
A SEAMLESS FRAMEWORK FOR FORMAL REASONING ON 

SPECIFICATIONS: MODEL DERIVATION, VERIFICATION AND 

COMPARISON 

Juan Jose Mendoza Santana 

A Thesis Submitted for the Degree of PhD 
at the 

University of St Andrews 
 

  

2019 

Full metadata for this thesis is available in                                                      
St Andrews Research Repository 

at: 
http://research-repository.st-andrews.ac.uk/ 

 
 
 

Please use this identifier to cite or link to this thesis: 
http://hdl.handle.net/10023/17859  

 
 

 
This item is protected by original copyright 

 
This item is licensed under a 
Creative Commons License 

https://creativecommons.org/licenses/by/4.0 

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/17859
https://creativecommons.org/licenses/by/4.0


  

  

A seamless framework for formal reasoning on 
specifications: model derivation, verification and 

comparison  

  

Juan Jose Mendoza Santana 

 

This thesis is submitted in partial fulfilment for the degree of  

Doctor of Philosophy (PhD) 

at the University of St Andrews 

  

  

January 2019 



Candidate's declaration 

I, Juan Jose Mendoza Santana, do hereby certify that this thesis, submitted for the degree of 
PhD, which is approximately 37,000 words in length, has been written by me, and that it is 
the record of work carried out by me, or principally by myself in collaboration with others as 
acknowledged, and that it has not been submitted in any previous application for any 
degree. 

I was admitted as a research student at the University of St Andrews in January 2015. 

I received funding from an organisation or institution and have acknowledged the funder(s) in 
the full text of my thesis. 

  

Date       Signature of candidate  

  

Supervisor's declaration 

I hereby certify that the candidate has fulfilled the conditions of the Resolution and 
Regulations appropriate for the degree of PhD in the University of St Andrews and that the 
candidate is qualified to submit this thesis in application for that degree. 

  

Date       Signature of supervisor  

  

Permission for publication 

In submitting this thesis to the University of St Andrews we understand that we are giving 
permission for it to be made available for use in accordance with the regulations of the 
University Library for the time being in force, subject to any copyright vested in the work not 
being affected thereby. We also understand, unless exempt by an award of an embargo as 
requested below, that the title and the abstract will be published, and that a copy of the work 
may be made and supplied to any bona fide library or research worker, that this thesis will be 
electronically accessible for personal or research use and that the library has the right to 
migrate this thesis into new electronic forms as required to ensure continued access to the 
thesis. 

I, Juan Jose Mendoza Santana, confirm that my thesis does not contain any third-party 
material that requires copyright clearance. 

The following is an agreed request by candidate and supervisor regarding the publication of 
this thesis: 

  

Printed copy 



No embargo on print copy. 

  

Electronic copy 

No embargo on electronic copy. 

  

  

Date       Signature of candidate  

  

  

Date       Signature of supervisor  

  



Underpinning Research Data or Digital Outputs 

Candidate's declaration 

I, Juan Jose Mendoza Santana, hereby certify that no requirements to deposit original 
research data or digital outputs apply to this thesis and that, where appropriate, secondary 
data used have been referenced in the full text of my thesis. 

  

  

Date       Signature of candidate  



i

Abstract

While formal methods have been demonstrated to be favourable to the
construction of reliable systems, they also present us with several limitations.
Most of the efforts regarding formal reasoning are concerned with model
correctness for critical systems, while other properties, including model validity,
have seen little development, especially in the context of non-critical systems.

We set to advance model validation by relating a software model with
the corresponding requirements it is intended to capture. This requires us to
express both requirements and models in a common formal language, which
in turn will enable not only model validation, but also model generation and
comparison.

We present a novel framework (TOMM) that integrates the formalization
of class diagrams and requirements, along with a set of formal theories to
validate, infer, and compare class models. We introduce SpeCNL, a controlled
domain independent subset of English sentences, and a document structure
named ConSpec. The combination of both allows us to express and formalize
functional requirements related to class models.

Our formal framework is accompanied by a proof-of-concept tool that
integrates language and image processing libraries, as well as formal methods,
to aid the usage and evaluation of our theories. In addition, we provide an
implementation that performs partial extraction of relevant information from
the graphical representations of class diagrams.

Though different approaches to model validation exist, they assume the
existence of formal specifications for the model to be checked. In contrast, our
approach has been shown to deal with informal specifications and seamlessly
validate, generate and compare class models.



ii

Acknowledgements

This work would not exist if not for the encouragement of Dr Juliana Bowles,
who not only motivated me to pursue a PhD but is also the most supportive
supervisor anyone can hope for.

Without any doubt, my parents deserve a fair share of gratitude, for thirty
years have they been guiding me to become the best person I can be. I thank
them for their wisdom and their tireless effort to give me and my sister the
best education possible, and for teaching us to always fight for our dreams no
matter what they are.

I must also thank my extended family, including all my aunts and uncles,
that took care of me during my childhood, and inspired me to go further.
Also, to my cousins that are also my brothers and sisters and with whom I
have enjoyed so many amazing moments in life. I am thankful because being
as close as we are, I know it would have been difficult to deal with my absence
during the PhD years.

And last but not least, I want to thank my soulmate Vinodh Rajan S.,
who has walked this road with me almost from day one, with whom I have
overcome the most unimaginable circumstances. Thanks for being my partner
in crime, my other half and my beloved boyfriend.

Funding

This work was supported by the Mexican Council of Science and Technology
(CONACyT) and the University of St Andrews respectively through the
scholarship for postgraduate studies abroad; and the 7th Century scholarship.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Content of the thesis . . . . . . . . . . . . . . . . . . . . . . . 6

2 Overview 7
2.1 Requirements Specifications . . . . . . . . . . . . . . . . . . . 8

2.1.1 SpeCNL . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 ConSpec . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 TOMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Model Validation . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Model Generation . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Model Comparison . . . . . . . . . . . . . . . . . . . . 11

2.3 T4TOMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Context 15
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Software Applications . . . . . . . . . . . . . . . . . . 15
3.1.2 Critical Systems . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Non-Critical Systems . . . . . . . . . . . . . . . . . . . 18
3.1.4 Software Engineering . . . . . . . . . . . . . . . . . . . 18

3.1.4.1 Software Development Processes . . . . . . . 18
3.1.4.2 Object-Oriented Programming . . . . . . . . 19
3.1.4.3 Software Testing . . . . . . . . . . . . . . . . 20
3.1.4.4 Software Validation . . . . . . . . . . . . . . . 20
3.1.4.5 Software Verification . . . . . . . . . . . . . . 21

3.1.5 Requirements Engineering . . . . . . . . . . . . . . . . 21

iii



iv CONTENTS

3.1.5.1 Types of Requirements . . . . . . . . . . . . . 22
3.1.5.2 Requirements Communication Cycle . . . . . 23
3.1.5.3 Requirements Elicitation . . . . . . . . . . . . 24
3.1.5.4 Requirements Validation . . . . . . . . . . . . 25

3.1.6 Software Modelling . . . . . . . . . . . . . . . . . . . . 26
3.1.6.1 UML . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.6.2 Class Diagrams . . . . . . . . . . . . . . . . . 27
3.1.6.3 OCL . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.6.4 Model-Driven Development . . . . . . . . . . 29

3.1.7 Formal Methods . . . . . . . . . . . . . . . . . . . . . . 29
3.1.7.1 Formal Specifications . . . . . . . . . . . . . . 29
3.1.7.2 Logics . . . . . . . . . . . . . . . . . . . . . . 31
3.1.7.3 Model Verification . . . . . . . . . . . . . . . 35
3.1.7.4 SAT/SMT Solvers . . . . . . . . . . . . . . . 35

3.1.8 Data Augmentation for Machine Learning . . . . . . . 36
3.1.8.1 Machine Learning . . . . . . . . . . . . . . . 36
3.1.8.2 Neural Networks . . . . . . . . . . . . . . . . 36
3.1.8.3 Data Augmentation . . . . . . . . . . . . . . 37

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Requirements Specification Document . . . . . . . . . . 38
3.2.2 Formal Specification Languages . . . . . . . . . . . . . 38
3.2.3 Controlled Natural Languages . . . . . . . . . . . . . . 39

3.2.3.1 SBVR . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3.2 ACE and FE . . . . . . . . . . . . . . . . . . 40

3.2.4 Model Checking . . . . . . . . . . . . . . . . . . . . . . 40
3.2.5 Model Validation . . . . . . . . . . . . . . . . . . . . . 42
3.2.6 Model Generation . . . . . . . . . . . . . . . . . . . . . 42
3.2.7 Model Comparison . . . . . . . . . . . . . . . . . . . . 43
3.2.8 Model Extraction . . . . . . . . . . . . . . . . . . . . . 43

3.3 Previous Work by the authors . . . . . . . . . . . . . . . . . . 44
3.3.1 Construct by Contract . . . . . . . . . . . . . . . . . . 44
3.3.2 TOTOTL . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Requirements Specification 47
4.1 SpeCNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Parts of Speech . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.3 Sentences . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 ConSpec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Clause Elements . . . . . . . . . . . . . . . . . . . . . 54



CONTENTS v

4.3 Requirements Refinement . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Activity identification . . . . . . . . . . . . . . . . . . 57
4.3.2 Activity specification . . . . . . . . . . . . . . . . . . . 58
4.3.3 Clause Construction . . . . . . . . . . . . . . . . . . . 59

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 TOMM: a framework for formal reasoning 63
5.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Requirements Formalization . . . . . . . . . . . . . . . 63
5.1.1.1 Elements . . . . . . . . . . . . . . . . . . . . 64
5.1.1.2 Example . . . . . . . . . . . . . . . . . . . . . 65

5.1.2 Class Diagram Formalization . . . . . . . . . . . . . . 66
5.1.2.1 Elements . . . . . . . . . . . . . . . . . . . . 67
5.1.2.2 Example . . . . . . . . . . . . . . . . . . . . . 71

5.2 Class Model Inference . . . . . . . . . . . . . . . . . . . . . . 74
5.2.1 Inference Calculus . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Class Model Validation . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Validation Calculus . . . . . . . . . . . . . . . . . . . . 80
5.3.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Class Model Equivalence . . . . . . . . . . . . . . . . . . . . . 87
5.4.1 Equivalence Calculus . . . . . . . . . . . . . . . . . . . 88
5.4.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 T4TOMM: a proof-of-concept for TOMM 93
6.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Natural Language Processing . . . . . . . . . . . . . . 94
6.1.2 Satisfiability Modulo Theories . . . . . . . . . . . . . . 96

6.1.2.1 SMT-LIB . . . . . . . . . . . . . . . . . . . . 96
6.1.2.2 CVC4 . . . . . . . . . . . . . . . . . . . . . . 96

6.1.3 Image processing . . . . . . . . . . . . . . . . . . . . . 97
6.2 Meta-Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.1.1 Datatypes . . . . . . . . . . . . . . . . . . . . 98
6.2.1.2 Automatic Formalization . . . . . . . . . . . 99

6.2.2 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.2.1 Datatypes . . . . . . . . . . . . . . . . . . . . 104



vi CONTENTS

6.2.2.2 Automatic Formalization . . . . . . . . . . . 105
6.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.6 Class Model Extraction . . . . . . . . . . . . . . . . . . . . . . 114

6.6.1 Image Segmentation . . . . . . . . . . . . . . . . . . . 114
6.6.2 Information Extraction . . . . . . . . . . . . . . . . . . 117

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Evaluation 121
7.1 ConSpec and SpeCNL . . . . . . . . . . . . . . . . . . . . . . 122

7.1.1 Evaluation Methodology . . . . . . . . . . . . . . . . . 122
7.1.2 Evaluation Cases . . . . . . . . . . . . . . . . . . . . . 123

7.1.2.1 Ships Description . . . . . . . . . . . . . . . . 123
7.1.2.2 Trains Description . . . . . . . . . . . . . . . 126
7.1.2.3 ATM Simulation . . . . . . . . . . . . . . . . 128
7.1.2.4 ACME Library . . . . . . . . . . . . . . . . . 130
7.1.2.5 Simplified Library . . . . . . . . . . . . . . . 131
7.1.2.6 Steam Boiler . . . . . . . . . . . . . . . . . . 132
7.1.2.7 Laws of Chess . . . . . . . . . . . . . . . . . . 132
7.1.2.8 Whois Protocol . . . . . . . . . . . . . . . . . 133
7.1.2.9 Light Control System . . . . . . . . . . . . . 135

7.1.3 Summary of Evaluation for ConSpec and SpecCNL . . 136
7.1.3.1 Areas of improvement for SpeCNL . . . . . . 136
7.1.3.2 Areas of improvement for ConSpec . . . . . . 136
7.1.3.3 Conclusion . . . . . . . . . . . . . . . . . . . 137

7.2 TOMM and T4TOMM . . . . . . . . . . . . . . . . . . . . . . 137
7.2.1 Evaluation Methodology . . . . . . . . . . . . . . . . . 138
7.2.2 Evaluation of Model Generation . . . . . . . . . . . . . 138

7.2.2.1 Inferring model manually . . . . . . . . . . . 139
7.2.2.2 Inferring model with T4TOMM . . . . . . . . 141

7.2.3 Evaluation of Model Validation . . . . . . . . . . . . . 146
7.2.3.1 Manual validation . . . . . . . . . . . . . . . 146
7.2.3.2 Checking invalid model using T4TOMM . . . 148
7.2.3.3 Checking sound model using T4TOMM . . . 151
7.2.3.4 Checking complete model using T4TOMM . . 154
7.2.3.5 Checking valid model using T4TOMM . . . . 156

7.2.4 Evaluation of Model Comparison . . . . . . . . . . . . 159
7.2.4.1 Manual Comparison . . . . . . . . . . . . . . 159
7.2.4.2 Comparing not equivalent models using T4TOMM160



