 Na2SO4 

The addition of Na2SO4 has several pronounced effects on glass production; it is both a 

source of Na2O and SO3
2- in the glass. It promotes the formation of low melting eutectic 

liquids during the silicate formation portion of the melt [168]. Primarily the addition of 

sodium sulphate to the melt is to aid in refining, through the decomposition at high 

temperatures forming large bubbles aiding the removal of seed, and due to the release 

of oxygen at high temperatures it is an oxidising agent [169]. 
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Refining agents are used in a glass melt to aid homogenisation through the release of 

large quantities of gas release. The large volume of gas has a two-fold benefit; firstly, the 

large bubbles rise faster than the small entrapped bubbles. This process is characterised 

by Stokes’ law of rising bubbles through a viscous medium, following Equation 3. 

𝐹𝑑 = 6𝜋𝜂𝑅𝑣 

Equation 3 Stokes' law on the force of viscosity on a small sphere moving through a 

viscous medium 

Where; Fd = frictional force, η = dynamic viscosity, R = radius of sphere, v = flow velocity 

relative to the moving object 

Utilising Equation 3 it follows there are two methods to increase the speed of the 

entrapped bubbles to rise to the surface, increase the radius of the bubble or to lower 

viscosity. Common refining agents include potassium and sodium nitrates, sodium 

chloride, fluorides of calcium and sodium and sodium sulfate (Na2SO4) [164]. Historically 

oxides of arsenic and antimony were used to aid in bubble removal.  

2.2.2.7 Commercial Compositions of Soda Lime Silica Glasses 

Glasses that attenuate UV light and have high transmission in the visible are used for PV 

modules [60]. Critically the composition must fulfil several criteria; high chemical 

resistance, good mechanical properties, high transmission in the visible and NIR and 

strong attenuation in the UV [27]. The ranges of compositions are outlined in Table 3. 

Selection of low iron oxide raw materials is crucial. Commercial soda lime silica glasses 

are melted at temperatures of between 1450°C to 1550°C [27]. Resultant glasses are 

frequently tempered to increase the strength and to reduce risk of serious injury [170].  
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Table 3 Typical compositional ranges of PV solar glasses [171,172] 

 

2.2.3 Chemistry and Physics of Glass Processing 

2.2.3.1 Mechanisms of Glass Melting 

Specific details regarding the mechanisms of melting are dependent upon the specific 

batch materials and the type of glass produced. For silica based glasses, especially the 

formation of soda-lime-silica glasses, far more information is available in the literature 

about specific melt processes [124,173]. The major mechanisms in soda lime silica glass 

melts are: 

• Release of adsorbed water around 100°C. Generally, raw oxides and carbonates 

have been dried before melting in a furnace to obtain a reliable weight. However, 

some components are hygroscopic (CaO or NaOH) or contain water in their 

crystalline structure and to remove the water from these components requires 

extra energy input.  

• Release of volatile gases and combustion of organic compounds between 200-

600°C [174]. Carbonates also begin to decompose leading to large volumes of 

CO2, for one mole of CaCO3 22,400 cm3 of CO2 gas is released, a volume 

expansion of around 600 times.  

• Solid-state reactions occur between components leading to binary or ternary 

systems. This leads on to the eutectic melting of Na2O and CaO at 775°C and 

Oxide Molar % 

SiO2 70-74 

Na2O 12-16 

CaO 5-11 

MgO 1-3 

Al2O3 1-3 
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sodium disilicate and SiO2 at 800°C. Solid state reactions begin to occur over this 

temperature range. The viscosity is low at this point and the rate of dissolution of 

silica and alumina rapidly increases with increasing temperature. As the 

concentration of silica increases in the liquid phase, the viscosity increases, 

resulting in the required high temperatures to aid in refining.  

At high temperatures, fining processes lead to homogenisation of the glass melt where it 

is subsequently processed. 

2.2.3.1.1 Commercial Glass Melting Procedure 

Float glass manufacture, or the Pilkington process as named after the inventor, produces 

parallel flat glass sheets by floating molten soda lime silica glass on a molten tin bath. 

Although some speciality borosilicate glasses such as Borofloat® by Schott are prepared 

through this method, the majority of commercial production corresponds to the soda lime 

silica family of glasses. In 2009 annual flat glass production globally was 52 million 

tonnes, worth globally £20 billion [175].  

 

Figure 21 Schematic of float glass furnace, float bath, and lehr 

 

Figure 21 shows a typical float glass 250 tonne per day float glass furnace. Batch input 

corresponds to the pre-mixed composition of soda lime silica with minor additives and 
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cullet. The mixture enters the melting furnace with a batch charger, the rate of which is 

determined by the output and retention time of the furnace. The melting furnace is typically 

between 1450°C and 1575°C depending on composition [27], desired redox of any 

constituents and throughput. Typically these are heated through natural gas or oxy-gas, 

a mixture of hydrogen and oxygen which burns cleaner and hotter [176]. To induce 

thermal convection currents heating electrodes are frequently used, these are electrically 

powered and assist in homogenisation of the melt [177].  

The furnace is lined with refractory material to withstand the temperature and 

atmosphere, in the hot end of the furnace thermal regenerators are frequently used to 

recapture flue exhaust heat [178]. Within the flue are chemical scrubbers to remove SOx, 

NOx and fine particulates which are tightly controlled by EU legislation.  

After homogenisation the molten glass flows into a molten tin bath via a spout. The 

atmosphere is controlled with N2 and H2 under positive pressure to minimise oxidation of 

the tin. Tin diffuses into the glass and oxidises, this can be revealed through reflectivity, 

fluorescence and ellipsometry measurements [179]. The temperature of the tin is circa 

600°C, the viscosity of the glass rapidly increases within this section. At the input the 

glass is generally 1200°C, and is cooled to above Tg by the end of the float process [180].  

The viscosity is sufficiently high to not deform under the weight of the glass, i.e. the 

Littleton softening point, as it enters the annealing lehr [181], see section 2.2.3.1.2. Over 

the distance of the lehr the temperature is gradually reduced to remove thermal stresses 

within the glass where it is subsequently cut and prepared for transport. Within the lehr, 

coatings can be applied to enhance optical and mechanical properties.  Until this portion 
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the process is referred to as the hot end, and any subsequent post melt and cooling are 

termed the cold end such as applying labels and cutting.  

 

2.2.3.1.2 Typical Viscosity Curve 

In commercial processes, there are four standard viscosity points that must be controlled, 

and which are essential to ensure a high throughput of glass. These points are shown in 

a typical viscosity curve in Figure 22 [147] and are as follows: 

• Working point – 103 Pa.s 

• Littleton softening point – 106.65 Pa.s 

• Annealing point – 1012 Pa.s 

• Strain point – 1013.5 Pa.s 

Figure 22 Typical viscosity curve as a function of temperature for a soda lime silica melt 
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After the melting temperature (of 1-10 Pa.s to aid in refining and homogeneity), the glass 

is delivered to a machine to be worked, generally a float or bottle forming section, hence 

the working point. This viscosity allows for the formation of shapes under reasonable and 

technological stresses but the glass must be supported until below the Littleton softening 

point. This point is characterised as the temperature which the top 10 cm of a glass fibre 

of between 0.55-0.75 mm diameter and 23.5 cm length is heated in a furnace at 5°C      

min-1 begins to elongate under its own weight at a rate of 1 mm min-1 [181]. Note, the 

viscosity of 106.65 Pa.s only refers to the specific glass which was originally tested by 

Littleton; if the density of another glass is different the softening point will vary from 106.65 

Pa.s.  

Viscosity is a measure of the resistance of a liquid to shear deformation, given by 

Equation 4, where viscosity (η) is defined by the force applied (F) between two parallel 

sheets of (d) distance, divided by the area (A) of those plates and the relative velocity (v) 

of the two plates.  

𝜂 =
𝐹𝑑

𝐴𝑣
 

Equation 4 

Glasses most readily form either if the viscosity is high at the melting temperature, or if 

viscosity increases rapidly upon cooling from the melt to the solid. Both of these high 

viscosity situations impede the crystallisation of the melt as atomic rearrangement is 

significantly reduced in a high viscosity liquid. The annealing point is generally defined as 

‘the temperature at which a glass would release 95% of its stresses within 15 minutes’ 

and the strain point ‘the stress release[s] over 6 hours’ [133].  
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2.2.3.2 Crystallisation of Glass 

While all glasses will crystallise over a long enough time frame, ‘[the] ultimate fate, in the 

limit of infinite time, is to crystallise’ [105], uncontrolled bulk crystallisation tends to 

produce poorly-performing glass-ceramics, as the devitrification process occurs at 

random times and locations [182]. However, upon addition of a suitable nucleating agent 

such as TiO2 [183], ZrO2, halides [184], phosphates [185], or Ag2O [186], the nucleation 

and subsequent crystallisation occurs at a particular time and location within the network 

and under the right conditions, allowing careful control of the subsequent glass-ceramic.  

 

Figure 23 Time - Temperature schematic for the production of glass ceramics 

There are several critical steps to produce a suitable glass-ceramic, as shown in Figure 

23. The raw materials are melted until a homogeneous liquid is formed, and then cooled 

and formed into the desired morphology below Tg. The glass must be annealed to remove 

thermal stresses before reheating to T1 or above. This is the minimum temperature for 

(technologically feasible) devitrification, and produces large numbers of small crystallites. 

T2 corresponds to the temperature in which growth of the crystallites is at a maximum, 
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and must be below the liquidus temperature. After the appropriate time the glass-ceramic 

is slowly cooled to room temperature to remove thermal stresses.  

Crystallisation of glasses have been extensively researched and developed since 

Stookey first proposed glass-ceramics in 1959 [187], leading to novel hybrids overcoming 

classical drawbacks of glasses. Glasses are readily formed into a multitude of shapes 

and structures, and the subsequent glass-ceramics have zero porosity. Glass-ceramics 

have interesting properties that are difficult to achieve with either component. The 

mechanical [188,189], optical [184,190–192] and electrical [193] properties can be 

dramatically improved upon partial crystallisation. 

 

2.2.3.3 Mechanical Properties of Glass 

Fracture strengths of glasses are generally far lower than the maximal theoretical 

strength. Various environmental and surface flaws give rise to a large variation in fracture 

strengths, and hence fracture strength can only be described as a distribution function. 

The stress required to form two new surfaces is given by Equation 5. 

𝜎𝑚 = √
𝐸𝛾

𝑟0
 

Equation 5 

Where σm is the Orowan stress, E is Young’s modulus, γ is the fracture surface energy 

and r0 is the interatomic distance. The terms in Equation 5 are generally independent of 

glass composition, resulting in all glasses having a fracture strength within the range of 

1-100 GPa. Equation 5 allows for calculation of breaking of individual chemical bonds, 

and does not allow for surface flaws acting as stress concentrators. The typical practical 
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fracture strength is around 7-32 MPa for silicate glasses [67]. During manufacture, 

transport and use of glass products flaws in the surface develop, which act as stress 

concentrators increasing the local stress to levels higher than the theoretical level and 

hence causing a fracture. In practical terms, glasses with a higher scratch resistance will 

have a higher strength (all else being equal) due to the ability to resist the build-up of 

flaws. However, flaws can occur not just from mechanical actions but also from chemical 

attack, such as hydration of the surface [141], or from thermal actions. Rapid heating and 

cooling of glasses reduce the strength of glasses due to the outside of the material being 

heated faster than the inside, inducing stress due to thermal expansion. 

2.2.3.3.1 Strengthening of Glass 

Other than producing a pristine glass with near zero surface flaws [67], there are two main 

methods to increase the strength of glass; both methods rely on the same principle of 

inducing surface compression and internal tension. Introducing a stress gradient 

according to Figure 24, allows the surface of the glass to resist scratches and fractures 

[194]. Typical thermal toughening occurs due to rapid air quenching of glass from above 

to below its Tg. The surfaces solidify rapidly while the core remains in a relaxed fluid state, 

upon further cooling the surfaces cannot shrink further while the core shrinks slightly 

building in the compressive and tensile stresses and balancing the stress distribution.  
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Figure 24 Schematic of residual stress profiles in A) thermally and B) chemically 
tempered glasses as a function of depth 

Chemical toughening occurs through an ion exchange process wherein a larger ionic 

radius ion replaces a smaller, more mobile ion, usually between alkali ions [195], however 

various sulphur oxides can also be used to induce stress [196]. Due to the larger, less 

mobile ion becoming embedded within the network at the surfaces of the glass, a 

compressive stress layer is built in with greater control over the thickness and with a 

higher total stress [197]. Fracture toughness of a glass can be controlled through 

composition, with larger, less mobile alkaline earth ions increasing fracture toughness 

[198], and between 5-15 vol% Al2O3 content in SLS glasses fracture toughness increases 

[117]. Typical silicate glasses have a fracture toughness of between 0.6 – 0.8 MPa.m1/2 

[199].  

2.2.4 Optical Properties of Glass 

Soda lime silica glasses have a unique combination of properties that make their use 

widespread: perhaps the most important are their optical properties. The ability to transmit 

visible light allows for illumination of homes and PV modules while the chemical inertness 

protects from the elements.  
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The optical properties of glasses may be divided into four categories: (i) bulk properties 

that refer to refractive index, scattering and optical dispersion; (ii) absorption properties 

refer to the colour of the glass, UV Vis and IR absorption profiles, colloidal dispersion 

amongst others; (iii) surface properties including reflection; and (iv) other properties such 

as photochromism, Faraday rotation of light and luminescence [133]. 

Silicate glasses are one of the few commonly available materials that allow the 

transmission of visible light. The optical properties of glass allow communication through 

optical fibres [200], the refractive index and transmission allows for optical instruments 

and enhanced solar PV modules [95] and the aesthetics of the material are useful for 

architecture and glassware. The colour of glass have been studied for many years by 

technologists understanding chromophores particularly iron and other transition metals 

[201]. Stained glass has been produced for over 1000 years, due to its aesthetics, for 

mosques, cathedrals and other buildings of cultural importance.  

There are many other optical characteristics that change the properties of the glass such 

as luminescence, scattering, photochromism and opalescence. In the 1959 book 

‘Coloured glasses’ by Woldemar A. Weyl [202], while a few of the theories outlined have 

been modified since his book was written, the main bulk of the work is still crucial to the 

modern glass scientist. 

2.2.4.1 Basics of Light 

As outlined in section 2.1.1, the wavelength ranges outlined in this study are defined as 

ultraviolet (UV) have been defined as the wavelengths corresponding to 50000 cm-1–

26000 cm-1 (200 nm-380 nm), visible photons corresponding to 26001 cm-1–12800 cm-1 

(380 nm–780 nm), and infrared (IR) as 12801 cm-1–3300 cm-1 (780 nm–3000 nm). This 
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is outlined in Figure 25; the UV VIS IR range is a narrow band of the total electromagnetic 

spectrum. 

 

Figure 25 Electromagnetic spectrum. Public domain image from Louis E. Keiner via 
Wikipedia Creative Commons 

Electromagnetic waves transport energy through a vacuum at 2.997x108 m s-1 (notated 

by the symbol C). As light passes through a medium the wave is absorbed by the atoms 

in the material, the electrons undergo non-resonant vibration and then emit the wave. 

This process is repeated multiple times throughout the material, ultimately slowing the 

propagation of the wave.  

The reduction in speed at an interface leads to a refraction of the wave. A vacuum, by 

definition, has a refractive index of 1, air at STP has an Rf=1.00023, and SLS type glass 

has an Rf=1.502-1.557 depending on composition and treatment [58]. Refractive indices 

are not constant and vary with wavelength: shorter wavelengths are deviated more 
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strongly than longer wavelengths, following the derivation given in Equations 6-10, and 

shown in Figure 26. 

 

Figure 26 Variation of refractive index by wavelength for soda lime silica glass (data 
from [58] and smoothed) 

 

𝑅𝑓 =
𝐶

𝑣
 

Equation 6  

Velocity can be defined as; 

𝑣 = 𝜆. 𝑓 

Equation 7 

Substitution into Equation 6 gives; 

𝑅𝑓 =
𝜆𝑚𝑒𝑑𝑖𝑢𝑚1. 𝑓

𝜆𝑚𝑒𝑑𝑖𝑢𝑚2. 𝑓
 

Equation 8 
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The frequency term cancels leaving; 

𝑅𝑓 =
𝜆𝑚𝑒𝑑𝑖𝑢𝑚1

𝜆𝑚𝑒𝑑𝑖𝑢𝑚2
 

Equation 9 

Therefore,  

𝑅𝑓 ∝
1

𝜆
 

Equation 10 

 

2.2.4.1.1 Refraction 

Transmission of light from the air to glass to air interfaces leads to two changes of 

refractive index, as demonstrated schematically by Figure 27.  

 

Figure 27 Schematic of refraction and transmission of light 

The refractive index is dependent on the photons’ interaction with the electrons from the 

atoms forming the glass. Increases in either the electron density or polarisability of the 

ions lead to an increase in the refractive index. Glasses with heavy ions such as Pb or Bi 

have higher refractive indices, generally around 2.0 [203,204]. Lead crystal glassware 
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has been produced for centuries for its brilliance; this is partially attributed to the high 

refractive index of 24wt% PbO glasses. Anionic contributions such as F- lower the 

refractive index. The proportion of non-bridging oxygens (NBOs) to bridging oxygens 

(BOs) modulates the refractive index as NBOs are more polarisable, leading to higher 

refractive indices.  

2.2.4.1.2 Reflection 

Reflection is a change in direction of a photon as it passes through one medium to the 

surface of a second medium. In glasses, the electric field of the photon interacts with the 

electrons within the glass, which in turn reradiate the light outward. In the context of solar 

PV modules, this occurs at several points and must be minimised at each surface, not 

only for better conversion efficiency but also for air navigation requirements. In fixed PV 

systems up to 20% of the available photons are lost through reflection per day [43]. 

Antireflective coatings are frequently applied to glasses which reduce the reflective losses 

to below 7% in 1986 [205], and have recently been demonstrated to reduce them to below 

5% losses, with the additional benefit of having self-cleaning properties [62,206].  

Antireflective coatings work most effectively at a particular wavelength, and cause greater 

refraction for photons of other wavelengths. Antireflective coatings on glass can increase 

the transmission to above 98% over the visible range. However, long term stability of the 

coatings is highly dependent upon the initial surface conditions and is most effective over 

a narrow wavelength range [63].  

At any interface with a difference in refractive index, refraction occurs. In photovoltaic 

modules efficiency can be increased through a refractive index matching of the EVA and 
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glass front sheet layers, additionally when combined with a luminescence downshifting 

layer [207]. 

 

2.2.4.1.3 Charge Transfer Bands 

Silicate glasses have strong absorption of photons in the ultraviolet region; this absorption 

is termed the ultraviolet edge. The ultraviolet edge is caused by a photon exciting a 

valence electron of an anion (e.g. O2-) to an excited state. NBOs lower the energy required 

for this excitation process to occur, hence the addition of modifiers (Na+, Ca2+ etc.) shift 

the ultraviolet edge towards the visible region.  

Due to impurities such as iron and titanium, arising from the raw materials and 

refractories, the inherent ultraviolet edge is infrequently measured. Strong absorption 

bands occur in Fe3+/2+ and Ti4+ in silicate glasses due to an oxygen metal transfer band 

[56,78] from the cation to a network anion. The intensity of these bands is so great as to 

effectively shift the ultraviolet edge towards the visible.  

A charge transfer band is a change in the electron distribution between a metal and ligand. 

There are two types, which are defined by the direction of electron transfer; 

2.2.4.1.3.1 Ligand to Metal Charge Transfer Bands 

Ligand to metal charge transfer (LMCT) bands involve the transfer of electron(s) from an 

orbital of a ligand, to the orbital of a metal. This is favoured where the ligand has high-

energy lone pairs (e.g. O2-) and the metal is in a high oxidation state (e.g. d0 metals) as 

the acceptor level is low in energy. Metal ions that are more readily reduced tend to have 

lower energy transitions. 
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2.2.4.1.3.2 Metal to Ligand Charge Transfer Bands 

Inverse to LMCT, metal to ligand charge (MLCT) transfer bands involve the transfer of 

electron(s) from the orbital of a metal, to the orbital of a ligand. This is favoured with low 

energy π* orbitals in aromatic ligands, and if the metal has a low oxidation number.   

2.2.4.1.3.3 Transition Metal and Lanthanides Charge Transfer Bands 

Particular transition metal ions such as Fe2+/3+ [208], Cr5+/6+ [209] and lanthanide ions, 

notably Ce3+/4+ [210], absorb strongly in the UV region and their presence in the cover 

glass will thereby confer protection to polymeric species beneath. However, all of these 

metal ions in glass produce strong visible absorption. Cerium oxide has been used as a 

model UV absorbing agent for the protection of polymers in PV modules [28], however 

CeO2 solarises over time, resulting in less effective protection over time [211].   

2.2.4.1.4 Luminescence 

Fluorescence, downconversion and upconversion are types of luminescence with subtle 

differences. Fluorescence (sometimes referred as downshifting) involves the absorption 

of one photon and the emission of up to one photon, after losses of non-radiative decay 

mechanisms. Downconversion (DC) processes involve the absorption of one photon and 

the emission of more than one photon of lower energy. Upconversion (UC) processes 

involve absorption of multiple photons (at least two) and release of a photon of higher 

energy. These three variations of luminescence are schematically shown in Figure 28. 

Luminescence in silicate glasses can allow a PV module to access a wider range of 

photons available for conversion to electricity. All solar cells have a range of photons 

which are able to be absorbed and converted to electricity, c-Si PV modules absorb 

according to Figure 29, note this follows the solar spectrum as shown in Figure 1. 
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Figure 28 Schematic of absorption and emission processes of photoluminescence (PL), 
downconversion (DC) and upconversion (UC) [2] 

 

Figure 29 Potential gain of up and downconversion processes for a Si-PV module. 
Figure considers no other losses than spectral mismatch. DC – downconversion, UC – 
upconversion. Copied from [212] 

Downconversion processes (including fluorescence) can lead to a theoretical efficiency 

increase in a c-Si solar module of up-to 36.5% [213], upconversion processes can lead 

to a theoretical efficiency of 37.0% [214].  

There are two forms of light emission, blackbody radiation and luminescence. Blackbody 

radiation was briefly discussed in section 2.1.1, the various forms of luminescence and 
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their mechanisms will be detailed here. The absorption and emission of light is quantised 

according to Equation 11; 

𝐸 = ℎ𝑣 =
ℎ𝑐

𝜆
 

Equation 11 

Where; v = frequency, c = speed of light, λ = wavelength and h = Planck constant. As the 

energy is proportional to the frequency there is a great variation over the electromagnetic 

spectrum (106 eV for gamma rays to 10-9 eV for radio waves). Within the scope of this 

thesis, luminescence discussion is limited to transitions induced by UV and visible 

photons (12eV – 1.6 eV), which involve the transitions of the outer atomic electrons. 

2.2.4.1.4.1 Absorption 

There are several possible outcomes after the initial absorption of a photon to dissipate 

the energy through phonon losses, decomposition, reactions, or by re-emission. The 

quantum efficiency (QE) factors all the mechanisms and details the statistical chance of 

photon emission and can never exceed 1 (or 100%) given by; 

𝑄𝐸 =
𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑑

𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 

 

At room temperature, most electrons are in the ground state (termed S0) in the lowest 

vibrational level. Absorption of a photon, of near or equal to the energy of the bandgap, 

induces an electron to be promoted to either the first (S1) or second (S2) excited state as 

demonstrated schematically in Figure 30. 
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Figure 30 Transitions leading to fluorescence absorption and emission spectra [215] 

The Jablonski diagram in Figure 30 shows the energy levels on the vertical axis, the bold 

lines represent the limit of a particular electronic transition, with the fine lines 

corresponding to vibrational levels, and between the bold and fine rotational levels can 

be represented. For clarity, not all lines are shown in Jablonski diagrams. Straight lines 

show the conversion between a photon and the energy of an electron, with curved or 

wavy lines representing non-radiative pathways.  

Absorption of a photon of a particular energy promotes an electron from the ground state 

(this is usually the case as statistically most electrons occupy a low-lying energy state at 

room temperature). The absorption process is in the order of 10-15 seconds (1 

femtosecond).  
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 2.2.4.1.4.2 Excitation 

Excitation can induce an electron into any of the vibrational energy levels associated with 

each electronic state. Although the energy is quantised, and the resultant absorption and 

emission bands should therefore be very narrow, this is rarely observed except in 

molecules that are rotationally inhibited such as planar configurations. In molecules with 

rotational freedom the number of potential absorption transitions is dramatically increased 

leading to broad absorption and emission bands (the resolution limits of the instrument 

does not allow these individual transitions to be detected individually).  

As the electron is in an excited state in one of the higher vibrational levels, the excess 

energy begins to dissipate through intermolecular collisions. This culminates in the 

electron residing in the lowest vibrational level of the excited electronic state (e.g. S1). 

From this state, the electron may return to any of the vibrational levels associated with 

the ground state (S0) with the remaining excess energy being released as a photon, i.e. 

fluorescence.  

There is one common transition in the excitation and emission spectra, from the lowest 

vibrational level in the ground state (S0) to the lowest vibrational state in the first excited 

state (S1). All other transitions require more energy to excite than to emit, i.e. other than 

the common transition, the emission spectrum will be of lower energy than the excitation 

spectra.  

2.2.4.1.4.3 Emission 

In an excited state energy can be dissipated in several ways, either through a radiative 

or non-radiative mechanism. Non-radiative decay occurs through vibrational relaxation, 

indicated by the wavy line in Figure 30, where the energy is shifted to the vibrational 
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modes within the molecule, or transferred to other molecules within the vicinity. This 

process occurs between 10-14 seconds (10 femtoseconds) and 10-11 seconds (10 

picoseconds). This non-radiative decay occurs through vibrational levels, and only rarely 

through electronic transitions. If there is overlap between the vibrational levels and 

electronic level, an internal conversion process may occur. Internal conversion processes 

have a higher probability of occurring in the higher energy regimes, i.e. S2, S3, as the 

vibrational and energy levels have greater overlap. Due to the large energy, difference 

between the first excited state and the ground state internal conversion is unlikely to occur 

between these two energy levels and is therefore a slower process. 

Radiative decay, the emission of a photon, or fluorescence occur in the order 10-9 

seconds (nanoseconds) to 10-7 seconds (100 nanoseconds). Emission most frequently 

occurs between the first energy level and the ground state. Radiative decay and non-

radiative decay are competitive processes, as the non-radiative decay mechanisms are 

orders of magnitude faster than radiative processes these tend to dominate at higher 

energy levels. Due to a large number of vibrational levels that can be coupled to the 

electronic levels, emission is distributed over a range of wavelengths.  

Upon the promotion of an electron to a higher excited state, the spin of the electron is 

preserved, as most molecules have an even number of electrons that are arranged in 

pairs of opposite spin. It is possible for the spin of the promoted electron to be reversed, 

resulting in the molecule having two electrons of the same spin in different orbitals. In 

such a state, the molecule may be in three states of slightly different energies, a triplet 

state. The spin quantum number is S = 1 and as such the three values of the spin 

component correspond to Ms = -1, 0, and 1. Similar to fluorescence, phosphorescence 
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results in the emission of a photon, but involves an intersystem crossing. The electron 

changes its spin state from an excited singlet to an excited triplet state. This is a slower 

process than fluorescence, in the order of 10-4 seconds (100 microseconds) to 102 

seconds. A schematic showing absorption, fluorescence, intersystem crossing and 

phosphorescence is shown in Figure 31.  

 

Figure 31 Jablonski diagram showing absorption, fluorescence, intersystem crossing, 
and phosphorescence 

In the triplet state, relaxation to the ground state is a forbidden process, through coupling 

of the vibrational modes into the selection rules, the transition becomes weakly allowed. 

Intersystem crossing events are reversible and can lead to delayed fluorescence. 

Phosphorescence leads to lower energy wavelengths than fluorescence as more energy 

is lost during the intersystem crossing, and during the long lifetime in the triplet, state 

energy can further dissipate through non-radiative decay mechanisms such as phonon 
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losses, bimolecular interactions or internal conversion. The difference in maxima between 

absorption of photons and emission is termed the Stokes shift. Anti-Stokes shift 

corresponds to an emission of photons of higher energy than the absorbed photon. The 

extra energy comes from phonon energy leading to a cooling of the sample; it may also 

arise from the absorption of two or more photons, i.e. an upconversion process. 

2.2.4.1.4.4 Quenching 

Fluorescence quenching is a process that leads to a reduction in intensity of fluorescence 

emission. This may occur through an increase of non-radiative decay mechanisms, 

competitive absorption of photons, bimolecular energy transfer. In silicate glasses, iron 

ions strongly quench UV induced fluorescence. 

2.2.4.1.5 Glass Phonon Interactions 

2.2.4.1.5.1 Crystal Field Theory 

Absorption in the visible region gives rise to coloured glasses. D or F block elements 

colour glasses in a predictable way according to ligand field theory, an extension of crystal 

field theory with considerations of the effect of the metal-ligand covalent bonding.  

Crystal field theory suggests a breaking of the orbital degeneracy of metal complexes due 

to the bonded ligands. The strength of the metal-ligand (M-L) bonds alters the energy of 

the system, which changes the photon absorption characteristics and ultimately the colour 

of the complex.  

The approach utilised by crystal field theory follows Equation 12, where E is the bond 

energy between the charges, q1 and q2 are the charges of the ions and r is the distance 

separating them.  
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𝐸 ∝
𝑞1𝑞2

𝑟
 

Equation 12 

This leads to accurate predictions for large cations with low charge such as alkali metals 

as the orbitals are degenerate and symmetrical. However, for transition metals, the 

orbitals are not degenerate. Ligands interacting with the transition metal ion affect some 

orbitals more strongly than others dependent upon the geometry of the coordination 

complex. In a complex with octahedral geometry, ligands coordinate to the metal ion 

along the x, y, and z axes, thus stabilising the complex. The electrons in the dx
2-y

2 and dz
2 

orbitals have greater repulsion. More energy is necessary to have an electron in these 

two orbitals, causing a splitting of energy levels in the d-orbitals shown in Figure 32. 

 

Figure 32 Crystal field stabilisation energy diagram for an octahedral complex 

Electrons fill from the lowest energy orbitals to the highest energy orbitals according to 

the Aufbau principle, therefore the dxy, dxz, and dyz (t2g orbitals) will fill before dx
2-y

2 and 

dz
2 (e.g. orbitals). In a d3 complex, the t2g orbitals will each contain 1 electron. However, in 

a d4 complex the electron may either fill a higher energy e.g. orbital or pair with an electron 

in the t2g orbitals. If the spin pairing energy is lower than the crystal field, splitting, i.e. Δ 
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the electron will pair and the complex will be in low spin. Upon Δ being greater than the 

spin pairing energy the electron would be in a higher energy orbital and the complex be 

in high spin. The value of Δ is influenced by the cation, anion, ligand, interatomic distance, 

and the symmetry of the coordination complex.  

As the charge on the metal ion increases, the value of Δ increases. The increase of charge 

on the metal ion causes the ligands to be more strongly attracted, and hence have a 

greater overlap of orbitals. The spectrochemical series highlights the effect on the value 

of the value of Δ.  

I - < Br - < S2- < Cl - < F - < OH - < CO3
 2- < O 2- < SO3

 2- 

Ligands towards the left of the spectrochemical series are weak field as they are highly 

polarisable, due to a combination of their large volume and low charge. These produce 

little change in the value of Δ and generally form high spin complexes. Weak field strength 

ligands form high spin complexes, which absorb photons of higher wavelengths (red to 

IR), whereas strong field ligands tend to form low spin complexes with unpaired electrons 

and absorb low wavelengths (UV to blue photons). Iron in oxide glass tends to form high 

spin complexes, with different glass compositions and hence different ligands affecting 

the absorption profiles [208].   

The interatomic distance of the metal ligand (M-L) bond affects Δ according to an inverse 

fifth-power law [216]. Therefore small variations in the M-L bond length strongly affects 

Δ. The charge, coordination and glass matrix all modulate the M-L interatomic distance. 

Techniques such as extended X-ray absorption fine structure (EXAFS) and neutron 

diffraction are used to determine the bond length of M-L bonds. Bismuth is often used 
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commercially in replacement for Pb due to similar glass forming properties. The stability 

against chemical reduction allows for control of the optical properties afforded through the 

incorporation of Bi [217]. EXAFS measurements estimate Bi3+ cations have an average 

coordination of between 5 to 7 with Bi-O bond lengths of typically 286 pm [218], whereas 

Pb2+ tends to have a more ordered structure with a 6-fold octahedral coordination with an 

average bond length of 233 pm [217]. The complex [BiO6] may be misleading as studies 

have shown non-uniform bond lengths relating to a distorted octahedron [219], the 

variation in bond lengths within such a complex affects the value of Δ.  

In tetrahedral complexes, the four ligands are bonded to a central metal ion. The splitting 

is reversed relative to octahedral splitting due to poor orbital overlap, shown in Figure 33. 

The bonding orbitals are directed along the axis while the ligands are between the axis, 

and hence orbitals.  

 

Figure 33 Splitting of d-orbitals due to octahedral ligand field (left) and tetrahedral ligand 
field (right) 

For the same ligands, a tetrahedral complex will have a lower crystal field corresponding 

to Δtet=0.44Δoct. Due to this, Δtet is frequently smaller than the spin pairing energy, 

predominantly forming high spin complexes. 
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High spin complexes and low spin complexes have different values of Δ. A photon equal 

to the energy difference, Δ, can be absorbed, which promotes an electron to a higher 

energy level as demonstrated in Figure 34.  

 

Figure 34 Absorption of a photon, inducing the promotion of an electron from the ground 
state to the excited state 

Certain wavelengths of light are absorbed, causing the complex to appear coloured. A 

larger Δ results in the absorption of higher energy photons. If ions have a noble gas 

configuration such as Ti4+ ([Ar]) and / or have no unpaired electrons in the outermost shell 

e.g. Bi3+ ([Xe] 4f14 5d10 6s2 6p0) the complex appears colourless as the absorption is 

centred within the UV portion of the electromagnetic spectrum. 

2.2.4.1.5.2 Laporte Selection Rules 

Selection rules for electronic transitions in metal complexes are governed by the spin 

selection rule given in Equation 13 and the orbital rule given in Equation 14; 

∆𝑆 = 0  

Equation 13 

∆𝐿 = ±1 

Equation 14 

The spin rule dictates that transitions which involve the promotion of electrons which 

involve a change in their spin states are forbidden. The orbital rule stipulates that 

transitions within a set of orbitals, e.g. d-d or f-f transitions can be forbidden in a 
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centrosymmetric molecule such as in an octahedrally coordinated Fe3+ ion bonded to 6 

oxygen atoms [FeO6]3-. The π-donating or π-accepting properties of ligands can hybridise 

with d or f orbitals resulting in transitions that are no longer purely d-d or f-f, and thus no 

longer violating the spin rule. 