CONTENTS vii

7.2.4.3 Comparing models with left equivalence using
T4TOMM . . . . . . . . . . . . . . . . . . . . 161

7.2.4.4 Comparing models with right equivalence us-
ing T4TOMM . . . . . . . . . . . . . . . . . . 161

7.2.4.5 Comparing equivalent models using T4TOMM 162
7.2.5 Class Model Extractions with T4TOMM . . . . . . . . 162

7.2.5.1 Extraction of complete diagram generated by us163
7.2.5.2 Extraction of complete existing diagram . . . 165
7.2.5.3 Results . . . . . . . . . . . . . . . . . . . . . 168

7.2.6 Summary of Evaluation for TOMM and T4TOMM . . 169
7.2.6.1 Threats to validity . . . . . . . . . . . . . . . 170

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8 Conclusions 173
8.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 174
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Appendices 179

Appendix A Library Example 181
A.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.2 Contract Specification Document . . . . . . . . . . . . . . . . 181

Appendix B SMT-LIB models 185
B.1 Inference example . . . . . . . . . . . . . . . . . . . . . . . . . 185
B.2 Soundness Model . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.3 Completeness Model . . . . . . . . . . . . . . . . . . . . . . . 191
B.4 Equivalence rules . . . . . . . . . . . . . . . . . . . . . . . . . 193

Appendix C Evaluation 199
C.1 Model Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 199
C.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.2.0.1 Invalid class model . . . . . . . . . . . . . . . 204
C.2.0.2 Sound class model . . . . . . . . . . . . . . . 213
C.2.0.3 Complete class model . . . . . . . . . . . . . 222

C.3 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . 231
C.3.0.1 Not equivalent class models . . . . . . . . . . 231
C.3.0.2 Left equivalent class models . . . . . . . . . . 237
C.3.0.3 Right equivalent class models . . . . . . . . . 243
C.3.0.4 Equivalent class models . . . . . . . . . . . . 249



viii CONTENTS

C.4 Class Diagrams for Model Extraction . . . . . . . . . . . . . . 255
C.4.1 Diagram generated by us containing only attributes . . 255
C.4.2 Diagram generated by us containing only operations . . 256
C.4.3 Coloured Diagram generated by us . . . . . . . . . . . 257
C.4.4 Existing diagram containing only attributes . . . . . . 258
C.4.5 Existing diagram containing only classes . . . . . . . . 261
C.4.6 Existing complete diagram containing attributes, and

operations . . . . . . . . . . . . . . . . . . . . . . . . . 262
C.4.7 Existing complex diagram . . . . . . . . . . . . . . . . 264
C.4.8 Existing diagram drawn by hand . . . . . . . . . . . . 270

List of Figures 273

List of Tables 275

List of Grammars 276

List of Texts 277

List of ConSpec Specifications 278

List of JSON Class Models 279

List of Predicates 281

List of SMTLib models 282

List of Equations 284

List of Acronyms 285

Bibliography 287



Chapter 1

Introduction

This chapter introduces the motivation for our work, listing the problems we
address. They are narrowed down by discussing the research questions the
concepts that shape our objectives. Our results are then introduced in the
form of individual contributions and their corresponding evaluations. Finally,
we provide a description of each chapter as a blueprint for this thesis.

1.1 Motivation

Eight years of personal experience in building industrial software systems has
led us to the identification of several problems associated with software models
in the development process, particularly, those concerning the maintenance
of a consistent relation between requirements and various software models
associated with a system. Though software models are to be derived from
requirements, in many cases, CASE tools are used to reverse-engineer the
models from the existing codebase[48, 70, 164, 169, 181, 224]. This activity
does not allow us to establish rigorously whether a given model is valid with
respect to the actual requirements of a system, which is a problem we tackle
in this research in the form of model validation (which should not be confused
with requirements or system validation)[182, 281].

Model validation makes use of formal methods to verify that a given model
satisfies a set of self-contained restrictions[24, 72, 74] and is closely related to
model checking (which concerns itself only with the internal properties of a
model[190]). Current approaches to model validation require the existence
of formal specifications, which imposes an additional challenge to software
engineers. For this reason, we aim to develop a solution that allows to deal
with non-formal specifications, in particular, the specification of functional
requirements using elements of natural language.

1



2 CHAPTER 1. INTRODUCTION

Model validation is not the only formal activity that has drawn our
attention. Model generation is also relevant to us in this context, as it
produces the artefacts that will be eventually related to the requirements.
Current approaches for model generation can be divided into manual gen-
eration, rule-based generation and machine learning generation[2]. Manual
approaches[9, 113] are very prone to human error; this is overcome in rule-
based approaches[51, 123, 147, 186, 231, 277] by its capabilities to integrate
formal methods to generate valid models. This particular aspect of rule-based
model generation is the one we develop further in our work.

Machine learning approaches[81, 188, 220, 245, 273, 309] are relatively
new, and they depend heavily on the availability of big datasets, which are
currently insufficient for model generation from requirements specifications.
For this reason, we are concerned about advancing techniques to aid the
generation of such datasets.

Even though formal methods have potential applications in industrial
software, they have been mostly studied only through their application on
life-critical systems[8, 53, 85, 211, 304]; this is partly attributed to the lack of
proper competence in software developers to generate mathematical specifica-
tions required to use these methods[52, 73, 139, 268]. Having notations that
will allow developers to interface with formal methods intuitively contributes
to mitigating this problem.

Apart from that, there is a distinct lack of proper integration of formal
methods with the existing developmental tool-chain. Most of the existing tools
deal with individual aspects of formal verification, whether it be formalizing
requirements[28, 84, 208, 246], checking correctness properties[3, 152, 189],
or finding proofs[16, 96, 274]. The lack of seamless integration of these tools
represents an additional challenge, which also needs to be addressed.

The current limitations of formal methods in industrial software devel-
opment, coupled with their promising applications in model validation and
generation (and by extension, model comparison), have been the prime moti-
vation that has driven us to perform the research presented in this thesis.

1.2 Research Questions

In Section 1.1, we discussed some of the existing problems related to software
models, and how formal methods can aid to reduce these problems. These
problems are tackled by addressing the following research question.



1.3. OBJECTIVES 3

What are the formal structures and systems required to seamlessly
validate, generate and compare UML class diagrams in relation with
functional requirements?

To better answer the above underlying research question, we have decom-
posed it into the following specific questions.

• What fragments of natural language and formal languages can be
combined in order to express and formalize functional requirements?

• What axioms have to be satisfied in order to establish the validity of
class diagrams with respect to functional requirements within a formal
system?

• What inference rules must be applied to generate valid class diagrams
from functional requirements?

• What are the equivalence axioms that enable to compare two class
diagrams within a formal system?

• How can functional requirements expressed in natural language, and
images representing class diagrams, be automatically processed so that
they can be used within systems for formal reasoning?

1.3 Objectives

To summarize our motivation, the overall goal of this research is to elaborate
on the foundations of a formal framework that will support different reasoning
tasks over requirements and software models. This goal is broken down into
the following objectives.

1. Develop a requirements specification format to capture functional re-
quirements related to class diagrams.

2. Define a set of formal notations to represent functional requirements
and class diagrams seamlessly.

3. Define the formal systems required to achieve class model validation,
generation and comparison.

4. Develop a proof-of-concept tool that supports our reasoning framework
combining image and natural language processing libraries, together
with proof solvers.



4 CHAPTER 1. INTRODUCTION

5. Evaluate our specification format against existing sets of requirements.

6. Use our proof-of-concept to evaluate our theories for model validation,
generation and comparison within a set of clear cases that cover the
different expected outcomes.

1.4 Contributions

Our main contribution is a formal framework enabling seamless validation,
generation and comparison of class models. Through the development of our
framework, we also make two additional contributions to the specification
of functional requirements, and the automation of our framework. These
contributions are enumerated below.

• A Controlled Natural Language, named SpeCNL, and a document
structure, named ConSpec to capture functional requirements.

• A formal framework named TOMM composed of:

– A set of first-order logic predicates to formalize class diagrams and
ConSpec requirements.

– A theory for validation of class diagram with respect to ConSpec
requirements using semantic equivalences.

– A theory for generating valid class diagrams from ConSpec require-
ments.

– A theory to compare class diagrams based on semantic equivalences.

• A python-based proof-of-concept tool named T4TOMM that supports:

– Partial class model extraction from images of class diagrams using
image processing libraries.

– Formalization of class models into SMT-LIB formal models.

– Formalization of ConSpec documents into SMT-LIB formal models
using libraries for natural language processing.

– Validation of class models against ConSpec requirements using
SMT solvers.

– Generation of class models from ConSpec requirements using SMT
solvers.

– Comparison of class models using SMT solvers.



1.5. EVALUATION AND RESULTS 5

Through this thesis, we continuously use the words integrated and integra-
tion to refer to the fact that the formalization for ConSpec specifications and
class models can be similarly (seamlessly) used for either model validation,
model generation or model comparison. This concept also denotes the fact
that these activities coexist within TOMM and T4TOMM.

As of April 19th, our paper was accepted for the 15th European Conference
on Modelling Foundations and Applications (ECMFA). The conference is
dedicated to advancing the applications of Model-Based Engineering and
will take place from July 15th to July 19th at the city of Eindhoven in
the Netherlands. The paper focusses on the formalization of functional
requirements, and class model validation. It covers parts 1 and 2 from the
list of contributions.

1.5 Evaluation and Results

Our three distinguishable contributions were evaluated in the following manner.
To evaluate of requirements specification format, we made use of a subset of
requirements taken from a public repository of requirements documents[289],
which were translated into our format. From this process, most of the
functional requirements related to class models were successfully translated.
Some limitations for our specification format were identified when trying
to express complex comparison sentences, such as “the temperature must
be between 10°C and 15°C” . Besides, we observed some limitation when
specifying a sequence of actions, which though nor required for class diagrams,
might be useful for sequence diagrams and other models. Further discussion
is provided in Section 7.1.

Our formal framework was evaluated through various scenarios containing
valid and invalid class models, which were checked against a set of functional
requirements. We then checked class models generated from requirements
against existing valid models for the same requirements. Model comparison,
in turn, was evaluated in terms of existing and generated models that cover
the scenarios of equivalence and difference. Our proof-of-concept, described in
Chapter 6, showed that the theories we developed satisfy the expected results
for validating, generating and comparing classes, attributes, operations, and
inheritances. The evaluation of our formal framework and our proof-of-concept
is discussed in Section 7.2

Also, we evaluated the capabilities of our proof-of-concept regarding class
model extraction from graphical representations. The results showed that
despite several limitations, our implementation is capable of extracting some
classes, attributes, and operations successfully. This partial extractions,



6 CHAPTER 1. INTRODUCTION

however, require further manual corrections to be usable. This evaluation is
expanded in Section 7.2.5.

Possible extensions for our work were identified through Chapter 7 and
summarised in Section 8.2.

1.6 Content of the thesis

The following chapters will elaborate on how we addressed our formulated
problem, objectives and research questions.

Chapter 2 starts by presenting an overall picture of this work, and how
our contributions are established through a formal reasoning framework and
a proof-of-concept. This chapter describes a roadmap for the thesis, which
helps the reader to target specific topics if desired.

In Chapter 3 the context for our research is established. Section 3.1
introduces the basic concepts required to understand our contributions. In
Section 3.2 we discuss the state-of-the-art related work. Additionally, in
Section 3.3 we present previous work done by us, which though different from
the current research, provided us with experience and motivation to develop
this work.

Chapter 4 defines all the elements that integrate our controlled language
to specify functional requirements, as well as our structure for contract-based
specifications. In this chapter, we demonstrate how typical requirements are
translated into our specification format.

Chapter 5 describes our formal reasoning framework, which supports the
formalisation of class models and specifications, model inference, validation
and comparison. This chapter presents the axioms, inference rules and
semantics required for each task.

In Chapter 6, we discuss the implementation of a proof-of-concept (tool)
to support our framework. We describe how class diagrams and requirements
specifications are automatically formalised and checked by a formal solver
in order to enable automated reasoning. The external dependencies for
natural language processing, model verification and image processing are also
described here.

Chapter 7 describes the evaluation process for our specification format,
our reasoning framework, and our proof-of-concept. The different method-
ologies to evaluate each of our contributions are described in this chapter,
together with the different resources and cases to conduct the evaluation.

Finally, Chapter 8 summarises our findings, our contributions and the
corresponding evaluation. It also reflects on the possible extension of our
current work in the future.



Chapter 2

Overview

The overview provided in this chapter will help the reader to understand the
structure of this dissertation, and relate each chapter to its corresponding
component in our proposed framework. Several concepts and terms are
mentioned here; however, they are properly explained until Chapter 3.

The framework described here addresses existing problems regarding
software models, namely model validation, model verification and model
comparison. The approach we propose to tackle these problems makes
use of formal methods to establish a relationship between the elements of
functional requirements and class models. Though formal methods are more
commonly used in critical systems[53, 85, 130, 149], our framework allows us
to demonstrate their usage in the development of non-critical systems defined
in Section 3.1.3.

Throughout this thesis, we use as a reference the library system initially
described by Callan[62], and then expanded by other authors[42, 128, 142].
The original requirements for this system are shown in Text 2.1, while the
original class diagram is shown in Figure 2.1. These requirements and diagram
are used to exemplify the application of our specification formats (Chapter 4),
the theories that compose our theoretical framework (Chapter 5), the proof-
of-concept developed (Chapter 6) and the evaluation of our contributions
(Chapter 7).

7



8 CHAPTER 2. OVERVIEW

Figure 2.1: Class Diagrams for Library Example

A library issues loan items to customers. Each customer is known as a member and is issued
a membership card that shows a unique member number. Along with the membership number,
other details on a customer must be kept such as a name, address, and date of birth. The library
is made up of a number of subject sections. Each section is denoted by a classification mark. A
loan item is uniquely identified by a bar code. There are two types of loan items, language tapes,
and books. A language tape has a title language (e.g. French), and level (e.g. beginner). A book
has a title, and author(s). A customer may borrow up to a maximum of 8 items. An item can be
borrowed, reserved or renewed to extend a current loan. When an item is issued, the customer’s
membership number is scanned via a bar code reader or entered manually. If the membership is
still valid and the number of items on loan less than 8, the book bar code is read, either via the
bar code reader or entered manually. If the item can be issued (e.g. not reserved) the item is
stamped and then issued. The library must support the facility for an item to be searched and
for a daily update of records.

Text 2.1: Original requirements for the Library system
described by Callan[62]

2.1 Requirements Specifications

We have defined class models at the centre of our formal framework. However,
to successfully perform model validation and generation, it is needed to interact
with requirements specifications. Dealing with all possible specification
formats, such as diagrams, business documents, records, etc., is infeasible
because of the infinite number of variations existing[182, 200, 245, 281, 288].
Hence, we set ourselves to work with formats that can be integrated in a
formal framework (see Sections 3.1.7.1 and 3.2.3). These existing alternatives



2.2. TOMM 9

do no satisfy the constraints that we have set for our framework, hence the
need for a new document structure, and a new language to express functional
requirements in a way that can be formally related to class diagrams. Both
language and document structure are briefly introduced in here, while their
details are explained in Chapter 4.

2.1.1 SpeCNL

The language used on a daily basis to communicate with our peers is powerful
enough to express emotions, timed events, and an endless number of complex
constructs. However, some of these aspects of the language are not relevant
when specifying software requirements. SpeCNL is a language based on the
grammatical elements of a simplified form of English, to express sentences
related to class diagrams. The description of these elements is the purpose of
Section 4.1.

2.1.2 ConSpec

SpeCNL allows writing simplified sentences with well-defined structures. How-
ever, these sentences alone do not constitute a requirements document. We
then propose a document structure, named ConSpec, to delimit the semantics
of these sentences in the context of functional requirements. ConSpec is
properly described in Section 4.2.

2.2 TOMM

Thinking Of Models and More, or TOMM for shorter, is the name given to
our framework. The word thinking denotes our research activity but also
refers to the formal reasoning capabilities that distinguish TOMM, and which
are explained in Chapter 5.

TOMM was initially designed to support model validation as a comple-
ment for model checking. However, through its development, we observed
the opportunity to extend it over other ways of formal reasoning, such as
model generation through inference, and model comparison thorough axiom
checking. These extensions are part of the current version of TOMM and
also demonstrate its flexibility.

In Figure 2.2 we show the interaction of the different theories we have
developed for TOMM. In this schematics, theories are represented in boxes,
arrows represent interactions, and icons represent the inputs and outputs for
each theory.



10 CHAPTER 2. OVERVIEW

Figure 2.2: Schematic diagram for TOMM

Sections 2.2.1 to 2.2.4 contain an introduction of the theories underlying
TOMM, and their detailed description is found in Chapter 5.

2.2.1 Formalization

It is seen in Figure 2.2 that formalization theories precede the usage of the
other theories. This step is required to capture both functional requirements
and class diagrams in one common language that will enable formal reasoning.
In Section 5.1, we discuss how to formalize these artefacts using predicate-logic,
which will be introduced in Section 5.1.

2.2.2 Model Validation

In principle, anyone can draw a class diagram, but not every drawn class
diagram is guaranteed to be valid with respect to the requirements it is
supposed to capture. In the context of TOMM, a diagram is valid if all of
its elements are related to some elements in the specification, and if all the
elements of the specification are mapped to some elements in the diagram.
We define the notions of soundness and completeness in Section 5.3 in order
to capture formally capture these conditions.

The validation theory we propose can be used, for instance, to detect



2.2. TOMM 11

Figure 2.3: The kiss

outdated class diagrams, which is a common problem in software development.
It also helps to automate the evaluation process of collections of diagrams,
which is a common task when teaching software engineering.

2.2.3 Model Generation

Drawing class diagrams is less about aesthetics than it is about analysis and
abstraction; these are intended to encode information about a problem and its
corresponding solution. Identifying the elements of a problem and capturing
them in a class model is what we do through inference, which is discussed
in Section 5.2. This approach to model generation guarantees that inferred
models are valid concerning our validation theory.

2.2.4 Model Comparison

By observing the work that Hayez and Klimt have gifted us (Figure 2.3), it
becomes evident that it is possible to have more than one representation of
one single concept, in this case, a kiss.

Similarly, having more than one class diagram representing the same
requirements is not unusual, as it is the case with the diagrams of Callan[62]
and Kim[171] shown in Figure 2.4



12 CHAPTER 2. OVERVIEW

Figure 2.4: Two diagrams representing the same requirements for a library system

In the case of the paintings, it is evident for the observer that though they
are not exactly the same, they capture the same concept. However, a more
in-depth analysis of their elements must be conducted in order to determine
the similarities between two class diagrams. A formal theory to determine
model equivalence is the work we present in Section 6.5.

If two or more diagrams are proved to be equivalent, then they can be
alternatively used to represent the same requirements, which is desirable when
generating diagrams using machine learning techniques (see Section 3.1.8 for
further detail).

2.3 T4TOMM

TOMM is a theoretical framework to reason about class diagrams formally.
However, the impact of any theory is better measured through practice. Hence
the need to develop T4TOMM, which is a proof-of-concept that supports the
theories described in Chapter 5, and also deals with the specifications defined
in Chapter 4. All of the technical aspects of T4TOMM, including libraries,
algorithms and meta-models are detailed in Chapter 6.

Figure 2.5 shows how the types of different input files, whether images,
or structured documents (YAML and JSON) are transformed into python
meta-models using natural language processing and machine learning. These
are then transformed into STM-LIB[33, 34] formal models; this is a formal
language that can be interpreted by SMT solvers (see Section 3.1.7.4) in order
to generate logic proofs. In this way, class model validation, generation and
comparison are achieved.



2.3. T4TOMM 13

F
ig
u
re

2
.5
:

S
ch

em
a
ti

cs
fo

r
T

4
T

O
M

M



14 CHAPTER 2. OVERVIEW

2.4 Summary

In this chapter, we presented an overview of our framework. We introduced
how specifications and models interact with each other to achieve inference,
validation and comparison. In addition to the core elements of our framework,
we introduced the structure proposed to specify requirements, and a proof-of-
concept that integrates this structure with our theories to create a complete
workflow.

Every one of the elements introduced is referenced with the corresponding
section or chapter that contains its details, so the reader can quickly identify
the relation between all concepts in this dissertation.



Chapter 3

Context

The groundwork for software specifications and models is discussed throughout
this chapter. Initially, we lay out the relevance of software as a subject of
study by summarizing its applications. Subsequently, software engineering
and requirements engineering are introduced as the disciplines to which
contributions are made through this thesis. We also elaborate upon the
fundamental concepts used in requirements specifications, software modelling
and program verification.

In this chapter, we also present the state-of-the-art of the most relevant
related work, which includes a discussion about existing specification languages
and documents, and formal systems for model verification and comparison.
We finally present the work we have done previously, which has also motivated
the current research.

3.1 Background

In this section, we list the different concepts from software engineering and
computer science that build the context for our work. This purpose of this
section is not to exhaustively cover each concept, but to introduce the most
general ideas and to provide the appropriate references should the reader
require more information.

3.1.1 Software Applications

Our research is better appreciated by reflecting upon the evolution of software
applications and their impact on modern society.

During the early 50s, software was mainly used by the scientific community
to perform complex mathematical calculations[110]. Later, in 1966, the launch

15



16 CHAPTER 3. CONTEXT

of the DOS/360 operating system by IBM marked the beginning of an era
for multi-purpose programs that could be executed from a command line
in a straight-forward manner. The next big leap occurred during the 70s,
with the popularization of Graphical User Interfaces (GUIs)[230, 259]. From
interactive components to resource management, Operating Systems have
played a fundamental role in the steady growth of the application of software.

However, Operating Systems did not uniquely contribute to the expansion
of software usage. The Internet has, in recent years, also contributed sub-
stantially. In 1970, the ARPANET project was launched as the first global
network of interconnected computers. The development of communication
protocols was needed for it to work. Consequently, first applications, such
as the case of the electronic mail and bulletin boards, were developed in
the 1970s. The World Wide Web in the 80s and the first web browser in
the 90s ushered a new direction with the emergence of web applications.
Towards the beginning of the 2000s, the Web 2.0 introduced a social aspect,
and more recently, the Internet of Things has become fundamental for its
ubiquitousness.

The development of programming languages has eased the creation of
software systems that address well-defined problems within specific domains.
For instance, while COBOL[269] was mainly useful to encode communication
procedures within banks, Ada was a multi-purpose language developed by
the U.S. Department of Defence for military and commercial use[57]. Later
examples include languages like C[261], which was preferred to build hardware
controllers, and Java[18] which was praised for its cross-platform compatibility.
More recently, the survey of programming languages conducted by TIOBE[58]
has shown the increasing popularity of Python[263], which has to do with its
usage in data science and machine learning[92]. Table 3.1 shows a long term
history of the current ten most used programming languages.

Language 2019 2014 2009 2004 1999 1994 1989
Java 1 2 1 1 12 - -
C 2 1 2 2 1 1 1
C++ 3 4 3 3 2 2 3
Python 4 7 5 9 27 21 -
Visual Basic .NET 5 10 - - - - -
C# 6 5 6 7 23 - -
JavaScript 7 8 8 8 17 - -
PHP 8 6 4 5 - - -
SQL 9 - - 6 - - -

Table 3.1: Long term history of the current 10 most used programming languages from
the TIOBE index[58]



3.1. BACKGROUND 17

To this point, we have illustrated how these technologies have historically
opened new horizons for the applications of software. However, our day to day
activities themselves provide opportunities for software applications. These
new opportunities very often demand existing technologies to be improved
and new ones to be created in order to cope with our needs. This is evident
when noticing the need to improve fraud detection in banks[12, 116, 239], or
tumour recognition in digital imaging[87, 154, 201], or self-driving cars in
the automotive industry[122, 250, 275]. These specific needs, in turn, push
the development of new processors that deal with data and machine learning
algorithms efficiently. This is the symbiotic relationship between technology
and software applications that we introduced earlier.

The fact that software is present in almost any aspect of our life, including
health, finance, business management, marketing, transport, home and fashion
amongst others, makes it not only interesting but also an important subject
of study. Thanks to high-level programming languages, software development
is becoming more accessible, resulting in a large number of people developing
applications. However, the increase in accessibility comes with its own
set of risks and concerns. Because not every developer takes appropriate
care[105, 175] of a software’s safety, security, quality, correctness, testing,
usability, and maintainability, amongst other aspects, and in fact, this is not
a trivial task[117, 133, 192, 227]. For this reason, it is necessary to construct
frameworks like TOMM, that support developers in the achievement of such
tasks.

3.1.2 Critical Systems

Critical systems[119] are those whose possible failures would cause a consider-
able impact, especially concerning human lives. In consequence, they must be
carefully design and developed, in such a way that the risk of failure can be
virtually nullified. These systems are typically divided into safety critical[53,
177], mission critical[91], business critical[4, 88] or security critical[179, 300].

These systems are developed with heavy use of formal and mathematical
models which allow to examine their properties rigorously. Examples of critical
systems include aircraft controllers, dosage systems for medical treatments,
infrastructure monitoring systems for nuclear reactors, etc.. The need for
these systems has motivated a considerable amount of work regarding formal
methods to verify systems and specifications. These concepts will be explored
in this work in the context of non-critical systems.



18 CHAPTER 3. CONTEXT

3.1.3 Non-Critical Systems

We consider non-critical systems all those that do not imply a risk on human
lives. In particular, we look at systems used on daily activities, such as mobile
applications and web applications. These systems are commonly integrated
by several components, namely user interfaces, communication protocols, web
services, etc., and their development process prioritizes functionality and
time to market over safety checks and advance verification. As part of this
work, we investigated the application of techniques used in the development
of critical systems into non-critical ones.

3.1.4 Software Engineering

Over time, processes followed to construct software have evolved together
with its applications. In 1965, Dijkstra stated that “programming is the art
of organising complexity, of mastering multitude and avoiding its bastard
chaos as effectively as possible”[102, p. 6]. His work, amongst others [101,
151, 301], was essential for the development of Software Engineering as a
discipline; which has its origins in the 1968 NATO conference on the same
subject [204, 232]. Since then, SE has been driving the constant and rapid
development of new tools and methodologies that support the construction
of software systems.

3.1.4.1 Software Development Processes

Software Engineering pays particular attention to the study of models that
describe the process to build software applications. These models are better
known as software development life cycles (SDLC), and define the activities to
be performed, the artefacts to be generated at every stage, and the different
roles to be played by all the people involved in the process, such as users,
managers, sponsors, developers, testers, and all the stakeholders in general.

Sequential life cycles, such as the Waterfall[39, 40] model depicted, whose
sequence of stages are shown in Figure 3.1, and the V-Model[120], define
steps to be executed consecutively until the software system is completed.
The stages of the waterfall model are usually used as a reference for other
life cycles. Differences are present in the names of the stages, their scope,
the way they are approached and the interaction amongst them. However,
from a conceptual point of view, these key stages are present in any software
development process.

Models like Waterfall fail to adapt to the complexity and changeability
of software products in general, as it requires a more efficient development



3.1. BACKGROUND 19

Figure 3.1: Waterfall Model

process[191]. Their inflexibility has motivated the development of incremental
life cycles, such as Spiral and Prototyping[266]. These processes incorporate
a faster build-fix-release iteration, in which small features are incrementally
added to a software product, instead of expecting one “complete” system.