Relaxation of the rules can occur through spin-orbit coupling, which allows for the 

formation of weak, spin forbidden bands to arise. This coupling occurs between the spin 

and orbital momentum of an electron, giving the total angular orbital momentum quantum 

number, j. This type of coupling is also known as Russel-Saunders coupling. An electron 

with spin, S, is spinning upon its own axis inducing a magnetic field corresponding to µ. 

A second magnetic field is induced by the spinning electron moving around the nucleus. 

These two magnetic fields interact allowing for the absorption of a photon [220].  

An octahedral molecule is never perfectly centrosymmetric due to thermal vibrations of 

the bonds, absorption of photons is possible during these moments of asymmetric 

stretching. This vibronic mechanism is only partially allowed according to the Laporte 

selection rules and therefore weak, but resolvable through luminescence excitation 

measurements [221]. Tetrahedral molecules have no centre of symmetry and have strong 

absorption bands due to the greater degree of d and p orbital hybridisation. The resulting 

absorptions may be 10-100 times more intense than from octahedral sites. Expected 

values of ε concerning various transitions are outlined in Table 4. 

Ligand to metal charge transfer (LMTC) bands arise from the transfer of an electron from 

a ligand (in silicate glasses this is usually O2-) to a d-orbital of a metal ion. As the distances 

involved in this transfer are large, there is a large dipole moment. This transition is allowed 

according to the orbital rule and the transitions are 2-3 orders of magnitude stronger than 
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d-d or f-f transitions. In the case of Fe3+ the tail of the LMTC extends into the visible from 

the UV and obfuscates some d-d transitions [56].  

Table 4 Expected values of ε based on various transition types 

 

Inter-valence charge transfer bands involves the exchange of an electron between ions 

of the same element in different oxidation states, e.g. Fe3+ and Fe2+. This occurs when 

polyhedra are edge sharing, this process can be induced by thermal effects or photon 

absorption. The strong coupling between the ferric and ferrous iron breaks the symmetry 

of the d-orbitals of the Fe2+ ion, allowing for d-d transitions and greatly intensifies the 

absorption.  

2.2.4.1.5.3 Quantum Numbers 

Four quantum numbers accurately describe the movement and trajectories of each 

electron within a molecule. The Pauli Exclusion Principle postulates all electrons 

contained within a molecule must have a unique combination of quantum numbers. The 

quantum numbers determines the electronic configuration of an atom and the probable 

location of the atoms electrons.  

Transition type Example Complex ε/m2mol-1 

Spin forbidden, orbital forbidden [Mn(OH2)6]2+ ~0.1 

Spin allowed (octahedral complex), orbital forbidden [Ti(OH2)6]3+ 1-10 

Spin allowed (tetrahedral complex), orbital partially 

allowed (hybridised) 

[CoCl4]2- 50-150 

Spin allowed, orbital allowed (charge transfer 

bands) 

MnO4
- 1000-106 
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The principle quantum number, 𝑛, described the electron and the most likely distance 

from the nucleus. This determines the principle electronic shell, with increasing values of 

𝑛 the farther the electron is from the nucleus, and hence the larger the orbital in which the 

electron populates. The values of 𝑛 can be any positive integer with 𝑛 = 1 corresponding 

to the ground state. As an electron absorbs energy from a photon, the electron may be 

promoted to a higher energy level where 𝑛 = 2, 3, 4 …, a positive change in energy levels 

is associated with absorption and a negative change with emission. 

2.2.4.1.5.4 Jahn Teller Effect 

The Jahn-Teller effect results in a broad and asymmetric band due to distortions in the 

coordination polyhedra [179]. Orbitals are theoretically degenerate, i.e. have the same 

energy however, the molecule will spontaneously distort to where the degeneracy is 

removed and one energy level becomes more stable at the expense of another. Overall, 

this rearrangement allows a molecule to exist at a lower energy.   

Jahn-Teller distortions are small in t2g ground state orbital groups, such as that of Fe2+. 

The theory allows for predictions in the splitting of energy levels upon absorption of a 

photon at higher energy levels. During the lifetime of the excited state the upper energy 

levels are split, this is known as the dynamic Jahn-Teller effect [222]. This leads to further 

asymmetry and broadening of bands, and is found in Fe2+ and Ti4+ containing oxide 

glasses frequently [223].  

In the complex [Fe(H2O)6]2+, the main spin-allowed band arising from the transition of 

5T2(D) → 5E(D) centred at 10,400 cm-1 (961 nm) exhibits a dynamic Jahn-Teller effect 

typical of Fe2+ [59]. The peak displays two maxima separated by circa 2000 cm-1 (20 nm) 

[224]. The fine structure splittings arise from a combination of the crystal-field interaction 
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and the spin-orbit coupling of the central metal ion and the ligands, along with the Jahn-

Teller couplings.  

For octahedral coordination complexes, the expected magnitude of the separation 

induced by the Jahn Teller effect is given by Table 5. 

Table 5 Strength of Jahn-Teller distortions as a function of d-electron count. s = strong, 
w = weak 

Number of d-

electrons 

1 2 3 4 5 6 7 8 9 10 

High / Low 

Spin 

   HS LS HS LS HS LS HS LS    

Strength w w - s w - w w - w s - s - 

 

2.2.4.1.5.5 Beer Lambert Law 

The Beer-Lambert law given in Equation 15 gives the relation between the extinction 

coefficient (ε), a measure of the probability of an electronic transition occurring after 

irradiation, the concentration of the absorbing species (c), and the path length (l).  

𝐴 = −𝜀𝑐𝑙 

Equation 15 

The Beer-Lambert law is limited in the range of concentrations available for 

measurements, >0.01M non-linearity occurs due to electrostatic effects associated with 

the increasing concentration of absorbing molecules. Further issues giving non-linearity 

include scattering from particles within the sample and luminescence, and for samples 

with a high refractive index. 
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2.2.4.1.5.5.1 Behaviour of Fe2+ and Fe3+ 

As iron is the fourth most abundant element on earth, it is a chronic impurity in the glass 

making process, either from the raw materials of the glass, or from the refractory in the 

furnace. The concentration and valence of iron can dominate the resultant colour of 

silicate glasses. Glass manufacturers must carefully control both the concentration (often 

from the selection of purity of raw materials), and oxidation state. This is particularly 

pertinent to the production of solar glasses as visible and IR absorption reduce the 

efficiency of the module significantly. Only 0.10mol% of iron oxide in a soda lime silica 

glass can reduce the efficiency of the module by 1.1% [58].  

Fe2+ dominates relative to the concentration of Fe3+ in silicate glasses prepared in a 

reducing environment (e.g. carbon crucible, H2-N2 environment [163]). The resultant 

glasses have strong IR absorption at ca. 9000 cm-1 (1100 nm), which allows for greater 

heat flux to the glass melt from the gas burners. However, due to the higher IR emission, 

the glass has a shorter working time than a glass with the equivalent concentration of 

ferric iron. Silicate glasses containing Fe2+ have an LMCT band at 42,400 cm-1 (235 nm) 

[163].  

Fe3+ in silicate glasses has a complex absorption spectra, with six transitions between 

21,200 cm-1 (471 nm) and 27,190 cm-1 (367 nm) and an LMCT band corresponding to O2- 

→Fe3+ at 36,400 cm-1(274 nm) [163,225].  

In commercial glass manufacture a mixed valence of iron species is usually observed 

with the proportion of Fe2+ compromising between ca. 15-30% [163,225] which further 

complicates the absorption spectra. Solar glasses require low levels of either valence of 

iron, as Fe3+ parasitically absorbs visible photons, (however it does provide useful UV 
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protection), while Fe2+ absorbs IR photons which both increases the heat to the module 

whilst deleteriously affecting conversion efficiency.  

2.2.4.1.5.5.2 Behaviour of Lanthanides 

Lanthanides in silicate glasses have been extensively studied for their upconversion 

properties for solar energy, the reader is directed to the work by T. Fix et al [226] and the 

book by van Sark et al [53,212]. Lanthanides are used as dopants in glasses for 

luminescence downconversion front sheets. UV absorption from a codoped Nd3+ and 

Yb3+ transparent yttrium aluminium garnet glass ceramic leads to an emission of two NIR 

photons at 10,200 cm-1 (980 nm) [227]. The absorption and emission profiles of 

lanthanides tends to be narrow relative to d or p block metal ions, due to the crystal field 

splitting being small. Transitions between f orbitals are also forbidden due to the Laporte 

rule. However, as the f-f transitions are forbidden, upon absorption of a photon and the 

molecule placed in a higher energy state, decay to the ground state is slow making 

lanthanide-doped materials particularly useful for lasing applications, as population 

inversion is relatively easy to achieve.  

2.2.4.1.5.6 Optical Basicity Scale 

An important development by Duffy [228] aided in characterisation of the quantity of 

negative charge carried by O2- ligands. Oxide glasses consist of acidic oxides such as 

SiO2 and basic oxides such as alkali oxides and alkaline earth oxides. With increasing 

basicity, i.e. with more alkali and alkaline earth content, there is increasing negative 

charge on the O2- ion. Probe ions such as Tl+ or Pb2+, which are isoelectronic, are 

modulated in their absorption spectra by a quantitative manner by the magnitude of the 

negative charge they receive from the O2- ions.  
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Calculation of theoretical optical basicity (Λth) of an example SLS glass is given by 

Equation 16. 

𝛬𝑡ℎ = 𝑋𝑆𝑖𝑂2
𝛬𝑆𝑖𝑂2

+ 𝑋𝑁𝑎2𝑂𝛬𝑁𝑎2𝑂 + 𝑋𝐶𝑎𝑂𝛬𝐶𝑎𝑂 

Equation 16, Λ = optical basicity, X = molar fraction 

The average optical basicity can be calculated for the bulk glass, as well as the local 

optical basicity to focus on particular sites within a glass [229]. Bridging and non-bridging 

oxygens have different basicities which can aid in characterisation of site specific 

phenomena [230].   

2.2.4.1.5.7 Phonon 

A phonon is a vibrational motion in which a series of atoms oscillates at a particular 

frequency. The emission of a photon causes an atom to be pushed back due to the 

conservation of momentum. Optical phonons such as these can be measured by Raman 

spectroscopy, for silicate glasses the phonon peak is considered to be the 1100 cm-1 peak 

corresponding to Q3 speciation [231]. Phosphate or fluoride glasses have lower phonon 

losses and therefore a relatively higher fluorescence emission under the same conditions.  

2.3 Conclusions 
Due to increasing demands for cheap, carbon free electricity, solar photovoltaic energy 

has seen a dramatic increase in adoption across the world. Crystalline silicon based PV 

modules remain the dominant type due to the robust technology and sufficient cost per 

Watt for widespread adoption.  

Unfortunately, over time modules containing polymeric compounds such as EVA glue and 

polymer backsheets undergo UV induced degradation which discolours the material. This 
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yellowing reduces the transmission of visible photons and subsequently reduces module 

efficiency. Ultimately, over prolonged time this may lead to critical failure and allow water 

to ingress into the module.  

Absorption of deleterious UV photons within the glass front sheet therefore may protect 

PV modules from long term yellowing and damage. Incorporation of transition metal 

oxides in d0 oxidation or post-transition metal oxides in s2 oxidation can absorb UV 

photons in silicate glass front sheets. Furthermore, these oxides do not absorb in the 

visible region which would critically reduce module efficiency. The oxides emit visible 

fluorescence from UV excitation and may therefore enhance module efficiency by 

providing a marginally higher flux of visible photons.  
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3 Experimental Procedures 

3.1 Glass Preparation 
The initial glasses melted for this study had the nominal composition listed in Table 6. 

Raw materials of ≥ 99.9% purity sand (SiO2), aluminium hydroxide (Al(OH)3), magnesium 

carbonate (MgCO3), calcium carbonate (CaCO3), sodium carbonate (Na2CO3), and 

potassium carbonate (K2CO3) were dried for at least 24 hours at 110°C to remove 

moisture, then weighed and mixed in a polyethylene bag. Batches to produce 100 g of 

glass of the nominal composition outlined in Table 6 were melted in corundum (Al2O3) 

crucibles by ramping from room temperature to 1450°C at 5°C/min with a dwell of 5 hours, 

before pouring into moulds on a steel plate and annealing at 530°C for 1 hour then cooling 

to room temperature to remove thermal stresses.  

Table 6 Initial nominal glass composition 

Oxide Mol % 

SiO2 70.89 

Al2O3 0.59 

MgO 5.49 

CaO 9.27 

Na2O 13.75 

K2O 0.01 

 

The first glass melted (SLS1) corresponds to Figure 35. The glass had significant 

quantities of bubble remaining and a pink hue, from a selenium oxide impurity in the 

calcium carbonate as shown in the absorbance spectra in Figure 36 [232]. The peak 
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centred at 20,000 cm-1 (500 nm) corresponds to a characteristic weak absorption for 

molecular selenium, and calcium in the glass allows for greater retention of elemental 

selenium [233]. 

 

Figure 35 SLS1, pink discolouration and bubbles 

 

Figure 36 UV VIS NIR absorption spectra of SLS1 
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Glass produced with the composition in Table 6 melted at 1450°C result in a glass with 

significant levels of bubbles from a combination of lack of refining agents and bubbles 

introduced from dissolution of the corundum refractory crucible. Refining agents are 

utilised in the production of glass to aid in the removal of trapped gas bubbles. A refining 

agent is a material which thermally decomposes to produce large quantities of gas(ses) 

at a temperature below the liquidus of the resultant material. The large quantity of gas 

produced has a two-fold benefit; removal of small bubbles and aiding in homogenisation. 

A second glass was produced with the same melt quench anneal cycle incorporating 

0.22mol% sodium sulfate (Na2SO4) into the batch in replacement of silica (SiO2). A new, 

more pure source of CaCO3 (≥99.9%, Better Equipped) was used to avoid the pink 

discolouration found in SLS1. The resultant material SLS2, shown in Figure 37 shows 

fewer and smaller bubbles relative to that shown in Figure 35.  

 

Figure 37 SLS2, no pink hue, with bubbles remaining 

To aid in the homogenisation a third glass was prepared containing two refining agents, 

sodium sulfate (Na2SO4) (0.22mol%) and table sugar (C12H22O11) (0.22mol%) in 
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replacement of silica, were used. The two refining agents decompose at different 

temperatures, to aid in homogenisation over a wider temperature range. The resultant 

glass had very few bubbles remaining, shown in Figure 37. 

 

Figure 38 SLS3, with bubbles remaining 

 

A base glass utilizing the refining agent sodium sulfate (Na2SO4), with the composition 

outlined in Table 6 was prepared by melting in a zirconia grain stabilised platinum (ZGS-

Pt) crucible. Use of the ZGS-Pt crucible afforded a bubble free and homogenous glass 

for optical and structural measurements. 

3.1.1 Soda Lime Silica Glasses 

For all soda lime silica glasses produced herein the standard procedure outlined below 

was used to prepare the materials unless stated otherwise for a particular glass. Batches 

to produce 100 g of glass were prepared by drying of the raw materials in a furnace at 

120°C for 24 hours, then weighed and mixed in polyethylene bags to two decimal points 
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precision. The raw batch material was then added to the zirconia grain stabilised platinum 

(ZGS-Pt) crucible and added directly to the furnace set to 1450°C to melt and homogenise 

for 5 hours. The resultant glass was poured onto a steel plate in a steel ring and then 

annealed at 530°C for 1 hour before cooling to room temperature. This was the standard 

melt quench process for all glasses unless stated otherwise. Glasses for optical 

measurements were polished on both faces to a mirror finish with decreasing SiC grit 

sandpaper on a disk polishing machine to 1 µm grit, before a final polish with 1 µm CeO2 

powder in water. The melt quench process is outlined in Figure 39. Top left shows a 

homogenously mixed bag of constituent powders, top right shows retrieval of the crucible 

and glass contents after melting. Bottom left shows a recently poured silicate glass on a 

steel block, and bottom right shows the temperature of the glass cooling ready for 

annealing.  

 

Figure 39 Melt quench process for the lab scale production of SLS glasses 
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3.1.1.1 d0-ion Oxide Doped Soda Lime Silica Glasses 

Seven d0-ion oxide were prepared using the standard method. A doping concentration of 

0.20mol% was selected for TiO2, ZrO2, HfO2, Nb2O5, Ta2O5, MoO3 and WO3. TiO2 and 

Nb2O5 were promising candidates for codoping to enhance fluorescence emission 

intensity. Nominal compositions are outlined in Table 7.  

Table 7 Sample nominal and measured (XRF) compositions (mol%) and measured 
densities of d0 SLS glasses 

Sample SiO2 Al2O3 MgO CaO Na2O SO3 Dopant 
Density 

(g/cm3) 

Base SLS  
70.51 

(72.00) 

0.59  

(0.48) 

5.48 

(5.01)  

9.25 

(9.13)  

13.95 

(13.20)  

0.22 

(0.18)  
0.00  

2.484 

0.20 TiO2 70.31 0.59 5.48 9.25 13.95 0.22 0.20 2.490 

0.20 ZrO2 70.31 0.59 5.48 9.25 13.95 0.22 0.20 2.497 

0.20 HfO2 70.31 0.59 5.48 9.25 13.95 0.22 0.20 2.501 

0.20 Nb2O5 70.31 0.59 5.48 9.25 13.95 0.22 0.20 2.504 

0.20 Ta2O5 70.31 0.59 5.48 9.25 13.95 0.22 0.20 2.518 

0.20 MoO3 70.31 0.59 5.48 9.25 13.95 0.22 0.20 2.493 

0.20 WO3 70.31 0.59 5.48 9.25 13.95 0.22 0.20 2.510 

 

3.1.1.1.1 Codoped Glasses 

3.1.1.1.1.1 Al2O3 

To elucidate the effect of Al2O3 on the absorption and emission properties of TiO2 and 
Nb2O5 in soda lime silica glasses, three glasses with 5.00mol% Al2O3 were prepared 
using the standard melt quench procedure. Nominal compositions of these glasses are 
given in  

 

Table 8. 
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Table 8 Sample nominal compositions and measured (XRF) (mol%) and measured 
densities of Al2O3 SLS glasses 

Sample SiO2 Al2O3 MgO CaO Na2O SO3 Dopant 
Density 

(g/cm3) 

5.00 Al2O3 

66.10 

(68.52) 

5.00 

(5.03) 

5.48 

(5.22) 

9.25 

(8.94) 

13.95 

(13.55) 

0.22 

(<0.10) 

0.00 

(<0.10) 

2.511 

5.00 Al2O3 0.20 TiO2 65.90 5.00 5.48 9.25 13.95 0.22 0.20 2.513 

5.00 Al2O3 0.20 Nb2O5 65.90 5.00 5.48 9.25 13.95 0.22 0.20 2.522 

 

3.1.1.1.1.2 ZnO 

TiO2 and Nb2O5 were codoped with 1.00mol% ZnO in replacement of MgO. A 1.00mol% 

ZnO base glass was also prepared as shown in Table 9. 

Table 9 Sample nominal compositions (mol%) and measured densities of ZnO SLS 
glasses 

Sample SiO2 Al2O3 MgO CaO Na2O SO3 ZnO Dopant 
Density 

(g/cm3) 

 1.00 ZnO  
70.51 

(70.37) 

0.59 

(0.52) 

4.48 

(3.12) 

9.25 

(8.89) 

13.95 

(14.30) 

0.22 

(0.31) 

1.00 

(0.82) 

0.00 

(<0.10) 

2.521 

1.00 ZnO / 0.20 TiO2 70.31 0.59 4.48 9.25 13.95 0.22 1.00 0.20 2.523 

1.00 ZnO / 0.20 Nb2O5 70.31 0.59 4.48 9.25 13.95 0.22 1.00 0.20 2.521 

 

3.1.1.1 Bi2O3 Doped Soda Lime Silica Glasses 

Bismuth oxide doped soda lime silica glasses were produced in a ZGS-Pt crucible with 

the compositions outlined in   
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Table 10. A low iron (100 ppm Fe2O3) sand was used to prepare the series of glasses 

with different Bi2O3 contents.  
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Table 10 Sample nominal compositions (mol%) and measured densities of Bi2O3 doped 
SLS glasses  

Sample SiO2 Al2O3 MgO CaO Na2O SO3 Bi2O3 

Density 

(g/cm3) 

Bi 0.00 
70.51 

(72.00) 

0.59  

(0.48) 

5.48 

(5.01)  

9.25 

(9.13)  

13.95 

(13.20)  

0.22 

(0.18)  
0.00  

2.484 

Bi 0.01 70.50 0.59 5.48 9.25 13.95 0.22 0.01 2.485 

Bi 0.025 70.485 0.59 5.48 9.25 13.95 0.22 0.025 2.487 

Bi 0.05 70.46 0.59 5.48 9.25 13.95 0.22 0.05 2.497 

Bi 0.10 70.41 0.59 5.48 9.25 13.95 0.22 0.10 2.502 

Bi 0.15 70.36 0.59 5.48 9.25 13.95 0.22 0.15 2.513 

Bi 0.20 70.31 0.59 5.48 9.25 13.95 0.22 0.20 2.518 

 

3.1.1.2 PbO Doped Soda Lime Silica Glasses 

Lead oxide (PbO) was selected as a dopant due to the isoelectronic nature of Pb2+ and 

Bi3+. Five glasses were prepared in Al2O3 crucibles ramped at 5oC/min to 1450°C with a 

dwell of 5 hours, all glasses were poured into a steel mould and annealed at 530°C for 1 

hour. Concentrations of PbO, in mol%, were 0.20, 0.50, 1.00, 2.50 and 7.50 as shown in 

Table 11.  

Table 11 Sample nominal compositions (mol%) of PbO SLS glasses 

Sample SiO2 Al2O3 MgO CaO Na2O SO3 PbO 

0.00 PbO 70.51 0.59 5.48 9.25 13.95 0.22 0.00 

0.50 PbO 70.01 0.59 5.48 9.25 13.95 0.22 0.50 

1.00 PbO 69.51 0.59 5.48 9.25 13.95 0.22 1.00 

2.50 PbO 68.01 0.59 5.48 9.25 13.95 0.22 2.50 

7.50 PbO 63.01 0.59 5.48 9.25 13.95 0.22 7.50 
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3.1.1.3 Fe2O3 / Bi2O3 Doped Soda Lime Silica Glasses 

Three glasses containing 0.20mol% Bi2O3 and 0.01mol%, 0.05mol% or 0.10mol% Fe2O3 

to elucidate doping effects into representative style float glass systems were produced. 

Glasses were melted with the standard procedure, with the nominal compositions in Table 

12.  

Table 12 Sample nominal compositions (mol%) and measured densities of Bi2O3 / 
Fe2O3 SLS glasses 

Sample SiO2 Al2O3 MgO CaO Na2O SO3 ZnO Dopant 
Density 

(g/cm3) 

0.20 Bi2O3 / 0.01 Fe2O3 70.30 0.59 5.48 9.25 13.95 0.22 0.20 0.01 2.518 

0.20 Bi2O3 / 0.05 Fe2O3 70.26 0.59 5.48 9.25 13.95 0.22 0.20 0.05 2.519 

0.20 Bi2O3 / 0.10 Fe2O3 70.21 0.59 5.48 9.25 13.95 0.22 0.20 0.10 2.523 

 

3.1.1.4 Fe2O3 Doped Soda Lime Silica Glasses 

Three iron oxide doped glasses were prepared as models for solar glasses available 

within the photovoltaic industry. Doping concentrations, in mol%, of 0.01, 0.05 and 0.10 

were used in this study, shown in Table 13. 

Table 13 Sample nominal compositions (mol%) and measured densities of Fe2O3 SLS 
glasses 

Sample SiO2 Al2O3 MgO CaO Na2O SO3 Fe2O3 

Density 

(g/cm3) 

0.01 Fe2O3 70.50 0.59 5.48 9.25 13.95 0.22 0.01 2.491 

0.05 Fe2O3 70.46 0.59 5.48 9.25 13.95 0.22 0.05 2.492 

0.10 Fe2O3 70.41 0.59 5.48 9.25 13.95 0.22 0.10 2.494 
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3.1.2 Borosilicate Glasses 

Raw materials of ≥ 99.9% purity of sand (SiO2), alumina (Al(OH)3), sodium carbonate 

(Na2CO3), and bismuth oxide (Bi2O3) were dried at 120°C for at least 24 hours to remove 

moisture, then weighed and mixed before melting. H3BO3 was not dried at that 

temperature to avoid decomposition reactions occurring. Batches to produce 100 g of 

glass of the nominal compositions listed in Table 14 were melted in an alumina (Al2O3) 

crucible at 1450°C for 5 hours, before pouring into moulds on a steel plate and annealing 

at 500°C for 1 hour then cooling within the furnace to room temperature to remove thermal 

stresses. Samples were polished with decreasing SiC grit sizes to 1 µm, before a final 

polish of 1 µm CeO2 for optical measurements; all other measurements were carried out 

using powdered glass, prepared in a vibratory disc mill. Due to the transparency of boron 

to X-rays these glasses were not analysed by XRF.  

 

Table 14 Sample nominal compositions (mol%) of Bi2O3 Borosilicate glasses 

Sample SiO2 Al2O3 B2O3 Na2O Bi2O3 

Base Boro  65.00 1.00 16.00 18.00 0.00 

0.01 Bi Boro 64.99 1.00 16.00 18.00 0.01 

0.025 Bi Boro 64.975 1.00 16.00 18.00 0.025 

0.05 Bi Boro 64.95 1.00 16.00 18.00 0.05 

0.10 Bi Boro 64.90 1.00 16.00 18.00 0.10 

0.15 Bi Boro 64.85 1.00 16.00 18.00 0.15 

0.20 Bi Boro 64.80 1.00 16.00 18.00 0.20 
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3.2 Optical Measurements 
3.2.1 UV Vis NIR Fluorescence Spectroscopy 

3.2.1.1 Schematic of Instrument 

 

Figure 40 Schematic diagram of a spectrofluorometer (reproduced from [234]) 

Figure 40 shows a general schematic diagram of a spectrofluorometer, there are five 

essential components, a light source, a grating to monochromate the incident source, a 

sample holder / chamber, a second grating to filter stray light and a detector. In the case 

of the Varian Cary Eclipse spectrofluorometer primarily used in this study the light source 

was a xenon flash lamp. Xenon flash lamps confer several advantageous properties for 

fluorescence measurements; the spectrum is broad and generally flat over the 
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wavelength range 50,000 cm-1 – 10,000 cm-1 (200-1000 nm), the short term stability is in 

the order of 2-3% difference of maximum power, and the drift or long term stability is in 

the order of 2000-3500 hours of operation.  

The excitation grating minimises stray light, the degree of stray light is determined by the 

slit width selected, thinner slits result in a more spectrally pure light but with diminished 

intensity. The monochromators in the Varian Cary Eclipse spectrofluorometer use 

concave reflective surfaces fitted with a stepwise motor for fine control of the relative 

angles to control the wavelength of light passing to the sample. Due to small (2-3%) 

variations in the short term power output, a beam splitter made of quartz is used to direct 

approximately 4% of the photons to a stable fluorophore, with known emission 

characteristics which is detected by a photomultiplier tube (PMT). Changes in the short 

term intensity of the xenon flash lamp are then corrected by the software by dividing the 

intensity of the sample by the intensity of the fluorophore.  

Lasers are often used in spectrofluorometers due to their small spot size and temporal 

coherence. Tuneable lasers are also frequently used but are limited to a wavelength 

range in the order of 200-300 nm, whereas flash xenon bulbs or mercury discharge may 

extend up to 2000 nm. Polarisers are available in some spectofluorometers for the 

detection of fluorescence anisotropy, as glasses in this study were homogenous this 

feature was not utilised.  

The Varian Cary spectrophotometer used in this study uses photomultiplier tubes (PMT) 

for the detection of emitted photons. PMTs are current generators with the current 

proportional to the intensity of light. PMTs are vacuum tubes consisting of a photocathode 

followed by a series of dynodes shown in Figure 41.  
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Figure 41 Schematic of a PMT. Modified for clarity from [235] 

The photocathode is a thin film of metal, where upon photon absorption an electron is 

discharged from its surface. The electron is focused and directed towards the first dynode 

due to the photocathodes high negative potential. The dynodes are held at a negative 

potential, with each in succession having a potential closer to zero. Upon the primary 

electron colliding with the first dynode between 5 to 20 electrons are emitted and 

subsequently directed towards the second dynode. This process is repeated along the 

chain until the anode which records the current. Between 512 and 2012 electrons are 

generated per single primary electron. This current is proportional to the intensity of 

incoming photons. To increase the gain, higher voltages can be applied across each 

dynode; this produces more secondary electrons per dynode, which allows for the 

detection of weakly emitting samples. However, careful control must be applied as to not 

increase the voltage and saturate the current carrying capacity of the PMT. This leads to 

saturation of the signal and meaningful data cannot be measured. An alternative detector 

would be a charge coupled device (CCD), these typically have 106 or more pixels. Since 
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each pixel acts as a detector, spatial measurements may be done to produce a two 

dimensional image.  

All fluorescence measurements in this study were conducted on glass samples. A solid 

stage sample holder was used to maintain the sample within the beam pathlength. All 

samples were held at 30° to the incident beam to maximise signal output and minimise 

reflections to the detector. Not all samples were perfectly parallel and some degree of 

wedging was observed in the order of 5° from parallel due to the polishing technique 

utilised. This effect was minimised by adjusting the angle of the sample holder so all the 

surface of the sample was held to 30° rather than the sample holder itself. An angle of 45° 

should not be used due to the high flux of photons reflected directly towards the detector. 

A second set of monochromators is used to direct particular wavelengths to the PMT 

detector. The step size of these monochromators defines the resolution of the instrument 

and the integration time affects the total counts at a given wavelength.  

The monochromators in a fluorescence spectrophotometer are used to separate 

polychromatic light into the desired wavelengths. In most commercially available 

spectrophotometers diffraction gratings are used rather than prisms. Diffraction gratings 

are characterised by their efficiency in separating particular wavelengths, and the 

magnitude of stray light levels. Slits control the intensity of light passing through the 

monochromators proportional to the square of the slit width. Slit widths are variable, with 

larger widths allowing for increased photon flux and hence increased signal levels. 

Conversely, smaller slit widths afford higher resolution at the cost of reduced intensity. 

Monochromators are either planar or concave gratings, schematically shown in Figure 

42. Imperfections in the reflective surfaces are a source of stray light within a 
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spectrophotometer. A planar monochromator has three reflective surfaces, whereas the 

architecture for a concave affords one reflective surface, which minimises the stray light 

propagation, as a concave grating acts as both a diffracting and focusing element as 

shown schematically in Figure 42.  

 

Figure 42 Planar (L) and concave (R) monochromator configurations 

3.2.1.2 Stray Light 

Stray light is any light that passes through the monochromator other than the wavelengths 

defined by the program. Reduction in the intensity of stray light is critical for the proper 

use of a spectrophotometer. The spectral output of a Xenon flash lamp in the visible may 

be as intense as the fluorescence emission to be measured therefore it is imperative to 

minimise the stray light through the use of a monochromator and bandpass filters.  

3.2.1.3 Second Order Transmission 

A particularly problematic source of stray light is second order transmission diffracted by 

the monochromator. This is where the monochromator cannot distinguish and separate 

multiples of the excitation wavelength, for example if the excitation wavelength is set to 

300 nm, stray light may be detected at 600 nm, 900 nm etc. Bandpass filters are used to 

remove these undesirable wavelengths from the incident beam, and therefore not allow 
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their propagation through the instrument. This second order transmission is demonstrated 

in Figure 43. As multiples of λ propagate at a rate of 1/n times, monochromators cannot 

separate them through destructive interference.  

 

Figure 43 Second order diffraction of λ and 2λ wavelengths from a monochromator 

An ideal spectrofluorometer would have a light source with a constant output of photons 

across the wavelength range required, monochromators which only allow for the 

wavelength of interest to pass through, and which transmits all photons equally and a 

detector which is equally sensitive to all photons. As this ideal spectrofluorometer has yet 

to be realised corrections are made within the instrument or software. However, even 

though the intensity from the excitation source is not linear and is corrected through the 

beam splitter and fluorophore, the response of both the detector and the reference 

material may vary over the excitation wavelengths available. The emission spectra may 

further be distorted from self-absorption in the sample. However, device independent 

spectra are rarely reported in the literature as most commercially available 

spectrophotometers show similar responses over a particular wavelength range due to 
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their similar components. Corrected spectra are needed for the calculation of quantum 

yields. 

3.2.1.4 Operation of Instrument 

An emission spectrum is measured across a range of wavelengths with a fixed excitation 

wavelength. Conversely, an excitation scan is a measure of the intensity of a fixed 

emission wavelength over a particular range.  

There is a debate over the most appropriate units in which present excitation and 

emission spectra, either in nanometres (nm) or in wavenumbers (cm-1), for the purposes 

of this study wavenumbers have been primarily reported, since wavenumbers are linear 

in energy, the scale of UV absorptions can be more clearly represented in this format. As 

the primary function of glasses produced in this study is to protect the polymeric 

components from UV damage the information is best presented in this manner. For 

convenience a nanometre scale is presented in graphs where appropriate. Wavelengths 

and wavenumbers are converted by taking the reciprocal of each value, for example 500 

nm corresponds to (500x10-7 cm-1) which is equal to 20,000 cm-1.  

Fluorescence measurements were collected on a Varian Cary Eclipse fluorescence 

spectrophotometer. Samples were held at 30° to the excitation source and scanned at 

240 nm to 330 nm in 10 nm intervals, with the 360-1100 nm filter to remove excitation 

interference. All samples were scanned with 120 nm/min scan rate, with a data interval 

of 1 nm, and slit widths of 20 nm for excitation and 20 nm for emission; the detector 

voltage was set to 400 V. Excitation beyond 330 nm was not possible due to the bandpass 

filters transmitting wavelengths in the visible in the same magnitude as the fluorescence 

emission photons.  
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3.2.1.5 NIR Fluorescence Emission Spectroscopy 

NIR fluorescence measurements were conducted on an Edinburgh Instruments FLS1000 

spectrophotometer. Excitation between 43,500 cm-1 and 10,000 cm-1 (230 nm and 1000 

nm) was from a 450 W ozone free Xenon arc lamp. Samples were excited between 

13,300 cm-1 and 11,750 cm-1 (750 nm and 850 nm). Bandpass filters were not available 

on this instrument so second order transmission of the excitation wavelength is 

superimposed onto the emission spectra.  