The evolution of applications described in Section 3.1.1 has triggered an
exponential demand for software products; together with the need for more
realistic and suitable development processes. Furthermore, the Manifesto for
Agile Software Development [14] has set the grounds for a new generation of
life cycle models: the agile methods[5, 6]. These methods are characterised
for putting interaction between stakeholders in the centre of the process
as a critical factor to efficiently develop functional and flexible software
applications.

Understanding precisely how a software system is going to participate in
the solution of a problem is always the first stage of any life cycle, whether
it is agile or waterfall based. Poor understanding of the expected use of a
system implies that errors are carried into every stage of the development
process, resulting in a defective product. How to adequately define the features
required from a software application is the subject of study of Requirements
Engineering; which will be discussed in Section 3.1.5.

3.1.4.2 Object-Oriented Programming

Out of the seven most popular programming languages shown in Table 3.1,
only C does not support Object-Oriented Programming (OOP), showing how
popular this programming paradigm is. UML Diagrams are now a standard
part of any Object-Oriented design process. The fact that OOP allows us
to create software by drawing parallel to real-world entities by constructing
models that mimic the entities’ behaviour makes it a very useful to design



20 CHAPTER 3. CONTEXT

a system that is both comprehensive and comprehensible. It also improves
the maintainability of the system. Therefore, it is no surprise that OOP has
a dominant presence in all facets of programming, particularly concerning
Software Engineering.

OOP had its origins with the Simula programming language in the 1960s.
However, the concept was popularized by Smalltalk in the ’70s and ’80s. While
there is not a general consensus what exactly constitutes OOP, a language can
be considered to support it if it supports the following concepts: Abstraction,
Class, Encapsulation, Inheritance and Object in terms of structuring the
language and Message Passing, Methods and Polymorphism in terms of
behaviour. Expanding on these individual concepts is beyond the scope of
this research. A good overview of the history and on what constitutes OOP
is presented in the work of Armstrong[17] and Kim[228, 234].

3.1.4.3 Software Testing

Software testing[15, 56, 228, 229] is performed across the development process
to check for the presence or absence of errors in the programs being developed.
Software testing is done by comparing the expected outputs from an ideal
system, with the actual output produced by the real system. In this way,
several problems are detected, including syntax errors, unexpected behaviours,
and missing functionality.

Software testing techniques approaches are broadly divided into black-
box testing and white-box testing. While black-box testing aims to check
the program’s functionality in relation to its specification, white-box testing
checks the structure of the program in relation to its underlying code.

Software testing is closely related to software validation and verification,
which are discussed in Section 3.1.4.4 and Section 3.1.4.5 respectively.

3.1.4.4 Software Validation

Software validation aims to check if the system being developed is the one
expected by the user[281, 286]. Software testing (Section 3.1.4.3) and re-
quirements validation(Section 3.1.5.4)[182, 200, 244] are some of the most
common methods to conduct software validation[255, 281, 286]. Other meth-
ods are partial inspections and reviews through every stage of the development
process[281].

Software validation is performed at the end of every iteration of the
development cycle (see Section 3.1.4.1). However, intermediate validations
help to track the progress of the development process and to identify problems
regarding customers’ expectations opportunely[255, 264].



3.1. BACKGROUND 21

3.1.4.5 Software Verification

Software verification aims to check if the system being developed complies
with its specifications[10, 281, 286]. Techniques for software verification are
usually classified into static and dynamic.

3.1.4.5.1 Static Verification

Static verification, also referred to as static analysis, checks the code of
a program without executing the program itself[89]. Compilers typically
perform static analysis for programming languages, which detect syntactic
mistakes in the code.

In addition programs can be checked against formal specifications through
programs for formal verification (discussed in Section 3.1.7.3). These speci-
fications are captured in formal languages, such as Spec#[32] for C# code,
JML[193] for Java code, and Eiffel contracts for the Eiffel programming lan-
guage[218]. Formal specifications are further discussed in Section 3.1.7.1. This
combination of formal specifications and program code are key to perform
static verification.

3.1.4.5.2 Dynamic Verification

Unlike static verification, dynamic verification does require the execution
of the program being verified. This is typically done through testing and
experimentation. Because testing frameworks do not commonly rely on formal
specifications, it is necessary to design suitable test cases that capture the
requirements for the system being verified.

Dynamic verification is limited by the samples used in the sequence
of experiments and tests, and it is rarely possible to conduct exhaustive
testing for absolutely all possible scenarios. For example, it is not possible to
exhaustively test a program to add two natural numbers, for it requires an
infinite number of test cases. This problem is better addressed through static
verification, in which formal theories for natural numbers are used. Though
dynamic verification is more practical, it lacks the rigour achieved through
static program verification[10].

3.1.5 Requirements Engineering

With the constant growth in the complexity of software systems[30], there
is undoubtedly a need for a discipline such as software engineering. Even
though the relationship between software development life cycles and software



22 CHAPTER 3. CONTEXT

engineering has been made clear in Section 3.1.4, we need to focus now on the
role of Requirements Engineering. We examine the purpose of requirements
engineering and its role in the successful construction of software applications.

The term requirements engineering has been around since 1979 [13]; but
it was not until the 90s that it became a specific research area, thanks to the
IEEE Computer Society [288]. The CHAOS Report [157] published by the
Standish Group International in 1994 had a significant impact on the way
system requirements are perceived. Ever since, requirements engineering has
received increasing attention from the practitioners of software engineering.

The CHAOS report states that 13% of the IT executives surveyed at-
tributed the success of a software project to the clear statement of requirements,
which makes it the third most important factor. The report mentions realistic
expectations, and clear vision & objectives as success factors with 8.2% and
2.9% respectively.

In contrast, the report shows factors that challenge projects, such as
incomplete requirements & specifications, changing requirements and specifica-
tions”, and unrealistic expectations with 12.3%, 11.8%, and 5.9% each one of
them.

Even though the validity of this report is arguably outdated [131], it has
motivated a considerable amount of research in the area of requirements
engineering, and it makes it clear that requirements-related factors have a
high impact in the success, challenge or failure of a software project.

While software engineering studies how a system should be constructed
to solve a specific problem, requirements engineering studies how to state
that problem. The interaction of these two disciplines makes it possible
to propose methodologies that support a more precise definition of what a
software should do and how it should do it.

In Sections 3.1.5.1 to 3.1.5.4, we introduce the most significant work in
requirements engineering that sets the grounds for our contribution to this
discipline, before we detail them in Chapter 4.

3.1.5.1 Types of Requirements

Expectations for a software application are divided into two: those that
are related to the problem addressed, and those that have to do with the
qualitative attributes of the product itself. In the literature, these expectations
are referred to as functional and non-functional[281] requirements respectively.

Functional requirements describe explicitly what the system should do,
i.e. what business rules must be followed to solve the problem. Examples of
these rules are: the system has to record the name and age of the users, and
users that are not administrators must not be able to remove entries.



3.1. BACKGROUND 23

Figure 3.2: An example of a Requirements Communication Cycle

Non-functional requirements express characteristics of the system as a
whole; that is, the capabilities and emergent properties it should observe.
Examples of these properties are reliability, response time, memory usage,
etc.

While non-functional requirements are well characterised[182] and are
standard for any software system, functional requirements are rather specific
to the domain of the system and to the problem it aims to solve. These
qualities justify the need for further research targeting functional requirements,
which is the case of our work.

3.1.5.2 Requirements Communication Cycle

Together with the elicitation techniques, it is necessary to establish an ap-
propriate communication process amongst the stakeholders. We refer to this
process as the requirements communication cycle, and its implementation
may have subtle variations depending on the development methodology[248]
being used and the roles defined in it. Nonetheless, it is possible to identify
the most general elements of any communication cycle, as it is depicted in
Figure 3.2.

In this example, the financial sponsor and the system users communicate
the expected functionality to the project leader. This role is typically per-
formed by the more senior members of the development team, such as software
architects or product engineers, or by members of the administration team,
including the product owner, team leaders, project managers, or SCRUM
masters1 where applicable. The project leader will review the requirements
and will negotiate them with the sponsor and the users, just in case some
requirements are not within the resource limits of the project (time, budget,

1The SCRUM master plays the role of the project manager in the SCRUM methodol-
ogy[64]



24 CHAPTER 3. CONTEXT

knowledge, etc.). The project leader will also communicate the requirements
to the technical team, typically formed of developers, testers, and quality
assurance certifiers. The technical team can request clarifications from the
users and sponsors via the project leader. Through the negotiations and clar-
ifications, the requirements will be updated, until the final version is agreed
upon. This refined version will be used to generate the software specification
that will guide the current iteration of the development process.

3.1.5.3 Requirements Elicitation

Requirements elicitation is a common activity in all software development
processes (Section 3.1.4.1). The goal of this activity is to precisely define the
expected functionality of a software application in the form of requirements.
This is achieved through the understanding of the problem to be addressed,
and the discovery of the relevant business rules that will provide the solution.

When eliciting requirements, there is a series of tasks that should be
performed, such as discovering, understanding, classifying, organising, pri-
oritizing, negotiating and documenting requirements[281]. These activities
are performed differently according to the experience of the developing team,
the structure of the organisation, and the domain of the business. However,
there is a series of commonly used techniques that allow us to succeed in the
activities mentioned above.

The most utilised technique to collect requirements is interviewing. One
way is to listen to stakeholders explaining the business processes in an open
way, similar to brainstorming. Another way of doing it is to ask a set of
well-defined questions to specific stakeholders. The second alternative is
complementary to the first one in order to clarify doubts arising from the
open session. Regardless of the format, or combination of formats used for the
interviews, it is important to preserve a record of the output of this process,
so that the information is available for future references.

Less common techniques[137, 288, 312] are ethnography, stories and sce-
narios, introspection, focus groups, repertory grids, card sorting, protocol
analysis, etc. We do not discuss these techniques in detail, as we consider
them as variations or extensions of interviewing; and their specific details do
not have an impact on our work.

From the analysis of the existing techniques[182, 249, 281], and our
experience in the software industry, we consider that semi-open interviews
combined with observation, constitute the most suitable approach to elicit
functional requirements.

In Semi-open interviews, a project leader meets with the sponsors and
users (not necessarily at the same time) and discusses system functionality.



3.1. BACKGROUND 25

While their needs are being expressed, the leader must take notes and try
to identify possible use-cases[77]. A use-case is, in essence, an atomic, well-
defined, activity that occurs under specific circumstances. An example of a
use case for a library system would be “The user of the library can borrow
books and tapes”.

Once all potential use-cases have been identified, their attributes must be
clarified by including all constraints, and actors for each activity. Examples
of these components are the constraint on the maximum number of books
that can be borrowed, the dependency on a valid membership card, and the
actors who do the action, either public in general or members of the library.
Further interviewing and direct observation of the task at hand should lead
the clarification of its attributes.

In some circumstances, business rules are already expressed through
written documents, diagrams, or manuals. Hence, further review of existing
resources is required to complement interviewing and observation in order
to identify and detail use-cases. In addition to our preference of techniques,
other alternatives from the ones mentioned earlier, or from any other personal
experience, are applicable in the construction of complete specifications.

3.1.5.4 Requirements Validation

According to Sommerville[281], requirements validation is “the process of
checking that requirements define the system that the customer really wants”.
Its goal is to identify problems with the requirements document that could
have an impact on the development of the system. For instance, incomplete
requirements derive into incomplete models, which at the same time produce
incomplete software applications. This problem implies that the different
artefacts (models, code, test cases, documentation, etc.) produced in every
stage of the development process have to be reworked[182, 235, 281].

Different literature about requirements validation agrees on the aspects
of requirements that have to be checked, such as consistency, completeness,
feasibility, and testability [47, 182, 281]. Techniques proposed to validate
requirements include reviews with stakeholders, cross-referencing, readings,
prototyping, and use cases[47, 182, 244, 281]. More recent approaches attempt
to integrate formal representations, such as ontologies, in the requirements
validation process[98, 111, 148].

Requirements validation contributes to the process of software validation
described in Section 3.1.4.4.



26 CHAPTER 3. CONTEXT

3.1.6 Software Modelling

Design and modelling is a relevant activity in most software development
life cycles, even agile methodologies. The agile manifesto[14] establishes
that “Continuous attention to technical excellence and good design enhances
agility” and “The best architectures, requirements, and designs emerge from
self-organizing teams” . From the Waterfall process depicted in Figure 3.1, it
is observed that this activity comes after requirements have been defined and
analysed, and before the program is built (or coded).

Modelling systems is the equivalent to drawing the blueprints for a house.
That is, to define its components, as well as their shape, their scope and their
interaction, based on the requirements and the best practices for software
development.

Through this activity, high-quality modular programs are developed, which
feature reusability, extensibility, readability amongst its qualities. Modelling
also increases awareness on reliability, security and safety properties of a
software system.

Models are abstractions that allow us to visualize different perspectives
of the software to be built, including structural and behavioural elements.
Different modelling techniques exist and are used for different purposes.
For instance, mock-ups are preferred when designing front-end software
components. One particular modelling approach we are interested in is the
one proposed through the Unified Modelling Language (UML), which will be
discussed next.

3.1.6.1 UML

The Unified Modelling Language (UML)[258] is a collection of diagrams
proposed by the Object Management Group (OMG) as part of their Model
Driven Architecture (MDA). The language has been widely adopted in indus-
try and academia as the standard way to document, model and visualize the
structure and behaviour of software systems together with the interaction
between its components. The Figure 3.3 shows all the diagrams that are part
of UML. In Section 3.1.6.2, we will discuss further Class Diagrams, which are
the current object of our research.

UML has inspired the development of a number of Object-Oriented method-
ologies, including OMT[99], Objectory[162], the Booch method[49], and more
recently the RUP[183] process. Together with these methodologies, a consid-
erable number of diagramming tools have been developed, such as ArgoUML,
PlantUML and RationalRapsody. Even popular Integrated Development
Environments (IDEs) such as NetBeans, Eclipse and Visual Studio have



3.1. BACKGROUND 27

Figure 3.3: UML Diagrams

embraced the modelling language either natively or via extensions.

Despite its virtues, UML also carries some risks[38]. The misuse of the
diagrams and the wrong interpretation of their intended purpose is one
common problem amongst its users. Besides, there is the risk of the overuse,
as the attempt to model every aspect of every system with UML.

While it is clear that UML works seamlessly with Object-Oriented method-
ologies and programming languages, it is not the case for applications based
on web languages such as HTML and CSS, which are modelled better trough
visualizations such as mockups[203, 262].

3.1.6.2 Class Diagrams

Class diagrams are the part of UML that describes the static structure of a
software component in terms of its classes and the relations amongst them. A
class describes an entity in terms of its attributes and operations. Attributes
describe a set of named properties for the instances of a given class, such as
the name and age of a person. Operations are used to indicate behavioural
features of a class. For example, a calculator class performs addition and
subtraction operations. Every operation is identified by its name, type,



28 CHAPTER 3. CONTEXT

Figure 3.4: UML Class Diagrams Cheat Sheet

parameters, and the constraints for invocation.
The relations between classes are described through a set of well-defined

association types. The most common examples of binary associations are
aggregation and composition. The former is used to indicate that a property
is part of a composite and that the property exists independently. The later,
in contrast, indicates that the parts cease to exist when the composite does.

Figure 3.4 summarizes the main elements of a class diagram. A compre-
hensive reference for UML class diagrams, and UML in general, is available
in the work of Fakhroutdinov[115] as well as the books of Rumbaugh[265],
Pender[241] and Fowler[121].

Within the problem domain, classes model components of the business
process, such as accounts, cards and customers in a baking system. Within the
solution domain, classes model functional units with specific purposes within
the system, such as data connectors, handlers, helpers, factories, interfaces, etc.
Class diagrams are expected to contain elements of both domains. However,
within this research, we focus on diagrams that capture the elements of the
problem domain, for they come directly from the requirements specification.
They also contain specific semantic interpretations as it will be described in
Section 6.3.



3.1. BACKGROUND 29

3.1.6.3 OCL

The Object Constraint Language (OCL)[258, 278, 296, 297] is another stan-
dard of the OMG, which extends UML to specify constraints over classes,
their attributes and operations formally. It is a declarative language with
precise semantics to build well-formed formulae that express restrictions over
the possible values of the elements of an object-oriented model. It is based
on first-order predicate logic with a syntax similar to that of object-oriented
programming languages.h

Constraints are expressed in the context of UML classes, but they are
evaluated for the instances of the class. There are three main types of
constraints. Invariants is a condition that must hold during the entire lifetime
of an object. Preconditions are constraints that must hold before the execution
of a given operation, while postconditions must hold at the end of its execution.
These conditions allow us to capture parts of the behaviour of the operation
itself within static structural diagrams. In Section 3.1.7.2.3, we discuss these
constraints further within the context of Hoare logic and Design by Contract.

3.1.6.4 Model-Driven Development

This approach to software development puts models at the centre of the
development process[19, 271, 281]. It has been pushed forwards thanks to
the development of Computer-Aided Software Engineering (CASE) tools[215,
270], and the efforts of the OMG to develop modelling standards[258, 279].

3.1.7 Formal Methods

Formal methods are a collection of mathematical languages, theories and
techniques to specify, analyse and verify software systems[73]. In this section,
we introduce the elements of formal methods that are part of our work.

3.1.7.1 Formal Specifications

From the CHAOS report[157] discussed in Section 3.1.5, and the work of
Jorgensen[165] and Fuchs[123], it is noticed that the success of a software
project is closely related to the definition of precise and clearly understood
requirements. The requirements document discussed in Section 3.2.1 discuss
how requirements documents can be structured. However, problems inherited
from human communication itself remain. That is the case with ambiguity,
pragmatics, context and even common sense, which we have to deal with
through proper specifications.



30 CHAPTER 3. CONTEXT

The main difference between requirements and specifications is that the
former are usually express in an informal, natural and open way through
natural language. The later, instead, are meant to be precise, unambiguous,
and structured. This is achieved employing special notations, such as diagrams,
mathematical equations, formal languages, or domain-specific constructs.

Another noticeable difference is that, while requirements tend to reflect
the expectations of a system as a whole, specifications deal with particular
elements of the system, such as architecture, functionality, component inter-
action, roles, etc.o In this way, requirements are understood as the superset
of various specifications.

Throughout this work, we indistinctly use the terms requirements specifi-
cation, software specification, functional specification, system specification or
simply specification, to refer to the structured representation of the functional
requirements.

We already mentioned some of the problems that proceed from com-
munication in natural language. In order to deal with such problems, we
surveyed specifications in the literature. The work of Kontonya[182] proposes
data-flow modelling, semantic data models, object-oriented approaches and
formal methods. In addition, Pressman[249] mentions written documents,
graphical models, formal mathematical models, usage scenarios, and proto-
types. Moreover, Sommerville[281] discusses variations of natural language,
graphical notations, and mathematical specifications. The interesting overlap
amongst the work of these authors and their relation with our research is
further discussed in Chapter 4.

The choice of the format to be used depends on the type of software
application to be developed. For instance, if we were to describe a software
that affects human lives, formal methods would be a sensible choice, because
it allows to rigorously guarantee that specific properties hold. In contrast, if
we were to define a system mainly composed of visual elements, prototypes
would be more suitable.

Rarely, systems are monolithic; instead, they are complex compositions of
different subsystems. Hence, a complete software application may require as
many specification formats as the number of components it contains. In this
research though, we constrain ourselves to the specification of non-critical
software applications as defined in Section 3.1.1, for they are responsible for
the logical functionality of a system. Our specification format is presented
in Section 4.1, and it constitutes an alternative for the formats discussed in
Section 3.2.2.



3.1. BACKGROUND 31

3.1.7.2 Logics

Logics are formal languages with precise semantics and syntax. The later is
defined thorough grammatical rules used to generate all well-formed formulae,
within the language. A logic may additionally define an inference engine,
which is a set of laws that allow the generation of new well-formed formulae
from existing ones. A logic system integrated by a formal language and an
inference engine allows to reason about statements within the system[86, 118,
282].

In a logic system, there is an initial set of well-defined formulae, called
axioms, that define facts we know or assume to be true. Then, one can try
to ask if another given formula is derived from the facts we know. If the
application of the laws in the inference engine eventually leads to the formula
in question, we have proven that such formula follows from the facts. This is
just an overview of the way logic systems[303].

3.1.7.2.1 Popositional Logic

Propositional logic or propositional calculus is the most basic type of
logic. In it, simple propositions of the type “ Plato is a man” are expressed.
Propositions are usually represented by letters from the alphabet, and they al-
ways must have either a true or false value[303]. In other words, a proposition
is an assertion about some fact.

Propositions can be combined to form more complex structures through
the following logical connectives: not (¬), and(∧), or(∨), if...then( =⇒ ),
and if and only if ( ⇐⇒ )2. If we assume that the literal P represents the
proposition “ Plato is a man”, and the literal Q represents the proposition “
Plato is mortal”, we can write “ Plato is human and mortal” as P ∧Q, which
is a well-formed formula within propositional calculus.

In order to reason about these propositions, a deductive apparatus or
inference engine is required. One the apparatuses used with this logic is the
(Gentzen) natural deduction system[129], which defines rules to introduce and
eliminate connectives. For example, assuming we have two propositions A and
B, it is possible to combine them in (A∧B); and from A and (A =⇒ B) we
can infer B. This rule is usually written as shown below, and it is well-known
as modus ponens or implication elimination[106, 112, 303]. With these rules,
propositional logic becomes a powerful method to perform formal reasoning.

A (A =⇒ B)

B
2Refer to [303, p. 19] for further details about these connectives.



32 CHAPTER 3. CONTEXT

The type of reasoning shown above does not apply to all aspects of human
reasoning. For instance, in the expression “I’ll meet you after school”, we need
to understand the implications of the word “after”. Sentences like “John’s
cat is big” may require an interpretation of the ownership of the cat, and
sentences like “this place is nice” depends upon the understanding of which
place we are referring to. Despite these limitations, propositional calculus has
set the grounds for the development of more extensive logics.

3.1.7.2.2 Predicate Logic

First Order Logic (FOL) or predicate calculus3 is one of the extension
of propositional logic. In it, we model the world through the establishment
of properties amongst elements. These properties are called predicates, and
the elements can be either fixed or variable. For instance, to express the
proposition “Plato is a man”, we define the property of being a man as
MAN(x), where x is a variable; then we apply that property to the specific
subject Plato, resulting in the predicate MAN(Plato).

The ability to deal with properties also requires the ability to deal with
subjects to whom the properties apply. In the previous example, we applied
the property MAN(x) to one specific subject, but FOL also allows us to reason
about groups of subjects. This is achieved through the universal quantifier
(∀), which states that a given property holds for all the elements in a given set,
and the existential quantifier (exists), that indicates that a property holds
for some (at least one) of the elements in a set. An example of quantification
is ∀xMAN(x) =⇒ MORTAL(x), which means that for any subject x, if x
is a man, then x is also mortal.

In predicate logic, the connectives of propositional calculus are combined
with predicates, variables and quantifiers in order to build more complex
expressions. For instance, note that there is no “empty” quantifier, so if we
wish to say that a property does not hold for any element, we can use the
formulas ¬∃xP(x) or ∀x¬P(x). Predicates also allow us to express relations
between subjects. We can express that Socrates is Plato’ teacher thorough
the formula TEACHER(Socrates, P lato).

We can also build more complex sentences such as “Mary has a lit-
tle lamb”, translated into the expression ∃x ∈ People,∃y ∈ Animals |
IS NAMED(x,Mary) ∧ IS LAMB(y) ∧ IS LITTLE(y) ∧ HAS A(x, y). This
last example illustrates the complexity required to express short sentences
in FOL, and thus the reason why this format is not recommended to write
requirements specifications.

3Refer to [303, p. 43] for more detailed information about FOL.



3.1. BACKGROUND 33

Reasoning in first-order logic is based on the natural deduction system
of predicate calculus, with the inclusion of rules to introduce and eliminate
quantifiers. The general idea of these rules is that if there is a property that
holds for an arbitrary element, then it holds for all the elements. Whereas
if that property holds for a specific subject (like Plato), then there exists at
least one variable that satisfies that property, but we cannot say that it holds
for all subjects. Inversely, if there is a property that holds for all variables,
then it holds for any arbitrary subject, and if that property holds for any
existing subject, then it must hold for a particular subject.

In spite of the complexity to express requirements specifications, we
acknowledge the reasoning capabilities of predicate calculus, and we make
use of them in modelling (Section 5.1), inference (Section 5.2), validation
(Section 5.3), and comparison (Section 5.4) of class diagrams.

3.1.7.2.3 Hoare logic and Design by Contract

Hoare logic[150] was explicitly developed to prove the correctness of a
computer program. The general idea is that given a valid set of conditions P ,
also called preconditions, the execution of a set of instruction S should always
generate the expected output Q, also called postconditions. Hoare calculus
states specific rules to indicate what should happen after the execution of single
statements including skip, assignment, composition, conditions, consequences,
and while loops. The syntax and semantics of this logic are very different
from any of the previous ones since it reasons specifically about computer
programs.

An example of reasoning within this logic is the following application of
the assignment rule {x+ 1 = 73} y := x+ 1 {y = 73}. In this example, we
observe the execution of the assignment y := x + 1. Before this execution,
we know that x + 1 is 73, and we assign that same value to the variable
y. Therefore, after the execution, y must be 73. This calculus allows us to
check every statement within a program until the end, and check whether the
output obtained from the application of the rules is the same as the expected
output.

Hoare calculus has an enormous influence on formal methods for software
verification. Meyer’s work on Design by Contract[216, 217, 219] is grounded
in this logic. He introduced preconditions, postconditions and invariants into
the Eifel programming language. Since then, variations of contract-based
software verification have been developed for different programming languages,
including C#[32], Java[37, 65, 79, 80, 173], and Python[238] amongst others.
Given this influence and impact, both Hoare logic and design by contract set



34 CHAPTER 3. CONTEXT

the grounds for our work in Section 4.2.

3.1.7.2.4 Other logics

Though our work is firmly grounded on predicate calculus and Hoare
logic, we briefly discuss other existing logics for the sake of completeness.
Modal logics[303, p. 279], in contrast with propositional and predicate
logics, do not assign an absolute true or false value to their statements;
instead, the truth value can be qualified as a possibility, a necessity, or an
impossibility. Temporal logics[205] is a type of modal logics that provides
temporal operators, to reason about the past, present and future truth value
of changing statements. For instance, we could say that a property will hold
sometimes, or has always held. These logics have been used mainly to specify
properties of concurrent systems[71, 243], and they are useful to capture
reachability problems in paths[294].

Description logics[21, 22, 63] are commonly used in formal knowledge
representation. They ease the description of concepts through hierarchies,
and operators such as inclusion, equivalence, definition, negation, union, inter-
section, and universal and existential qualification (there are no conditional
operators). These logics allows to check the properties of a concept based on
the relations it has. For example, we could check if a penguin can fly based on
its relations with other birds. Hence, they turn out to be useful information
retrieval mechanisms similar to ontologies.

There is a considerable number of other logics out there, but we only
discussed those that are tightly related to our work. Now we talk about some
of the problems in logics such as decidability, and understandability.