3.2.2 UV Vis NIR Absorbance Spectroscopy 

3.2.2.1 Schematic of Instrument 

UV-Vis-NIR absorption spectra were measured on a Varian Cary 50 Scan UV visible 

spectrophotometer over the range 200-1000 nm, at a scan rate of 60 nm/min with a data 

interval of 0.5 nm. NIR absorption spectra were measured using a Perkin Elmer Lambda 

900 UV VIS NIR spectrophotometer, at a scan rate of 100 nm/min. Background removal 

for both instruments was carried out through measurement of the empty chamber, 

subtracted from the measurement. This removed the device interference from the 

absorption profile.  

 

Figure 44 Schematic of a UV-VIS-NIR spectrophotometer 
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Shown in Figure 44, a UV-Vis-NIR spectrophotometer has a relatively simple design. 

Photons travel from the left to right in this schematic for the detection of absorbance 

bands. The Varian Cary 50 spectrophotometer used in this study uses a Xenon flash lamp 

as the light source which allows for a range between 50,000 cm-1 and 9090 cm-1 (200 nm 

to 1100 nm). The white light is then separated with a monochromator, which works 

identically to those found in a fluorescence spectrophotometer. The beam of photons is 

split with a beam splitter which sends a portion to a reference cell, the majority of the 

beam passes through a sample cell which attenuates some of the light. A reduction in 

intensity from the sample cell, relative to the reference cell, indicates absorption at that 

particular wavelength which is measured by the detector and sent to a data processor. 

Conventional UV-Vis spectrophotometers cannot measure above 50,000 cm-1 (below 200 

nm) due to the absorption of molecular oxygen, measurements in the vacuum UV, as the 

name suggests, must be carried out under vacuum. 

 

3.2.2.2 Operation of Instrument 

UV-Vis absorption spectra were measured using Varian Cary 50 Scan UV visible 

spectrophotometer over the range 200-1000 nm, at a scan rate of 60 nm/min with a data 

interval of 0.5 nm.  

NIR measurements were carried out using a Perkin Elmer Lambda 900 

spectrophotometer over the range of 1000-2200 nm at a scan rate of 100 nm/min.  
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3.3 Structural Measurements 
3.3.1 X-Ray Diffraction 

3.3.1.1 Theory and Schematic of Instrument 

X-Ray diffraction (XRD) is a technique used to determine the structure of crystalline 

materials in three dimensions. Diffraction is the slight bending of a wave of light around 

the edges of an obstacle, this is most pronounced when the wavelength of light and 

obstacle are of similar sizes. X-rays are able to be diffracted upon the atomic lattice of a 

crystal. This is because the interatomic distance of the lattice is on the same order of 

magnitude as the X-ray radiation, in the order of 1 Å.  

Diffraction of an X-ray beam occurs when it interacts with the electron cloud of a material, 

the beam is partially scattered upon interacting with the first layer of the material, the 

beam is then partially scattered upon interaction with the second and third to n layers as 

shown in Figure 45.  

 

Figure 45 Bragg diffraction of X-rays striking planes spaced d apart at an angle of θ 

If the diffracted beams are in phase, constructive interference occurs and a diffraction 

peak can be detected. However, if the diffracted beams are out of phase they destructively 

interfere and no peak may be detected. Only certain angles allow for constructive 
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interference to occur for a particular d-spacing according to Bragg's law shown in 

Equation 17. 

𝑠𝑖𝑛𝜃 =
𝑛𝜆

2𝑑
 

Equation 17 Bragg's equation of diffraction 

Where θ is the angle of incidence of the X-ray, n is an integer, λ is the wavelength of the 

X-ray and d is the spacing between the atomic layers.  

A simplified schematic X-ray diffractometer is shown in Figure 46. There are five essential 

components to generate a diffractogram. To generate X-rays a tube, containing a 

tungsten cathode and a water cooled copper anode, is held under vacuum. The cathode 

and anode have a large potential difference so when electrons are fired from the tungsten 

cathode they are directed rapidly towards the copper anode. The generated electrons are 

able to knock out a core electron from the copper atoms, as an electron in a higher 

valence drops to fill that energy level and emitting an X-ray.  

Kα X-ray radiation is dominant from the emission from copper at a wavelength of 1.54 Å, 

however a second emission of radiation, Kβ, with wavelength of 1.39 Å is emitted. Kβ 

radiation is filtered using a nickel or iron filter; otherwise all peaks appear to be doublets 

in the resultant diffractogram. The Kα signal is monochromated using an appropriate slit, 

which reduces the intensity but also reduces the line width of the diffracted peaks. The 

beam is then diffracted due to the sample towards the detector, which are either PMT 

type detectors or based on semiconductor transducers.  
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Figure 46 Schematic of an X-ray diffractometer 

 

Amorphous materials do not have long range periodic order, which precludes the 

diffraction pattern from showing narrow, defined peaks. An X-ray diffraction pattern for a 

glass cannot be used to quantify the material, as would be possible in crystalline 

materials, but gives information regarding the glassy state and whether any crystallinity 

is contained within the material. Resultant diffraction patterns for an amorphous material 

are described as an 'amorphous hump' with few to no peaks as shown in Figure 47. This 

is contrasted to the heat treated glass ceramics with clearly defined sharp peaks.   
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Figure 47 X-ray diffraction patterns of Bi doped glass and heat treated glass ceramics 
[236] 

3.3.1.2 Operation of Instrument 

XRD was carried out using a Philips X-Pert X-ray diffractometer, with Cu Kα radiation = 

1.54 Å, working at 40 kV and 40 mA on a spinner stage with a step size of 0.001o2θ. 

Samples were measured between 10° and 80°, 2θ. All samples were measured as 

powders prepared in a vibratory disc mill.  

3.3.2 Raman Spectroscopy 

3.3.2.1 Theory 

Upon a compound being irradiated by a monochromatic intense light source, such as a 

laser, some of the light is scattered. Most of the light is scattered without a loss in energy, 

known as Rayleigh scattering, however, additional frequencies are symmetrically 

imposed above and below the Rayleigh line. The differences between the Rayleigh line 
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and those bands above and below correspond to Raman scattering from the vibrational 

frequencies in the compound.  

Raman spectroscopy is not an absorption effect but is dependent on the polarisability of 

a bond. The photon interacts with the bond of a molecule and distorts the electron(s), 

promoting them to a virtual excited state, see Figure 48. Upon returning to a lower state 

there is a difference in energy corresponding to a Raman shift. Stoke Raman shifts are 

more commonly measured than anti-Stokes Raman shifts, as at RT most electrons are in 

the ground state.  

 

Figure 48 Rayleigh, Stokes Raman and Anti-Stokes Raman scattering energy diagrams 

 

3.3.2.2 Operation of Instrument 

Raman spectroscopy was carried out using a Thermo Scientific DXR2 Raman 

spectrometer, using a 532 nm laser with a power of 10 mW in a depolarised configuration. 

The aperture was set to 50 µm slit, with an estimated spot size of 0.7 µm. Scans were 

carried out over 20 seconds with 20 exposures each with a 10x objective lens, with 
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fluorescence correction. Measurements were done on flat polished samples. Using 

ThermoFisher Omnic software baseline corrections were done to remove the tilt 

associated with it. This was done within the software by clicking on portions of the spectra, 

at both the beginning and end of the spectra and any points between which deviate from 

a zero line. The software then brings the clicked points to zero and ‘pulls’ down portions 

around to more accurately represent a flat spectrum. Through proper use of this function 

peaks may be more clearly observed. Fluorescence correction was also applied within 

the software program, this was completed by inputting the emission wavelengths from the 

excitation from the laser which was subsequently removed to allow clearer observation 

of peaks. Post processing was done by subtraction to observe any additional peaks by 

normalising the largest peak in the spectra to 1.0. All traces were done in this manner 

and doped spectra were subtracted with the base glass spectra.  

3.3.3 X-Ray Near Edge Absorption Spectroscopy 

3.3.3.1 Theory and Schematic of Instrument 

Strong monochromatic X-rays have sufficient energy to excite a core electron within an 

atom to an excitonic state. Different core electrons require distinct energies to excite due 

to their binding energies, so element specific measurements can be made. The 

absorption edge corresponds to the absorption of an X-ray photon by a specific core 

electron shell as shown by   



136 
 

Table 15.  
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Table 15 Absorption edges and the corresponding principle quantum number 

K Edge 1s    

L Edge 2s 2p   

M Edge 3s 3p 3d  

N Edge 4s 4p 4d 4f 

 

The absorption edge has complexity called pre-edge structure which correspond to 1s to 

nd (where n=2, 3, 4, or 5) transitions. The pre-edge structures are conventionally within 

50 eV of the absorption edge. The pre-edge structure and absorption edge confer 

information relating to the oxidation state of the atom as with increasing oxidation the 

absorption energy increases. In an electrostatic model, atoms with a higher oxidation 

state require X-rays of greater energy to excite the core electron as the nucleus is less 

shielded and has a higher effective charge. It is also possible to derive 3-dimensional 

structure of an atoms environment. The XANES pre-edge structure is sensitive to small 

variations in geometry of the absorbing atom.  

As shown in Figure 49 a beam line monochromates the X-ray beam towards an end 

station which contains the sample holder and then detector, along with shielding for the 

protection of the user. The X-ray source is most frequently a synchrotron, although 

laboratory scale X-ray sources have been successfully used in the past. The path of 

photons passes through mirrors and gratings to modulate the width of the energies 

available at the end station.  
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Figure 49 Standard beam line schematic, end station contains sample holders / 
detectors relevant to experiment 

3.3.3.2 Operation of Instrument 

The Bi(LIII) edge at 13,418 eV XANES measurements were performed at the European 

Synchrotron Radiation Facility (ESRF) in the BM26A beam line using a Rh harmonic 

mirror. Transmission measurements were recorded using Bi metal, Bi2O3 and NaBiO3 as 

reference materials indicating Bi0, Bi3+ and Bi5+ respectively. All measurements were done 

on powders diluted with cellulose pressed into pellets. Data was corrected and analysed 

using the ATHENA and ARTEMIS XAS software package [237].  XANES measurements 

were collected on behalf of the author by colleagues from SHU.  

 



139 
 

3.3.4 Electron Paramagnetic Resonance Spectroscopy 

3.3.4.1 Theory and Schematic of Instrument 

Electron paramagnetic resonance (EPR) is a spectroscopic tool based on the absorption 

of microwaves by unpaired electron(s) tuned by an external magnetic field. An electron 

has spin and therefore a magnetic moment, and will precess in an applied magnetic field, 

and will undergo transitions in spin states upon energy of the correct frequency being 

applied. An EPR spectrometer can detect molecules containing an electron with unpaired 

spin. The magnetic moment of an electron is principally contributed by the spin magnetic 

moment, while the orbital magnetic moment provides a smaller contribution. The spin 

magnetic moment is shown by Equation 18.  

𝑀𝑆 = √𝑆(𝑆 + 1)
ℎ

2𝜋
 

Equation 18 Electron spin magnetic moment  

Where, Ms is the total spin angular moment, S is the spin quantum number and h is 

Planck’s constant. The Ms component has 2S+1 different values, so for a single electron 

only the two values of Ms equalling +1/2 or -1/2 are possible.  

In EPR a sample is held in a magnetic field while microwave radiation is applied 

monochromatically over a between 300-400 GHz. The microwave energy is monitored to 

detect absorbance corresponding to an electron the promotion of an electron from the 

lower energy ms=-1/2 to the more energetic ms=+1/2 as shown in Figure 50. In the 

presence of a magnetic field the difference in energy states is given by Equation 19.   

∆𝐸 = ℎ𝑣 = 𝑔𝑢𝐵𝐵0 
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Equation 19 

Where, g=2.0023 for the free electron, 𝑢𝐵 is the Bohr magneton, and B0 is the external 

magnetic field.  

 

Figure 50 Resonance of a free electron 

 

As shown in Figure 51 an EPR spectrometer has a microwave source which is directed 

towards the sample, held between two magnets, which is then directed back towards a 

detector. The magnetic flux experienced by the sample is held constant whilst the 

microwave radiation is modulated.  
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Figure 51 Schematic of an EPR spectrometer 

 

3.3.4.2 Operation of Instrument 

There are several commonly used microwave bands used in EPR spectroscopy, in this 

study all measurements were conducted in the X-band frequencies, circa 9.5 GHz. EPR 

measurements were obtained using a Bruker EMX Premium X EPR spectrometer at the 

national EPR facility and service at the University of Manchester. Powdered samples 

were measured in silica capillary tubes at room temperature (20°C) at X-Band frequencies 

(~9.80 GHz). Magnetic power was adjusted to collect convenient signal-to-noise ratios 

without saturation. 
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3.4 Chemical and Physical Measurements 
3.4.1 X-Ray Fluorescence Spectroscopy 

3.4.1.1 Theory  

X-Ray fluorescence (XRF) is a process wherein X-rays ionise an atom by exciting a core 

electron, the subsequent cascade of electrons from higher shells and emission of Kα and 

Kβ X-rays is detected as shown in Figure 52. The energy of a particular electron depends 

on the shell and which element is bound to, the X-ray emission characteristics are 

determined by the difference in energy levels. The fluorescence emission for a particular 

element has a discrete energy and hence the concentration of each component can be 

calculated from the total photon count. In wavelength dispersive XRF the emission is 

collimated by crystals or monochromators, this step affords greater resolution at the 

expense of wavelength range.  

 

Figure 52 Excitation of a core electron and subsequent cascade and X-ray emission 

Wavelength dispersive XRF spectrometers can detect from PPM to 100% elemental 

analysis from carbon to americium. Lighter elements including boron and lithium are 

effectively transparent to XRF due to their low energy levels in which the generated 

photons are reabsorbed readily.  
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3.4.1.2 Operation of Instrument 

The chemical composition of the prepared base glasses were analysed using a Phillips 

Magix Pro X-Ray fluorescence spectrometer and a Panalytical Axios Fast fluorescence 

spectrometer in a 1:10 sample to lithium tetraborate flux ratio as a fused bead. Beads 

were melted in a Pt/5%Au crucible at 1065°C for 15 minutes before being air cooled. 

Scans were carried out on the SuperQ 3-IQ+ software in the oxide setting. Uncertainties 

in XRF analysis results are conservatively estimated to be ±2% of the measured 

concentration.  

3.4.2 Density Measurements 

Densities of all glasses were measured on samples of 10-30 g bulk glass using the 

Archimedes method in deionized water. This involved weighing the sample in air and in 

distilled water at a known temperature (room temperature, 20°C) then performing the 

calculation given in Equation 20.  

𝜌𝑔𝑙𝑎𝑠𝑠 =
𝑊𝑎

𝑊𝑎 − 𝑊𝑤
. 𝜌𝑤𝑎𝑡𝑒𝑟 

Equation 20 Calculation of density of glass by Archimedes method 

Where; ρglass is the density of the glass, ρwater is the density of water at 20°C, Wa is the 

weight in air of the glass, and Ww is the weight in water of the glass. Samples were 

measured in triplicate and averaged.  
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3.4.3 Differential Scanning Calorimetry 

3.4.3.1 Theory and Schematic of Instrument 

Differential scanning calorimetry (DSC) is used to quantify the heat change during a 

chemical or physical process. In DSC, as shown in Figure 53, a sample and reference 

pan are heated equally, as measured by thermocouples. Differences in the required heat 

flux are shown on a thermogram, corresponding to physical or chemical reactions. In this 

study the glass transition temperature, Tg, was of most interest.  

 

Figure 53 Schematic of a DSC instrument 

Thermograms corresponding to the difference in heat flux applied to the sample and 

reference pans, in an exothermic reaction such as crystal formation less heat energy is 

applied to the sample pan, the reverse is true for an endothermic reaction such as melting. 

3.4.3.2 Operation of Instrument 

10-15 mg of powdered sample was heated from 50°C to 725°C at a rate of 10°C/min in a 

Pt sample pan using a Perkin Elmer DSC 8000 differential scanning calorimeter. An 

empty Pt sample pan was used as the reference. N2 flow of 20.0 ml/min was used to aid 

in heat conductivity whilst remaining inert at higher temperatures.  
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3.5 Preparation of Photovoltaic Modules 
Glasses of the composition outlined in Table 16, were melted in Pt crucibles at 1450°C 

for 5 hours. A steel mould was heated to 550°C, along with a steel press. The glass was 

poured into the mould, the schematic of which is outlined in Figure 54. Due to the high 

viscosity of other SLS melts within this study being prohibitive for the preparation of large 

7 cm2 plates ca. 2mol% of Li2O was added to reduce the viscosity while maintaining the 

same melt temperature. Excess glass flowed out of the overflow channels to afford a 

70x70x4 mm3 glass plate. The glass monoliths were then annealed at 530°C. These 

glasses were prepared at Johnson Matthey, Sonning Common, UK, with B. Allsopp and 

a consortium member. Following cooling to RT, the samples were polished to 1 µm CeO2, 

and sent to Solar Capture Technologies, Blyth, UK.  

Table 16 Sample nominal compositions (mol%) of SLS glasses for PV modules 

Name SiO2 Al2O3 MgO CaO Na2O Li2O Na2SO4 Bi2O3 Gd2O3 

LIMES A 69.29 0.58 5.38 9.09 13.48 1.96 0.22 0.00 0.00 

LIMES B2  69.09 0.58 5.38 9.09 13.48 1.96 0.22 0.20 0.00 

LIMES BG A, 
B, C 

69.09 0.58 5.38 9.09 13.48 1.96 0.22 0.10 0.10 

LIMES B2G2  68.89 0.58 5.38 9.09 13.48 1.96 0.22 0.20 0.20 

LIMES B2G A, 
B 

69.99 0.58 5.38 9.09 13.48 1.96 0.22 0.20 0.10 

 

A base glass was prepared LIMES A, along with seven other glasses containing 

proportions of Bi2O3 and Gd2O3 as outlined in Table 16. 

Increasing the temperature to lower the viscosity was considered but not done due to the 

redox effect of polyvalent elements. The low addition of Li2O was less likely to affect the 

redox of Bi2O3 than increasing the temperature of the melt.  
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Figure 54 Steel mould schematic 

Solar modules were prepared at Solar Capture Technologies. C-Si was tabbed with silver 

paste, a Tedlar® backsheet, EVA glue, and the glass front sheet were cured together 

using Solar Capture Technologies standard commercial procedure as shown in Figure 

55. As this is commercially sensitive it is not outlined herein. A commercially available 

float glass SLS was prepared into a PV module in the same manner as a baseline.  

Electroluminescence measurements and efficiency measurements were taken on a solar 

simulator device with 1.5AM illumination as stated in [18]. Both the string and module 

were measured to compare differences corresponding to the processing. In some cases 

the lamination process would crack the string resulting in a lower surface area for the 

collection of photons, and therefore, a lower apparent module efficiency. 
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Figure 55 Typical PV module prepared at Solar Capture Technologies, Blyth, UK  
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4 Structural, Chemical and Optical Properties of Doping 
Silicate Glasses With d0-Ion Oxide Transition Metals for 
Photovoltaic Applications 

4.1 Introduction 
Recent research in spectral modification for photovoltaics has been primarily focussed on 

glasses doped with lanthanide elements [83,238–240]. This interest has been 

predominantly in upconversion of IR wavelengths to visible wavelengths [22,53,241]. 

Rare earth elements tend to have sharp absorption and transmission peaks, and are not 

particularly beneficial for the protection of polymeric species because of this. Doping of 

luminescent front sheets with transition metals has been infrequently studied as many 

transition metals produce strong and broad d-d absorption bands in the visible and near-

IR ranges, particularly from Fe2O3 [242] and chromium oxides [243]. These absorptions 

negatively affect the efficiency of PV modules due to parasitic absorption of photons 

which may have been converted into electricity [58].  

Currently critical failure of c-Si PV modules is often caused through the ingress of water 

after delamination occurs [29,30]. This reduces the total lifetime of PV modules, and 

therefore increases the cost per watt across the service lifetime of the module. Dependant 

on manufacturer, location, and other environmental conditions the service lifetime of a PV 

module is expected to last between 20-25 years. Degradation occurs as soon as the 

module is mounted and subject to UV irradiation, with module efficiency degrading with a 

median value of 0.5% per year [244] from the yellowing of the EVA glue [20,68] which 

reduces the transmission of visible light.  

Absorption of UV photons, therefore, may protect PV modules from UV induced 

degradation. Critically the absorption cannot be within the visible and NIR where the 
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semiconductor material absorbs as this will lower module efficiency significantly, up to 

1.1% for 0.01mol% Fe2O3 SLS front sheets due to these absorption [58]. However, 

particular metals in certain oxidations states, notably those with a d0 configuration 

[74,78,245], have a full outer electron shell, which has traditionally been thought to 

hamper electronic transitions, produce no d-d absorption bands in the visible or near-IR 

[246,247] but fluoresce in the visible under UV excitation [179,191,248].  

From this it was hypothesised that such a dopant at low concentration may prove 

beneficial for doping PV front sheets as the visible and near-IR absorption would be 

minimised whilst the beneficial UV absorption would be increased. Furthermore, the 

glasses would demonstrate a downconversion or fluorescence emission within the visible 

range to further enhance efficiency of a PV module. Emission of 1mol% d0 transition metal 

oxide has been demonstrated to emit within the visible, from UV excitation [74]. However, 

the comparatively high doping concentration used within that study would prove costly for 

full scale production for PV front sheets. Only a few studies [74,78,179,245] have 

investigated the phenomenon of downconversion and fluorescence emission of d0 ions in 

silicate glasses. There is extensive literature concerning d0 fluorescence in crystalline 

materials [249–253] and thin films for solar harvesting [254–256], which demonstrate 

broadband visible emission from UV excitation. 

The low doping levels used within this study potentially confer two benefits: (i) relatively 

low additional raw materials cost due to the low level of additions; and (ii) may enable 

technologically achievable melting in float glass plants due to minimal changes in 

composition. By modifying the cover glasses in PV modules, an efficiency increase can 

be envisaged, along with protecting the polymeric glues from UV light degradation. In this 
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work, the structural, chemical and optical effects of adding low doping levels of d0 

transition metal ions in a representative soda-lime-silicate (SLS) float glass system have 

been investigated.  

 

4.2 Results 
4.2.1 X-Ray Diffraction 

 

Figure 56 X-ray diffraction patterns of d0 doped and base SLS glasses 

 

XRD patterns for the base and 0.20mol% d0 oxide doped glasses are shown in Figure 56, 

all patterns are consistent with an amorphous silicate structure, with none showing sharp 

Bragg diffraction peaks. All display a broad amorphous hump centred at ca. 25 °2θ. 
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Through neutron diffraction and NMR studies it has been shown Si-O bond lengths do 

not vary greatly relative to SiO2, however the range of bond angles and different Qn 

speciation result in the observed glassy structure. No crystallisation is observed in these 

glasses, however surface and bulk crystallisation has been demonstrated in 60SiO2-

20Al2O3-20MgO glasses incorporating 0.20mol% MoO3 [257], this glass was melted under 

reducing conditions and then subsequently heat treated. Transition metals of d0 electronic 

configurations have the propensity for crystal nucleation in glasses due to their large ionic 

radii, high charge density and predilection for clustering [129]. However, the doping 

concentrations used in this study are below thresholds for crystallisation observed in other 

studies [258,259]. 0.10mol% Nb2O5 in lithium disilicate glass slightly decreases the steady 

state nucleation rate, resulting in fewer crystals developing relative to the base glass 

[259]. Crystals are unlikely to form in the glasses produced as the dopants are dilute, the 

glass was not heat treated, and soda lime silica glasses do not tend to crystallise without 

sufficient nucleation points (such as lithium disilicate [260]).  

4.2.2 Raman Spectroscopy 

Raman spectra of base and doped glasses are shown in Figure 57. Each trace is 

composed of five main peaks, consistent with other float and soda lime silica systems 

[261,262]. Samples doped with Nb2O5 and MoO3 have an additional peak highlighted by 

● and ■ respectively. The peak centred at 875 cm-1 corresponds to [NbO6] octahedra 

which have a higher Raman cross section relative to the glass matrix. Due to the high 

Raman cross section of [NbO6] octahedra the peaks are detectable at low (>0.10mol%) 

concentrations in SLS glasses [263,264]. The additional bands from NbO6 octahedra are 
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also present in both the Al2O3 and ZnO co-doped sample Raman spectra, shown in Figure 

58 and Figure 59 respectively. 

 

Figure 57 Normalised Raman spectra of base and doped glasses, ● = NbO6 octahedra 
(875 cm-1), ■ = [MoO4]2+ tetrahedra (925 cm-1) 

Molybdate tetrahedra also present strong Raman cross sections, thus giving rise to a 

stronger signal relative to the corresponding network [265]. The peak at 925 cm-1 in Figure 

57 corresponds to symmetric stretching of [MoO4]2- tetrahedral entities in the glassy 

phase [266,267]. As with the X-ray diffraction patterns in Figure 56 no crystallisation is 

observed in the d0 doped glasses Raman spectra shown in Figure 57, Figure 58 and 

Figure 59.  

Within the Raman spectra shown in Figure 57, Figure 58 and Figure 59 there are no major 

differences suggesting no significant structural changes occur between the different base 
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systems. This is commensurate to the X-ray diffraction patterns shown in Figure 56 not 

showing discernible differences between the base glasses. 

 

Figure 58 Normalised Raman spectra of Al2O3 base and doped SLS glasses 

ZnO crystals provide Raman peaks at 502, 681, 766, 865 and 967 cm-1 corresponding to 

mutiphonon modes [268], a peak at 438 cm-1 corresponds to the E2 mode, related to the 

hexagonal structure of ZnO [269]. The peaks are not apparent in the Raman spectra of 

ZnO doped and codoped glasses shown in Figure 59. A difference spectra is shown in 

Figure 60 showing doped glasses with the effect of the base glass removed.  

After deconvolution of base SLS and 0.20 mol% Nb2O5 SLS using the program FitYK and 

applying 5 Gaussian peaks, the ratio of NBO:BO was found to be 0.361±0.025 for the 

undoped SLS glass and 0.364±0.025 for 0.20mol% Nb2O5 SLS glass shown in Figure 61. 

As both glass systems contain around 36% NBO and 64% BO this indicates the glasses 

are well polymerised and the transition metal doping does not significantly alter the 
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structure. Other dopants were not deconvoluted due to the dilute doping concentration, 

and the Raman and XRD evidence do not show significant changes from the base glass.  

 

Figure 59 Normalised Raman spectra of ZnO base and doped SLS glasses 

 

Figure 60 Difference Raman spectra of d0 doped SLS glasses 



155 
 

 

 

Figure 61 Raman fitting of 0.20mol% Nb2O5 SLS 

4.2.3 Electron Paramagnetic Resonance Spectroscopy 

Figure 62 shows EPR spectra of powdered glass samples, measured in silica tubes at X-

band frequencies. Two signals, g=4.3 (1.6T) and g=2.0 (3.4T), correspond to 

paramagnetic Fe3+ in isolated and clustered environments respectively [163], though this 

is highly contested in the literature. Whilst Mn2+ which is isoelectronic to Fe3+ results in 

resonances at g=4.3 and g=2.0 [270,271], the lack of hyperfine structure at g=2.0 further 

indicates that the observed resonances are due to Fe3+. Furthermore, Fe2O3 is a 

ubiquitous impurity in commercial SLS glass production. Fe2O3 was not deliberately 

added to the glass melts and is present in impurity levels of circa 100 ppm. Doped 

samples display the same peaks as the base glass, indicating the dopants are in the 

expected oxidation states of Ti4+, Zr4+, Hf4+, Nb5+, Ta5+, W6+, and Mo6+. In the case of 



156 
 

MoO3 doped glass there is an additional weak resonance at g=1.92 (3.7 T) corresponding 

to Mo5+, shown in the inset of Figure 62.   

 

 

Figure 62 RT X-band EPR of base and d0 doped SLS glasses 

4.2.4 UV Vis NIR Absorption Spectroscopy 

UV VIS absorption spectra of base and doped glasses are shown in Figure 63. These 

spectra all show strong UV absorption edges arising from the Si-O network and network 

modifying cations such as Na+, Ca2+ and Al3+. This band is strongly modified by transition 

metals including Fe-O bonds. The MoO3 doped spectrum is circa 4,000 cm-1 (~40 nm) 

shifted towards the visible region relative to the base glass. The dotted line is reproduced 

from Yang et al. [272] and extended with data from Fix et al. [93], giving the absorbance 
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of EVA glue. With different compositions of the glue and age the absorbance can shift 

[28], with older, more irradiated glue having absorption shifted towards the visible due to 

yellowing.  

 

 

Figure 63 UV-Vis absorption of base and doped glasses (AM1.5 data from [18]) 

The AM1.5 solar spectrum shows that high energy photons (>25,000 cm-1, <400 nm) have 

lower spectral irradiance, however these photons are particularly detrimental to the 

polymeric species within a PV module. The UV absorption profiles of the doped glasses 

absorb significant portions of these high energy, damaging, photons, particularly in the 

case of MoO3. Higher energy photons do correspondingly more damage to the polymer 

layers and therefore absorption within the glass front sheet of these particularly 

deleterious photons is essential for the longevity of PV modules.  
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Figure 64 UV Vis IR absorbance of d0 doped glasses and Fe2O3 doped glasses 

Figure 64 shows UV Vis IR absorption spectra of the d0 doped glasses along with Fe2O3 

doped glasses. Although increasing quantities of Fe2O3 in silicate glasses shift the UV 

edge towards the visible there are visible and NIR absorption peaks within their 

absorption profiles. The prominent peak at 26,220 cm-1 (381 nm) corresponds to the 

6A1(S) →4E(D) transition of Fe3+ [56] which is present in all samples, a function of the 

chronic impurity of Fe2O3 in silicate glasses, in a lower intensity in the d0 doped samples. 

MoO3 doped SLS glass has a UV edge of similar position to that of 0.05mol% Fe2O3, with 

lower intensity of bands at 26,220 cm-1 (381 nm). Absorption in the IR region corresponds 

to Fe2+ [56] and prevents the transmission of photons close to the bandgap of c-Si solar 

cells, deleteriously impacting efficiency. All sample were 8.0±0.1 mm thickness and were 

normalised to 10 mm thickness. 
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Figure 65 NIR absorption spectroscopy of d0 doped SLS glasses 

NIR absorption spectroscopy of d0 transition metal doped glasses was undertaken to 

confirm no deleterious absorptions were occurring across the 1000-1200 nm range where 

c-Si panels can effectively absorb. As shown in Figure 65, the profile is flat across the 

range of 1000-2000 nm, with a small broadband centred at 2200 nm corresponding to 

H2O content [273]. PV modules utilising c-Si have a strong absorbance near the band gap 

of Si (circa 1100 nm), as these glasses are not strongly absorbing within this region unlike 

Fe2O3 containing glasses, they may prove beneficial for the use as front sheets. There is 

little absorption corresponding to Fe2+ between 10,000 cm-1 – 7490 cm-1 (1000 nm – 1335 

nm) [56] in Figure 65. Note there is a filter change at circa 1420 nm.  
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4.2.5 UV Vis Fluorescence Spectroscopy 

 

Figure 66 Fluorescence emission intensity under 41,666 cm-1 (240 nm) excitation 
(mercury discharge lamp) 

The fluorescence emission spectra from 41,666 cm-1 (240 nm) excitation of d0 doped 

glasses are presented in Figure 66. All glasses demonstrate broadband emission 

between 19,000 cm-1 and 25,000 cm-1 (400 nm to 525 nm) with a range of intensities. The 

colour photograph in Figure 67 shows the variation in colour and emission intensity upon 

UV excitation. ZrO2 and MoO3 doped glasses weakly emit visible photons at these 

excitation wavenumbers [74].  
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Figure 67 Visible fluorescence from d0 doped SLS glasses. Photograph taken under 
39,370 cm-1 (254 nm) UV light 

 

Figure 68 Variation of emission intensity as a function of excitation wavelength and 
dopant type 

TiO2 

ZrO2 

HfO2 

Nb2O5 

Ta2O5 

MoO3 

WO3 
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Figure 68 shows the maximum emission intensity at various excitation wavenumbers. All 

dopants have stronger emission at higher wavenumber excitation with a rapid decrease 

in emission intensity, however there is measurable emission at all measured 

wavenumbers. The glasses doped with Nb2O5 and Ta2O5 contain twice the quantity of 

active ions relative to TiO2, ZrO2, HfO2, MoO3 and WO3. This may, in part, explain the 

greater emission intensity of the 0.20mol% doped SLS glasses with Nb2O5 and Ta2O5.   

Modification of the host matrix positively affects the emission of TiO2 as presented in 

Figure 69, with the addition of 5.00mol% Al2O3 into the glass in replacement of SiO2 

increasing the emission intensity by a factor of 2. The effect is also observed in Nb2O5 

doped glasses with a modified glass matrix, the addition of 1.00mol% ZnO increases 

emission intensity by a factor of 2.5, as shown in Figure 70. 

 

Figure 69 Fluorescence emission intensity of doped TiO2 glasses 
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Figure 70 Fluorescence emission of doped Nb2O5 glasses 

 

4.3 Discussion 

The XRD patterns in Figure 56 show no sharp Bragg diffraction peaks indicating the 

presence of crystalline phases, thus confirming the amorphous nature of the 

representative samples considered. The diffraction patterns are consistent with other 

oxide glasses, showing the amorphous "hump" typical of silicate glasses [124]. Transition 

metal ions have been used as nucleating agents in lithium disilicate glasses [258,274]. 

While the transition metals may induce crystallisation in glass melts, the low doping 

concentrations in this study are below the thresholds observed in other studies [129,258]. 

Furthermore, soda lime silica glasses used in this study are less prone to nucleation than 

lithium disilicate glasses. Differences in XRD profiles are not readily resolved in SLS 
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glasses with the addition of Al2O3 below circa 7.0mol% Al2O3 [275], although with 

increasing Al2O3 content there may be an increase in the formation of Q3 structural units 

[276]. 

Fluorescence emission intensity is lower in amorphous materials, but the bands are 

broader by comparison to crystalline equivalents [277]. Broader absorption and emission 

bands in the front sheet glass is advantageous for the protection of polymeric species. 

Both ZnO and Al2O3 demonstrate intermediate glass forming characteristics [124] they 

both can integrate and act as network formers. Densities are presented in section 3.1.1.1 

and are consistent with both the Fluegel model [278] and other experimental values [261], 

indicating that glass compositions, for all samples, are close to their nominal compositions 

based on batch calculations under similar conditions.  