3.1.7.2.5 Common Problems

To define the decidability problem, we have to remember the simplified
operation of a logic system, which is to apply inference rules to existing
formulae until we reach one expected formula. A logic system is decidable
if there is any method at all to determine whether a given formula can be
generated from the system. A logic can also be semi-decidable if there exists
a method that accepts a given formula if and only if it belongs to the logic;
otherwise the method either rejects the formula or does not halt.

Predicate calculus, in general, is undecidable[50, 132], it means that some
formulae cannot be proven either true or false, and the same applies for Hoare
logic [43, 184, 197]. Modal logics are decidable fragments of FOL[295], as it
is the case for some temporal logics[55, 97, 184, 260] and description logics in



3.1. BACKGROUND 35

general[22, 153, 156].
Decidability can be seen as a formal or technical problem, whereas un-

derstandability is considered a more practical problem. It has to do with
the ease of use of logics as a communication mechanism. We showed a few
examples of statements in predicate and Hoare logics, and though trivial, they
still require proper understanding of the syntax and semantics of these logics.
The need for proper knowledge on these logics and the level of abstraction
they demand are also the main limitations in their use for requirements
specifications. It would be ridiculous to expect users, sponsors and other
stakeholders to get an in-depth understanding of logics. Hence the need for a
format that is more familiar to them.

3.1.7.3 Model Verification

Formal verification refers to the rigorous analysis of the behaviour of a software
artefact expressed in a formal language. Program verification has received
considerable attention from the research community since the establishment
of its principles in Hoare logic[150] (discussed in Section 3.1.7.2.3).

Since a program is usually built based on a model, the former can only be as
correct as of the later. For this reason, model verification is equally important
to construct correct programs. According to Balaban[29], correctness is “the
capability of a model to denote a finite but not empty reality”. In his work,
he accounts for two components of correctness; consistency which checks for
non-emptiness and finite satisfiability, which checks for termination.

In addition, Cabot’s work[60] deals with strong and weak satisfiability,
as well as redundant constraints. They use Constraint Logic Programming
to formalize class diagrams and the solver ECLPS to prove these properties.
The relationship between the work of Cabot and Balaban is extensive, and it
serves to exemplify the efforts done in model verification.

3.1.7.4 SAT/SMT Solvers

A SAT solver is a program that evaluates interpretations of boolean formulae
in order to find a solution that can satisfy another given formula. Though the
satisfiability problem belongs to the class of NP-Complete problems, these
tools are still powerful enough to perform some program verifications[16].

The power of SAT solvers can be improved with the use of Satisfiability
Modulo Theories (SMT), which extend the application of solvers beyond just
boolean variables. With SMTs, we can evaluate problems including first-order
logic, arithmetic, and other domain-specific theories[95]. Amongst the most
popular SMT solver we find Z3[96], Yices[107], Simplify[100], and CVC4[35].



36 CHAPTER 3. CONTEXT

For our current implementation, we have chosen CVC4 as discussed in Section
6.1.2.2.

3.1.8 Data Augmentation for Machine Learning

Our current research is not intended to be exhaustive regarding Machine
Learning (ML); however, it is important to highlight the potential use of our
framework within it. In this section, we briefly introduce the concepts of
ML that define the potential application context for our equivalence theory
described in Section 5.4.

3.1.8.1 Machine Learning

Machine Learning[45, 226, 302] is a collection of algorithms used to gener-
ate predictive models. There are roughly three types of machine learning
techniques, namely supervised, unsupervised, and reinforcement.

Supervised learning depends on labelled training data, i.e. input combina-
tion of values mapped to expected outputs, in order to synthesize a function
that can reproduce the same mapping for new values. Supervised learning
includes Decision Trees[45, 198], Random Forest[45, 196], KNN[45, 310] and
Logistic Regression[45, 68].

In contrast, unsupervised learning[31, 76] examines a large number of
values in order to find patterns within them; this task is usually referred
to as clustering. Clustering algorithms include hierarchical clustering[93],
k-Means[163], gaussian mixture models[210], self-organizing maps[180] and
hidden Markov models[109, 254].

Reinforcement learning[168] is used to train models for decision-making
based on rewards and punishments. This type of learning is characterised by
the interaction of agents with an external environment through actions and
states. Some of the most common reinforcement learning algorithms include
Q-learning[240] and SARSA[285].

3.1.8.2 Neural Networks

Artificial Neural Networks (ANN)[144, 145] are computational models based
on the connection of small computational units (neurons) in order to build
complex mathematical functions. ANNs are composed of neurons grouped in
layers and connected through weighted connections that propagate information
through the network. A learning rule enables to adjust the weights of the
connections through iterations of the learning process until the expected
output of the network is achieved.



3.1. BACKGROUND 37

Figure 3.5: Usage of our Comparison Theory to within a CNN that generates class
models from requirements documents

Neural Network are widely used in Machine Leaning[46, 145, 155, 298],
and have motived new learning strategies[194, 233] including generative
models[160, 172]. Generative models have demonstrated their capabilities for
image generation and recognition[256, 257, 308].

We are particularly interested in Generative Adversarial Networks[138]
(GANs), in which a generative model competes against a discriminator in
order to improve the outputs of the model. We believe that our equivalence
theory proposed in Section 5.4 can be used as a discriminator in a GAN as
shown in Figure 3.5. In this way we could generate additional class models
from a requirements document, assuming we already have at least one valid
model for the same requirements.

3.1.8.3 Data Augmentation

If we have a requirements document, and we want to classify its contents
(sections, words, sentences) based on the elements of class diagrams (classes,
attributes, operations), we can resort to machine learning. However, it requires
a considerable collection of requirements labelled with their corresponding
class diagram tags. Up until now, we have not been able to find any such
dataset, the closest thing we have found is a collection of requirements
documents with some class diagrams attached[289], but even for this set, the
number of diagrams available is limited.



38 CHAPTER 3. CONTEXT

In Section 3.1.8.2 we explained how GANs and our comparison theory
could be combined to generate additional class diagrams for a given set of
requirements, this particular activity is known as data augmentation[103,
293].

3.2 Related Work

3.2.1 Requirements Specification Document

Regardless of the technique used, any resources acquired and/or generated
through the elicitation process must be collected for future reference. Record-
ings of the interviews, written questionnaires and responses, digital images,
and notes are some of the formats that can be used for this purpose. These
resources are used to derive the detailed requirements document.

Kontonya[182] and Sommerville[281] discuss the importance of the re-
quirements document to guide the development process and to communicate
expectations within the stakeholders. Prototypes of this document are found
in the literature [1, 36, 146, 159]. Based on our experience in the software
industry and our previous research[212–214], we propose our own requirements
specification document in Section 4.2.

Our work expands some of the elements of the software requirements
specification proposed by the IEEE in the ISO/IEC/IEEE 29148 standard[159].
This standard integrates all relevant components of functional and non-
functional requirements into 19 well-defined sections. This research has
an impact in 3 of those sections, namely Specific requirements, Functions,
Verification. Our contributions to the first and second sections are described
in Chapter 4, whereas our work regarding the third section is detailed in
Section 5.3.

3.2.2 Formal Specification Languages

3.2.2.0.1 Specification Pattern Systems

They were introduced by Dwyer[108] to specify common behaviours in
temporal logic through formal patterns. However, these patterns turn out
to be too abstract to be understood by some stakeholders, such as users and
customers, or even by software developers, without previous training in such
logic. Even though they are well-defined patterns, they are not designed to
deal with functional requirements explicitly.



3.2. RELATED WORK 39

3.2.2.0.2 Ontologies
They were developed to represent knowledge through well defined relations

between concepts. Though they were conceived within the area of artificial
intelligence, they have proven to be equally crucial in RE, because they can
formally describe real-world concepts. Examples of its use in RE are present
in the literature[54, 167, 195, 242, 277, 307].

The manipulation of ontologies imposes a challenge for their users; this is
because the complexity of its graphical representation, as a network of con-
nected concepts, may be intractable for problems with numerous connections.
Additionally, their semantics is not implicitly known by all stakeholders. For
instance, it is challenging for users and customers to understand the notations
and structures used, whereas software engineers and architects are typically
more familiarised given its similarity with other technical notations.

3.2.3 Controlled Natural Languages

A Controlled Natural Language (CNL) is defined by a finite set of grammat-
ical rules that resemble the constructions of natural language with certain
restrictions over the vocabulary, the syntax or the semantics used.

In 3.1.5.2, we talked about the communication process followed to elicit
requirements. Throughout this process, the type of information exchanged
may differ with respect to the interlocutors, thereby requiring different com-
munications formats[272, p. 379]. For instance, the language spoken between
computers is different from the one spoken between humans, and the language
spoken in Engineering is not the same as the one spoken in Medicine. Despite
the considerable number of existing CNLs[185], we investigate only those that
satisfy the following relevant features: they must be based on the English
language, they must be computable, and they must allow to communicate
software requirements. We present a review of such CNLs next.

3.2.3.1 SBVR

SBVR Structured English[236] is a language developed within the context of
model driven development[271] that defines terms, names, verbs and keywords
as its building blocks. It is characterised by its use of visual elements, such as
colouring and underlining, to identify components. From the official overview
of the approach, we know that “SBVR has a sound theoretical foundation...,
the base is first-order predicate logic with some limited extensions into modal
logic”[237].

This CNL has been used as an intermediate language between English
and formal languages such as Alloy[161] and OCL[258]. The main difference



40 CHAPTER 3. CONTEXT

between our approach presented in Section 4.1 and SBVR is that we only
make use of grammatical constructs without graphical elements. Also, the
number of expressions supported by our CNL, though sufficient for capturing
functional requirements, is smaller than the ones allowed by SBVR.

3.2.3.2 ACE and FE

Attempto Controlled English (ACE)[123] is accompanied by an automatic and
unambiguous translation into first order logic. It supports features, such as
complex noun phrases, anaphoric references, subordinate clauses, modality and
questions. Formalized-English (FE)[209] is based on Conceptual Graphs[223]
and prioritizes expressiveness. Besides quantification and negation, it supports
contexts, possibility, collections, intervals, and sentences that can be reduced
to FOL. The problem with these two CNLs is that while they are more
expressive and more comfortable to formalise, their syntactic rules are more
numerous and complex.

Given this problem, we argue that the usefulness of a CNL to express
requirements specifications is inversely proportional to its complexity. The
work of Williams[299], Funk[124], and Garcia[127] has been considered to set
the grounds for our argument. They demonstrated how the use of complex
CNLs[247] is not trivial for experts and non-experts.

From here, the current challenge we address is to develop a CNL that min-
imises complexity but maximises expressiveness in the definition of software
specifications. That is, a language that can be understood by all stakeholders
without any additional training, and quickly learnt by the stakeholders re-
sponsible for documenting the requirements. With these considerations, the
use of CNLs to write specifications is justified.

In this section, we have discussed different alternatives to consider when
building requirements specifications. From the options listed, we have high-
lighted the challenge we address with the development of our CNL, which
is presented in the following chapter. Within the alternatives, we have also
discussed logics, and though they are not our first choice for specifications,
they remain relevant for our contributions in sections 5.2 and 5.3.

3.2.4 Model Checking

Model checking is the application of formal verification to prove the absence
or presence of well-defined properties of a system. The most common case is
to check safety and liveness of concurrent systems[190]. The former assures
that nothing bad happens, and the second one implies that something good
eventually happens. Good and bad events are checked in terms of interaction



3.2. RELATED WORK 41

and access to resources, being deadlocks and starvation two typical aspects
to be checked for[61]. Model checking makes use of temporal logics, discussed
in Section 3.1.7.2, to reason about the reachability of specific states of the
system that represent the properties just mentioned.

In this way, model checking aims to verify whether the model satisfies
the safety specifications of a system, which is to some extent similar to
the problem we address in Section 5.3. However, it differs in that model
checking requires a formal specification of safety properties, while our work
on model validation needs requirements to be specified in a reduced and
properly defined set of sentences in English, which we present in Chapter 4.
Another difference is that model checking evaluates the states of the model,
and our approach evaluates the relation between a class diagram and the
requirements it captures. Another difference is that the area of application
for model checking is mostly hardware design, while our approach targets the
modelling of non-critical software, described in Section 3.1.3.

From the literature[29, 59, 134, 278], we identified the basic properties to
be internally verified in a class model. They are:

• Strong satisfiability: all the elements of the diagram are instantiated.

• Weak satisfiability: at least one class is instantiated.

• Liveliness of a class: one specific class must be instantiated.

• Lack of constraints subsumption: there are no redundant con-
straints

In particular, there has been a considerable effort in developing formal
verification of UML Class Diagrams. Cabot et al.[59] use constraint pro-
gramming to verify weak and strong satisfiability or absence of constraint
redundancies. Gorgolla et al. [134] have developed a tool for the validation
of UML models and OCL constraints based on animation and certification.
The work of Soeken[278] illustrates how to encode a class diagram into a SAT
problem, where OCL constraints represent states to be checked for. Miao[221]
proposes a formalisation of UML class, sequence and statechart diagrams
in Z3; although no particular properties are checked. Clavel and Egea [75]
present “a rewriting-based tool that supports automatic validation of UML
class diagrams with respect to OCL constraints”. This short survey samples
the kind of work done regarding UML, and it is interesting that most of them
have to do with OCL and the states and inner properties of the diagram.

We ought to notice that it is difficult to find work related to static and
dynamic verification of models; these activities seem to be more closely related



42 CHAPTER 3. CONTEXT

to computer programs and not to their models. Though formal verification
has a more reasonable impact in model verification, it is limited to the internal
properties of the model, leaving aside the relationship between models and
their respective specifications; this brings up the question about how can we
know that a given model is correct with respect to its specification?. Model
validation aims to answer this question, and we discuss it on Section 5.3 in
order to answer this question.

3.2.5 Model Validation

Software validation answers whether the right application is being built, or
whether it satisfies its intended use.

Both requirements and software validation have been studied before;
however, model validation is usually given up in favour of model checking.

In this work, it is argued that model validation is relevant for the construc-
tion of realisable software systems, and as such it requires a proper definition.
Analogically to requirements validation, model validation is defined as the
process of checking that the model captures precisely what the specification
states.

Requirements validation is usually done with the assistance of the users
of the system, and software validation requires test cases. Model validation,
in contrast, is achieved utilising formal methods, that allow to abstract
requirements and models, and to formally establish the relation between
them. In order to tell whether the model satisfies the requirements or not, our
proof-of-concept makes use of formal verification tools, such as SMT solvers,
and formal systems such as first-order logics, which have been introduced in
Section 3.1.7.4 and Section 3.1.7.2 respectively.

In Section 5.3 the components of model validation are discussed, including
the inference rules that enable to prove this property of models.

3.2.6 Model Generation

Abdouly et al.[2] have provided us with a survey of tools that generate
UML diagrams from requirements. We have used this survey to provide our
classification of these tools based on the specific problems we addressed, as
defined in Section 1.1. The categories we proposed are manual generation,
rule-bases generation and machine learning generation tools; each of them is
now discussed.

Manual generation refers to the approach in which a person, typically a
software engineer, extracts information from the requirements of a system in
order to generate models. The most common manual approach is inspection[9,



3.2. RELATED WORK 43

114], in which inspectors intervene in the stages of the development process
to analyse the artefacts of the system. The most significant limitation of this
approach is the possibility of human error, which motivated the development
of automated techniques.

Rule-based generation approaches includes systems based on natural
language processing[51, 123, 147, 186, 231, 277]. They make use of mapping
between language and model structures based on well-defined rules. Some of
these approaches, however, still required some manual work in order to deal
with the complexity of natural language.

From the work of Abdouly, we noticed a lack of tools that use machine
learning; this has been related to the nature of the data involved. Representing
both documents and images within learning algorithms is a challenge being
addressed in areas where more data is available, such as tumour detection
systems, and multi-language translation systems. The lack of data available
for requirements-to-model translation has set a significant obstacle in the
development of these approaches.

3.2.7 Model Comparison

From the literature review, we found that most of the existing work aims
to compare and relate different kinds of diagrams. For example, Siau[276]
compares the application of use case with class diagrams, while De Lucia
[94] compares Entity-Relationship diagrams with class diagrams. Another
approach based on OCL was proposed by Gorgolla[135, 136], which compares
constraints over the diagrams, rather than their contents. Berardi[41] and
Queralt[252] propose formalization methods for class model reasoning based
on detection of inconsistencies and redundancies. Our approach, however,
uses a different approach, based on semantics and contents of the model, and
not in their constraints.

3.2.8 Model Extraction

Model extraction is the task of processing images representing class diagrams,
in order to generate equivalent models using some descriptive notation. Re-
lated work includes that of Ho[251], who used image processing and machine
learning to classify class diagrams, based on graphical features such as lines,
shapes, etc. In a similar way, Futrelle[126] presents an effort to extract and
classify diagrams from PDF documents, and Dragan[104] aims to identify
class stereotypes. To the extent of our knowledge, and based on our research,
there are no systems that aim to explicitly extract the components of a



44 CHAPTER 3. CONTEXT

class diagram using image processing. However, since this is a secondary
contribution we do not provide an exhaustive review of this topic.

3.3 Previous Work by the authors

3.3.1 Construct by Contract

Our interest in the development of reliable systems was initially expressed
through Construct by Contract (CbC)[212]. It is an ideal development process
in which contracts from Meyer’s Design by Contract[217] are extended across
the entire software development life cycle. CbC expected requirements to
be expressed in terms of specification contracts that could be transformed
into model contracts, and program contracts to aid model and program
verification.

This concept inspired the development of the requirements specifications
presented in Chapter 4. Though CbC motivated the current work, our new
contributions aim to tackle real scenarios, far from the idealized ones covered
by our previous work.

3.3.2 TOTOTL

Tototl[213] is also part of a previous effort to contribute to the development
of reliable systems by providing a toolkit for Construct by Contract. It is a
tool that, like the one proposed in Chapter 6, provides an interface to interact
with formal methods easily. In concrete, Tototl analyses constraints expressed
in a business-rules language named SBVR[27] and generates corresponding
OCL translations to annotate class models.

This translation is done by means of reduced sentences in English with a
basic structure composed by an actor, and action and a receiver. This type
of sentences inspired the work presented in Chapter 4. Figure 3.6 shows the
implementation of Tototl to support these sentences and their representation
throughout the different stages of the development process.



3.4. SUMMARY 45

Figure 3.6: Tototl Implementation

This work was presented in the Conference on Computing Natural Rea-
soning (CoCoNat) 2015, at Indiana University, Bloomington. It motivated us
to research further about formal specifications derived from natural language.

3.4 Summary

This chapter introduced our subjects of study, which are non-critical software
applications, and requirements specifications. For the former, we talked about
the diversification and classification of software applications, which allowed
us to define the scope of our research. For the later, we discussed the impact
of Software Engineering and Requirements Engineering, and the relation of
our research with the Requirements Engineering Process. We surveyed the
state-of-the-art for requirements elicitation and specification, and we detailed
different specification formats, including SPS, ontologies, logics, and CNLs.
We concluded this chapter with some foundations for software verification.





Chapter 4

Requirements Specification

Understanding the problem to be solved constitutes the first step towards
the construction of a successful software system. History, literature, and
experience have demonstrated that elicitation, specification, and validation of
requirements are crucial tasks to ensure the success of the solution built[249,
280]. In this chapter, we concentrate our efforts in describing our contributions
to the specification task, which serves as the foundation to the rest of our
work.

In the following pages, we describe a set of rules to specify requirements
systematically, along with an original document structure inspired by legal
contracts. These rules and format are further elaborated through an example
that describes the process to document functional requirements into a more
standard specification that should have the following properties[249, 280].

• Structured: The document that captures the specification must be
separated in sections that capture similar or related specification ele-
ments.

• Clear: All the specification elements must be understandable for all
stakeholders.

• Concise: Redundancy between specification elements must be avoided.

• Correct: Specification elements must not contradict each other.

• Unambiguous: Every specification element is uniquely defined and
referenced.

• Verifiable: Specification elements can be checked for these properties.

47



48 CHAPTER 4. REQUIREMENTS SPECIFICATION

By specification elements, we refer to all the constructs that integrate the
specification, such as sentences, formulae, equations, diagrams, definitions,
etc.

In the Section 4.1 of this chapter, we discuss how Controlled Natural
Languages (CNLs), introduced in Section 3.2.3, can be used to specify software
requirements. We also propose a CNL that supports the properties defined
above. In Section 4.2, we present the structure of a requirements specification
document inspired by legal contracts to specify non-critical systems. Also,
in Section 4.3, we present the transformation process required to derive this
specification document from the needs of the user using our proposed CNL.

Controlled Natural Languages were introduced in Section 3.2.3 as lan-
guages that resemble the structure of natural language, though with limited
grammar and/or lexicon. The difficulties that these languages present[124,
127, 299], such as complexity and domain restriction, were discussed together
with the alternatives to overcome them[140].

As part of the solution to address these difficulties, it is proposed that
only a specific set of people within a project must learn the exact rules of
the CNL used. The responsibility of the project leader to communicate the
requirements to the development team, as depicted in Figure 3.2, makes it
the most suitable role to perform this task. Project leaders, unlike users and
sponsors, can make use of the knowledge about the CNL rules for the different
projects they are involved. In this way, the other stakeholders do not need to
memorise these rules, yet they are capable of understating the specification
document written.

In summary, we optimise the collective effort of the stakeholders when
specifying software systems using CNLs by minimising the number of people
that need to learn their rules, and maximising the number of stakeholders that
can understand the requirements captured. We have discussed some general
purpose CNLs[123, 185, 209, 236] CNLs in Section 3.2.3, now we propose
a Controlled Natural Language that targets specifications for non-critical
software systems.

4.1 SpeCNL

In this section, we present SpeCNL (read as spec-n-l), our CNL designed to
address the specification of functional requirements for non-critical software
applications. We define all the elements that represent the building blocks
of our language, including essential parts of speech, some basic concepts
and more complex blocks that are specific-purpose sentences. Note that we
repeatedly use Backus–Naur form (BNF)[178] throughout this section to



4.1. SPECNL 49

define the grammars for SpeCNL, we do this using the syntax for NLTK[199]
grammars.

4.1.1 Parts of Speech

Parts of Speech (POS) are categories used in languages and grammars to
associate a specific behaviour to a word within a sentence, based on its
grammatical function. For example, in the sentence “give me a can of tuna”,
the word can behaves as a noun, whereas in the sentence “the kid can read”,
the same word behaves as a modal verb.

Within computer science, POS are used in several Natural Language Pro-
cessing (NLP) tasks[166], including automatic translation, text comprehension,
speech-to-text and text-to-speech conversions, etc. The set of categories used
as Parts of Speech may vary depending on the purpose of the application that
uses them. The most common set is the Penn Treebank[207] that contains
48 categories, and is used in popular libraries such as the Stanford POS
tagger[291, 292].

Even though the Penn Treebank tagset captures a significant number
of categories, some of them are not needed to write software specifications,
such as adverbs and interjections. Likewise, perfect tenses can be avoided
by providing special semantics for other tenses that simplify expressing the
needs of users. We propose the adaptation shown in Grammar 4.1 to be used
within our CNL. Notice that these rules do differentiate between plural and
singular nouns, however, in our theories described in chapter 5 we assume
that the relations of singular and plural nouns are known. In Chapter 6 we
discuss the usage of natural language processing to generate these relations
automatically.

NON -> any noun either singular or plural

NOS -> a singular noun

NOP -> a plural noun

VBB -> any verb in infinitive form

VB -> any verb in simple present conjugation

VBP -> any verb in simple past form

VBI -> any verb in participle form

ADJ -> an adjective

NUM -> any real number

INT -> any integer number

DEC -> any decimal number

DIG -> any digit

LAMBDA -> the empty string

Grammar 4.1: POS in SpeCNL



50 CHAPTER 4. REQUIREMENTS SPECIFICATION

4.1.2 Concepts

Like Parts of Speech representing the category of a word, we need to categorise
more complex structures. We refer to the set of these categories as concepts.
These behavioural elements capture functions that are reused throughout all
the different sentences that form our Controlled Natural Language.

Modals

They indicate the level of obligation that must be observed by other concepts.
For our approach, only two levels of obligations are needed. Must is the
highest level, meaning the constraint has to hold at all times. Can on the other
hand, represents the minimal level of obligation, implying the constraint does
not have to hold at all times. Modals are formally described in Grammar 4.2.

MODAL -> ‘can’ | ‘must’

Grammar 4.2: Modals in SpeCNL

Comparators

These are elements that allow the comparison of two values of an attribute.
For instance, “A is more flexible than B”. We identify two general types of
comparators: equality and inequality. Within our CNL they are expressed in
Grammar 4.3:

COMPARATOR -> INEQUALITY ‘or’ EQUALITY | INEQUALITY | EQUALITY |

COMPARATOR SYMBOL↪→

INEQUALITY -> ‘greater’ ‘than’ | ‘less’ ‘than’

EQUALITY -> ‘equal to’

COMPARATOR SYMBOL -> ‘>’ | ‘<’ | ‘=’ | ‘<=’ | ‘>=’

Grammar 4.3: Comparators in SpeCNL

Entities

An Entity has two main functions: it can execute an action, or be affected
by an action. Entities are simple nouns or quantified nouns as described in
Grammar 4.4.



4.1. SPECNL 51

ENTITY -> PLURAL ENTITY | SINGULAR ENTITY | QUALIFIED ENTITY | NON |

ATTRIBUTE | NON↪→

SINGULAR ENTITY -> SINGULAR INDICATOR QUALIFIER NOS

PLURAL ENTITY -> PLURAL INDICATOR QUALIFIER NOP

QUALIFIED ENTITY -> QUALIFIER NON

SINGULAR INDICATOR -> ‘a’ | ‘an’ | ‘one’ | ‘1’ | ‘the’

PLURAL INDICATOR -> INT | ‘the’

QUALIFIER -> ADJ | NN | VBI | QUALIFIER‘-’QUALIFIER | LAMBDA

Grammar 4.4: Entities in SpeCNL

Attributes

An Attribute is an element or property of an entity. They always have to
refer to the entity they belong to in order to be valid. They cannot exist on
their own, and they are described in Grammar 4.5.

ATTRIBUTE -> ENTITY APOS NON | NEUTRAL INDICATOR NON ‘of’ ‘the’ NON

Grammar 4.5: Attributes in SpeCNL

Actions

An Action is the activity performed by an entity or over an entity. It contains
a verb in the simple present tense and its level of obligation is assigned
through a modal, as seen in Grammar 4.6.

ACTION -> VB | MODAL VB

Grammar 4.6: Actions in SpeCNL

4.1.3 Sentences

We have already presented the common “atomic” concepts of our Controlled
Natural Language. In this section, we present a list of structures, named
sentences, that are to be used to build the different elements of the specification.
These sentences have well-defined purposes, and a collection of them is used
to generate the requirements specification document.