The Raman spectra in Figure 57 show only small variations between the base and doped 

glasses, with only Nb2O5 and MoO3 showing significant changes as indicated by the circle 

● at 875 cm-1 and the square ■ at 925 cm-1 respectively. The six Raman bands in the 

base glass spectrum correspond to different structural configurations, the most intense 

band centred on 1093 cm-1 is due to the stretching mode of Si-O-Si in Q3 arrangements 

[126,279–281] indicating a highly polymerised silicate network. The broad band centred 

at 990 cm-1 is consistent with the Si-NBO stretching mode (i.e. Q2) [280,281]. The band 

centred at ca. 944 cm-1 is due to Q2 speciation. The band centred at 796 cm-1 arises from 

Si-O-Si symmetric stretching modes between Si-O tetrahedra [127,279,281]. The bands 

at 450 cm-1 and 556 cm-1 correspond to Si-O-Si symmetric stretching of Q4
 and Q3

 

species, respectively [282]. Deconvolution of these bands in base SLS and 0.20mol% 

Nb2O5 SLS show NBO comprise 36.1±2.5% and 36.4±2.5% respectively.  
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The SLS glass sample doped with 0.20mol% Nb2O5 exhibits an extra band relative to the 

base glass, at around 875 cm-1. This is attributed to Nb-O symmetric vibrations in [NbO6] 

octahedra [283]. [NbO6] octahedra have high Raman cross sections and the peak at 875 

cm-1 is detectable at low (>0.10mol%) concentrations in SLS glasses [263,264] and is 

present in Figure 57, Figure 58 and Figure 59. Deconvolution of Nb2O5 spectra along with 

base SLS through the program FitYK shown in Figure 61, give a BO:NBO ratio of circa 

64:36 indicating high polymerisation and non-significant changes to the polymerisation 

with the incorporation of 0.20mol% Nb2O5 and are consistent with other similar glasses 

[262]. Molybdate tetrahedra likewise present strong Raman cross sections, thus giving 

rise to a stronger signal relative to the corresponding network [265] demonstrated in 

Figure 57. The peak at 925 cm-1 in Figure 57 corresponds to symmetric stretching of 

[MoO4]2- tetrahedral motifs [266,267].  

Bands associated with the d0 transition metals, Ti4+ (937 cm-1 corresponding to internal 

vibrations of TiO4 tetrahedra, and 1100 cm-1 to symmetric stretches of TiO4) [284], Zr4+ 

(642 cm-1 tetragonal ZrO2) [283], Hf4+ (680 cm-1 tetragonal HfO2), Ta5+ (786 cm-1 

octahedral TaO6) [285] and W6+ (916 cm-1, 958 cm-1, 1017 cm-1 octahedral WO6) [286], 

were also expected due to their high polarisability relative to Si. However, these were not 

observed even through a subtraction of the base glass spectrum from the doped glass’ 

spectra. The high polarisability of the transition metals confer a higher Raman cross 

section relative to the silicate network, however, the low doping concentrations used in 

this study may result in low intensity peaks which are not readily observed. 

EPR is used to detect unpaired electrons, and therefore d0 dopants in their expected 

oxidation state are silent to this technique. Hence the two resonances at g=4.3 (1.6 T) 
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and g=2.0 (3.4T) shown in Figure 62 correspond to Fe3+ which occurs as a chronic 

impurity in the raw materials used to produce all sample glasses. Both resonances have 

been widely observed, even in spectra for glasses with very low (ppm) Fe3+ concentration 

[163]. The resonance at g=4.3 (1.6 T) corresponds to Fe3+ in an isolated environment 

[270,287]. The resonance at g=2.0 (3.4 T) is due to exchange-coupled Fe3+ ions 

[166,287,288]. It occurs even at impurity concentrations, but has also been attributed to 

octahedral Fe3+ [163,289].  

Since EPR detects unpaired electrons and d0 ions have no unpaired electrons, the lack 

of additional EPR peaks is commensurate with the dopants being present in the expected 

oxidation states of Ti4+, Zr4+, Hf4+, Nb5+, Ta5+, Mo6+ and W6+ [74,246,247] . However, the 

EPR spectrum for the MoO3 doped glass (Figure 62 and inset) shows an additional weak 

resonance at g=1.92 (3.7 T) which corresponds to Mo5+ [246]. Mo5+ (d1) can give induce 

a yellow colour in silicate glasses due to 4A2-4T2 absorption bands centred at 28,500 cm-

1 (350 nm) and 22,700 cm-1 (440 nm) [77,246,290]. This may partly explain the shifted UV 

edge in the optical absorption spectra shown in Figure 63 and Figure 64 relative to other 

d0 dopants. However, given the weakness of the Mo5+ EPR resonance in Figure 62, it can 

be concluded the concentration of Mo5+ is to be very low, and the majority of Mo is present 

as Mo6+.  

The oxidation state of Fe in soda lime silica glasses is affected by batch constituents, 

melting temperature, and any redox conditions during melting. The oxidation state or 

states of d0 transition metal oxides in silicate glasses can be controlled by the redox 

conditions of the melt, ultimately affecting the absorbance and emission properties of the 

glasses [246]. Control of the redox conditions is crucial for any commercial glass 
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manufacture process. Typical Fe2+/Fe redox ratios of ~0.2-0.3 are common in 

commercial float glass manufacturing processes [162]. Although the glasses prepared in 

this study did not utilise commercial glassmaking raw materials, and the melting 

atmosphere was more oxidising than within a commercial float glass furnace, the glasses 

were melted at similar temperatures and chemical proportions. Therefore, according to 

Van t’Hoff’s law, it is estimated that the Fe2+/Fe redox ratios in the glasses prepared in 

this work were not dissimilar to that found in commercial float glasses, albeit it is likely 

they were marginally more oxidised due to the furnace atmosphere [57,162].  

While it was not possible to quantitatively measure the iron content from the EPR spectra 

as the measurements were made to qualitatively determine the oxidation state of the d0 

dopants, the weakness of the Fe3+ resonances are qualitatively consistent with Fe3+ 

contents in the ppm range [291]. Fe2+ cannot be measured though room temperature X-

band EPR due to its short spin-lattice relaxation time and lack of unpaired electrons [163]. 

The Fe2O3 content was below the limit of detection for the program used for XRF (ca. 200 

ppm).  

For titanium doped glasses redox potentials developed by Schreiber et al [292,293] 

indicate that, under all but very strongly reducing conditions, these dopants will occur in 

soda-lime-silica glasses as Ti4+. No comparable glass redox potential data was identified 

for the other dopants studied here, however, based on aqueous redox potentials it can 

reasonably be assumed that these dopants will occur in soda-lime-silica glasses prepared 

under oxidising melting conditions, predominantly as Nb5+, Ta5+, Zr4+, Hf4+ and W6+. The 
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results of this study are consistent with this view demonstrated in the EPR and 

absorbance measurements shown in Figure 62, Figure 63, and Figure 64. 

Optical samples were polished to 8.0±0.1 mm thickness and normalised to 10 mm 

thickness and, as shown by the transmission spectra in Figure 63 and Figure 64, all are 

of high quality optical polishing as poor polishing leads to large amounts of diffuse 

scattering at the air-glass interface and results in poor transmission of light. The UV 

absorption edge is characterised by photons of an energy high enough to induce 

absorption of the silicate network [129]. Meng et al demonstrated that in broadly similar 

silicate glass compositions, 1mol% MoO3 shifts UV absorption to lower wavenumbers 

(higher wavelengths) more strongly than other d0 ions (Ti4+, Zr4+, Nb5+, Ta5+ and W6+) [74], 

this work shows a corresponding result. 

It has been demonstrated that the local structure of MoO3 has a strong influence on the 

absorption which can shift the absorption edge towards ca. 24,000 cm-1 (415 nm) [294]. 

However, as shown by our EPR results and the corresponding optical absorption spectra, 

in the Mo-doped sample studied here, a very small fraction of the molybdenum has been 

reduced to Mo5+ which could contribute to the shifted absorption. In Figure 64, Fe2O3 

doped glasses are shown to shift the UV edge towards the visible region with increasing 

quantities of iron oxide. It has been demonstrated 0.01mol% Fe2O3 doped silicate glass 

as a PV encapsulant layer reduces module output by 1.1% due to the visible and IR 

absorptions at 26,220 cm-1 and 11,000 cm-1 (381 nm and 909 nm) of Fe3+ and Fe2+ [58]. 

Doping silicate glasses with 0.20mol% of d0-ion oxide provides the solar protection, 

shown in Figure 63, without the deleterious bands shown in Figure 64.  
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EVA glues absorb strongly above 26,666 cm-1 (below 375 nm) [272] with photons of 

higher energy inducing greater damage. Yellowing index is a measure of transmission 

losses in polymers, with higher dimensionless numbers indicating a higher transmission 

loss [295]. An NREL study demonstrated in a c-Si based PV module with a front sheet of 

standard SLS glass, with a UV edge of 295 nm gave a yellowing index of 81.9. Identical 

PV modules with SLS glasses doped with CeO2 to shift the UV edge to 325 nm and 330 

nm had yellowing indexes of 23.8 and 17.8 respectively [28]. All modules underwent 35 

weeks of accelerated aging to demonstrate the yellowing from UV degradation and no 

measures were undertaken to correlate this to an exposure time of modules in operation 

[28]. 

The glasses in the NREL study were doped with cerium oxide: we postulate that the d0 

doped glasses studied here may also be suitable to achieve similar UV protection. As 

shown in Figure 63, glasses with UV absorption closer to that of the EVA absorption line 

do not act as 100% effective bandpass filters. Shifting the absorption of the glasses to 

overlap the EVA absorption would induce a deleterious effect on the module efficiency by 

absorbing visible photons as the glass itself would be yellowed. Furthermore, the cost 

would be prohibitive and there would be potential for float glass furnace to have to change 

their melting regime with increasing the doping concentration further. An effective balance 

of the beneficial UV absorption against the negative visible absorption in the glass 

superstrate requires further study. Although a cost analysis would be required, along with 

a study investigating changes in melt chemistry, it is tentatively suggested a doping level 

between 0.20 and 0.50mol% may prove beneficial for the protection of polymeric species 

in PV modules [74,78].  
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As shown in Figure 68 under excitation from 41,666 cm-1 (240 nm) light, and visibly in 

Figure 67 with 39,370 cm-1 (254 nm) light, there is a large variation in emission intensity 

as a function of dopant type. The centre of the emission peaks vary up to 5,000 cm-1 (100 

nm) between Ta2O5 and Nb2O5. At sea level there are few photons, as seen in the AM1.5 

spectra in Figure 63 and Figure 64, with high photon energies in the UV (> ca. 33,300  

cm-1, < 300 nm ), that would be required to induce the strong fluorescence emission from 

glasses containing the dopants described herein. The effect, although weaker, still occurs 

from excitation of photons of between 33,000 cm-1 to 30,300 cm-1 (300-330 nm). PV 

modules with front sheets with dopants such as these may be suitable for high UV 

locations such as Peru, Chile, Argentina and New Zealand, along with any higher altitude 

area in which UV photons are more intense, due to lower attenuation by the atmosphere, 

and of higher energies.  

It has been suggested a possible origin of the emission are from defects in the silicate 

network induced by the addition of the various doped ions, especially Ta5+ [245], however, 

the EPR spectra only show Fe3+ impurity resonances. A more convincing mechanism is 

a ligand to metal charge transfer mechanism (LMCT) [296].  

The excited state corresponds to nd0 (n=3, 4, 5) of the transition metal ion, and the ground 

state is the 2p6
 state of the oxide ions surrounding it, as shown in Figure 71. A photon of 

sufficient energy excites an electron from the 2p6
 orbital of the oxygen atom surrounding 

a d0 ion, which gets promoted to the empty nd0 orbital, upon the electron falling to the 

ground state it releases a photon and a phonon. The energy loss between the excitation 

and emission photons corresponds to the energy of the phonon.  
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In Figure 68 the variation of emission intensity as a function of excitation wavenumber 

(and wavelength) is shown. Although at 41,666 cm-1 (240 nm) excitation the Ta2O5 doped 

sample shows the strongest emission, Nb2O5 and TiO2 were selected for codoping with 

Al2O3 and ZnO due to their low cost and high emission intensities over a wide range of 

excitation energies. Codoping was undertaken in an effort to increase emission intensity 

of the dopants. The levels of Nb2O5 and Ta2O5 added contained twice the quantity of 

active ions relative to the other singly doped systems. The emission intensity of both 

Nb2O5 and Ta2O5 is proportionally higher due, in part, to the effectively higher doping 

concentrations.  

Codoped glasses were modified to contain 0.20mol% of d0 ions TiO2 or Nb2O5 and in 

conjunction contain 5.00mol% Al2O3 (replacing SiO2), or 1.0 mol% ZnO (replacing MgO). 

Shown in Figure 69, the Al2O3 codoped TiO2 sample exhibits enhanced fluorescence 

emission without changing λmax due to the matrix having lower total phonon energy [297], 

i.e. the photon-phonon emission results in fewer non-radiative losses, and thus a higher 

fluorescence emission. ZnO codoped glasses induce a shoulder peak developing around 

nd0 

Conduction band 

Valence band 

UV 

O 2p 

Figure 71 Schematic mechanism for nd0 fluorescence 
emission n=3, 4, 5 



172 
 

23,000 cm-1 (434 nm). This is attributed to the fluorescence emission of Zn2+, it is 

understood the luminescence is due to interstitial zinc defects, involving a transition from 

the conduction band edge to a deep acceptor level [298]. It has been shown that codoping 

Nb2O5 with ZnO enhances the fluorescence emission relative to singularly-doped Nb2O5 

samples as seen in Figure 70. Small modifications to the host glass matrix do not 

significantly change the structure, as evidenced by the XRD and Raman traces, but can 

have a significant effect on the emission intensity when excited under UV light. 

Differences in the Raman spectra reflect the high polarisability of the transition metal 

dopants and not significant structural changes of the Qn silicate network.  

4.4 Conclusions 
A series of glasses doped with d0 ions was prepared through a standard melt quench 

technique. Upon excitation by UV light all glasses demonstrate visible fluorescence of 

different magnitudes centred between 20,000 cm-1 and 25,000 cm-1 (400 nm – 500 nm), 

with the greatest intensity from 41,666 cm-1 (240 nm) excitation. A shift in the absorption 

spectra towards the visible region has been demonstrated in all doped samples, with 

MoO3 doped glass having the strongest effect. A contributing factor may be a partial 

reduction in Mo6+ to Mo5+ shown by the peak at g=1.92 (3.7 T) through EPR spectroscopy. 

Silicate glasses doped with Nb2O5 and MoO3 exhibit additional Raman peaks centred at 

875 cm-1 and 925 cm-1, respectively, attributed to Nb-O vibrations in [NbO6] octahedra 

and Mo-O stretching modes in [MoO4]2- tetrahedra. Through modification of the glass 

matrix with Al2O3 or ZnO, the fluorescence emission intensity can be enhanced in the 

case of TiO2 and Nb2O5 up to a factor of 2.5. SLS glasses doped with d0 ions confer 

several potential advantages for PV cover glass applications through absorption of 
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damaging UV light and re-emission as near-UV and visible light, which could 

simultaneously enhance both PV module lifetimes and efficiencies.  

The glasses presented in this work are primarily suitable for absorption of damaging UV 

photons and hence for the protection of the EVA glue and backsheet layers. Further 

optimisation is required to fully overlap the absorption profile of the glass cover sheet to 

that of the EVA glue, whilst remaining transparent to visible photons in a technologically 

available manner. Modification of the excitation and emission properties of the dopants 

to more closely align with that of the particular solar cell is also required as this work 

primarily considered c-Si based PV modules which constitute the majority of installed PV 

worldwide. Increasing doping levels in the SLS front sheets without inducing visible 

absorption, or codoping effective UV absorbing dopants with efficient visible emitting 

dopants may prove more beneficial for increasing service lifetimes and efficiencies of PV 

modules. For clarity, doping of glasses is meant in the glass manufacture term rather than 

the semiconductor term. Doping of glasses within this thesis comprise of levels in the 

order of 0-0.50mol%.  
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5 Structural, Chemical and Optical Properties of Doping 
Silicate Glasses With S2-Ion Oxide Post-Transition Metals 
for Photovoltaic Applications 

5.1 Introduction 
Photovoltaic modules primarily undergo critical failure through water ingress onto the 

conducting wires within [29]. This occurs due to the polymeric species becoming brittle 

after UV induced degradation after exposure in the field [19,211]. However, even before 

this critical failure conversion efficiency may drop up to 2.5% per year in high UV locations 

due to the polymer species discolouring to a yellow and ultimately brown colour [29,30]. 

The main photochemical processes involved in this degradation are the formation of 

unsaturated carbonyl groups and conjugated polyenes catalysed by UV photons [299]. 

This degradation hinders transmission of visible light and reduces the flux of photons 

available for conversion to electricity.  

Bismuth oxide (Bi2O3) doped soda lime silica glasses have been demonstrated to absorb 

strongly in the UV, and confer an additional benefit of photoluminescence, depending on 

oxidation state, in the visible or NIR [88,300,301]. There are several interpretations within 

the literature of the source of the emission in the visible or NIR from Bi+ [87], Bi2+ [302], 

Bi5+ [303], clusters of Bi2 and Bi2- [304] in various glass matrices. Visible fluorescence 

centred around 22,200 cm-1 (450 nm) has been attributed to Bi3+ [218,305]. Absorption 

bands between 40,000 cm-1 and 25,000 cm-1 (250 nm – 400 nm) are ascribed to 1S0
 → 

3P0
 and 1S0

 → 3P1 transitions [218]. It is therefore postulated with the incorporation of 

bismuth in soda lime silica glass front sheets, crucially in the Bi3+ oxidation state, may 

confer UV protection to polymeric species whilst imparting a higher visible photon flux to 
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the PV module, and therefore, increase both the service lifetime of the PV module, and 

increase module efficiency.  

As bismuth may be found in multiple valence states, 5, 4, 3, 2, 1, -1, -2, and -3, elucidation 

of the cause of visible and NIR luminescence has been extensively studied and debated 

within the literature [306–308]. Within silicate glasses such as the soda lime silica and 

borosilicate glasses similar to those studied within this research Bi3+ and metallic bismuth 

are considered to be the preponderant species, however the presence of Bi5+ has been 

elucidated [303]. Bi2+ [309], and Bi+ are often observed in crystalline materials [218]. In 

general, the absorption and emission bands are broader in bismuth-doped glasses than 

a rare earth doped glass due to the unsheltered outer electrons [218]. Rare earth 

elements tend to show sharp absorption and emission lines which are not as beneficial 

for the protection of polymeric species as the broadband emission conferred with post-

transition metal oxides.  

The fluorescence emission of Bi3+ in phosphors has been studied at least from 1968 with 

work from Blasse et al [305]. Within recent years significant research on bismuth doped 

glasses has been undertaken for various applications such as luminescence in the visible 

and near-infrared wavebands for novel lasing sources [310] and for white light emitting 

LEDs [309]. However, careful control of the oxidation state of bismuth is required in 

silicate glasses, as lower oxidation states of bismuth such as Bi2+ in barium borates emits 

in the red region of the visible spectrum centred at 16,666 cm-1 (600 nm) [311]. Bi+ 

complexes in pure silica fibres show three emission bands, at 8718 cm-1 (1147 nm) and 

7127 cm-1 (1403 nm) caused by Bi2O molecules and another centred at 6702 cm-1 (1492 

nm) corresponding to SiOBi structures [312]. These emission bands are above the 
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bandgap of silicon resulting in inefficient absorption, they have absorption bands within 

the NIR centred between 12,500 cm-1 – 11,100 cm-1 (800 nm – 900 nm) which absorb 

photons of the energy suitable for efficient absorption, and do not confer the UV protection 

required for protection of polymer species.   

Therefore, in oxidation states other than Bi3+ deleterious absorption bands are observed 

which parasitically absorb photons which may be converted to electricity within a PV 

module. Careful control of the oxidation state of bismuth is therefore essential for the 

protection of polymeric species with PV modules. A series of Bi2O3 doped silicate glasses 

has been prepared, and subsequently analysed by a suite of spectroscopic 

measurements to elucidate the oxidation state of the resultant bismuth molecules.  

Lead oxide (Pb2+) is isoelectronic to Bi3+ and therefore undergoes the same electronic 

transitions. Lead oxide has been used as a probe ion to aid in the understanding of optical 

basicity. This scale, developed by Duffy et al [228,313], measures shifts in the absorption 

of Pb2+ in the UV region. Shifts arise from differences in the composition of the glass host 

material and the electronegativities of the cations. All commercial glasses consist of metal 

silicates (oxyanions), upon the addition of a soluble ion into a glass network oxygen atoms 

donate some of their negative charge towards the metal ion. As lead is highly polarisable, 

it is particularly sensitive to its environment and therefore small changes in the 

electronegativity surrounding the ion are shown within the absorption spectra. In more 

basic solutions lead oxide has an absorption towards the visible region, and inversely in 

more acidic solutions the absorption tends towards the ultraviolet [228].  

Lead oxide is unique in that it may form a glass with SiO2 over a wide range up to 70mol% 

PbO [314]. Lead crystal glassware was invented by George Ravenscroft in 1654, which 
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extended the working time of the viscous glass and increased the refractive index up to 

an Rf of 1.9 relative to soda lime silica circa 1.5. Typically, lead crystal contains between 

10 and 30% PbO by weight. The mechanical, optical, chemical and physical properties 

are modulated upon the addition of PbO to a SLS base glass. Density is increased 

dramatically, replacing CaO (RMM=40.1) with PbO (RMM=207.2) shifts the typical 

density of SLS glass of 2.4 g/cm3 to between 3.1 g/cm3 to 4.0 g/cm3.  

24wt% lead crystal glassware has a refractive index of circa 1.62, (note this value is 

measured with the sodium d-line at 17,000 cm-1 / 589 nm). This is similar to that of 

sapphire 1.77. The refractive index of lead crystal partially explains the brilliance; 

however, a small component of it arises from UV induced broad band fluorescence. This 

is centred at circa 24,000 cm-1 / 416 nm in 7.50mol% PbO SLS, and decreases to 26,000 

cm-1 / 384 nm in 0.50mol% PbO SLS. This fluorescence effect is similar to that found in 

diamonds, where around 30% of diamonds fluorescence under UV excitation centred at 

25,000 cm-1 / 400 nm. 

As there is significant work on the optical transitions found within lead doped silicate 

glasses from the pioneering work of Duffy and Ingram [228] glasses containing PbO can 

be used as model glasses for Bi2O3 doped glasses. Furthermore, in float glass 

manufacture to attain flat and smooth sheets the molten glass is floated on molten tin. A 

small proportion of tin diffuses into the glass and oxidises to Sn2+, which is also 

isoelectronic to Pb2+ and Bi3+. 

Sn2+, also isoelectronic to both Pb2+ and Bi3+, is found in float glass due to the 

manufacturing process, outlined in section 2.2.3.1.1. As the molten glass floats on the 

liquid tin bath, low quantities are diffused into the glass network, which oxidised to Sn2+. 
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This leads to differences optically and chemically in the tin side and the air side of the 

glass. Absorption in the UV corresponding to an S→P transition of Sn2+ molecules [208]. 

The concentration of Sn2+ varies as a function of depth as it is a diffusion based process, 

and the total concentration is a function of the length of time the glass was floated on the 

tin bath [315]. As Sn2+ is isoelectronic to Bi3+ it undergoes visible fluorescence emission 

from UV excitation. This again corresponds to 1S0
 → 3P0

 and 1S0
 → 3P1 transitions [218]. 

As the concentration of Sn2+ can vary through exposure time, temperature, and thickness 

of the glass, a model glass containing 0.20mol% SnO2 was prepared and analysed 

optically to assist in the elucidation of the oxidation state of bismuth in the prepared 

glasses.  

X-ray diffraction and Raman spectroscopy were done to understand structural changes 

associated with doping silicate glasses with post transition metals. Both XANES and EPR 

measurements on Bi2O3 doped silicate glasses were completed to elucidate the oxidation 

state of Bi. Density and XRF measurements were undertaken to confirm the composition 

was close to the nominal composition outlined in section 3.1.1.2, however, borosilicate 

glasses could not be measured through XRF due to the transparency of boron to X-Rays.  

5.2 Results 
5.2.1 X-Ray Diffraction 

X-ray diffraction was carried out to confirm the samples were amorphous and displayed 

no crystalline phases. No samples were crystalline or showed crystalline phases 

corresponding to glass ceramics. Window glass compositions (circa 70% SiO2, 10% CaO, 

15% Na2O with small modifier additions) used within this study readily form glasses under 

the standard melt quench technique outlined in the experimental methods section.  
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5.2.1.1 Bi2O3 – Soda Lime Silica Glasses 

 

Figure 72 X-ray diffraction patterns of undoped (base) glasses 

The XRD patterns shown in Figure 72 are consistent with other silicate glasses, showing 

the typical hump associated with oxide glasses [129]. Soda lime silica glass of similar 

composition (±1% of major constituents) display a hump at circa 25°2θ [316], this is 

commensurate with the broad hump in Figure 72. No crystallisation is observed in the 

base SLS glass as expected due to the low propensity for SLS glasses of this composition 

to spontaneously crystallise [121].  
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5.2.1.2 PbO – Soda Lime Silica Glasses 

 

Figure 73 X-ray diffraction patterns of PbO doped SLS glasses 

Shown in Figure 73 with increasing PbO content shifts to higher °2θ in the X-ray diffraction 

patterns become apparent above 7.50mol% content. The shifts are towards higher 

degrees 2θ indicating a less wide spread of O-Si-O bond angles, and potential differences 

in the interatomic distances with increased scattering of X-rays due to the heavy lead 

ions, a similar result has been shown in lithium lead borate glasses [230]. This is attributed 

to the increasing proportion of Pb-O-Pb bonds, which are limited in the range of bond 

angles due to the high ionic radius of the Pb2+ ion which sterically reduces the range 

available. X-ray diffraction studies on PbO-SiO2 binary glasses show Pb-O-Pb bond 
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angles between 107° and 109° [317]. At 2.50mol% PbO and lower concentrations, the 

XRD pattern is commensurate with that of the undoped SLS glass.  

PbO is a network forming oxide, found as PbO3 motifs within the glass structure [219]. As 

the concentration of PbO increases the average, interatomic bond-distance increases. 

PbO has two crystalline forms, a tetragonal structure (litharge or α-PbO) and an 

orthorhombic structure (massicot or β-PbO). In α-PbO (litharge), the Pb-O interatomic 

bond distance is 2.30 Å. In β-PbO (massicot) there are two Pb-O bond lengths, 2.21 Å 

corresponding to chain Pb-O bonds, and 2.49 Å for interlayer Pb-O bonds [318]. 

Furthermore, with increasing PbO content, there are fewer SiO2 tetrahedra per volume. 

This is further exacerbated as the added PbO is in replacement of SiO2 on a molar basis.  
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5.2.2 Raman Spectroscopy 

5.2.2.1 Bi2O3 – Soda Lime Silica Glasses 

.  

Figure 74 Normalised Raman spectra of base, 0.10mol% and 0.20mol% Bi2O3 SLS 
glasses 

There are five bands shown in the Raman spectrum shown in Figure 74 which correspond 

to the amount of bridging and non-bridging oxygen atoms surrounding a central Si atom. 

The most intense band centred on 1093 cm-1 is due to the asymmetric stretching mode 

of Si-O-Si in a Q3 configuration [279–281] indicating a highly polymerised silicate network. 

The broad band centred at 990 cm-1 is consistent with the Si-O-NBO stretching mode (i.e. 

Q2) [280,281], however, it also includes a contribution from the n1 symmetric S-O 

stretching mode in SO4
2- sulphate tetrahedra [261,319]. The band centred at ca. 944 cm-

1 is due to Q2 speciation. The band centred at 796 cm-1 arises from Si-O-Si symmetric 
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stretching modes between Si-O tetrahedra [127,279,281]. The bands at 450 cm-1 and 556 

cm-1 correspond to Si-O-Si symmetric stretching of Q4
 and Q3

 species, respectively [282].  

 

Figure 75 Deconvolution of Raman spectra of 0.00mol% Bi2O3 SLS 

The ratio of bridging oxygen to non-bridging oxygen was calculated by fitting Gaussian 

peaks to the spectra of the base SLS, and 0.20mol% Bi2O3 SLS. A representative image 

is shown in Figure 75. Six peaks corresponding to Q1 through Q4 configuration were fitted 

using the FITYK program to minimise any residuals. Errors associated with this method 

were estimated to be ±2.5%, which include errors associated with any surface defects 

from the polishing regime, the optics within the Raman spectrometer and residuals from 

the fitted spectra to the data. 

After the peaks were fitted corresponding to the various conformations of silicate 

tetrahedra the relative percentage areas of each peak were calculated in the FITYK 

program. The ratio of NBO to BO was then calculated, the undoped SLS has 36.1±2.5% 

NBO (and hence 63.9±2.5% BO), while 0.20mol% Bi2O3 SLS has 35.8±2.5% NBO 

(64.2±2.5% BO). As the difference between these samples is within the margin of error, 
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there is a 95% confidence that the addition of 0.20mol% of Bi2O3 does not change the 

polymerisation significantly in the SLS glasses prepared in this study. 

 

5.2.2.2 PbO – Soda Lime Silica Glasses 

 

Figure 76 Normalised Raman spectra of base to 7.50mol% PbO SLS glasses 

As shown in Figure 76 the 1093 cm-1 peak arises from a Si-O-Si stretching mode in Q3 

speciation. This Raman shift shifts to lower cm-1 with an increasing concentration of PbO 

shown in Figure 76, while the intensity of the band centred at 990 cm-1 increases. The 

band centred at 990 cm-1 corresponds to Q2 configuration, indicating the average bond 

order is decreasing with increasing PbO content, depolymerising the glass network. This 
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is consistent with NBOs replacing BO. Traditionally PbO was added to glasses to lower 

viscosity, this effect occurs due to the increasing NBOs as a function of increasing PbO 

content.  

5.2.2.3 Bi2O3 – Borosilicate Glasses 

 

Figure 77 Normalised Raman spectra of base and 0.20mol% Bi2O3 borosilicate glasses 

The structure of the Raman spectra of the undoped and 0.20mol% Bi2O3 doped 

borosilicate glasses is shown in Figure 77. The peak centred around 500 cm-1 is attributed 

to Si-O-Si bending modes [320] just as those found in soda lime silica glasses the Si-O-

Si bending modes from Q4 and Q3 Si-O [282]. The small peak at ca. 630 cm-1 is attributed 

to BO3 (danburite) units within the glass network [321]. The small peak centred at 700 

cm-1 corresponds to the symmetric breathing modes of metaborate chains [322], and the 

shoulder peak at 760 cm-1 is related to the symmetric breathing mode of six membered 
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rings with a single BO4
- in the ring [322]. The peak at 800 cm-1 corresponds to boroxol 

rings, i.e. [B3O3]3- structures [321], and the two overlapping peaks at 1050 cm-1 

correspond to Si-O- stretching in Q3 configuration and at 1130 cm-1 to fully polymerised 

[SiO4]2- i.e. a Q4
 structure [320]. In the Raman spectra of borosilicate glasses, 

fluorescence of the sample is shown in the 0.20mol% Bi2O3 sample, evidenced by the 

greater level of noise relative to the undoped sample. This is not observed in the 

corresponding soda lime silica Bi2O3 doped glass as the total intensity was higher in this 

glass, resulting in a higher signal to noise.  

 

5.2.3 Electron Paramagnetic Resonance Spectroscopy 

5.2.3.1 Bi2O3 – Soda Lime Silica Glasses 

 

Figure 78 RT X-Band EPR of base and doped Bi2O3 Low Fe SLS 

Figure 78 shows EPR spectra of powdered glass samples. The measurements were done 

in silica tubes at X-band frequencies. Two signals are present which are due to Fe3+ in 
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different environments. At g=4.3 (1.6 T) corresponds to isolated Fe3+ [166,287,288], and 

g=2.0 (3.4 T) of Fe3+ in an exchange coupled environment [270,287]. The resonance at 

g=2.0 has also been attributed to octahedral Fe3+ surrounded by oxygen ligands 

[163,289]. Although Fe2O3 was not added to these glasses intentionally, and the SiO2 

used had a specification of 10 ppm Fe2O3, impurities contained within the other raw 

materials give a resonances associated with Fe3+ in the order of 100 ppm as these are 

qualitatively consistent with other resonances found within the literature [163,291]. 

Resonances around g=2.0 are close to the free electron value [323], which may also be 

attributed to Ti3+ [324] or Mn2+ [270,271], Ti3+ is only found in heavily reducing glass melts 

[293,325]. As iron is the fourth most abundant element and is known to be a chronic 

impurity with glassmaking procedures these resonances have been assigned to be Fe3+.  

Control of the redox state of iron in glass is essential for any optical glass melting 

procedures. Typical Fe2+/Fe3+ redox ratios of ca. 0.2 are common in commercial glasses 

and those prepared in a similar manner [162]. Van t’Hoffs law states the thermodynamic 

relationship between the heat of conversion (in this case between redox species) and the 

displacement of the equilibrium as a function of temperature change. As the temperature 

melted in this study was similar to that found in commercial glass melting furnaces it can 

be assumed the Fe2+/Fe3+ redox ratios in the glasses in this study are similar to those 

found in commercial SLS glasses and other laboratory prepared glasses [56].  
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5.2.3.2 PbO – Soda Lime Silica Glasses 

 

Figure 79 RT X-band EPR of base and PbO doped SLS glasses 

In Figure 79 two resonances are observed, both from the contribution of Fe3+. With 

increasing PbO content the resonance at both g=4.3 and g=2.0 increase, indicating 

additional impurity of Fe3+ from the PbO raw material. The resonances found in these 

glasses are of the same origin as those found in Figure 78. 

5.2.3.3 Bi2O3 – Borosilicate Glasses 

EPR spectra of borosilicate glasses shown in Figure 80, demonstrate the same EPR 

resonances of Fe3+ at g=2.0 (1.6 T) and g=4.3 (3.4 T) of those found in the comparable 

SLS glass shown in Figure 78. The intensity of the g=2.0 (3.4 T) resonance is lower, due 

to a lower total concentration of iron in the borosilicate system. This is also observed in 

the UV VIS IR spectra of borosilicate glasses relative to SLS glasses shown in Figure 81 

and Figure 85.  



189 
 

 

 

Figure 80 RT X-band EPR of base and Bi2O3 doped Borosilicate glasses 

 

5.2.4 UV Vis NIR Absorption Spectroscopy 

5.2.4.1 Bi2O3 – Soda Lime Silica Glasses 

UV VIS IR absorption spectra of Bi2O3 doped and the corresponding undoped base glass 

are shown in Figure 81. These spectra all show a strong UV absorption edge arising from 

the Si-O network and network modifying cations. The Bi2O3 doped glasses shift the 

absorption towards the visible due to the attributed to 1S0
 → 3P0

 and 1S0
 → 3P1 transitions, 

with increasing concentrations shifting towards the UV more strongly. 0.01mol% Bi2O3 

shifts 1200 cm-1 (11 nm) closer to the visible than the base glass. The dotted line is 

reproduced from Yang et al [272] and extended with data from Fix et al [93], giving the 

absorbance of EVA glue. This value changes depending on the composition and age of 

the glue [28], with older, more irradiated glue having an absorption shifted towards the 

visible.  
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Figure 81 UV VIS IR absorption spectra of Bi2O3 doped and base SLS glasses, Red 
dotted line indicates the absorption of EVA glue. 

 

Figure 82 UV VIS NIR absorption spectra of Fe2O3 / Bi2O3 doped SLS glasses 
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Figure 82 shows the UV VIS NIR absorption of iron oxide and bismuth oxide doped silicate 

glasses, an undoped SLS is displayed for comparison. Increasing quantities of Fe2O3 shift 

the UV edge towards the visible. The prominent peak at 26,220 cm-1 corresponds to the 

6A1(S) → 4E(D) transition of Fe3+ [56]. Absorption in the IR region corresponds to Fe2+ 

corresponding to a 5T2(D) → 5E(D) transition [56] and prevents the transmission of 

photons close to the bandgap of c-Si solar cells, deleteriously impacting efficiency. 

 

5.2.4.2 SnO2 – Soda Lime Silica Glasses 

 

Figure 83 UV VIS NIR absorption spectra of 0.20mol% SnO2 and Base SLS 

The addition of 0.20mol% SnO2 shifts the absorbance towards the visible relative to Base 

SLS. This corresponds to the same absorption as Bi2O3 and PbO, attributed to 1S0
 → 3P0
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and 1S0
 → 3P1 transitions. There is an absorption towards the NIR increasing from 13,000 

cm-1 to 10,000 cm-1 (750-1000 nm), likely from Fe2O3, as a band associated with Fe3+ is 

observed at ca. 26,200 cm-1, which is of a higher magnitude than the corresponding base 

glass.  

 

5.2.4.3 PbO – Soda Lime Silica Glasses 

 

Figure 84 UV VIS IR absorption spectra of PbO doped SLS glasses 

Figure 84 displays the UV VIS IR absorption spectra of PbO doped SLS glasses, as the 

glasses contained significant amount of residual bubbles from the Al2O3 crucible used in 

the melting procedure there is significant scattering and additional reflections. To partially 
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ameliorate this behaviour measurements were taken at five different spots on each 

sample, and subsequently averaged. The method showed clearly the absorbance of PbO 

doped glasses is distinct from that of the base glass (which was melted in ZGS-Pt, 

whereas the PbO glasses were melted in Al2O3) , which also was measured five times 

and averaged. Between 0.50mol% PbO SLS and 2.50mol% PbO SLS absorbance are 

within the error range (±2 nm) of the instrument and set up. With 7.50mol% PbO SLS the 

absorbance edge is shifted further towards the visible region by circa 4000 cm-1 (40 nm), 

due to the 1S0
 to 3P0 / 3P1

 transition [326].   

5.2.4.4 Bi2O3 – Borosilicate Glasses 

 

Figure 85 UV VIS IR absorption spectra of Bi2O3 doped Boro glasses 
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UV VIS IR absorption spectra of Bi2O3 doped and base Boro glasses are shown in Figure 

85. As with the absorbance spectra in the corresponding SLS glasses shown in Figure 

81 all glasses show a strong UV absorption edge from the Si-O network and modifying 

network cations. The shift from the base to doped glasses is attributed to 1S0
 → 3P0

 and 

1S0
 → 3P1 transitions, and with increasing concentration of Bi2O3 there are stronger shifts 

towards the visible relative to the base glass.  

 

5.2.5 UV Vis Fluorescence Spectroscopy 

5.2.5.1 Bi2O3 – Soda Lime Silica Glasses 

 

Figure 86 Excitation (dotted) and emission (solid) spectra of Bi2O3 doped SLS glasses 

The fluorescence excitation and emission spectra of Bi2O3 doped SLS glasses are shown 

in Figure 86. The emission spectra are from excitation at 33,300 cm-1 (300 nm), and 
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shows with increasing doping concentration of Bi2O3 the emission intensity increases, 

concentration quenching was not observed in the doping range studied here. All emission 

profiles are broadband and featureless centred at 23,700 cm-1 (430 nm) and 12,800 cm-1 

(780 nm). The excitation spectra (dotted) show which energies give the most emission 

intensity at 23,700 cm-1 and 12,800 cm-1. The excitation spectra are attributed to 1S0
 → 

3P0
 and 1S0

 → 3P1 and the emission spectra are attributed to 3P1 → 
1S0

 [327]. The strongly 

forbidden transition 3P0 → 1S0 [328] is not observed in the spectra due to the samples 

being measured at RT.  

 

Figure 87 Emission spectra of 0.20mol% Bi2O3 SLS as a function of excitation 
wavenumber 

The emission spectra shown in Figure 87 displays the emission spectra with different 

excitation wavenumbers. Within the deep UV there are inefficiencies of absorption due to 
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the photons having higher energy than the bandgap of Bi3+, between 35,700 cm-1 (280 

nm) and 33,300 cm-1 (300 nm) shows the greatest emission intensity. To maintain the 

total emission intensity below the saturation limit of the photomultiplier tube detector in 

the fluorescence spectrometer the emission slit width was reduced from 20 nm to 10 nm, 

and therefore the total counts of emission are lower than that given in Figure 86.  

 

Figure 88 NIR fluorescence emission spectra of 0.20mol% Bi2O3 SLS (ex 12,500 cm-1 
800 nm) 

 

Bismuth in both Bi2+ and Bi3+ oxidation states do not emit in the IR at 7700 cm-1 (1300 

nm) with 12,500 cm-1 (800 nm) excitation [329]. The band between 1170 nm and 1230 

nm corresponds to an 3/2λ peak superimposed onto the spectra from the 800 nm 

excitation which had ±20 nm range. There is significant noise within the spectra in Figure 
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88 due to no signal being detected at 1300 nm. As the there is no peak at 1300 nm it 

suggests the oxidation state of Bi2O3 is in the Bi3+ oxidation state.  

 

Figure 89 Fluorescence emission of 0.20mol% Bi2O3 (33,300 cm-1 / 300 nm excitation) 
with increasing Fe2O3 in mol% 

 

Figure 89 shows the fluorescence emission spectra of 0.20mol% Bi2O3 in glasses with 

increasing quantities, in mol%, of Fe2O3. Through competitive absorption of UV photons 

as shown in Figure 82 and fluorescence quenching the total fluorescence emission 

intensity of Bi3+ decreases with increasing Fe2O3 concentration.  
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5.2.5.2 SnO2 – Soda Lime Silica Glasses 

 

Figure 90 Fluorescence emission spectra of 0.20mol% SnO2 SLS 

Figure 90 shows the emission spectra of 0.20mol% SnO2 SLS excited at various 

excitation wavenumbers. The emission profile is similar to that of glasses doped with 

Bi2O3 and PbO. The emission of SnO2 can be used to identify which surface was in 

contact with the tin bath in float glasses [247].  
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5.2.5.3 PbO – Soda Lime Silica Glasses 

 

Figure 91 Fluorescence emission spectra of 0.50mol% PbO SLS 

Between excitation at 35,700 cm-1 (280 nm) and 34,500 cm-1 (290 nm) a filter change was 

applied on the fluorescence spectrometer as shown by the non-Gaussian peak shapes in 

the emission spectra above this filter change. This is demonstrated in Figure 91, Figure 

92, Figure 93, and Figure 94. The filter attenuated photons with energy higher than 35,700 

cm-1 (lower than 280 nm), this was applied to remove secondary peaks superimposed 

onto the spectrum from the monochromator allowing light of 2λ through. 
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Figure 92 Fluorescence emission spectra of 1.00mol% PbO SLS 

 

Figure 93 Fluorescence emission spectra of 2.50mol% PbO SLS 
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Figure 94 Fluorescence emission spectra of 7.50mol% PbO SLS 

With increasing PbO content the emission shifts from 26,000 cm-1 (384 nm) for 0.50mol% 

(Figure 91) PbO SLS, to 24,000 cm-1 (416 nm) for 7.50mol% (Figure 94). This is attributed 

to the emission of a photon losing more energy to the creation of a phonon in glasses 

containing increasing quantities of PbO, and therefore emitting less energy in a radiative 

decay mechanism. The intensity of emission increases from between 0.50mol% PbO SLS 

to 2.50mol% PbO SLS before being less emissive in 7.50mol% PbO SLS as shown in 

Figure 95. The emission intensity between 0.50mol% PbO and 2.50mol% PbO is a 

function of concentration, but at 7.50mol% PbO there is a combination of concentration 

quenching and the phonon losses are greater resulting in a lower intensity of emission, 

this is displayed clearly in Figure 95.  
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Figure 95 Emission intensity of PbO doped SLS glasses as a function of excitation 
energy 

 

5.2.5.4 Bi2O3 – Borosilicate Glasses 

The fluorescence excitation and emission spectra of Bi2O3 doped Boro glasses are shown 

in Figure 96. The emission spectra are from excitation at 33,300 cm-1 (300 nm). With 

increasing doping concentration, the emission intensity increases. There is no change in 

λmax as a function of doping concentration. The emission profiles are broadband and 

centred at 25,100 cm-1 (398 nm), and second minor peak centred at 13,400 cm-1 (746 

nm). The excitation spectra (dotted lines) show the emission intensity at the highlighted 

wavenumber for the given excitation wavenumber, i.e. at 40,000 cm-1 excitation the 

emission at 25,100 cm-1 is in the order of 80 counts. The excitation spectra are attributed 

to 1S0
 → 3P0

 and 1S0
 → 3P1 and the emission spectra are attributed to 3P1 → 

1S0
 [327]. 
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Figure 96 Excitation (dotted) and emission (solid) spectra of Bi2O3 doped Boro glasses 

 

 

Figure 97 Emission spectra of 0.20mol% Bi2O3 Boro as a function of excitation 
wavenumber 
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5.2.6 X-Ray Absorption Near Edge Structure Spectroscopy 

5.2.6.1 Bi2O3 – Soda Lime Silica Glasses 

The oxidation state of bismuth in bismuth containing materials may be detected through 

XANES measurements. In Bin+ containing samples, a characteristic hump is ascribed to 

transitions of 2p3/2 to 6s states [330]. Conventionally, standard materials of different 

oxidation states are used to define the edge position of those to be expected within the 

unknown samples. With increasing formal charge, the edge position shifts towards higher 

energy, as atoms with a higher formal oxidation state require a higher energy X-ray 

photon to excite the core electron due to the nucleus being less shielded. This shift to 

higher energy with increasing formal charge is shown in Figure 98. 

 

 

Figure 98 XANES absorption of bismuth standards and Bi2O3 doped SLS glasses 
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From Figure 98 there are clear differences between the absorbance of different bismuth 

containing standards. Bi metal shows a flat profile from after the absorption edge, while 

Bi2O3, with a formal charge of 3+ on the Bi atom shows a peak at 13,422 eV. This peak 

is larger in the NaBiO3 sample with a second peak at circa 13,480 eV. 

Bismuth oxide doped silicate glasses prepared in oxidising (the addition of Na2SO4), 

neutral (no additions) and reducing (the addition of C) all demonstrate a peak at 13,422 

eV without a peak at 13,480 eV, shown in Figure 98, which indicates all are in Bi3+ 

oxidation state, as compared to the Bi containing standard materials. 

5.2.7 Differential Scanning Calorimetry 

5.2.7.1 Bi2O3 – Soda Lime Silica Glasses 

 

Figure 99 DSC of base SLS and Boro glasses 



206 
 

The DSC thermograph shows an endothermic glass transition temperature with an onset 

of ca. 570°C for both SLS and Borosilicate base glasses shown in Figure 99. The peaks 

superimposed onto the thermograph are instrumental in origin. The scan rate was 

10°C/min.  

 

5.2.6 X-Ray Fluorescence Spectroscopy 

XRF of SLS base glasses are displayed in section 3.1.1.2. All samples are close to the 

nominal indicating little volatilisation during the melting procedure. In conjunction with the 

density measurements being within the range expected for glasses of this composition it 

is expected the samples are very close to the nominal composition. As expected doped 

glasses have a greater density, due to the more dense constituents Bi2O3 replacing SiO2 

within the melt [261,278,331].  

To elucidate further the concentration of Bi2O3 within the glasses inductively coupled 

plasma – optical emission spectroscopy (ICP-OES) may be carried out which can readily 

detect ppm levels of Bi, whereas the XRF spectrometer used within this study was not 

sensitive enough below circa 0.5wt%. Boron is transparent to the X-rays used in the XRF 

spectrometer used and therefore an accurate concentration of B2O3 could not be 

achieved with this method. ICP-OES would be able to detect the concentration of boron 

remaining within the glass samples.  
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5.3 Discussion 
The XRD patterns shown in Figure 72 and Figure 73 do not show Bragg diffraction peaks 

within the resolution of the instrument, confirming the amorphous nature of the glasses 

produced. These diffraction traces are similar to those shown in other SLS [124,316] and 

lead crystal type glasses [332]. There is a shift in °2θ between 2.50mol% PbO SLS and 

7.50mol% PbO SLS, indicating a volume increase in this glass system. This is indicative 

of an increase in NBO, which increases the volume of a glass network [333]. Although 

incorporation of PbO into silicate glasses increases the proportion of NBO’s, which lowers 

the viscosity of the melt, incorporation of isoelectronic Bi2O3 did not appreciably increase 

the proportion of NBOs within these glasses shown by the deconvolution of Raman 

spectra in Figure 74 and Figure 75. The base SLS glass, shown by deconvolution of the 

Raman spectra, has 36.1±2.5% NBO, while incorporation of 0.20mol% Bi2O3 has NBO 

corresponding to 35.8±2.5% of the silicate network. This small variation is within the error 

margins and is therefore unlikely the incorporation significantly modifies the glass 

network.  

While Bi-O-Bi vibrations in distorted BiO6 units may give Raman shifts ca. 575 cm-1, and 

Bi-O-Bi stretching vibrations in the distorted BiO6 unit are found at ca. 360 cm-1 [334], 

neither of these bands are shown in the Raman spectra of Bi2O3 doped glasses in Figure 

74 or Figure 77. In Bi2O3-SiO2 glasses with increasing concentration of Bi2O3 reduces the 

Q4
 proportion towards Q1 speciation over the range 30mol% to 90mol% shown by 29Si 

MAS-NMR [335]. With increasing Bi2O3 content a greater proportion of oxygen atoms are 

in a Bi-O-Bi or Si-O-Bi bonding configuration, which depolymerises the network. This 

effect has not been resolved in the Raman spectra shown in Figure 74, and after 
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deconvolution, indicating the concentration of bismuth is below the threshold for 

depolymerisation to be a critical and observed effect.  

Within the Raman spectra of PbO doped SLS glasses shown in Figure 76 there is an 

increase in the intensity of the band centred at 990 cm-1 in 7.50mol% PbO SLS, which 

corresponds to a Q2 conformation. This corresponds to an increase in the relative 

proportions of NBO within the network and a subsequent lowering of viscosity. The other 

peaks within Figure 76 correspond to the Qn
 configurations outlined with Figure 74. 

Between 0.00mol% PbO SLS and 2.50mol% PbO SLS structural variations are not 

resolved clearly. Kacem et al demonstrated the increase of the Q2 band with incorporation 

of 5mol% PbO in a silicate glass [336], a similar effect is observed here. With increasing 

PbO content the successive formation of Q1 and Q0 bands form at the loss of Q4 

speciation in agreement with Neuville et al [336,337], however the glasses prepared in 

this study were below the threshold of PbO content to observe this effect.  

The structure of borosilicate glasses is commonly discussed within the literature [320]. 

The Raman spectra of base Boro and 0.20mol% Bi2O3 Boro is shown in Figure 77, the 

dominant peak centred at circa 500 cm-1 corresponds to Si-O-Si bending modes from Q4 

and Q3 Si-O configurations [282,320]. The Raman profile shown in Figure 77 is similar to 

those found in the literature of similar borosilicate systems [320,321]. A small shoulder 

peak at ca. 575 cm-1 appears in the 0.20mol% Bi2O3 doped borosilicate Raman spectra 

in Figure 77, this is attributed to Bi-O-Bi vibrations in distorted BiO6 octahedra [334]. A 

0.20mol% addition of Bi2O3 in the borosilicate matrix shows no crystallinity according to 

the Raman spectra shown in Figure 77. None of the dopants added to either SLS or Boro 

type glasses induced crystallinity as shown by the XRD traces and Raman spectra. 
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Glasses of SLS and Boro type systems doped with up to 0.20mol% Bi2O3 may be 

applicable for the front sheet of PV modules as no crystallisation is observed.  

DSC of SLS and Boro base glasses shows a broad endothermic peak with an onset of 

570°C in Figure 99. No other peaks associated with crystallisation are on the 

thermograms, indicating both systems are amorphous. The Tg measured depends on 

heating rate, in Figure 99 the heating rate was at 10°C/min. No crystallisation peaks were 

observed and a Tg was similar to those found in the literature for SLS [261] and Boro type 

glasses [321]. The composition was close to the nominal value as shown through XRF 

and density measurements which are commensurate with those found in literature [261] 

and through the SciGlass database [338]. 

EPR was undertaken to assist in the elucidation of the oxidation state of bismuth. While 

Bi+, Bi3+, and Bi5+ are EPR silent as none have unpaired electrons, Bi2+ and Bi4+ would 

display a resonance. Two resonances from Fe3+ were expected and shown in Figure 78, 

Figure 79, and Figure 80. All display the characteristic resonances of Fe3+ at g=2.0 and 

g=4.3 [270,271,339] and no additional resonances indicating reduction or oxidation to Bi2+ 

and Bi4+ did not occur. Bi2+ resonances occur at g=1.54, g=1.38, and g=1.62 [301], while 

Bi4+ has a resonance at g=2.00 and ca. g=2.30 [340,341]. Although there is a peak at 

g=2.0 the second peak at g= 2.30 corresponding to Bi4+ was not observed, therefore these 

species are not present in detectable quantities. In lead containing glasses, with 

increasing PbO content the resonances at g=2.0 and g=4.3 also increase. This indicates 

the PbO raw material contained a larger proportion of Fe2O3 impurity than other raw 

materials, along with the higher concentration used i.e. 7.50mol% PbO to 0.20mol% 

Bi2O3, (37.5 times higher concentration). UV-VIS absorbance shows a Fe3+ absorption 
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peak at 26,220 cm-1 (381 nm) corresponds to the 6A1(S) →4E(D) transition of Fe3+ [56], in 

Figure 84 this peak is most intense in 7.50mol% PbO SLS, indicating an increased 

concentration of Fe3+ species.   

The aqueous electrochemical potential of Bi3+ to Bi0 is +0.317 V while that of Fe3+ to Fe2+ 

is +0.771 V [342], therefore before Bi3+ would be reduced, Fe3+ would be fully reduced to 

Fe2+. As Fe3+ is observed within all the glasses prepared in this study according to their 

UV VIS IR absorption spectra it can be concluded the reduction of Bi3+ is unlikely to have 

taken place. This is further shown in the EPR traces.  

As shown through EPR measurements, the presence of Bi2+ and Bi4+ is not observed, 

therefore Bi+, Bi3+ and Bi5+ are still possible candidates. XANES measurements require 

standard known oxidation states of standard materials to be analysed in conjunction with 

the sample of unknown valence. A core electron is excited with an X-ray of a particular 

energy, the energy relates to the element and valence. Higher oxidation states of 

elements require higher energy X-ray photons to excite the core electron due to higher 

nucleus shielding and electrostatic interactions. Figure 98 shows the XANES absorption 

of Bi metal, Bi2O3, and NaBiO3, with characteristic absorption edges and post-absorption 

features. Bi metal shows a featureless absorption edge with no additional resonances, 

Bi2O3 has a resonance at the peak of the absorption at circa 13,422 eV, while NaBiO3 

shows this same resonance at 13,422 eV, and a second peak at circa 13,480 eV. The 

three SLS glasses analysed were prepared in oxidising (with 0.22mol% Na2SO4), neutral 

(with no redox reagents) and reducing (0.22mol% C). The XANES absorbance of these 

glasses are shown in Figure 98, and are most similar to the profile of Bi2O3 standard 

material. This is indicative that in the melt conditions the redox potential was not sufficient 
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to change the valence of Bi. The carbon added may have reduced the Bi3+, which 

subsequently was oxidised again as the furnace atmosphere was in air. No 

measurements of concentration of Bi containing species were made in these glasses. 

Critically the oxidation state is not in Bi5+ as there are no peaks in Figure 98 at 13,480 eV 

in any of the Bi2O3 doped glasses.  

EVA glue, the most commonly used glue polymer in PV modules [20], degrades under 

UV light. This process ultimately causes critical failure, therefore for effective protection 

of polymer species within a PV module, the front sheet must absorb these damaging UV 

photons, ideally to completely overlap the absorption of the EVA glue layer. The glass 

front sheet however must be low cost, and to prepared at large scale using existing 

infrastructure. Therefore significant changes to a SLS or Boro type glass would result in 

changes to the melt conditions and subsequently add cost to the module.  

As shown in Figure 81 there is a shift of the UV edge of circa 2000 cm-1 (20 nm) from the 

base glass to 0.20mol% Bi2O3 SLS. UV photons of higher energy do more damage than 

lower energy photons and more rapidly degrades the polymers [28], therefore small shifts 

towards the visible may provide significant protection to the module. Low quantities of 

Fe2O3, even 0.01mol%, can reduce module output by 1.1% due to absorbance bands at 

26,220 cm-1 and 11,000 cm-1 (381 nm and 909 nm) of Fe3+ and Fe2+ respectively [58] as 

shown in Figure 82. Adding Fe2O3 into the SLS glasses shifts the absorbance further 

towards the visible region, however there are two significant peaks in the visible and NIR 

which are deleterious for PV modules. The absorbance band in the NIR corresponds to 

Fe2+, and within the UV-VIS region to Fe3+. Replacing Fe2O3, with deleterious absorption 

bands, with Bi2O3 may protect the module without parasitically absorbing photons. The 
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absorption band associated with the shift in the UV edge is attributed to the 1S0
 → 3P0 and 

3P1
 transition as shown schematically in Figure 100. 

 

Figure 100 Coordinate diagram of the UV induced excitation and emission process [77] 

A UV photon excites an electron from the ground state (designated as 1S0 as the 

outermost orbital is a fully occupied 6S orbital), to an empty P orbital, the excitation results 

in the electron residing in the 3P1 orbital before thermally decaying to the 3P0 orbital. The 

excited states of Bi3+ can be in a triplet state of 3P0, 
3P1, and 3P2 or a singlet state of 1P1. 

The absorption band as shown in Figure 81, Figure 82, and Figure 85 corresponds to the 

transition 1S0 → 3P1, this transition is allowed due to a spin-orbital coupling. With 

increasing Bi2O3 content the shift towards the visible increases, the effect is observed 

with low doping concentrations of 0.01mol% Bi2O3 in both SLS and Boro systems.  

Boro type glasses in this study transmit further into the UV than the corresponding SLS 

glass shown in Figure 85 and Figure 81 respectively. Where absorbance is equal to 1 

(i.e. transmitting 10% of the incoming photons) for the base Boro glass this corresponds 

to circa 37,000 cm-1 (270 nm) while in base SLS this value is 34,500 cm-1 (289 nm). At 

maximum doping concentration this effect is less pronounced with the absorbance at 1 
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absorbance unit of 0.20mol% Bi2O3 Boro corresponding to 32,600 cm-1 (306 nm) and for 

0.20mol% Bi2O3 SLS to 31,750 cm-1 (315 nm). For all doping concentrations studied 

within this work SLS absorbs at lower wavenumbers (higher wavelengths) than the 

corresponding Boro glass. It is worth noting Boro type glasses contained lower quantities 

of Fe3+ species as observed in the UV VIS region at ca. 26,200 cm-1 (380 nm), and in the 

EPR spectra. Fe3+ is known to strongly affect the UV edge in silicate glasses due to an 

absorbance corresponding to a 6A1(S) → 4E(D) transition [56]. While Boro type glasses 

may confer additional chemical durability relative to a SLS glass, the SLS glass is more 

protective of UV photons for polymer species within PV modules. Glasses doped with 

CeO2 which shift the UV absorbance towards the visible significantly reduce the yellowing 

index, a measure of degradation of polymer species within a PV module [28]. The dopants 

used in this study are of lower cost and of lower concentration but confer similar 

absorbance profiles and therefore will demonstrate similar protection.  

PbO glasses were melted in Al2O3 crucibles, and after 5 hours melting at 1450°C retained 

significant residual bubbles. The bubbles came from the refractory material which the 

glass was slowly dissolving, therefore continually adding more bubbles while the glass 

was at elevated temperatures. The glass was polished the 1 µm CeO2, as the SLS and 

Boro glasses were, and to obtain an absorbance measurement the glass was measured 

5 times and averaged. This method did not reduce internal bubble reflection losses but 

minimised surface bubble reflection losses. Between 0.50mol% PbO SLS and 2.50mol% 

PbO SLS the absorbance is shifted from the base glass but shifts are of similar magnitude 

towards the visible. As PbO and SnO2 are isoelectronic the absorbance transition also 

corresponds to 1S0 → 3P1 absorbance [326,343].  
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Fluorescence spectroscopy shows a broadband featureless peak centred at 23,250 cm-1 

(430 nm) or 25,000 cm-1 (400 nm) depending on the host glass (SLS or Boro respectively) 

shown in Figure 86, Figure 87, and Figure 89. This peak is attributed to 1S0
 → 3P0

 and 1S0
 

→ 3P1 transitions [218], and may confer additional flux of visible photons to PV modules. 

Pb2+ is isoelectronic to Bi3+
 and undergoes the same optical transitions with UV excitation 

and visible emission, this is demonstrated in the fluorescence spectra in Figure 91, Figure 

92, Figure 93, and Figure 94.  

With increasing Bi2O3 content the fluorescence emission intensity increases in both SLS 

and Boro type glasses. The excitation profile in SLS glasses is more broadband than the 

corresponding Boro glass, while the emission profile is shifted to lower wavenumbers 

(higher wavelengths). The ca. 2000 cm-1 shift (30 nm) in λmax emission intensity between 

SLS and Boro type glasses confers a more beneficial flux of photons for c-Si PV modules, 

which more efficiently absorb these photons. Furthermore, in SLS glasses the intensity is 

higher in SLS than in Boro glasses of the same doping concentration. This is partially due 

to the Boro glasses having lower absorbance at the excitation wavenumber used as 

shown in Figure 85 and the excitation profile is less broad than in the SLS glass shown 

in Figure 86 and Figure 96. In different glass networks Bi3+ may be in multiple sites [344], 

and the broader the range of sites available, the broader the emission band. The emission 

intensity is lower at all excitation energies as shown in Figure 87 and Figure 97. Bi3+ does 

not emit in the NIR at 7700 cm-1 (1300 nm) from 12,500 cm-1 (800 nm) excitation. 

0.20mol% Bi2O3 SLS is shown in Figure 88, without the characteristic of bismuth in lower 

oxidation states. This further indicates bismuth within the glasses prepared is in the Bi3+ 

oxidation state.  
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With increasing Fe2O3 content in SLS glasses the emission intensity of 0.20mol% Bi2O3 

significantly reduces as shown in Figure 89 due to the competitive absorption of Bi3+ and 

Fe3+ centres. With increasing quantities of Fe3+ the probability of a charge transfer 

occurring between a Bi3+ to Fe3+ becomes more likely, which does not allow for radiative 

emission [345]. Concentration quenching was not observed in the prepared glasses over 

the doping concentration studied. For effective protection of polymer species while 

maintaining visible fluorescence the concentration of Fe3+ species must be kept to a 

minimum, as from circa 100 ppm to 0.01mol% Fe2O3 the emission intensity dropped by 

half as shown in Figure 89.   

The fluorescence of lead oxide and tin oxide containing glasses is of the same profile as 

that of Bi2O3 containing glasses due to the identical transitions involved shown in the 

fluorescence emission spectra in Figure 90, Figure 91, Figure 92, Figure 93, and Figure 

94. With increasing lead oxide content in SLS glasses the emission shifts to lower 

wavenumbers (higher wavelengths) due to higher phonon losses. Upon the radiative 

emission of a photon, a phonon is also emitted, this phonon non-radiatively releases 

some energy from the incident photon and therefore the photon emission is of lower 

energy.   
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5.4 Conclusions 
Bismuth in SLS glasses may be in multiple valence states, however only Bi3+ confers the 

UV protective and visible emission beneficial for PV modules. This work through UV-Vis-

NIR absorbance spectroscopy, fluorescence visible and NIR emission spectroscopy, 

EPR, and XANES show bismuth in the glasses prepared are in the Bi3+ oxidation state. 

Using PbO as a model glass shows the isoelectronic transitions in the UV to visible range. 

Significant structural changes are not observed through incorporation of Bi2O3 in both 

SLS and Boro glasses as shown through XRD, Raman spectroscopy, and DSC. No 

crystallinity is observed in any samples. Within all samples Fe3+ was observed in the UV 

VIS NIR absorption spectra, the electrochemical series shows Fe3+ would reduce to Fe2+ 

in preference to Bi3+ reducing to Bi0. The presence of Fe3+ suggests no reduction of Bi3+ 

had occurred, further evidence supporting the EPR and XANES measurements.  

Bi2O3 doped glasses may be particularly beneficial for the protection of polymeric species 

within c-Si PV modules due to their UV absorbance and visible emission. SLS type 

glasses are optically more beneficial for this purpose due to the absorbance profile being 

more towards the visible than the corresponding Boro glass. The emission profile is 

further into the visible in which c-Si can more effectively absorb whilst being more intense. 

The low doping concentration used within this study do not largely affect structural 

properties but confer critical optical properties for increasing the longevity of PV modules.  
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6 Photovoltaic Modules with Doped Soda Lime Silica 
Glasses 

 

Glasses containing various proportions of Bi2O3 and Gd2O3, along with several base 

glasses were prepared by B. Allsopp and R. Orman at Johnson Matthey (JM), Sonning 

Common, Reading, UK. The glass monoliths were polished and sent to Solar Capture 

Technologies, Blyth (SCT), Newcastle, UK where they were prepared into PV modules 

corresponding to SCT’s proprietary method. EVA glue was used as the polymeric species 

to glue the panel together. A float glass PV module is shown in Figure 101, the 

electroluminescence of before defined as string (left) and after lamination defined as 

module (right) is shown in Figure 102, and a typical I/V curve is shown in Figure 103.  

Samples of glass were made as described in section 3.5. The strings were made from 

silicon with silver paste in the bus-bars, the backsheet was Tedlar® and the glue used 

was EVA. The exact details of the temperature, time and pressure for lamination of the 

PV modules are the propriety technology of Solar Capture Technologies and are not 

available within this manuscript. While efforts were made to prepare fully homogenous 

flat glasses, this proved difficult with the compositions of glass used for previous sample 

preparation. As the redox of the glass would be effected strongly by increasing the 

temperature to lower the viscosity for amenable pouring, it was decided to incorporate 

2mol% Li2O into the glass in replacement of Na2O. This lowered the viscosity of the glass 

through two mechanisms, both the mixed alkali effect and the connectivity of a silica 

network is lowered during the replacement of Na2O by Li2O [346].  However, incorporation 

of Li2O also affects the refractive index of the glass by increasing the polarizability of the 
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constituents relative to a glass containing the equivalent quantity of R2O such as Na2O or 

K2O [347].  

Several modules were prepared with the incorporation of Gd2O3. This was investigated 

as a dopant as part of the wider LIMES project but was not part of the work detailed in 

this manuscript. It is included within these results for comparison.  

 

 

Figure 101 Float glass PV module prepared at SCT 

 

 

 

 

Figure 102 Electroluminescence of string (left) and module (right) float glass PV module 
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Figure 103 Typical I/V curve for PV modules prepared at SCT (float glass string and 
module) 

There is an increase in the short circuit current between the string and module due to 

lower reflection losses, and a minor index matching corresponding to the EVA and glass 

layers. The difference in refractive indices is lower in the module than in the string, as the 

EVA glue acts as an index matching fluid when bonded together. There are several 

abbreviations in Table 17 which are explained below.  

VOC is the open-circuit voltage, the maximum voltage available from a PV module which 

occurs at zero current. On the I/V curve shown in Figure 103 this is where the curve 

touches the x-axis where the y-axis (current) is equal to zero.  

ISC is the short-circuit current, this is the maximum current available when the voltage 

across the PV module is zero. On the I/V curve shown in Figure 103 this is where the 

curve touches the y-axis where the x-axis (voltage) is equal to zero. 
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RSERIES is the series resistance in a PV module. This is a measure of the movement of 

current across the emitter and base of the module, the resistance across the metal 

contacts and the silicon (or other PV active material) and the resistance of the top and 

rear contacts. This results in inefficiencies within the module and reduces the VOC and 

ISC.  

RSHUNT is the shunt resistance of a PV module. Low shunt resistance causes power loss 

in a module as the propagation of the current may follow an alternative path than that 

designed. Larger values therefore minimise the difference between theoretical maximum 

power output and realised power output of a PV module.  

PMAX is the maximum power (W) of a PV module, and is calculated by multiplying the VOC, 

ISC and fill factor of the module together.  

VPM is the voltage at maximum power of a PV module, similar to IPM  which is the current 

at maximum power within a PV module.  

Fill factor is the maximum obtainable power of a PV module calculated from the dividing 

the maximum power point by the product of VOC and ISC. This is a measure of the quality 

of a given PV module.  
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Table 17 Isc and Ipm data of PV modules 

 
Float 

LIMES 
A 

LIMES 
BG A 

LIMES 
BG B 

LIMES 
BG C 

LIMES 
B2G A 

LIMES 
B2G B 

LIMES 
B2G2 

LIMES 
B2 

 Module 

Irradiance: 104.4 104.1 106.2 105.7 104.0 104.0 105.1 104.3 105.1 

Corrected To: 100 100 100 100 100 100 100 100 100 
Module Temp 

(°C) 23.4 24.0 24.0 23.8 21.8 22.2 23.1 23.2 22.9 

Corrected To (°C) 25 25 25 25 25 25 25 25 25 

Voc (V) 5.07 4.97 4.98 5.01 4.99 4.97 5.05 5.03 4.97 

Isc (A) 0.113 0.062 0.070 0.113 0.115 0.114 0.117 0.111 0.115 

Rseries (Ω) 45.20 7.06 85.16 11.18 6.18 15.51 14.37 18.50 5.59 

Rshunt (Ω) 626.67 6460.12 4206.23 986.97 4838.96 504.53 1004.53 576.77 983.19 

Pmax (W) 0.445 0.241 0.284 0.434 0.467 0.429 0.465 0.437 0.446 

Vpm (V) 4.33 4.66 4.35 4.17 4.28 4.13 4.27 4.25 4.15 

Ipm (A) 0.103 0.052 0.065 0.104 0.109 0.104 0.109 0.103 0.107 

Fill Factor (%) 0.78 0.79 0.82 0.77 0.81 0.76 0.79 0.78 0.78 

  

Table 18 Isc and Ipm data for cell strings 

 
Float 

LIMES 
A 

LIMES 
BG A 

LIMES 
BG B 

LIMES 
BG C 

LIMES 
B2G A 

LIMES 
B2G B 

LIMES 
B2G2 

LIMES 
B2 

 String 

Irradiance: 104.3 103.9 104.9 104.8 106.3 105.5 104.0 106.5 104.4 

Corrected To: 100 100 100 100 100 100 100 100 100 
Module Temp 

(°C) 25.0 24.9 24.6 24.2 24.2 24.5 25.4 25.3 23.8 

Corrected To (°C) 25 25 25 25 25 25 25 25 25 

Voc (V) 5.03 4.96 4.91 4.98 4.98 4.95 5.02 5.03 4.96 

Isc (A) 0.102 0.098 0.097 0.100 0.100 0.099 0.102 0.104 0.099 

Rseries (Ω) 12.67 8.60 12.86 9.85 8.06 14.66 12.51 11.46 24.19 

Rshunt (Ω) 2274.31 1403.03 1249.74 1198.94 3304.78 2112.79 1012.15 1869.49 2448.08 

Pmax (W) 0.405 0.381 0.376 0.391 0.394 0.380 0.398 0.405 0.384 

Vpm (V) 4.22 4.38 4.13 4.18 4.18 4.11 4.19 4.22 4.15 

Ipm (A) 0.096 0.087 0.091 0.094 0.094 0.093 0.095 0.096 0.093 

Fill Factor (%) 0.79 0.78 0.79 0.78 0.79 0.78 0.78 0.78 0.78 
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Table 19 Change in Isc and Ipm from string to module, and damage observations 

 
Float 

LIMES 
A 

LIMES 
BG A 

LIMES 
BG B 

LIMES 
BG C 

LIMES 
B2G A 

LIMES 
B2G B 

LIMES 
B2G2 

LIMES 
B2 

Isc (A) % change 9% -59% -39% 11% 13% 14% 13% 7% 14% 
Ipm (A) % 

change 7% -68% -39% 10% 14% 11% 13% 7% 14% 

Observations  

Cells 
cracked 

x2 

Cells 
cracked 

x 2 
Glass 

moved    

Glass 
moved 

Glass 
cracked 

 

Table 20 Changes in Isc and Ipm relative to float glass module 

 
Float 

LIMES 
A 

LIMES 
BG A 

LIMES 
BG B 

LIMES 
BG C 

LIMES 
B2G A 

LIMES 
B2G B 

LIMES 
B2G2 

LIMES 
B2  

 Module 

Irradiance: 104.3 104.1 106.2 105.7 104.0 104.0 105.1 104.3 105.1 

Corrected To: 100 100 100 100 100 100 100 100 100 
Module Temp 

(°C) 23.4 24.0 24.0 23.8 21.8 22.2 23.1 23.2 22.9 

Corrected To (°C) 25 25 25 25 25 25 25 25 25 

Voc (V) 5.07 4.97 4.98 5.01 4.99 4.98 5.05 5.04 4.97 

Isc (A) 0.113 0.062 0.070 0.113 0.115 0.114 0.117 0.111 0.115 

Rseries (Ω) 45.20 7.06 85.16 11.18 6.18 15.51 14.37 18.50 5.59 

Rshunt (Ω) 626.68 6460.12 4206.23 986.97 4838.96 504.53 1004.53 576.76 983.19 

Pmax (W) 0.445 0.241 0.284 0.435 0.467 0.429 0.465 0.437 0.446 

Vpm (V) 4.33 4.66 4.35 4.17 4.28 4.13 4.28 4.25 4.15 

Ipm (A) 0.103 0.052 0.065 0.104 0.109 0.104 0.109 0.103 0.107 

Fill Factor (%) 0.78 0.79 0.82 0.77 0.81 0.76 0.79 0.78 0.78 

Isc (A) % change 0.0% -83.5% -61.3% -0.1% 1.9% 1.1% 3.8% -1.3% 1.8% 

Ipm (A) % change 0.0% -98.9% -57.3% 1.2% 5.7% 1.0% 5.4% 0.0% 4.3% 

 

From Table 17-20, the Isc and Ipm are shown, and the relative enhancement of the glass 

prepared at JM, and that of a commercially available float glass. Note in those samples 

in which the cells have cracked during lamination the total area available for photovoltaic 

conversion is lowered and therefore the relative enhancement appears to be lower. This 

is an artefact of the broken cells rather than being significantly lower efficiency. In samples 
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without significant damage to the cells there is an increase in Isc and Ipm indicating higher 

efficiency from the dopants, graphed in Figure 104.  

 

Figure 104 Relative enhancement of Isc and Ipm relative to float glass 

It is postulated the enhancement of the Isc and Ipm is due to the addition of fluorescent 

dopants. The wide variation is due to slight sample differences, not all glasses were able 

to be prepared to the exact thickness, and slight wedging of all samples was observed. 

The variable thicknesses give rise to a longer path length, in which photons can be 

absorbed, however, the increased thickness gives a larger cross sectional area of 

fluorescent centres. Thicknesses were not recorded however. Critically all samples 

demonstrate higher module efficiency. A similar approach carried out by the National 

Renewable Energy Laboratory using CeO2 as a dopant which absorbed within the UV 



224 
 

region and emitted within the visible showed a reduction in the yellowing index after 35 

weeks of accelerated aging testing with UV irradiation [28]. A similar effect is proposed to 

occur within these doped glasses due to the shifted absorbance. Yellowing and ultimately 

browning of EVA has been shown to reduce module efficiency by up to 45% within 5 

years of installation [19].  

All doped samples within this study, d0 and s2, demonstrate an absorbance shifted 

towards the visible region, of between 2000 cm-1 and 4000 cm-1 (20-40 nm). This shifted 

absorbance is proposed to increase the service lifetimes of PV modules by reducing the 

rate of yellowing of EVA glues. As EVA glues comprise some 80% of c-Si based PV 

modules [68], and c-Si modules comprise some 87% of all installed capacity of PV 

modules worldwide [16], up to 158 GW of generated PV electricity is affected by yellowing 

from UV irradiation. Typically PV module manufacturers expect modules to last between 

20 and 25 years, assuming between a 1.0 and 2.5% loss per year [348].  
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7 Cost of Dopant Additions, Further Work and Conclusions 

7.1 Cost of Dopant Additions 
To minimise the cost per Watt of PV modules dopant costs must be considered. A 

preliminary study of the costs associated with doping silicate glasses has been 

completed. However, this does not include any information regarding logistics of sourcing 

the materials, and any additional costs associated with processing and melting of the 

newly developed glasses.  

The cost per tonne of the dopant oxides used in this study are listed in Table 21, note this 

is approximate and averaged from multiple commercial suppliers. Although PbO is the 

least costly per wt%, assuming 0.20mol% doping concentration, it is banned within the 

EU and therefore cannot be commercialised. The addition of 0.20mol% TiO2 shifts the 

absorbance towards the visible by ca. 2000 cm-1 (20 nm), with strong broadband visible 

emission centred around 25,000 cm-1 (500 nm) and is the least costly dopant. ZrO2 is also 

low cost and shifts the absorbance, but is weakly emitting relative to TiO2.  

Table 21 Prices per tonne of oxides, taken from IndMin.com and Metals-hub.com 
[349,350] 

Oxide Price per tonne (£) Wt % in SLS glass 
(0.20mol%) 

Cost per wt % (£) 

TiO2 3100 0.27 8.37 

ZrO2 2200 0.41 9.02 

HfO2 4400 0.71 31.24 

Nb2O5 10,100 0.89 89.89 

Ta2O5 11,150 1.47 163.91 

MoO3 16,400 0.48 78.72 

WO3 17,200 0.78 134.16 

Bi2O3 11,700 1.55 181.35 

PbO 900 0.81 7.29 

SnO2 12,500 0.51 63.75 
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Bi2O3 is the most costly dopant at 0.20mol%, however it has been shown to shift the UV 

absorbance with lower doping concentration of low as 0.01mol%. With this concentration 

the cost based on £11,700 per tonne is £9.36 which is on par with 0.20mol% TiO2. PbO 

was included in this cost survey but incorporation into glasses for commercial use, except 

in the case of lead crystal ware, is banned within the EU due to health and environmental 

considerations, and therefore is not suitable for doping of glasses for PV modules.  

Based on the cost survey, the UV VIS NIR absorption, and fluorescence emission data it 

is proposed doping with 0.20mol% TiO2 may be the most cost effective dopant looked at 

within this study TiO2 confers multiple advantages, such as visible emission centred at 

ca. 20,000 cm-1 (500 nm), strong UV absorption shifted 2000 cm-1 (20 nm) relative to the 

base glass to protect EVA glues and is significantly cheaper than other similarly 

performing dopants. Furthermore, TiO2 already has supply chains and is a highly 

abundant material.  

 

7.2 Further Work 
This study was done to investigate doping silicate glasses to shift the absorbance within 

the UV region to protect polymeric compounds from irradiation damage. Secondary to 

this absorbance, a broadband visible emission would enhance module efficiency. This 

effect is observed in Figure 104 and Table 20. However, there is further work required to 

fully characterise and enhance these effects.  

Firstly, shifting the absorbance of the glass front sheet to fully overlap the EVA glue, 

without any visible absorbance would further protect the polymeric species within the 

module. However, increasing the dopant concentration is not applicable due to increasing 
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the total cost. As observed with MoO3 doped samples, the absorbance is shifted further 

towards the visible by 4000 cm-1 (40 nm) relative to the base glass sample, however the 

visible emission is weakly emitting. Through mixing of dopants within the glass, it is 

hypothesised a strongly shifted absorbance and strong emission could occur. However, 

there would be competitive absorption between the mixed dopants, and therefore it is 

required to control the concentration of each dopant.  

Mixing dopants may reveal a sensitising effect between the two dopants, this has been 

observed with tungstate bismuth nanorods [351], niobium oxide modified bismuth oxide 

doped silicate glasses [352], in Bi doped tantalum silicate glasses [353] and between 

lanthanides and bismuth [97,354,355]. Utilising this effect lower doping concentration may 

be achieved, thus lowering the cost of the dopant whilst maintaining the strong 

absorbance and broadband visible emission. This would be essential to further lower the 

cost per watt of PV generated electricity. 

Control of visible emission to better overlap the absorbance of the semiconductor within 

the PV module would further increase efficiency. Through controlling the emission profile 

of a particular doped front sheet for a specific type of PV module would confer greater 

efficiency than for a generic luminescent front sheet. Primarily the focus would be on 

silicon based PV modules with EVA glue layers, as these compromise circa 70% of 

installed capacity. Investigation into other types of PV modules may also prove highly 

beneficial, due to the market growth and efficiency increases within recent years shown 

in Figure 8.  

A study to benchmark commercial front sheets for c-Si PV modules to allow for a deeper 

understanding of the effects of the dopants studied within this work is to be completed 
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next. Further to this, luminescent front sheets must be prepared on a small scale float 

system to produce flat sheets of glass with controlled thickness, and which do not require 

mechanical polishing. This will reduce the variability of the glasses prepared and allow 

for larger quantity of glass sheets to be prepared. Statistical analysis of improvements in 

efficiency and service lifetimes will therefore be possible on each of the dopants.  

Accelerated aging testing of each doped front sheet assembled into a PV module will 

elucidate the increase in service lifetime. A calculation of the reduction in cost per watt 

produced from the luminescent front sheet will be possible through understanding the 

magnitude increase in service lifetime and efficiency increase.  

 

7.3 Conclusions 
The manuscript has detailed the effects of dopants on the optical effects in silicate glasses 

for the primary aim of absorption of UV photons for the protection of polymer layers within 

PV module. Transition metals of d0 electronic configuration when incorporated into soda 

lime silica glasses of 0.20mol% concentration demonstrate a red-shifted absorption edge 

of between 20 to 40 nm relative to a corresponding undoped glass. Incorporation of post 

transition metal oxides such as Bi2O3 and SnO2 also demonstrate a shifted UV 

absorbance indicating both are also suitable for the primary objective of protecting 

polymeric layers within a PV module from UV induced degradation.  

The luminescence characteristics of these glasses were measured and the intensity of 

the emission is variable across the transition metal oxide dopants and post-transition 

metal oxides. The emissive properties of the glasses may confer additional flux of photons 

available for the photoelectric effect. However, due to the lower flux of UV photons and 
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the inefficient nature of the emission, as the energy is radiated in a sphere rather than 

directed towards the silicon, this effect has been difficult to prove. In Figure 104, the 

relative enhancement of ISC and IPM of doped and undoped glass front sheets on PV 

modules prepared at Solar Capture Technologies were shown, indicating an 

enhancement of these values due to the luminescence of the dopants.  

 

 

  



230 
 

8 References 
 

[1] Allsopp, B.L., Bingham, P.A., Booth, J., Johnson, S., Orman, R., Glass composition 
for solar energy applications, GB1700981.2, 2018. 

[2] Allsopp, B.L., Christopoulou, G., Brookfield, A., Forder, D., Bingham, P.A., Optical 
and structural properties of d0 ion-doped silicate glasses for photovoltaic 
applications, Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B. (2018) 59,. 
doi:10.13036/17533562.59.4.003. 

[3] UNFCCC, Paris Agreement, 2015. doi:FCCC/CP/2015/L.9/Rev.1. 

[4] Krauter, S., Ruther, R., Considerations for the calculation of greenhouse gas 
reduction by photovoltaic solar energy, Renew. Energy. (2004) 29, 345–355. 
doi:10.1016/S0960-1481(03)00251-9. 

[5] Voss, A., Leitbilder und wege einer umwelt und kimavertaglichen 
energieversorgung, Springer, Berlin, 1997. 

[6] Tahara, K., Jojima, T., Inaba, A., Evaluation of CO2 payback time of power plants 
by LCA, Energy Conserv. Manag. (1997) 38, 615–620. 

[7] International Renewable Energy Agency, Wind Power, 2012. doi:10.1016/B978-0-
08-098330-1.00011-9. 

[8] International Renewable Energy Agency, Hydropower, 2012. 
http://www.irena.org/documentdownloads/publications/re_technologies_cost_anal
ysis-hydropower.pdf. 

[9] International Renewable Energy Agency, Solar Photovoltaics, 2014. 
doi:10.1007/978-3-319-08512-8_7. 

[10] NREL, Best Research Cell Efficiencies, (2017). 
https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed September 
28, 2017). 

[11] O’Regan, B., Grätzel, M., A low cost, high efficiency solar cell based on dye 
sensitised colloidal TiO2 films, Nature. (1991) 353, 737–740. 

[12] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai,  and T.M., Organometal Halide 
Perovskites as Visible- Light Sensitizers for Photovoltaic Cells, J Am Chem Soc. 
(2009) 131, 6050–6051. doi:10.1021/ja809598r. 

[13] Chen, Y., Zhang, L., Zhang, Y., Gao, H., Yan, H., Large-area perovskite solar cells 
- A review of recent progress and issues, RSC Adv. (2018) 8, 10489–10508. 
doi:10.1039/c8ra00384j. 

[14] Haegel, N.M., Margolis, R., Buonassisi, T., Feldman, D., Froitzheim, A., 
Garabedian, R., Green, M., Glunz, S., Henning, H.-M., Holder, B., Kaizuka, I., 
Kroposki, B., Matsubara, K., Niki, S., Sakurai, K., Schindler, R.A., Tumas, W., 



231 
 

Weber, E.R., Wilson, G., Woodhouse, M., Kurtz, S., Terawatt-scale photovoltaics: 
Trajectories and challenges, Science (80). (2017) 356,. 
doi:10.1126/science.aal1288. 

[15] Lewis, N.S., Research opportunities to advance solar energy utilization, Science 
(80-.). (2016) 351,. doi:10.1126/science.aad5117.22. 

[16] World Energy Council, World Energy Resources: Solar, 2016. 

[17] ASTM, 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00, 2000. 

[18] Solar energy -- Reference solar spectral irradiance at the ground at different 
receiving conditions -- Part 1: Direct normal and hemispherical solar irradiance for 
air mass 1,5, (1992). 

[19] Pern, F., Ethylene vinyl acetate (EVA) encapsulants for photovoltaic modules: 
Degradation and discoloration mechanisms and formulation modifications for 
improved, Die Angew. Makromol. Chemie. (1997) 252, 195–216. 
doi:10.1002/apmc.1997.052520114. 

[20] Jentsch, A., Eichhorn, K.J., Voit, B., Influence of typical stabilizers on the aging 
behavior of EVA foils for photovoltaic applications during artificial UV-weathering, 
Polym. Test. (2015) 44, 242–247. doi:10.1016/j.polymertesting.2015.03.022. 

[21] Liu, F., Jiang, L., Yang, S., Ultra-violet degradation behavior of polymeric 
backsheets for photovoltaic modules, Sol. Energy. (2014) 108, 88–100. 
doi:10.1016/j.solener.2014.06.027. 

[22] de Wild, J., Meijerink, A., Rath, J.K., van Sark, W.G.J.H.M., Schropp, R.E.I., 
Upconverter solar cells: materials and applications, Energy Environ. Sci. (2011) 4, 
4835. doi:10.1039/c1ee01659h. 

[23] Badescu, V., De Vos, A., Badescu, A.M., Szymanska, A., Improved model for solar 
cells with down-conversion and down-shifting of high-energy photons, J. Phys. D-
Applied Phys. (2007) 40, 341–352. doi:10.1088/0022-3727/40/2/009. 

[24] Conibeer, G., Third-generation photovoltaics, Mater. Today. (2007) 10, 42–50. 
doi:10.1016/S1369-7021(07)70278-X. 

[25] Creative Commons Attribution Share Alike 3.0 Unported Licence, Solar panels at 
Earth Rangers Centre, (n.d.). 
https://commons.wikimedia.org/wiki/File:EarthRangersCentre-
ImageEnhancement.jpg. 

[26] Louwen, A., van Sark, W., Schropp, R., Faaij, A., A cost roadmap for silicon 
heterojunction solar cells, Sol. Energy Mater. Sol. Cells. (2016) 147, 295–314. 
doi:10.1016/j.solmat.2015.12.026. 

[27] Burrows, K., Fthenakis, V., Glass needs for a growing photovoltaics industry, Sol. 
Energy Mater. Sol. Cells. (2015) 132, 455–459. doi:10.1016/j.solmat.2014.09.028. 

[28] Holley, W.W., Agro, S.C., Advanced EVA-Based Encapsulants, NREL Rep. (1998) 



232 
 

1–95. 

[29] Kuitche, J.M., Pan, R., Tamizhmani, G., Investigation of dominant failure mode(s) 
for field-aged crystalline silicon PV modules under desert climatic conditions, IEEE 
J. Photovoltaics. (2014) 4, 814–826. doi:10.1109/JPHOTOV.2014.2308720. 

[30] Jordan, D., Kurtz, S., Photovoltaic module stability and reliability, Elsevier Ltd., 
2016. doi:10.1016/B978-1-78242-336-2.00003-3. 

[31] Ojo, A.A., Dharmadasa, I.M., Progress in development of graded bandgap thin film 
solar cells with electroplated materials, J. Mater. Sci. Mater. Electron. (2017) 28, 
6359–6365. doi:10.1007/s10854-017-6366-z. 

[32] Dharmadasa, I.M., Advances in thin film solar cells, 1st ed., Pan Stanford 
Publishing Pte Ltd., Singapore, 2013. 

[33] Green, M.A., Solar cells: operating principles, technology, and system applications, 
Prentice-Hall, Inc.,Englewood Cliffs, NJ, New Jersey, 1982. 

[34] Markvart, T., Castañer, L., Principles of Solar Cell Operation, Elsevier Ltd, 2012. 
doi:10.1016/B978-0-12-385934-1.00001-5. 

[35] Celik,  Ilke, Phillips, A.B., Song, Z., Yan, Y., Ellingson, R., Heben, M., Apul, D., 
Environmental Analysis of Perovskites and Other Relevant Solar Cell Technologies 
in a Tandem Configuration, Energy Environ. Sci. (2017) 0–19. 
doi:10.1039/C7EE01650F. 

[36] Khan, J., Yang, X., Qiao, K., Deng, H., Zhang, J., Liu, Z., Ahmad, W., Zhang, J., Li, 
D., Liu, H., Song, H., cheng,  chun, Tang, J., Low Temperature-processed SnO2-Cl 
for Efficient PbS quantum-dot solar cells via defect passivation, J. Mater. Chem. A. 
(2017). doi:10.1039/C7TA05366E. 

[37] Dharmadasa, I.M., Madugu, M.L., Olusola, O.I., Echendu, O.K., Fauzi, F., Diso, 
D.G., Weerasinghe, A.R., Druffel, T., Dharmadasa, Ruvini Lavery, B., Jasinski, J.B., 
Krentsel, T.A., Sumanasekera, G., Electroplating of CdTe Thin Films from 
Cadmium Sulphate Precursor and Comparison of layers grown by 3-electrode and 
2-electrode systems, Coatings. (2017) 7, 1–31. doi:10.3390/coatings7020017. 

[38] Atapattu, H.Y.R., De Silva, D.S.M., Pathiratne, K.A.S., Dharmadasa, I.M., An 
investigation into the effect of rate of stirring of bath electrolyte on the properties of 
electrodeposited CdTe thin film semiconductors, J. Mater. Sci. Mater. Electron. 
(2018) 0, 0. doi:10.1007/s10854-018-8600-8. 

[39] Ramanujam, J., Singh, U.P., Copper indium gallium selenide based solar cells – 
Review, Energy Environ. Sci. (2017) 0–41. doi:10.1039/C7EE00826K. 

[40] Lutgens, F.K., Tarbuck, E.J., Essentials of Geology, 7th ed., Prentice Hall, 2000. 

[41] Polman, A., Knight, M., Garnett, E.C., Ehrler, B., Sinke, W.C., Photovoltaic 
materials – present efficiencies and future challenges, Science (80-. ). (2016) 352, 
307. doi:10.1126/science.aad4424. 



233 
 

[42] Blakers, A.W., Wang, A., Milne, A.M., Zhao, J., Green, M.A., 22.8% Efficient Silicon 
Solar Cell, Appl. Phys. Lett. (1989) 55, 1363–1365. doi:10.1063/1.101596. 

[43] Bagnall, D.M., Boreland, M., Photovoltaic technologies, Energy Policy. (2008) 36, 
4390–4396. doi:10.1016/j.enpol.2008.09.070. 

[44] Low, F.W., Lai, C.W., Recent developments of graphene-TiO2 composite 
nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review, 
Renew. Sustain. Energy Rev. (2018) 82, 103–125. doi:10.1016/j.rser.2017.09.024. 

[45] Chouhan, A.S., Athresh, E., Ranjan, R., Raghavan, S., Avasthi, S., BaBiO3: A 
potential absorber for all-oxide photovoltaics, Mater. Lett. (2018) 210, 218–222. 
doi:https://doi.org/10.1016/j.matlet.2017.09.038. 

[46] Katagiri, H., Jimbo, K., Maw, W.S., Oishi, K., Yamazaki, M., Araki, H., Takeuchi, A., 
Development of CZTS-based thin film solar cells, Thin Solid Films. (2009) 517, 
2455–2460. doi:10.1016/j.tsf.2008.11.002. 

[47] Lin, Y., Xu, Z., Yu, D., Lu, L., Yin, M., Tavakoli, M.M., Chen, X., Hao, Y., Fan, Z., 
Cui, Y., Li, D., Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon 
Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion 
Efficiency, ACS Appl. Mater. Interfaces. (2016) 8, 10929–10936. 
doi:10.1021/acsami.6b02194. 

[48] Zi, W., Ren, X., Xiao, F., Wang, H., Gao, F., Liu, S.F., Ag nanoparticle enhanced 
light trapping in hydrogenated amorphous silicon germanium solar cells on flexible 
stainless steel substrate, Sol. Energy Mater. Sol. Cells. (2016) 144, 63–67. 
doi:10.1016/j.solmat.2015.08.024. 

[49] Renno, C., Petito, F., Experimental and theoretical model of a concentrating 
photovoltaic and thermal system, Energy Convers. Manag. (2016) 126, 516–525. 
doi:10.1016/j.enconman.2016.08.027. 

[50] Daneshazarian, R., Cuce, E., Cuce, P.M., Sher, F., Concentrating photovoltaic 
thermal (CPVT) collectors and systems: Theory, performance assessment and 
applications, Renew. Sustain. Energy Rev. (2018) 81, 473–492. 
doi:10.1016/j.rser.2017.08.013. 

[51] Kumavat, P.P., Sonar, P., Dalal, D.S., An overview on basics of organic and dye 
sensitized solar cells, their mechanism and recent improvements, Renew. Sustain. 
Energy Rev. (2017) 78, 1262–1287. doi:10.1016/j.rser.2017.05.011. 

[52] McIntosh, K.R., Lau, G., Costnell, J.N., Hanton, K., Batzner, D.L., Bettiol, F., 
Richards, B.S., Increase in External quantum efficiency of encapsulated silicon 
solar cells from a luminescent down shifting layer, Prog. Photovolt Res. Appl. 
(2009) 17, 191–197. doi:10.1002/pip. 

[53] van Sark, W.G., de Wild, J., Rath, J.K., Meijerink, A., Schropp, R.E., Upconversion 
in solar cells, Nanoscale Res. Lett. (2013) 8, 81. doi:10.1186/1556-276X-8-81. 

[54] Strümpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Švrček, V., del 
Cañizo, C., Tobias, I., Modifying the solar spectrum to enhance silicon solar cell 



234 
 

efficiency—An overview of available materials, Sol. Energy Mater. Sol. Cells. 
(2007) 91, 238–249. doi:10.1016/j.solmat.2006.09.003. 

[55] Shockley, W., Queisser, H.J., Detailed balance limit of efficiency of p-n junction 
solar cells, J. Appl. Phys. (1961) 32, 510–519. doi:10.1063/1.1736034. 

[56] Volotinen, T.T., Parker, J.M., Bingham, P.A., Concentrations and site partitioning 
of Fe2+ and Fe3+ ions in a soda-lime-silica glass obtained by optical absorbance 
spectroscopy, Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B. (2008) 49, 
258–270. 

[57] Bingham, P. A., Parker, J.M., Searle, T., Williams, J.M., Fyles, K., Redox and 
clustering of iron in silicate glasses, J. Non. Cryst. Solids. (1999) 253, 203–209. 
doi:10.1016/S0022-3093(99)00361-0. 

[58] Vogt, M.R., Hahn, H., Holst, H., Winter, M., Schinke, C., Kontges, M., Brendel, R., 
Altermatt, P.P., Measurement of the optical constants of soda-lime glasses in 
dependence of iron content and modeling of iron-related power losses in crystalline 
si solar cell modules, IEEE J. Photovoltaics. (2016) 6, 111–118. 
doi:10.1109/JPHOTOV.2015.2498043. 

[59] Nolet, D.A., Optical absorption and Mössbauer spectra of Fe, Ti silicate glasses, J. 
Non. Cryst. Solids. (1980) 37, 99–110. doi:10.1016/0022-3093(80)90482-2. 

[60] Deubener, J., Helsch, G., Moiseev,  a., Bornhöft, H., Glasses for solar energy 
conversion systems, J. Eur. Ceram. Soc. (2009) 29, 1203–1210. 
doi:10.1016/j.jeurceramsoc.2008.08.009. 

[61] Taxiarchou, M., Panias, D., Douni, I., Paspaliaris, I., Kontopoulos,  A., Removal of 
iron from silica sand by leaching with oxalic acid, Hydrometallurgy. (1997) 46, 215–
227. doi:10.1016/S0304-386X(97)00015-7. 

[62] Ren, T., He, J., Substrate-versatile approach to robust antireflective and 
superhydrophobic coatings with excellent self-cleaning property in varied 
environments, ACS Appl. Mater. Interfaces. (2017) 9, 34367–34376. 
doi:10.1021/acsami.7b11116. 

[63] Glaubitt, W., Löbmann, P., Antireflective coatings prepared by sol-gel processing: 
Principles and applications, J. Eur. Ceram. Soc. (2012) 32, 2995–2999. 
doi:10.1016/j.jeurceramsoc.2012.02.032. 

[64] Du, Y., Zhu, M., Sui, Z., Yi, K., Jin, Y., He, H., Porous antireflective coatings with 
controlled thickness and refractive index on glass, J. Non. Cryst. Solids. (2013) 363, 
26–31. doi:10.1016/j.jnoncrysol.2012.11.043. 

[65] Megahed, A.A., Density of mixed alkali silicate glasses, Phys. Chem. Glas. (1999) 
40, 130–134. 

[66] Carvalho, M. de O.M., Calculation of the Theoretical Energy Requirement for 
Melting Technical Silicate Glasses, J. Am. Ceram. Soc. (1998) 81, 3300–3306. 
doi:10.1111/j.1151-2916.1998.tb02771.x. 



235 
 

[67] Karlsson, S., Jonson, B., Stålhandske, C., The technology of chemical glass 
strengthening - A review, Glas. Technol. Eur. J. Glas. Sci. Technol. Part A. (2010) 
51, 41–54. 

[68] Jiang, S., Wang, K., Zhang, H., Ding, Y., Yu, Q., Encapsulation of PV Modules 
Using Ethylene Vinyl Acetate Copolymer as the Encapsulant, Macromol. React. 
Eng. (2015) 9, 522–529. doi:10.1002/mren.201400065. 

[69] Marin, M.., Jimenez, A., Lopez, J., Vilaplana, J., Thermal degradation of ethylene 
vinyl acetate - Kinetic analysis of thermogravimetric data, J. Therm. Anal. (1996) 
47, 247–258. doi:10.1007/BF01982703. 

[70] Wang, D., Wright, M., Elumalai, N.K., Uddin, A., Stability of perovskite solar cells, 
Sol. Energy Mater. Sol. Cells. (2016) 147, 255–275. 
doi:10.1016/j.solmat.2015.12.025. 

[71] Huang, J., Tan, S., Lund, P., Zhou, H., Impact of H2O on organic-inorganic hybrid 
perovskite solar cells, Energy Environ. Sci. (2017) 0–53. 
doi:10.1039/C7EE01674C. 

[72] Ayotunde, O., Cranton, W., Dharmadasa, I.M., Next generation multilayer graded 
bandgap solar cells, Springer, 2018. doi:10.1007/978-3-319-96667-0. 

[73] Kim, N., Lee, S., Zhao, X.G., Kim, D., Oh, C., Kang, H., Reflection and durability 
study of different types of backsheets and their impact on c-Si PV module 
performance, Sol. Energy Mater. Sol. Cells. (2016) 146, 91–98. 
doi:10.1016/j.solmat.2015.11.038. 

[74] Meng, X., Murai, S., Fujita, K., Tanaka, K., Intense visible emissions from d0 ions-
doped silicate glasses, J. Ceram. Soc. Japan. (2008) 116, 1147–1149. 
doi:10.2109/jcersj2.116.1147. 

[75] Van De Craats,  a. M., Blasse, G., The influence of d10 ions on the luminescence of 
bismuth(III) in solids, Mater. Res. Bull. (1996) 31, 381–387. doi:10.1016/0025-
5408(96)00017-7. 

[76] Srivastava, A.M., Comanzo, H.A., Camaradello, S.J., On the “Bi3+–Ti4+” charge 
transfer transition in the pyrochlore Y2Ti2O7:Bi3+, Opt. Mater. (Amst). (2015) 48, 31–
35. doi:10.1016/j.optmat.2015.07.020. 

[77] Boulon, G., Moine, B., Bourcet, J., Spectroscopic properites of 3P1 and 3P0 excited 
states of Bi3+ ions in germanate glass, Phys. Rev. B. (1980) 22, 1163–1169. 

[78] Meng, X., Tanaka, K., Fujita, K., Murai, S., Intense greenish emission from d0 
transition metal ion Ti4+ in oxide glass, Appl. Phys. Lett. (2007) 90, 3–6. 
doi:10.1063/1.2437074. 

[79] Quaranta,  A., Cattaruzza, E., Gonella, F., Peruzzo, G., Giarola, M., Mariotto, G., 
Field-assisted solid state doping of glasses for optical materials, Opt. Mater. (Amst). 
(2010) 32, 1352–1355. doi:10.1016/j.optmat.2010.04.012. 

[80] Cattaruzza, E., Mardegan, M., Pregnolato, T., Ungaretti, G., Aquilanti, G., 



236 
 

Quaranta,  a., Battaglin, G., Trave, E., Ion exchange doping of solar cell coverglass 
for sunlight down-shifting, Sol. Energy Mater. Sol. Cells. (2014) 130, 272–280. 
doi:10.1016/j.solmat.2014.07.028. 

[81] Suzuki, T., Ohishi, Y., Bi-doped lithium alumino silicate glass for ultra-broadband 
near-infrared optical gain medium, Conf. Lasers Electro-Optics 2006 Quantum 
Electron. Laser Sci. Conf. CLEO/QELS 2006. (2006) 1–2. 
doi:10.1109/CLEO.2006.4627731. 

[82] Sun, H.T., Yang, J., Fujii, M., Sakka, Y., Zhu, Y., Asahara, T., Shirahata, N., Ii, M., 
Bai, Z., Li, J.G., Gao, H., Highly fluorescent silica-coated bismuth-doped 
aluminosilicate nanoparticles for near-infrared bioimaging, Small. (2011) 7, 199–
203. doi:10.1002/smll.201001011. 

[83] Leonard, R.L., Gray, S.K., Albritton, S.D., Brothers, L.N., Cross, R.M., Eastes, A.N., 
Hah, H.Y., James, H.S., King, J.E., Mishra, S.R., Johnson, J.A., Rare earth doped 
downshifting glass ceramics for photovoltaic applications, J. Non. Cryst. Solids. 
(2013) 366, 1–5. doi:10.1016/j.jnoncrysol.2013.01.029. 

[84] Murali Krishna, G., Gandhi, Y., Veeraiah, N., Luminescence spectroscopy of Ti ions 
in Li2O-CaF2-P2O5 glass ceramics, J. Lumin. (2008) 128, 631–634. 
doi:10.1016/j.jlumin.2007.10.034. 

[85] Dumont, L., Benzo, P., Cardin, J., Yu, I.-S., Labbé, C., Marie, P., Dufour, C., Zatryb, 
G., Podhorodecki, A., Gourbilleau, F., Down-shifting Si-based layer for Si solar 
applications, Sol. Energy Mater. Sol. Cells. (2017) 169, 132–144. 
doi:10.1016/j.solmat.2017.05.011. 

[86] Wohlgemuth, J.., Cunningham, D.., Nguyen, A.., Shaner, J., Ransome, S.., Artigao, 
A., Fernandez, J.., Increased energy collection using antireflective coated glass, 
20th Eur. Photovolt. Sol. Energy Conf. (2005) 3–6. 

[87] Qiu, J., Peng, M., Ren, J., Meng, X., Jiang, X., Zhu, C., Novel Bi-doped glasses for 
broadband optical amplification, J. Non. Cryst. Solids. (2008) 354, 1235–1239. 
doi:10.1016/j.jnoncrysol.2007.02.094. 

[88] Parke, S., Webb, R.S., The optical properties of Thallium Lead and Bismuth in oxide 
glasses, J. Phys. Chem. Solids. (1973) 34, 85–95. 

[89] Zhang, X., Guan, A., Zhou, L., Gong, M., Synthesis and luminescence study of 
Zn3V2O8 Bi3+ yellow phosphor for solar spectral modification, Int. J. Appl. Ceram. 
Technol. (2017) 2–8. doi:10.1111/ijac.12663. 

[90] Baumgartner, F., 5 – Photovoltaic (PV) balance of system components: Basics, 
performance, Elsevier Ltd., 2017. doi:10.1016/B978-1-78242-336-2.00005-7. 

[91] Klampaftis, E., Ross, D., Seyrling, S., Tiwari, A.N., Richards, B.S., Increase in 
short-wavelength response of encapsulated CIGS devices by doping the 
encapsulation layer with luminescent material, Sol. Energy Mater. Sol. Cells. (2012) 
101, 62–67. doi:10.1016/j.solmat.2012.02.011. 

[92] Hosseini, Z., Diau, E.W.G., Mehrany, K., Taghavinia, N., Assessment of 



237 
 

luminescent downshifting layers for the improvement of light-harvesting efficiency 
in dye-sensitized solar cells, ChemPhysChem. (2014) 15, 3791–3799. 
doi:10.1002/cphc.201402505. 

[93] Fix, T., Nonat, A., Imbert, D., Di Pietro, S., Mazzanti, M., Slaoui, A., Charbonniere, 
L.J., Enhancement of silicon solar cells by downshifting with Eu and Tb coordination 
complexes, Prog. Photovolt Res. Appl. (2016). doi:10.1002/pip. 

[94] Hovel, H.J., Hodgson, R.T., Woodall, J.M., The effect of fluorescent wavelength 
shifting on solar cell spectral response, Sol. Energy Mater. (1979) 2, 19–29. 
doi:10.1016/0165-1633(79)90027-3. 

[95] Thomas, C.P., Wedding, A.B., Martin, S.O., Theoretical enhancement of solar cell 
efficiency by the application of an ideal “down-shifting” thin film, Sol. Energy Mater. 
Sol. Cells. (2012) 98, 455–464. doi:10.1016/j.solmat.2011.11.027. 

[96] Ho, W., Shen, Y.-T., Liu, J.-J., You, B.-J., Ho, C.-H., Enhancing Photovoltaic 
Performance Using Broadband Luminescent Down-Shifting by Combining Multiple 
Species of Eu-Doped Silicate Phosphors, Nanomaterials. (2017) 340. 
doi:10.3390/nano7100340. 

[97] Huang, C.., Chen, Y.., Hung, W.., Chen, T.., Sun, K.., Chang, W.., Enhanced light 
harvesting of Si solar cells via Luminenscent down shifting using YVO4: Bi3+ Eu3+ 
nanophosphors, Prog. Photovoltaics. (2013) 21, 1507–1513. doi:10.1002/pip. 

[98] Klampaftis, E., Ross, D., Mcintosh, K.R., Richards, B.S., Enhancing the 
performance of solar cells via luminescent down-shifting of the incident spectrum : 
A review, Sol. Energy Mater. Sol. Cells. (2009) 93, 1182–1194. 
doi:10.1016/j.solmat.2009.02.020. 

[99] Williams, E., Lavery, N., Laser processing of bulk metallic glass: A review, J. Mater. 
Process. Tech. (2017) 247, 73–91. doi:10.1016/j.jmatprotec.2017.03.034. 

[100] Schönfeld, B., Zemp, J., Stuhr, U., Thermal vibrations in the metallic glass Cu64Zr36, 
J. Phys. Condens. Matter. (2017) 29, 015401. doi:10.1088/0953-
8984/29/1/015401. 

[101] Mohammadi, M., Fazli, H., karevan, M., Davoodi, J., The glass transition 
temperature of PMMA: A molecular dynamics study and comparison of various 
determination methods, Eur. Polym. J. (2017) 91, 121–133. 
doi:10.1016/j.eurpolymj.2017.03.056. 

[102] Ma, M., Xue, T., Chen, S., Guo, Y., Chen, Y., Liu, H., Features of structural 
relaxation in diblock copolymers, Polym. Test. (2017) 60, 1–5. 
doi:10.1016/j.polymertesting.2017.02.027. 

[103] Zhu, L., Mimnaugh, B.R., Ge, Q., Quirk, R.P., Cheng, S.Z.D., Thomas, L., Lotz, B., 
Hsiao, B.S., Yeh, F., Liu, L., Hard and soft confinement effects on polymer 
crystallization in microphase separated cylinder-forming PEO- b -PS / PS blends, 
Polymer (Guildf). (2001) 42, 9121–9131. 

[104] Portier, J., Halogenide, chalcogenide and chalcohalogenide glasses: materials, 



238 
 

models, applications, J. Non. Cryst. Solids. (1989) 112, 15–22. doi:10.1016/0022-
3093(89)90489-4. 

[105] Zanotto, E.D., Mauro, J.C., The glassy state of matter: Its definition and ultimate 
fate, J. Non. Cryst. Solids. (2017) 471, 490–495. 
doi:10.1016/j.jnoncrysol.2017.05.019. 

[106] Abo-Naf, S.M., Abdel-Hameed, S. A. M., Marzouk, M. A., Elwan, R.L., Sol–gel 
synthesis, paramagnetism, photoluminescence and optical properties of Gd-doped 
and Bi–Gd-codoped hybrid organo-silica glasses, J. Mater. Sci. Mater. Electron. 
(2015) 26, 2363–2373. doi:10.1007/s10854-015-2692-1. 

[107] C.P. Scherer, C.G.P., Titania silica glasses using a colloidal sol gel process, J. Non. 
Cryst. Solids. (1986) 82, 340–345. 

[108] Ren, J., Zhang, L., Eckert, H., Medium-Range Order in Sol − Gel Prepared Al2O3 − 
SiO2 Glasses: New Results from Solid-State NMR, J. Phys. Chem. C. (2014) 4906–
4917. 

[109] Singh, Sadanand, M.D. Ediger, J. de P., Ultra stable glasses from in silico vapour 
deposition, Nat. Mater. (2013) 12, 139–144. doi:10.1038/nmat3521. 

[110] Ballato, J., Dragic, P., Glass: The Carrier of Light - A Brief History of Optical Fiber, 
Int. J. Appl. Glas. Sci. (2016) 7, 413–422. doi:10.1111/ijag.12239. 

[111] Hench, L.L., Bioglass : 10 milestones from concept to commerce, J. Non. Cryst. 
Solids. (2016) 432, 2–8. 

[112] Jones, J.R., Brauer, D.S., Hupa, L., Greenspan, D.C., Bioglass and Bioactive 
Glasses and Their Impact on Healthcare, Int. J. Appl. Glas. Sci. (2016) 7, 423–434. 
doi:10.1111/ijag.12252. 

[113] Bingham, P., Connelly,  A J., Hyatt, N.C., Hand, R.J., Corrosion of glass contact 
refractories for the vitrification of radioactive wastes: a review, Int. Mater. Rev. 
(2011) 56, 226–242. doi:10.1179/1743280410Y.0000000005. 

[114] Bingham, P. A., Vaishnav, S., Forder, S.D., Scrimshire,  A., Jaganathan, B., Rohini, 
J., Marra, J.C., Fox, K.M., Pierce, E.M., Workman, P., Vienna, J.D., Modelling the 
sulfate capacity of simulated radioactive waste borosilicate glasses, J. Alloys 
Compd. (2017) 695, 656–667. doi:10.1016/j.jallcom.2016.11.110. 

[115] Huang, X., Han, S., Huang, W., Liu, X., Enhancing solar cell efficiency: the search 
for luminescent materials as spectral converters, Chem. Soc. Rev. (2013) 42, 173–
201. doi:10.1039/c2cs35288e. 

[116] Morse, D.L., Evenson, J.W., Welcome to the Glass Age, Int. J. Appl. Glas. Sci. 
(2016) 4, 1–4. doi:10.1111/ijag.12242. 

[117] Axinte, E., Glasses as engineering materials: A review, Mater. Des. (2011) 32, 
1717–1732. doi:10.1016/j.matdes.2010.11.057. 

[118] Gulbiten, O., Mauro, J.C., Guo, X., Boratav, O.N., Viscous flow of medieval 



239 
 

cathedral glass, J. Am. Ceram. Soc. (2017). doi:10.1111/jace.15092. 

[119] Hunault, M.O.J.Y., Vinel, V., Cormier, L., Calas, G., Thermodynamic insight into the 
evolution of medieval glassworking properties, J. Am. Ceram. Soc. (2017) 1–5. 
doi:10.1111/jace.14819. 

[120] Page, J.-A., The Art of Glass, 1st ed., Toledo Museum of Art, Toledo, 2006. 

[121] Zanotto, E.D., Do cathedral glasses flow?, Am. J. Phys. (1998) 66, 392. 
doi:10.1119/1.19026. 

[122] Goldschmidt, V.., Raumchemie der festen Stoffe, Naturwissenschaften. (1934) 22, 
722–725. 

[123] Zachariasen, W.H., The atomic arrangement in glass, J. Am. Chem. Soc. (1932) 
54, 3841–3851. doi:doi:10.1021/ja01349a006. 

[124] Jiang, Z.-H.H., Zhang, Q.-Y.Y., The structure of glass: A phase equilibrium diagram 
approach, Prog. Mater. Sci. (2014) 61, 144–215. 
doi:10.1016/j.pmatsci.2013.12.001. 

[125] Heyde, M., Shaikhutdinov, S., Freund, H.J., Two-dimensional silica: Crystalline and 
vitreous, Chem. Phys. Lett. (2012) 550, 1–7. doi:10.1016/j.cplett.2012.08.063. 

[126] Aguiar, H., Serra, J., González, P., León, B., Structural study of sol-gel silicate 
glasses by IR and Raman spectroscopies, J. Non. Cryst. Solids. (2009) 355, 475–
480. doi:10.1016/j.jnoncrysol.2009.01.010. 

[127] Yadav, A.K., Singh, P., A review of the structures of oxide glasses by Raman 
spectroscopy, RSC Adv. (2015) 5, 67583–67609. doi:10.1039/C5RA13043C. 

[128] Vogel, W., Glass chemistry, Springer - Verlag, Berlin, 1992. 
http://refhub.elsevier.com/S0079-6425(13)00086-8/h0595. 

[129] Wang, Z., Cheng, L., Effects of doping CeO2/TiO2 on structure and properties of 
silicate glass, J. Alloys Compd. (2014) 597, 167–174. 
doi:10.1016/j.jallcom.2014.01.232. 

[130] Maekawa, H., Maekawa, T., Kawamura, K., Yokokawa, T., The structural groups of 
alkali silicate glasses determined from 29Si MAS-NMR, J. Non. Cryst. Solids. (1991) 
127, 53–64. doi:10.1016/0022-3093(91)90400-Z. 

[131] Greaves, G.N., EXAFS and the structure of glass, J. Non. Cryst. Solids. (1985) 71, 
203–217. doi:10.1016/0022-3093(85)90289-3. 

[132] Greaves, G.N., Vaills, Y., Sen, S., Winter, R., Density fluctuations, phase 
separation and microsegregation in silicate glasses, J. Optoelectron. Adv. Mater. 
(2000) 2, 299–316. 

[133] Varshneya, A.K., Fundamentals of Inorganic Glasses, 2nd ed., Society of Glass 
Technology, Sheffield U.K., 2012. 

[134] Hench, L.L., Clark, D.E., Physical chemistry of glass surfaces, J. Non. Cryst. Solids. 



240 
 

(1978) 28, 83–105. doi:10.1016/0022-3093(78)90077-7. 

[135] ISO 1776:1985 Glass -- Resistance to attack by hydrochloric acid at 100 degrees 
C -- Flame emission or flame atomic absorption spectrometric method, 1985. 

[136] ISO 695:1991 Glass -- Resistance to attack by a boiling aqueous solution of mixed 
alkali -- Method of test and classification, 1991. 

[137] ISO 719:1985 Glass -- Hydrolytic resistance of glass grains at 98 degrees C -- 
Method of test and classification, (1985). 

[138] ISO 720:1985 Glass -- Hydrolytic resistance of glass grains at 121 degrees C -- 
Method of test and classification, (1985). 

[139] Dathe, M., Roggendorf, H., Dissolution of sodium silicate glasses for the production 
of water glass – Part I Study of experimental parameters, Phys. Chem. Glas. Eur. 
J. Glas. Sci. Technol. Part B. (2018) 59, 241–250. 

[140] Wassick, T.., Doremus, R.., Lanford, W.., Burman, C., Hydration of soda lime 
silicate glass, effect of alumina, J. Non. Cryst. Solids. (1983) 54, 139–151. 

[141] Devreux, F., Barboux, P., Filoche, M., Sapoval, B., A simplified model for glass 
dissolution in water, J. Mater. Sci. (2001) 36, 1331–1340. 
doi:10.1023/A:1017591100985. 

[142] Strachan, D., Glass dissolution as a function of pH and its implications for 
understanding mechanisms and future experiments, Geochim. Cosmochim. Acta. 
(2017) 219, 111–123. doi:10.1016/j.gca.2017.09.008. 

[143] Richet, P., Water: An elusive component of silicate melts, Phys. Chem. Glas. (2005) 
46, 333–339. 

[144] Bocker, C., Rüssel, C., Percolation, phase separation and crystallisation, Phys. 
Chem. Glas. Eur. J. Glas. Sci. Technol. Part B. (2017) 58, 133–141. 
doi:10.13036/17533562.58.4.133. 

[145] Brinks, H.W., Hauback, B.C., Jensen, C.M., Zidan, R., Synthesis and crystal 
structure of Na2LiAlD6, J. Alloys Compd. (2005) 392, 27–30. 
doi:10.1016/j.jallcom.2004.09.006. 

[146] Liu, X., Wang, H., Lavina, B., Tu, B., Wang, W., Fu, Z., Chemical composition, 
crystal structure, and their relationships with the intrinsic properties of spinel-type 
crystals based on bond valences, Inorg. Chem. (2014) 53, 5986–5992. 
doi:10.1021/ic5002013. 

[147] Shelby, J.E., Introduction to glass science and technology, 2nd editio, Royal 
Society of Chemistry, Cambridge, 2005. 

[148] Fujimoto, Y., Nakatsuka, M., 27Al NMR structural study on aluminum coordination 
state in bismuth doped silica glass, J. Non. Cryst. Solids. (2006) 352, 2254–2258. 
doi:10.1016/j.jnoncrysol.2006.02.047. 

[149] Lezzi, P.J., Tomozawa, M., Effect of alumina on enthalpy of mixing of mixed alkali 



241 
 

silicate glasses, J. Non. Cryst. Solids. (2011) 357, 2086–2092. 
doi:10.1016/j.jnoncrysol.2010.12.074. 

[150] Stebbins, J.F., Xu, Z., NMR evidence for excess non-bridging oxygen in an 
aluminosilicate glass, Nature. (1997) 390, 1996–1998. doi:10.1038/36312. 

[151] Cormier, L., Ghaleb, D., Neuville, D.R., Delaye, J.M., Calas, G., Chemical 
dependence of network topology of calcium aluminosilicate glasses: A computer 
simulation study, J. Non. Cryst. Solids. (2003) 332, 255–270. 
doi:10.1016/j.jnoncrysol.2003.09.012. 

[152] Neuville, D.R., Cormier, L., Flank, A.M., Briois, V., Massiot, D., Al speciation and 
Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-
edge X-ray absorption spectroscopy, Chem. Geol. (2004) 213, 153–163. 
doi:10.1016/j.chemgeo.2004.08.039. 

[153] Cormier, L., Cuello, G.J., Mg coordination in a MgSiO3 glass using neutron 
diffraction coupled with isotopic substitution, Phys. Rev. B - Condens. Matter Mater. 
Phys. (2011) 83, 1–8. doi:10.1103/PhysRevB.83.224204. 

[154] Wilding, M.C., Benmore, C.J., Tangeman, J.A., Sampath, S., Evidence of different 
structures in magnesium silicate liquids: Coordination changes in forsterite- to 
enstatite-composition glasses, Chem. Geol. (2004) 213, 281–291. 
doi:10.1016/j.chemgeo.2004.08.055. 

[155] Bechgaard, T.K., Scannell, G., Huang, L., Youngman, R.E., Mauro, J.C., 
Smedskjaer, M.M., Structure of MgO/CaO sodium aluminosilicate glasses: Raman 
spectroscopy study, J. Non. Cryst. Solids. (2017) 0–1. 
doi:10.1016/j.jnoncrysol.2017.05.014. 

[156] Detcheva, A.K., Velinova, R.H., Manoylova, A.K., Ivanova, E.H., Study on the 
colouration of Bulgarian late-antique and medieval archaeological glass finds by a 
validated total reflection x-ray fluorescence procedure, Eur. J. Glas. Sci. Technol. 
Part B. (2017) 58, 217–225. doi:10.13036/17533562.58.5.014. 

[157] Pascual, M.J., Durán, A., Pascual, L., Viscosity and thermal properties of glasses 
in the system R2O-B2O3-SiO2 , R=Li, K, Na, 2002. 

[158] Erdem, İ., Guldiren, D., Aydin, S., Chemical tempering of soda lime silicate glasses 
by ion exchange process for the improvement of surface and bulk mechanical 
strength, J. Non. Cryst. Solids. (2017) 473, 170–178. 
doi:10.1016/j.jnoncrysol.2017.08.010. 

[159] Sharaf, N.A., Ahmed, A.A., Abbas, A.F., Mixed alkali effect on density, refractive 
index and related properties of alkali borate glasses, Phys. Chem. Glas. (1998) 39, 
76–82. 

[160] Doweidar, H., A simple approach to the mixed alkali effect, Phys. Chem. Glas. 
(1999) 40, 345–349. 

[161] Fluegel, A., Glass viscosity calculation based on a global statistical modelling 
approach, Glas. Technol. J. Glas. Sci. Technol. (2007) 48, 13–30. 



242 
 

http://www.ingentaconnect.com/content/sgt/gt/2007/00000048/00000001/art0000
3. 

[162] Bingham, P.. A., Hand, R.. J., Hannant, O.. M., Forder, S.. D., Kilcoyne, S.. H., 
Effects of modifier additions on the thermal properties, chemical durability, oxidation 
state and structure of iron phosphate glasses, J. Non. Cryst. Solids. (2009) 355, 
1526–1538. doi:10.1016/j.jnoncrysol.2009.03.008. 

[163] Vercamer, V., Lelong, G., Hijiya, H., Kondo, Y., Galoisy, L., Calas, G., Diluted Fe3+ 
in silicate glasses: Structural effects of Fe-redox state and matrix composition. An 
optical absorption and X-band/Q-band EPR study, J. Non. Cryst. Solids. (2015) 
428, 138–145. doi:10.1016/j.jnoncrysol.2015.08.010. 

[164] Stalhandske, C., The impact of refining agents on glass colour, Glastek. Tidskr. 
(2000) 55, 65–71. 

[165] Möncke, D., Ehrt, D., In : Materials Science Research Horizons Photoionisation of 
polyvalent ions 2007. 

[166] Bingham, P. A., Parker, J.M., Searle, T., Williams, J.M., Smith, I., Novel structural 
behaviour of iron in alkali – alkaline-earth – silica glasses, C.R. Cnimie. (2002) 5, 
787–796. doi:10.1016/S1631-0748(02)01444-3. 

[167] Iwamoto, N., Hidaka, H., Makino, Y., State of Ti3+ Ti4+ redox reaction in reduced 
sodium silicate glasses, J. Non. Cryst. Solids. (1983) 58, 131–141. 

[168] Min’ko, N, I; Binaliev, I, M., Role of sodium sulfate in glass technology, Glas. Ceram. 
(2013) 69, 361–365. 

[169] Of, E., Sulfate, S., Of, F., Glass, F., The, O.N., Effect of sodium sulfate and 
temperature on the fining of float glass, J. Non. Cryst. Solids. (1986) 80, 630–636. 

[170] Green, M.A., High-Efficiency Silicon Solar Cell Concepts, Second Edi, Elsevier Ltd, 
2003. doi:10.1016/B978-185617390-2/50012-X. 

[171] Llanos, C., Marcos, R., WO2001055040A1, 2001.Glass Composition for solar 
control 

[172] Evans, T.C., Gavrilovich, E., Mihai, R.C. and Isbasescu, I., E.L., Thelen, D., Martin, 
J.A., Allen, S.M., SA, S., ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 
2006 / 0222585 A1 Figure 1, (2017) 002, 354. doi:10.1037/t24245-000. 

[173] Duffy, J. A., Redox equilibria in glass, J. Non. Cryst. Solids. (1996) 196, 45–50. 
doi:10.1016/0022-3093(95)00560-9. 

[174] Iordanova, R., Gegova, R., Bachvarova-Nedelcheva, A., Dimitriev, Y., Sol-gel 
synthesis of composites in the ternary TiO2 TeO2 B2O3 system, Phys. Chem. Glas. 
Eur. J. Glas. Sci. Technol. Part B. (2015) 56, 128–138. 

[175] Pilkington, Pilkington and the flat glass industry 2010, 2010. 
https://www.pilkington.com/resources/pfgi2010.pdf. 

[176] Britist Glass Report., UK Glass Decarbonisation Roadmap 2050 March 2014, 2014. 



243 
 

[177] Inage, S.-I., Prospects for Large-Scale Energy Storage in Decarbonised Power 
Grids, 2009. 

[178] Schaeffer, H. A., Stengel, M., Mecha, J., Dealkalization of glass surfaces utilizing 
HCl gas, J. Non. Cryst. Solids. (1986) 80, 400–404. 

[179] Ehrt, D., Leister, M., Matthai, A., Polyvalent elements iron, tin and titanium in 
silicate, phosphate and fluoride glasses and melts, Phys. Chem. Glas. (2001) 42, 
231–239. 

[180] Benne, D., Rüssel, C., Diffusivity of tin in some soda silica and soda lime silica 
melts, Phys. Chem. Glas.  Eur. J. Glas. Sci. Technol. Part B. (2008) 49, 160–165. 

[181] August, C., Viscosity and viscometric fixed points of glass, Br. Stand. (1993) BS 
7034-2:,. 

[182] Rawlings, R.D., Wu, J.P., Boccaccini,  A. R., Glass-ceramics: Their production from 
wastes-A Review, J. Mater. Sci. (2006) 41, 733–761. doi:10.1007/s10853-006-
6554-3. 

[183] Ghamsari, M.S., Gaeeni, M.R., Han, W., Park, H.-H., Highly stable colloidal TiO2 
nanocrystals with strong violet-blue emission, J. Lumin. (2016) 178, 89–93. 
doi:10.1016/j.jlumin.2016.05.036. 

[184] Ruivo, A., Ferro, M.C., Andrade, S.M., Rocha, J., Pina, F., Antonio, C., Laia, T., 
Photoluminescent Nanocrystals in a Multicomponent Aluminoborosilicate Glass, J. 
Phys. Chem. C. (2016) 120, 24925–24931. doi:10.1021/acs.jpcc.6b04552. 

[185] Iqbal, Y., Lee, W.E., Holland, D., James, P.F., Crystal nucleation in P2O5-doped 
lithium disilicate glasses, J. Mater. Sci. (1999) 34, 4399–4411. 

[186] Aravindan, S., Rajendran, V., Rajendran, N., Influence of Ag2O on crystallisation 
and structural modification of phosphate glasses, Phase Transitions. (2012) 85, 
630–649. doi:10.1080/01411594.2011.639013. 

[187] Stookey, S.D., Catalyzed crystallization of glass in theory and practice, Ind. Eng. 
Chem. (1959) 51, 805–808. doi:10.1021/ie50595a022. 

[188] Paramesh, G., Varma, K.B.R., Mechanical properties of glasses and TiO2 
nanocrystal glass composites in BaO-TiO2-B2O3 system, J. Non. Cryst. Solids. 
(2013) 380, 128–134. doi:10.1016/j.jnoncrysol.2013.09.010. 

[189] Ananthanarayanan,  A, Kumar, R., Bhattacharya, S., Shrikhande, V.K., Kothiyal, 
G.P., Some properties of lithium aluminium silicate (LAS) glass-ceramics used in 
glass-ceramic to metal compressive seal for vacuum applications, J. Phys. Conf. 
Ser. (2008) 114, 012042. doi:10.1088/1742-6596/114/1/012042. 

[190] Llordés, A., Garcia, G., Gazquez, J., Milliron, D.J., Tunable near-infrared and 
visible-light transmittance in nanocrystal-in-glass composites., Nature. (2013) 500, 
323–327. doi:10.1038/nature12398. 

[191] Ehrt, D., Photoluminescence in glasses and glass ceramics, IOP Conf. Ser. Mater. 



244 
 

Sci. Eng. (2009) 2, 012001. doi:10.1088/1757-899X/2/1/012001. 

[192] Alekseeva, I., Dymshits, O., Tsenter, M., Zhilin,  A., Golubkov, V., Denisov, I., 
Skoptsov, N., Malyarevich,  A., Yumashev, K., Optical applications of glass-
ceramics, J. Non. Cryst. Solids. (2010) 356, 3042–3058. 
doi:10.1016/j.jnoncrysol.2010.05.103. 

[193] Kjeldsen, J., Yue, Y., Bragatto, C.B., Rodrigues, A.C.M., Electronic conductivity of 
vanadium-tellurite glass-ceramics, J. Non. Cryst. Solids. (2013) 378, 196–200. 
doi:10.1016/j.jnoncrysol.2013.07.011. 

[194] Nielsen, J.H., Olesen, J.F., Stang, H., The fracture process of tempered soda-lime-
silica glass, Exp. Mech. (2009) 49, 855–870. doi:10.1007/s11340-008-9200-y. 

[195] Gy, R., Ion exchange for glass strengthening, Mater. Sci. Eng. B Solid-State Mater. 
Adv. Technol. (2008) 149, 159–165. doi:10.1016/j.mseb.2007.11.029. 

[196] Mochel, E.., US Patent 3,451,769 Corning Glass Works, 1969. 

[197] Varshneya, A.K., The physics of chemical strengthening of glass: Room for a new 
view, J. Non. Cryst. Solids. (2010) 356, 2289–2294. 
doi:10.1016/j.jnoncrysol.2010.05.010. 

[198] Hand, R.J., Tadjiev, D.R., Mechanical properties of silicate glasses as a function of 
composition, J. Non. Cryst. Solids. (2010) 356, 2417–2423. 
doi:10.1016/j.jnoncrysol.2010.05.007. 

[199] Varshneya, A.K., Stronger glass products: Lessons learned and yet to be learned, 
Int. J. Appl. Glas. Sci. (2018). doi:10.1111/ijag.12341. 

[200] Firstov, S. V, Khopin, V.F., Velmiskin, V. V, Firstova, E.G., Bufetov, I. a, Guryanov, 
A.N., Dianov, E.M., Anti-Stokes luminescence in bismuth-doped silica and 
germania-based fibers., Opt. Express. (2013) 21, 18408–13. 
doi:10.1364/OE.21.018408. 

[201] Ceglia, A., Nuyts, G., Meulebroeck, W., Cagno, S., Silvestri, A., Zoleo, A., Nys, K., 
Janssens, K., Thienpont, H., Terryn, H., Iron speciation in soda-lime-silica glass: a 
comparison of XANES and UV-vis-NIR spectroscopy, J. Anal. At. Spectrom. (2015) 
30, 1552–1561. doi:10.1039/C5JA00046G. 

[202] Weyl, W.A., Coloured Glasses, 1st ed., Dawsons of Pall Mall, London, 1959. 

[203] Dimitrov, V., Komatsu, T., Optical basicity and chemical bonding of Bi2O3 containing 
glasses, J. Non. Cryst. Solids. (2013) 382, 18–23. 
doi:10.1016/j.jnoncrysol.2013.10.005. 

[204] Jia, H., Chen, G., Wang, W., Refractive index and absorption spectra changes 
induced by UV irradiation in lead silicate glasses, J. Non. Cryst. Solids. (2004) 347, 
220–223. doi:10.1016/j.jnoncrysol.2004.08.242. 

[205] Pettit, R.B., Brinker, C.J., Ashley, C.S., Sol-sel double-layer antireflection coatings 
for silicon solar cells, Sol. Cells. (1985) 15, 267–278. 



245 
 

[206] Arabatzis, I., Todorova, N., Fasaki, I., Tsesmeli, C., Peppas, A., Li, W.X., Zhao, Z., 
Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: 
Characterization and monitoring in real conditions, Sol. Energy. (2018) 159, 251–
259. doi:10.1016/j.solener.2017.10.088. 

[207] Jimenez-Solano, A., Delgado-Sanchez, J.-M., Calco, M.E., Miranda-Munoz, J.M., 
Lozano, G., Shancho, D., Sanchez-Cortezon, E., Miguez, H., Design and 
realization of transparent solar modules based on luminescent solar concentrators 
integrating nanostructured photonic crystals, Prog. Photovoltaics Res. Appl. (2015). 

[208] Ehrt, D., UV-absorption and radiation effects in different glasses doped with iron 
and tin in the ppm range, Comptes Rendus Chim. (2002) 5, 679–692. 
doi:10.1016/S1631-0748(02)01432-7. 

[209] Abdel-Baki, M., El-Diasty, F., Optical properties of oxide glasses containing 
transition metals: Case of titanium- and chromium-containing glasses, Curr. Opin. 
Solid State Mater. Sci. (2006) 10, 217–229. doi:10.1016/j.cossms.2007.08.001. 

[210] Das Mohapatra, G.K., A spectroscopic study of Ce3+ ion in calcium metaphosphate 
glass, Phys. Chem. Glas. (1998) 39, 50–55. 

[211] King, D.E., Pern, F.J., Pitts, J.R., Bingham, C.E., Czanderna, A.W., Optical 
changes in cerium containing glass as a result of accelerated exposure testing.pdf, 
Conf. Rec. IEEE Photovolt. Spec. (1997) 1117–1120. 

[212] W, Schropp, Solar Spectrum Conversion for Photovoltaics Using Nanoparticles, in: 
Third Gener. Photovoltaics, 2012. 

[213] Trupke, T., Green, M.A., Würfel, P., Improving solar cell efficiencies by down-
conversion of high-energy photons, J. Appl. Phys. (2002) 92, 1668–1674. 
doi:10.1063/1.1492021. 

[214] Trupke, T., Green, M.A., Würfel, P., Improving solar cell efficiencies by up-
conversion of sub-band-gap light, J. Appl. Phys. (2002) 92, 4117–4122. 
doi:10.1063/1.1505677. 

[215] PerkinElmer, An Introduction to fluorescence spectroscopy, Microchem. J. (2000) 
65, 353. doi:10.1016/S0026-265X(00)00048-5. 

[216] Trueba, A., Garcia-Fernandez, P., García-Lastra, J.M., Aramburu, J.A., Barriuso, 
M.T., Moreno, M., Spectrochemical series and the dependence of racah and 10 Dq 
parameters on the metal-ligand distance: Microscopic origin, J. Phys. Chem. A. 
(2011) 115, 1423–1432. doi:10.1021/jp110586e. 

[217] Maeder, T., Review of Bi2O3 based glasses for electronics and related applications, 
Int. Met. Rev. (2012) 58, 3–40. doi:10.1179/1743280412Y.0000000010. 

[218] Sun, H.-T., Zhou, J., Qiu, J., Recent advances in bismuth activated photonic 
materials, Prog. Mater. Sci. (2014) 64, 1–72. doi:10.1016/j.pmatsci.2014.02.002. 

[219] Miyaji, F., Yoko, T., Jin, J., Sakka, S., Fukunaga, T., Misawa, M., Neutron and X-
ray diffraction studies of PbO-Ga2O3 and Bi2O3-Ga2O3 glasses, J. Non. Cryst. 



246 
 

Solids. (1994) 175, 211–223. doi:10.1016/0022-3093(94)90013-2. 

[220] Bliokh, K.Y., Niv, A., Kleiner, V., Hasman, E., Spin-orbit interaction of light, SPIE 
Newsroom. (2009) 2–4. doi:10.1117/2.1200906.1711. 

[221] Nazarov, M., Brik, M.G., Spassky, D., Tsukerblat, B., Crystal Field Splitting of 5d 
States and Luminescence Mechanism in SrAl2O4:Eu2+ Phosphor, J. Lumin. (2016) 
182, 79–86. doi:10.1016/j.jlumin.2016.10.015. 

[222] Reisfeld, R., Boehm, L., Optical properties of bismuth in germanate borax and 
phosphate glasses, J. Non. Cryst. Solids. (1974) 16, 83–92. 

[223] Montenero, A., Friggeri, M., Giori, D.C., Belkhiria, N., Pye, L.D., Iron-soda-silica 
glasses: Preparation, properties, structure, J. Non. Cryst. Solids. (1986) 84, 45–60. 
doi:10.1016/0022-3093(86)90761-1. 

[224] Zhou, Y., Dynamic Jahn – Teller effect in the near-infrared spectra of Fe2+ ions in 
ZnS, J. Appl. Phys. (2012) 6870, 2–5. doi:10.1063/1.1669270. 

[225] Bingham, P. A., Hannant, O.M., Reeves-Mclaren, N., Stennett, M.C., Hand, R.J., 
Selective behaviour of dilute Fe3+ ions in silicate glasses: An Fe K-edge EXAFS 
and XANES study, J. Non. Cryst. Solids. (2014) 387, 47–56. 
doi:10.1016/j.jnoncrysol.2013.12.034. 

[226] Fix, T., Nonat, A., Imbert, D., Di Pietro, S., Mazzanti, M., Slaoui, A., Charbonniere, 
L.J., Enhancement of silicon solar cells by downshifting with Eu and Tb coordination 
complexes, Prog. Photovoltaics. (2016) 24, 1251–1260. doi:10.1002/pip. 

[227] Tai, Y., Li, X., Pan, B., Efficient near-infrared down conversion in Nd3+ -Yb3+ co-
doped transparent nanostructured glass ceramics for photovoltaic application, J. 
Lumin. (2018) 195, 102–108. doi:10.1016/j.jlumin.2017.10.051. 

[228] Duffy, J. A., Ingram, M.D., An interpretation of glass chemistry in terms of the optical 
basicity concept, J. Non. Cryst. Solids. (1976) 21, 373–410. doi:10.1016/0022-
3093(76)90027-2. 

[229] Kitamura, N., Fukumi, K., Nakamura, J., Hidaka, T., Ikeda, T., Hashima, H., Nishii, 
J., Optical properties of fluorine-substituted zinc bismuth phosphate glasses, J. 
Non. Cryst. Solids. (2011) 357, 1188–1192. doi:10.1016/j.jnoncrysol.2010.10.029. 

[230] Dahiya, M.S., Dalal, S., Khasa, S., Lead modified properties of molybdenum doped 
lithium borate glasses, J. Non. Cryst. Solids. (2018) 485, 24–33. 
doi:10.1016/j.jnoncrysol.2018.01.024. 

[231] Zotov, N., Ebbsjö, I., Timpel, D., Keppler, H., Calculation of Raman spectra and 
vibrational properties of silicate glasses: Comparison between Na2Si4O9 and SiO2 
glasses, Phys. Rev. B. (1999) 60, 6383–6397. doi:10.1103/PhysRevB.60.6383. 

[232] Bamford, C.., Control of Colours and Generation in Glass, Elsevier-North Holland 
Publications, Amsterdam, 1977. 

[233] Schreiber, H.D., Schreiber, C.W., Polyselenide formation in borosilicate glasses, J. 



247 
 

Non. Cryst. Solids. (1993) 155, 209–220. doi:10.1016/0022-3093(93)91255-2. 

[234] Lakowicz, J.R., Principles of Fluorescence Spectroscopy, 3rd ed., Springer - Verlag 
US, 2006. doi:10.1007/978-0-387-46312-4. 

[235] Creative Commons Attribution Share Alike 3.0 Unported Licence Qwerty123uiop, 
Schematic view of a photomultiplier coupled to a scintillator, illustrating detection of 
gamma rays, (2013). 

[236] Dai, N., Luan, H., Liu, Z., Sheng, Y., Peng, J., Jiang, Z., Li, H., Yang, L., Li, J., 
Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics, J. Non. 
Cryst. Solids. (2012) 358, 2970–2973. doi:10.1016/j.jnoncrysol.2012.07.024. 

[237] Ravel, B., Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-
ray absorption spectroscopy using IFEFFIT, J. Sychrotron Radiat. (2005) 12, 537–
541. doi:https://doi.org/10.1107/S0909049505012719. 

[238] Façanha, M.X., do Nascimento, J.P.C., Silva, M. A S., Filho, M.C.C., Marques,  A. 
N.., Pinheiro,  A. G., Sombra,  A. S.B., Up-conversion emission of Er3+/Yb3+ co-
doped BaBi2Nb2O9 (BBN) phosphors, J. Lumin. (2017) 183, 102–107. 
doi:10.1016/j.jlumin.2016.08.011. 

[239] Rambabu, U., Han, S.-D., Synthesis and luminescence properties of broad band 
greenish-yellow emitting LnVO4:Bi3+ and (Ln1, Ln2)VO4:Bi3+ (Ln=La, Gd and Y) as 
down conversion phosphors, Ceram. Int. (2013) 39, 701–708. 
doi:10.1016/j.ceramint.2012.06.081. 

[240] Jamalaiah, B.C., Jayasimhadri, M., Reddy, G.V.L., Blue emitting YAl3(BO3)4:Tm3+ 
single-phase phosphors under UV excitation, Phys. Chem. Glas. Eur. J. Glas. Sci. 
Technol. Part B. (2016) 57, 68–70. doi:10.13036/17533562.57.2.008. 

[241] Ahrens, B., Löper, P., Goldschmidt, J.C., Glunz, S., Henke, B., Miclea, P.T., 
Schweizers, S., Neodymium-doped fluorochlorozirconate glasses as an 
upconversion model system for high efficiency solar cells, Phys. Status Solidi Appl. 
Mater. Sci. (2008) 205, 2822–2830. doi:10.1002/pssa.200880452. 

[242] Bingham, P. A., Parker, J.M., Searle, T.M., Smith, I., Local structure and medium 
range ordering of tetrahedrally coordinated Fe3+ ions in alkali-alkaline earth-silica 
glasses, J. Non. Cryst. Solids. (2007) 353, 2479–2494. 
doi:10.1016/j.jnoncrysol.2007.03.017. 

[243] Reddy, S.L., Endo, T., Reddy, G.S., Electronic ( Absorption ) Spectra of 3d 
Transition Metal Complexes, Adv. Asp. Spectrosc. (2012) 3–48. 
doi:10.5772/50128. 

[244] Jordan, D.C., Kurtz, S.R., Photovoltaic Degradation Rates — an Analytical Review, 
(2013) 12–29. doi:10.1002/pip. 

[245] Meng, X., Murai, S., Fujita, K., Tanaka, K., Intense blue emission from tantalum-
doped silicate glass, Appl. Phys. Lett. (2006) 89, 11–14. doi:10.1063/1.2335394. 

[246] Möncke, D., Ehrt, D., Photoinduced redox reactions in Zr, Nb, Ta, Mo, and W doped 



248 
 

glasses, Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B. (2007) 48, 317–323. 

[247] Ehrt, D., Photoluminescence in the UV–VIS region of polyvalent ions in glasses, J. 
Non. Cryst. Solids. (2004) 348, 22–29. doi:10.1016/j.jnoncrysol.2004.08.121. 

[248] Ehrt, D., Phosphate and fluoride phosphate optical glasses — properties , structure 
and applications, Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. B. (2015) 56, 217–
234. doi:10.13036/17533562.56.6.217. 

[249] Wiegel, M., Blasse, G., Feigelson, R., Luminescence of stoichiometric lithium 
niobate crystals, Mater. Res. Bull. (1993) 28, 1025–1028. 

[250] Wiegel, M., Blasse, G., Ouwerkerk, M., Luminescence of potassium lithium niobate 
compositions, Mater. Res. Bull. (1992) 27, 617–621. 

[251] Wiegel, M., Middel, W., Blasse, G., Influence of ns2 ions on the luminescence of 
niobates and tantalates, J. Mater. Chem. (1995) 5, 981–983. 
http://dx.doi.org/10.1039/JM9950500981. 

[252] Schipper, W.J., Piet, J.J., De Jager, H.J., Blasse, G., On the luminescence of 
hafnium compounds, Mater. Res. Bull. (1994) 29, 23–30. doi:10.1016/0025-
5408(94)90101-5. 

[253] Wiegel, M., Hamoumi, M., Luminescence and nonlinear niobates and titanates 
optical properties of perovskite like niobates and titanates, Mater. Chem. Phys. 
(1994) 36, 289–293. 

[254] Mondal, S., Basak, D., Defect controlled tuning of the ratio of ultraviolet to visible 
light emission in TiO2 thin films, J. Lumin. (2016) 179, 480–486. 
doi:10.1016/j.jlumin.2016.07.046. 

[255] Lin, C.C., Xu, K.Y., Wang, D., Meijerink, A., Luminescent manganese-doped 
CsPbCl3 perovskite quantum dots, Sci. Rep. (2017) 7, 45906. 
doi:10.1038/srep45906. 

[256] Hsiao, Y.J., Fang, T.H., Lin, S.J., Shieh, J.M., Ji, L.W., Preparation and luminescent 
characteristic of Li3NbO4 nanophosphor, J. Lumin. (2010) 130, 1863–1865. 
doi:10.1016/j.jlumin.2010.04.023. 

[257] Maeda, K., Yasumori, A., Effect of molybdenum and tungsten oxides on nucleation 
and crystallization behaviors of MgO–Al2O3–SiO2 glasses, J. Non. Cryst. Solids. 
(2015) 427, 152–159. doi:10.1016/j.jnoncrysol.2015.07.040. 

[258] Ghaebi Panah, N., Eftekhari Yekta, B., Marghussian, V., Mohaghegh, E., Effects of 
TiO2 and P2O5 on solarization and crystallisation of photosensitive lithium silicate 
glass, J. Non. Cryst. Solids. (2015) 430, 25–30. 
doi:10.1016/j.jnoncrysol.2015.09.018. 

[259] Thieme, K., Avramov, I., Rüssel, C., The mechanism of deceleration of nucleation 
and crystal growth by the small addition of transition metals to lithium disilicate 
glasses, Sci. Rep. (2016) 6, 1–16. doi:10.1038/srep25451. 



249 
 

[260] Komatsu, T., Design and control of crystallization in oxide glasses, J. Non. Cryst. 
Solids. (2015) 428, 156–175. doi:10.1016/j.jnoncrysol.2015.08.017. 

[261] Kilinc, E., Hand, R.J., Mechanical properties of soda–lime–silica glasses with 
varying alkaline earth contents, J. Non. Cryst. Solids. (2015) 429, 190–197. 
doi:10.1016/j.jnoncrysol.2015.08.013. 

[262] Woelffel, W., Claireaux, C., Toplis, M.J., Burov, E., Barthel, É., Shukla, A., Biscaras, 
J., Chopinet, M.H., Gouillart, E., Analysis of soda-lime glasses using non-negative 
matrix factor deconvolution of Raman spectra, J. Non. Cryst. Solids. (2015) 428, 
121–131. doi:10.1016/j.jnoncrysol.2015.08.016. 

[263] Kaur, A., Khanna, A., Sathe, V.G., Gonzalez, F., Ortiz, B., Optical, thermal, and 
structural properties of Nb2O5 –TeO2 and WO3 –TeO2 glasses, Phase Transitions. 
(2013) 86, 598–619. doi:10.1080/01411594.2012.727998. 

[264] Caixeta, F.J., Aquino, F.T., Pereira, R.R., Gonsalves, R.R., Broad and intense NIR 
luminescence from rare earth doped SiO2-Nb2O5 glass and glass ceramic prepared 
by a new sol gel route, J. Lumin. (2016) 171, 63–71. 
doi:10.1016/j.jlumin.2015.08.054. 

[265] McKeown, D.A., Gan, H., Pegg, I.L., Stolte, W.C., Demchenko, I.N., X-ray 
absorption studies of chlorine valence and local environments in borosilicate waste 
glasses, J. Nucl. Mater. (2011) 408, 236–245. doi:10.1016/j.jnucmat.2010.11.035. 

[266] Chouard, N., Caurant, D., Majérus, O., Guezi-Hasni, N., Dussossoy, J.L., Baddour-
Hadjean, R., Pereira-Ramos, J.P., Thermal stability of SiO2-B2O3-Al2O3-Na2O-CaO 
glasses with high Nd2O3 and MoO3 concentrations, J. Alloys Compd. (2016) 671, 
84–99. doi:10.1016/j.jallcom.2016.02.063. 

[267] Chouard, N., Caurant, D., Majerus, O., Dussossoy, J.L., Klimin, S., Pytalev, D., 
Baddour-Hadjean, R., Pereira-Ramos, J.P., Effect of MoO3, Nd2O3, and RuO2 on 
the crystallization of soda lime aluminoborosilicate glasses, J. Mater. Sci. (2015) 
50, 219–241. doi:10.1007/s10853-014-8581-9. 

[268] Pushpa, N., Kokila, M.K., Effect of cobalt doping on structural, thermo and 
photoluminescent properties of ZnO nanopowders, J. Lumin. (2017) 190, 100–107. 
doi:10.1016/j.jlumin.2017.05.032. 

[269] Xiong, G., Pal, U., Serrano, J.G., Correlations among size, defects, and 
photoluminescence in ZnO nanoparticles, J. Appl. Phys. (2007) 101,. 
doi:10.1063/1.2424538. 

[270] Griscom, D.L., Electron spin resonance in glasses, J. Non. Cryst. Solids. (1980) 40, 
211–272. doi:10.1016/0022-3093(80)90105-2. 

[271] Kliava, J., EPR of Impurity Ions in Disordered Soilds, Phys. Stat. Sol. B. (1986) 134, 
411–455. doi:10.1002/pssb.2221340202. 

[272] Yang, J., Lee, D., Baek, D., Kim, D., Nam, J., Huh, P., Effect of various 
encapsulants for frameless glass to glass Cu(In,Ga)(Se,S)2 photovoltaic module, 
RSC Adv. (2015) 5, 51258–51262. doi:10.1039/C5RA03663A. 



250 
 

[273] Leschik, M., Heide, G., Frischat, G.H., Behrens, H., Wiedenbeck, M., Wagner, N., 
Heide, K., Geißler, H., Reinholz, U., Determination of H2O and D2O contents in 
rhyolitic glasses, 2004. 

[274] Dittmer, M., Ritzberger, C., Holand, W., Rampf, M., Controlled precipitation of 
lithium disilicate, lithium niobate, or lithium tantalate in glass ceramics, J. Eur. 
Ceram. Soc. (2018) 38, 263–269. 

[275] Fujimoto, Y., Local structure of the infrared bismuth luminescent center in bismuth-
doped silica glass, J. Am. Ceram. Soc. (2010) 93, 581–589. doi:10.1111/j.1551-
2916.2009.03419.x. 

[276] Kamitsos, E.I., Kapoutsis, J.A., Jain, H., Hsieh, C.H., Vibrational study of the role 
of trivalent ions in sodium trisilicate glass, J. Non. Cryst. Solids. (1994) 171, 31–45. 
doi:10.1016/0022-3093(94)90030-2. 

[277] Duffy, J.A., Bonding, energy levels and bands in inorganic solids, Harlow : Longman 
Scientific and Technica, 1990. 

[278] Fluegel, A., Global Model for Calculating Room-Temperature Glass Density from 
the composition, J. Am. Ceram. Soc. (2007) 2625, 2622–2625. doi:10.1111/j.1551-
2916.2007.01751.x. 

[279] Wang, M., Cheng, J., Li, M., He, F., Raman spectra of sodalimesilicate glass doped 
with rare earth, Phys. B Condens. Matter. (2011) 406, 3865–3869. 
doi:10.1016/j.physb.2011.07.014. 

[280] González, P., Serra, J., Liste, S., Chiussi, S., León, B., Pérez-Amor, M., Raman 
spectroscopic study of bioactive silica based glasses, J. Non. Cryst. Solids. (2003) 
320, 92–99. doi:10.1016/S0022-3093(03)00013-9. 

[281] Galeener, F.L., Band limits and the vibrational spectra of tetrahedral glasses, Phys. 
Rev. B. (1979) 19, 4292–4297. doi:10.1103/PhysRevB.19.4292. 

[282] Deschamps, T., Martinet, C., Bruneel, J.L., Champagnon, B., Soda-lime silicate 
glass under hydrostatic pressure and indentation: a micro-Raman study., J. Phys. 
Condens. Matter. (2011) 23, 035402. doi:10.1088/0953-8984/23/3/035402. 

[283] Möncke, D., Ehrt, R., Palles, D., Efthimiopoulos, I., Kamitsos, E.I., Johannes, M., A 
multi technique study of a new lithium disilicate glass-ceramic spray-coated on ZrO2 
substrate for dental restoration, Biomed. Glas. (2017) 3, 41–55. 
doi:10.1515/bglass-2017-0004. 

[284] Richter, S., Möncke, D., Zimmermann, F., Kamitsos, E.I., Wondraczek, L., 
Tünnermann, A., Nolte, S., Ultrashort pulse induced modifications in ULE - from 
nanograting formation to laser darkening, Opt. Mater. Express. (2015) 5, 1834. 
doi:10.1364/OME.5.001834. 

[285] De Pietro, G.M., Pereira, C., Gonçalves, R.R., Ribeiro, S.J.L., Freschi, C.D., 
Cassanjes, F.C., Poirier, G., Thermal, Structural, and Crystallization Properties of 
New Tantalum Alkali-Germanate Glasses, J. Am. Ceram. Soc. (2015) 98, 2086–
2093. doi:10.1111/jace.13555. 



251 
 

[286] Bih, L., Azrour, M., Manoun, B., Graça, M.P.F., Valente, M.A., Raman 
spectroscopy, X-Ray, SEM, and DTA analysis of alkali-phosphate glasses 
containing WO3 and Nb2O5, J. Spectrosc. (2013) 1,. doi:10.1155/2013/123519. 

[287] Castner Jr., T., Newell, G.S., Holton, W.C., Slichter, C.P., Note on the paramagnetic 
resonance of iron in glass, J. Chem. Phys. (1960) 32, 668–673. 
doi:10.1063/1.1730779. 

[288] Dowsing, R.D., Electron Spin Resonance of High‐Spin d5 Systems, J. Chem. Phys. 
(1970) 52, 2795. doi:10.1063/1.1673393. 

[289] Camara, B., Oel, H.J., Behaviour and effect of iron in X-ray irradiated silicate glass, 
J. Non. Cryst. Solids. (1984) 65, 161–176. doi:10.1016/0022-3093(84)90363-6. 

[290] Parke, S, Gomolka, S, Sandoe, J.N, Effect of composition and temperature on the 
absorption and emission spectra of molybdenum in glasses, J. Non. Cryst. Solids. 
(1976) 20, 1–14. 

[291] Elvers, A., Weismann, R., ESR spectroscopy - an analytical tool for the glass 
industry, Glas. Sci. Technol. Glas. Berichte. (2001) 74,. 

[292] Schreiber, H.D., Wilk, N.R., Schreiber, C.W., Comprehensive electromotive force 
series of redox couples in soda-lime-silicate glass, J. Non. Cryst. Solids. (1999) 
253, 68–75. doi:10.1016/S0022-3093(99)00344-0. 

[293] Schreiber, H.D., Redox processes in glass-forming melts, J. Non. Cryst. Solids. 
(1986) 84, 129–141. doi:10.1016/0022-3093(86)90770-2. 

[294] Weber, R.S., Effect of Local Structure on the UV-Visible Absorption Edges of 
Molybdenum Oxide Clusters and Supported Molybdenum Oxides, J. Catal. (1995) 
151, 470–474. doi:http://dx.doi.org/10.1006/jcat.1995.1052. 

[295] Fairbrother, A., Boyd, M., Lyu, Y., Avenet, J., Illich, P., Wang, Y., Kempe, M., 
Dougherty, B., Bruckman, L., Gu, X., Differential degradation patterns of 
photovoltaic backsheets at the array level, Sol. Energy. (2018) 163, 62–69. 
doi:10.1016/j.solener.2018.01.072. 

[296] Rack, P.D., Potter, M.D., Kurinec, S., Park, W.H., Penczek, J., Wagner, B.K., 
Summers, C.J., Luminescence properties of thin film Ta2Zn3O8 and Mn doped 
Ta2Zn3O8, J. Appl. Phys. (1998) 84, 4466–4470. doi:10.1063/1.368672. 

[297] Zhao, J., Zheng, X., Schartner, E.P., Ionescu, P., Zhang, R., Nguyen, T.-L., Jin, D., 
Ebendorff-Heidepriem, H., Upconversion Nanocrystal-Doped Glass: A New 
Paradigm for Photonic Materials, Adv. Opt. Mater. (2016) 1–11. 
doi:10.1002/adom.201600296. 

[298] Irimpan, L., Nampoori, V.P.N., Radhakrishnan, P., Deepthy, A., Krishnan, B., Size 
dependent fluorescence spectroscopy of nanocolloids of ZnO, J. Appl. Phys. (2007) 
102,. doi:10.1063/1.2778637. 

[299] Peike, C., Kaltenbach, T., Weiß, K.A., Koehl, M., Non-destructive degradation 
analysis of encapsulants in PV modules by Raman Spectroscopy, Sol. Energy 



252 
 

Mater. Sol. Cells. (2011) 95, 1686–1693. doi:10.1016/j.solmat.2011.01.030. 

[300] Bulatov, L.I., Mashinsky, V.M., Dvoirin, V. V., Kustov, E.F., Dianov, E.M., 
Sukhorukov,  A. P., Structure of absorption and luminescence bands in 
aluminosilicate optical fibers doped with bismuth, Bull. Russ. Acad. Sci. Phys. 
(2008) 72, 1655–1660. doi:10.3103/S1062873808120174. 

[301] De Jong, M., Meijerink, A., Gordon, R.A., Barandiarán, Z., Seijo, L., Is Bi2+ 
responsible for the red-orange emission of bismuth-doped SrB4O7?, J. Phys. Chem. 
C. (2014) 118, 9696–9705. doi:10.1021/jp502996t. 

[302] Ren, J., Yang, L., Qiu, J., Chen, D., Jiang, X., Zhu, C., Effect of various alkaline-
earth metal oxides on the broadband infrared luminescence from bismuth-doped 
silicate glasses, Solid State Commun. (2006) 140, 38–41. 
doi:10.1016/j.ssc.2006.07.023. 

[303] Fujimoto, Y., Nakatsuka, M., Infrared luminescence from bismuth-doped silica 
glass, Japanese J. Appl. Physics, Part 2 Lett. (2001) 40, 3–6. 
doi:10.1143/JJAP.40.L279. 

[304] Dianov, E.M., Nature of Bi-related near IR active centers in glasses: state of the art 
and first reliable results, Laser Phys. Lett. (2015) 12, 095106. doi:10.1088/1612-
2011/12/9/095106. 

[305] Blasse, G., Investigations on Bi3+-Activated Phosphors, J. Chem. Phys. (1968) 48, 
217. doi:10.1063/1.1667905. 

[306] Ren, J., Qiu, J., Chen, D., Hu, X., Jiang, X., Zhu, C., Luminescence properties of 
bismuth-doped lime silicate glasses, J. Alloys Compd. (2008) 463, 5–8. 
doi:10.1016/j.jallcom.2007.09.026. 

[307] Xu, W., Peng, M., Ma, Z., Dong, G., Qiu, J., A new study on bismuth doped oxide 
glasses, Opt. Express. (2012) 20, 15692. doi:10.1364/OE.20.015692. 

[308] Torrengo, S., Paul, M.C., Halder, A., Das, S., Dhar, A., Sahu, J.K., Jain, S., 
Kir’Yanov, A. V., D’Acapito, F., EXAFS studies of the local structure of bismuth 
centers in multicomponent silica glass based optical fiber preforms, J. Non. Cryst. 
Solids. (2015) 410, 82–87. doi:10.1016/j.jnoncrysol.2014.11.027. 

[309] Peng, M., Da, N., Krolikowski, S., Stiegelschmitt, A., Luminescence from Bi2+ -
activated alkali earth borophosphates for white LEDs, Opt. Express. (2009) 17, 
2885–2887. 

[310] Romano, V., Ryser, M., Bi doped Optical Fibers and Fiber Lasers, IEEE J. Sel. Top. 
Quantum Electron. (2014) 20, 2–3. 

[311] De Jong, M., Meijerink, A., Color tuning of Bi2+ luminescence in barium borates, J. 
Lumin. (2016) 170, 240–247. doi:10.1016/j.jlumin.2015.10.036. 

[312] Jia, B., Lu, P., Peng, Z., Yan, B., Yang, B., Wang, Y., Peng, G., Near-IR 
luminescence characteristics of monovalent bismuth in Bi-doped pure silica optical 
fiber : First-principle study, J. Lumin. (2018) 198, 384–388. 



253 
 

doi:10.1016/j.jlumin.2018.02.060. 

[313] Duffy, J. A., Optical Basicity: A Practical Acid-Base Theory for Oxides and 
Oxyanions, J. Chem. Educ. (1996) 73, 1138. doi:10.1021/ed073p1138. 

[314] Jak, E., Degterov, S., Wu, P., Hayes, P.C., Pelton, A.D., Thermodynamic 
Optimization of the Systems PbO-SiO2 , PbO-, Metall. Mater. Trans. B. (1997) 28, 
1011–1018. 

[315] Yang, B., Townsend, P.D., Holgate, S.A., Cathodoluminescence and depth profiles 
of tin in float glass, J. Phys. D. Appl. Phys. (1994) 27, 1757–1762. 
doi:10.1088/0022-3727/27/8/026. 

[316] Chakraborty, R., Dey, A., Mukhopadhyay, A.K., Loading rate effect on 
nanohardness of soda-lime-silica glass, Metall. Mater. Trans. A Phys. Metall. Mater. 
Sci. (2010) 41, 1301–1312. doi:10.1007/s11661-010-0176-8. 

[317] Tse, J.S., Wang, X.D., Jiang, D.T., Chen, N., Jiang, J.Z., High energy synchrotron 
X-ray diffraction study of lead oxide silicate glasses at the Canadian light source, 
Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. 
Assoc. Equip. (2011) 626–627, 144–146. doi:10.1016/j.nima.2010.10.088. 

[318] Trinquier, G., Hoffmann, R., Lead monoxide. Electronic structure and bonding, J. 
Phys. Chem. (1984) 88, 6696–6711. doi:10.1021/j150670a038. 

[319] Konijnendijk, W.L., Buster, J.H.J.M., Raman-scattering measurements of silicate 
glasses containing sulphate, J. Non. Cryst. Solids. (1977) 23, 401–418. 
doi:10.1016/0022-3093(77)90123-5. 

[320] Manara, D., Grandjean, A., Neuville, D.R., Advances in understanding the structure 
of borosilicate glasses: A raman spectroscopy study, Am. Mineral. (2009) 94, 777–
784. doi:10.2138/am.2009.3027. 

[321] Angeli, F., Villain, O., Schuller, S., Charpentier, T., de Ligny, D., Bressel, L., 
Wondraczek, L., Effect of temperature and thermal history on borosilicate glass 
structure, Phys. Rev. B. (2012) 85, 1–15. doi:10.1103/PhysRevB.85.054110. 

[322] Padmaja, G., Kistaiah, P., Infrared and Raman Spectroscopic Studies on Alkali 
Borate Glasses: Evidence of Mixed Alkali Effect, J. Phys. Chem. A. (2009) 11, 
2397–2404. doi:10.1021/jp809318e. 

[323] Fuxi, G. A N., Huimin, L.I.U., ESR study on glass, J. Non. Cryst. Solids. (1987) 96, 
61–70. 

[324] Lombard, P., Ollier, N., Boizot, B., EPR study of Ti3+ ions formed under beta 
irradiation in silicate glasses, J. Non. Cryst. Solids. (2011) 357, 1685–1689. 
doi:10.1016/j.jnoncrysol.2010.12.015. 

[325] Schreiber, H.D., Jr, N.R.W., Schreiber, C.W., A comprehensive electromotive force 
series of redox couples in soda - lime - silicate glass, J. Non. Cryst. Solids. (1999) 
253, 68–75. 



254 
 

[326] Folkerts, H.F., Ghianni, F., Blasse, G., Search for D-level emission of Pb2+ in 
alkaline-earth aluminates and gallates, J. Phys. Chem. Solids. (1996) 57, 1659–
1665. doi:10.1016/0022-3697(96)00041-8. 

[327] Srivastava, A.M., Camardello, S.J., Concentration dependence of the Bi3+ 
luminescence in LnPO4 (Ln = Y3+, Lu3+), Opt. Mater. (Amst). (2015) 39, 130–133. 
doi:10.1016/j.optmat.2014.11.011. 

[328] Vandecraats,  A M., Blasse, G., The Quenching of Bismuth(III) Luminescence in 
Yttrium-Oxide (Y2O3), Chem. Phys. Lett. (1995) 243, 559–563. doi:10.1016/0009-
2614(95)00897-D. 

[329] Dianov, E.M., Bismuth-doped optical fibers: a challenging active medium for near-
IR lasers and optical amplifiers, Light Sci. Appl. (2012) 1, e12. 
doi:10.1038/lsa.2012.12. 

[330] Sardar, K., Walton, R.I., Hydrothermal synthesis map of bismuth titanates, J. Solid 
State Chem. (2012) 189, 32–37. doi:10.1016/j.jssc.2012.01.017. 

[331] Limbach, R., Karlsson, S., Scannell, G., Mathew, R., Edén, M., Wondraczek, L., 
The effect of TiO2 on the structure of Na2O-CaO-SiO2 glasses and its implications 
for thermal and mechanical properties, J. Non. Cryst. Solids. (2017) 471, 6–18. 
doi:10.1016/j.jnoncrysol.2017.04.013. 

[332] Karczewski, J., Miruszewski, T., Bochentyn, B., Kusz, B., Determination of ionic 
conductivity in the Bi-Si-O and Pb-Si-O glasses, Mater. Sci. Pol. (2017) 35, 681–
686. doi:10.1515/msp-2017-0102. 

[333] Abdel-Wahab, F.A., Fayad, A.M., Abdel-Baki, M., Abdel-Maksoud, H., Role of non-
bridging oxygen defect in the ionic conductivity and associated oxygen trap centers 
in lead-borate oxide glass: Effect of structural substitution of PbO for Ag2O and Li2O 
modifiers, J. Non. Cryst. Solids. (2018) 500, 84–91. 
doi:10.1016/j.jnoncrysol.2018.06.033. 

[334] Suneel Kumar, A., Narendrudu, T., Suresh, S., Sambasiva Rao, M. V., Chinna 
Ram, G., Krishna Rao, D., Role of titanium ions on the physical and structural 
properties of calcium zinc bismuth phosphate glass ceramics, J. Non. Cryst. Solids. 
(2016) 434, 62–70. doi:10.1016/j.jnoncrysol.2015.12.010. 

[335] Todea, M., Turcu, R.V.F., Vasilescu, M., Trandafir, D.L., Simon, S., Structural 
characterization of heavy metal SiO2–Bi2O3 glasses and glass–ceramics, J. Non. 
Cryst. Solids. (2015) 432, 271–276. doi:10.1016/j.jnoncrysol.2015.10.021. 

[336] Kacem, I. Ben, Gautron, L., Coillot, D., Neuville, D.R., Kacem, I. Ben, Gautron, L., 
Coillot, D., Structure, D.R.N., Structure and properties of lead silicate glasses and 
melts, Chem. Geol. (2017) 461, 104–114. 

[337] Neuville, D.R., de Ligny, D., Henderson, G.S., Advances in Raman Spectroscopy 
Applied to Earth and Material Sciences, Rev. Mineral. Geochemistry. (2014) 78, 
509–541. doi:10.2138/rmg.2013.78.13. 

[338] SciGlass v7 - Glass Property Information System., (n.d.). 



255 
 

[339] Griscom, D.L., Stapelbroek, M., Electron spin resonance studies of iron group 
impurities in beryllium fluoride glasses, J. Non. Cryst. Solids. (1980) 41, 329–345. 
doi:10.1063/1.3075988. 

[340] Aleksandrov, A.I., Bubnov, N.N., Prokof’ev, A.I., Stabilization of elements in 
unusual oxidation states and temperature-reversible dynamics of electron pairs in 
oxide glasses. EPR-investigation, Appl. Magn. Reson. (1995) 9, 251–266. 
doi:10.1007/BF03162045. 

[341] Agulo-Lopez, F., Insulating Materials for Optoelectronics: New Developments, 
1995. doi:https://doi.org/10.1142/2720. 

[342] Housecroft, C., Constable, E., Chemistry, 4th ed., Pretince Hall, 2009. 

[343] Reisfeld, R., Lieblich, N., Absorption and fluorescence of lead in germanate, borate 
and phosphate glasses, J. Non. Cryst. Solids. (1973) 12, 207–212. 
doi:10.1016/0022-3093(73)90070-7. 

[344] Ren, J., Dong, G., Xu, S., Bao, R., Qiu, J., Inhomogeneous broadening, 
luminescence origin and optical amplification in bismuth-doped glass, J. Phys. 
Chem. A. (2008) 112, 3036–3039. doi:10.1021/jp709987r. 

[345] Awater, R.H.P., Dorenbos, P., Towards a general concentration quenching model 
of Bi3+ luminescence, J. Lumin. (2017) 188, 487–489. 
doi:10.1016/j.jlumin.2017.05.011. 

[346] Wright, B.M., Shelby, J.E., Phase separation and the mixed alkali effect, Phys. 
Chem. Glas. (2000) 41, 192–198. 

[347] Duffy, J.A., Ultraviolet transparency of glass: A chemical approach in terms of band 
theory, polarisability and electronegativity, Phys. Chem. Glas. (2001) 42, 151–157. 

[348] Czanderna, A.W., Jorgensen, G.J., Service Lifetime Prediction for Encapsulated 
Photovoltaic cells/Minimodules, AIP Conf. Proc. (1997) 295–312. 
doi:10.1063/1.52899. 

[349] https://www.indmin.com/, (2018). https://www.indmin.com/. 

[350] https://www.metals-hub.com, (n.d.). https://www.metals-hub.com (accessed 
August 20, 2011). 

[351] Zhao, M., Liu, Y., Liu, D., Ma, S., Wang, K., Effects of Bi3+ ions on luminescence 
properties of ZnWO4:Eu3+, Sm3+, Bi3+ nanorods, J. Mater. Sci. (2018) 53, 11512–
11523. doi:10.1007/s10853-018-2329-x. 

[352] Li, J., Liao, L., Chu, Y., Liu, P., Li, H., Peng, J., Dai, N., Effect of cerium oxide and 
niobium oxide addition on absorption and emission properties of bismuth doped 
silicate glasses, J. Non. Cryst. Solids. (2015) 431, 22–26. 
doi:10.1016/j.jnoncrysol.2015.02.026. 

[353] Peng, J., Cao, J., Tan, L., Peng, M., Glass‐forming region and enhanced Bi NIR 
emission in sodium tantalum silicate laser glass, J. Am. Ceram. Soc. (2018) Article 



256 
 

In, jace.16121. doi:10.1111/jace.16121. 

[354] Li, M., Wang, L., Ran, W., Ren, C., Song, Z., Shi, J., Enhancing Sm3+ red emission 
via energy transfer from Bi3+→Sm3+ based on terbium bridge mechanism in 
Ca2Al2SiO7 phosphors, J. Lumin. (2017) 184, 143–149. 
doi:10.1016/j.jlumin.2016.12.014. 

[355] Lu, J., Mu, Z., Zhu, D., Wang, Q., Wu, F., Luminescence properties of Eu3+ doped 
La3Ga5GeO14 and effect of Bi3+ co-doping, J. Lumin. (2018) 196, 50–56. 
doi:10.1016/j.jlumin.2017.12.017. 

 