Structural Sentences

These are used to capture the structure of the concepts that define the problem
domain. Because these sentences express properties that apply to all elements
of the domain, they must be written using the pluralisation of a noun. Some



52 CHAPTER 4. REQUIREMENTS SPECIFICATION

examples of these sentences are: books must have an author, or books can
have an ISBN. Its formal description corresponds to Grammar 4.7:

STRUCTURAL SENTENCE -> NON MODAL ‘have’ STRUCTURAL ITEM

STRUCTURAL ITEM -> ENTITY | ENTITY‘,’ STRUCTURAL ITEM | ENTITY‘, and

’STRUCTURAL ITEM↪→

Grammar 4.7: Structural Sentences in SpeCNL

Comparison Sentences

They are used to compare the values of attributes. For example the age
must be greater than 5, and the user’s age must be greater than 5. The BNF
describing these sentences is Grammar 4.8:

COMPARISON SENTENCE -> ATTRIBUTE CONSTRAINT COMPARATOR NUM |

ATTRIBUTE CONSTRAINT ADJ↪→

CONSTRAINT -> OBLIGATION | POSSIBILITY

OBLIGATION -> ‘must’ ‘be’

POSSIBILITY -> ‘can’ ‘be’

Grammar 4.8: Comparison Sentences in SpeCNL

Cardinality Sentences

They are used to represent limits on the size of collections of elements. For
example: users can borrow up to 5 books and users must return at least 1
book. They are structured as described in Grammar 4.9

CARDINALITY SENTENCE -> ENTITY ACTION LIMIT NUM NON

LIMIT -> ‘up’ ‘to’ | ‘at’ ‘least’ | ‘maximum’ | ‘minimum’ |

‘exactly’↪→

Grammar 4.9: Cardinality Sentences in SpeCNL

Conditional Sentences

These sentences are used to express the actions to be taken in specific cases.
A case expresses the conditions that trigger an action, and the consequence
is the action to be performed whenever the case occurs. The consequence
is composed of a verb in its base form and an entity. For example if the
user’s age is less than 15, then omit adult books, if the session is expired,
then request login, and if the book is not registered, then throw error. This
sentences are described in Grammar 4.10.



4.2. CONSPEC 53

CONDITIONAL SENTENCE -> ‘if’ CASE ‘then’ CONSEQUENCE

CASE -> ENTITY CONDITION MODE CONDITIONAL | CASE ‘and’ CASE | CASE

‘or’ CASE↪→

CONDITION MODE -> ‘is’ | ‘is’ ‘not’

CONDITIONAL -> COMPARATOR NUM | VBP | ADJ | NN

CONSEQUENCE -> VBB ENTITY

Grammar 4.10: Conditional Sentences in SpeCNL

Type Sentences

These sentences are used to express the hierarchical classification of entities.
These constructs capture the semantics of classification, i.e. B is a type of
A. Concrete examples are: felines are mammals, account holders are users,
books are loan-items. Grammar 4.11 is used to construct these sentences.

TYPE SENTENCE -> SUBTYPE ‘are’ TYPE

SUBTYPE -> PLURAL ENTITY

TYPE -> PLURAL ENTITY

Grammar 4.11: Type Sentences in SpeCNL

In section 4.2 the process used to generate a ConSpec specification is
exemplified.

4.2 ConSpec

In Section 3.2.1, we introduced the concept of requirements document, and we
discussed the extensive proposal of the IEEE[159] for requirements specifica-
tion. In here, we present our approach, that is tailored to specify functional
requirements for non-critical systems.

Our work is inspired by legal contracts[158], which aim to describe as
clearly as possible the obligations and concessions between two parties. Legal
contracts should contain a well-defined offer, acceptance conditions, and
special considerations[78, 90] to be appropriately formed. In general, contracts
are well-written documents[170, 253]. We follow the definition of elements and
formats of legal contracts to generate our proposed requirements specification.

Other authors have also made use of contracts to design software systems.
Back in 1986, Bertrand Meyer proposed Design by Contract (DBC)[217, 219],
a design principle that imposes formal constraints on software interfaces for
the Eiffel programming language. This work is grounded on Hoare Logic[150]
that introduces preconditions to express the constraints to be satisfied before
the execution of a method, postconditions to specify the conditions that



54 CHAPTER 4. REQUIREMENTS SPECIFICATION

should be guaranteed by the program, and invariants for the conditions that
must hold at all times. A more comprehensive description was presented in
Section 3.1.7.2.3.

DBC is suitable for specifying functions/methods in a growing number
of programming languages[32, 193, 238]. However, less effort has been paid
to the Requirements Engineering Process, which is crucial to make sure the
system being built satisfies the expectation of its users and sponsors. Hence,
we propose the following contract-inspired specification document, named
ConSpec, to address functional requirements for non-critical applications
using our SpeCNL described in Section 4.1.

ConSpec is composed of three base elements: a Title for the software
component to be specified, the current Version of the component being
developed, and a collection of Clauses that are detailed in the following
section.

4.2.1 Clause Elements

Clauses are the core component of ConSpec. They describe formally all
the activities supported by the software component, including their roles,
dependencies, and constraints. They are described next.

Clause Number

The clause number is used to identify every single activity within a contract
uniquely. This number is also used to specify dependencies within clauses and
for further traceability purposes. Whenever a conflict is detected, one should
be able to identify the clause or clauses causing it. The format suggested is
that of the letter C as a shorthand for clause, followed by a unique combination
of digits. The meaning of these digits may vary according to the intention
of a user. For instance, in nested clauses, the first digit may represent the
main clause, and the consecutive digits may represent the sub-clause number.
For example: C1 could identify the first clause, and C1.1 could identify the
first sub-clause of clause 1. Grammar 4.12 defines the structure of the clause
number.

CLAUSE NUMBER -> LETTER C NUMBER

NUMBER -> NUMBER DOT NUMBER | NUMBER DIG | DIG

Grammar 4.12: Structure for cluse number in ConSpec



4.2. CONSPEC 55

Activity

An activity describes precisely the function to be specified in the current
clause. Its structure is composed of an action, and in some cases, the receiver
of an action. The former is expressed through a verb in its base form, whereas
the latter, if needed, will be a qualified entity. Note that every clause has
one and only one corresponding and unique activity. Therefore, throughout
a specification written in ConSpec, there cannot be duplicated activities.
Examples of activities are: borrow books, register, and get general-report. The
rules in Grammar 4.13 are used to structure activities.

ACTIVITY -> VBB | VBB ENTITY | TO VBB | TO VBB ENTITY

Grammar 4.13: Structure for activities in ConSpec

Actor

Actors describe which entities within the system perform the current activity.
More than one actor can perform the same activity. Therefore, this section
is specified as a collection of individual actors. An actor is either a logical
or a physical entity expressed through qualified nouns, such as: system-
administrators, customers, local-computer, etc. Actors are constructed using
the rules in Grammar 4.14

ACTOR -> ENTITY

Grammar 4.14: Structure for actors in ConSpec

Condition

Every clause can contain a list of preconditions, a list of postconditions and
a list of activity conditions. Based on the work of Hoare[150] and Meyer
[217], we define Preconditions as constraints that must be satisfied before
the execution of the activity; Activity Conditions as constraints that must
persist through the course of the activity, and Postconditions as constraints
that must be satisfied after the execution of the activity.

These constraints capture both: structural and behavioural elements of
an activity. Note that there are simple requirements that may not need
some of these conditions to be specified. Conditions are expressed using the
grammatical constructions described as Sentences in our CNL (see Section
4.1). Grammar 4.15 captures the alternatives to express conditions.



56 CHAPTER 4. REQUIREMENTS SPECIFICATION

PRECONDITION -> CONDITION

ACTIVITY CONDITION -> CONDITION

POSTCONDITION -> CONDITION

CONDITION -> STRUCTURAL SENTENCE | COMPARISON SENTENCE |

CARDINALITY SENTENCE | CONDITIONAL SENTENCE | TYPE SENTENCE |

CONSTRAINT SENTENCE

↪→

↪→

Grammar 4.15: Structure for conditions in ConSpec

Consequence

They specify the actions that need to be taken in case any constraints are
broken, such as displaying an error message. A clause is a list containing
as many consequences as desired. Example of consequences are show error-
dialogue, return exit-code, or do nothing. This clause element must follow
Grammar 4.16.

CONSEQUENCE -> VBB ENTITY | TO VBB ENTITY

Grammar 4.16: Structure for consequences in ConSpec

Dependency

The dependency section of a contract expresses that an activity cannot be
performed unless other activities have already been performed successfully.
This part of a clause is optional given that there are activities with no
dependencies. Dependencies are expressed in an ordered list that contains
the clause number of the current activity being referenced. The order of the
elements in the list represents the order in which other activities must be
checked and satisfied before executing the current activity.

A scenario where dependencies could be needed is when we want to say
that before being able to borrow a book, the user must be logged in the system.
In this example, we assume that login is an existing activity with clause
number C1 and borrow books is the activity of the current clause identified
as C2 ; then C1 should be in the list of dependencies of C2.

The grammar required to specify every element of the dependency list
is the same as the grammar to specify the clause number, and this must be
a clause number existing within the current ConSpec specification. This is
represented in Grammar 4.17.

DEPENDENCY -> LETTER C NUMBER

NUMBER -> NUMBER DOT NUMBER | NUMBER DIG | DIG

Grammar 4.17: Structure for dependencies in ConSpec



4.3. REQUIREMENTS REFINEMENT 57

In this section, we presented the elements that integrate the clauses of our
specification format. In section 4.3, we show the steps followed to derive a
ConSpec specification from the description of a sample software application.

4.3 Requirements Refinement

Within our approach, requirements refinement is defined as the process
followed to translate the needs of the users and sponsors into the clauses of
a ConSpec specification. In order to demonstrate this process, we make use
of an example commonly found in the literature[26, 62, 142]. This example
contains the following requirements for a library system.

A library issues loan items to customers. Each customer is known
as a member and is issued a membership card that shows a unique
member number. Along with the membership number, other details on
a customer must be kept such as a name, address, and date of birth.
The library is made up of a number of subject sections. Each section
is denoted by a classification mark. A loan item is uniquely identified
by a bar code. There are two types of loan items, language tapes,
and books. A language tape has a title language (e.g. French), and
level (e.g. beginner). A book has a title, and author(s). A customer
may borrow up to a maximum of 8 items. An item can be borrowed,
reserved or renewed to extend a current loan. When an item is issued
the customer’s membership number is scanned via a bar code reader
or entered manually. If the membership is still valid and the number
of items on loan less than 8, the book bar code is read, either via the
bar code reader or entered manually. If the item can be issued (e.g.
not reserved) the item is stamped and then issued. The library must
support the facility for an item to be searched and for a daily update
of records.

Using these existing requirements, we demonstrate the steps required to
generate the corresponding specification.

4.3.1 Activity identification

The first step to generate our specification is to identify sentences that express
activities to be supported by the software application. In the case of the library
example, we separated and enumerated the following sentences describing
such activities:



58 CHAPTER 4. REQUIREMENTS SPECIFICATION

-S1: A library issues loan items to customers

-S2: Every customer is issued a membership card

-S3: Items can be borrowed

-S4: Items can be reserved

-S5: Items can be renewed

-S6: Membership cards can be scanned or entered manually

-S7: Items are stamped

-S8: items are issued

-S9: Items can be searched

-S10: Records can be updated

4.3.2 Activity specification

Once these sentences are extracted, they have to be translated into activities
expressed in the CNL proposed in Section 4.1. To achieve this, we have to
convert these sentences into a verb in base form followed by the entity that
receives the verb. This translation requires some semantic and grammatical
operations. Investigating all the possible operations is an active and continuous
research task that is out of the scope of our research. However, we discuss the
operations that apply to this example, and show the resulting activities next.

• Merge equivalent sentences: S1 and S3 are merged to generate A2
because if the library loans an item, then the item is borrowed.

• Convert passive voice into active voice: S4 generates A3 and S5 generates
A4 through this operation.

• Generalise activities: We generalise S6 as the activity of reading the
membership card, either manually or via scanner. Thus A5.

• Remove non-functional activities : “Stamping items” in S7 is a physical
activity. Therefore, it is omitted from the specification.

• Redefine action receivers and performers: Instead of saying that a
customer is issued a membership card (S2), we say that the library
issues membership cards to its customers (A1).

• Expand ambiguous sentences : In S10, the meaning of “update“ is not
clear. Hence, we clarify by further specifying that items can be registered
(A8) and deleted (A9).

The following list contains the activities translated using these operations.



4.3. REQUIREMENTS REFINEMENT 59

-A1: Issue membership-card

-A2: Borrow items

-A3: Reserve items

-A4: Renew items

-A5: Read membership-card

-A6: Issue item

-A7: Search items

-A8: Register item

-A9: Delete item

4.3.3 Clause Construction

Once the activities have been refined, the next step is to build up clauses that
capture the elements of these activities, as well as adding any other necessary
activities. For brevity, we expand only one of the most complex clauses in
this section. However, the full specification is provided in the appendix A.2.
We have identified and separated the following sentences from the original
requirements text that are related to action A2 in order to illustrate this
step.

-S11: A library issues loan items to customers

-S12: A customer may borrow up to a maximum of 8 items.

-S13: When an item is issued the customer membership number

is scanned via a bar code reader or entered manually.

-S14: If the membership is still valid and the number of items

on loan less than 8, the book bar code is read,

either via the bar code reader or entered manually.

-S15: If the item can be issued (e.g. not reserved) the item

is stamped and then issued.

The following operations are performed in order to generate the clause
elements for A2.

• From S11, we identify customers as the actors for this clause.

• From S12 and S14 combined, we extract the precondition that a customer
can borrow up to 8 items, which is as loaned-items must be less than 8,
using the grammar for Comparator Sentences from our CNL.

• S6 is used to generate A5, which is an activity on its own.



60 CHAPTER 4. REQUIREMENTS SPECIFICATION

• From S13, we know that A5 is a dependency for A2. We assume A5
is specified in the clause C5, so the clause dependency is expressed
properly.

• S14 contains two additional preconditions: “if the membership is still
valid”, which is refined into Customer membership must be valid, and
“the book bar code is read, either via the bar code reader or entered
manually”, which is refined into “Book’s bar-code must be read”.

• S15 expresses a postcondition for A2.

• We previously stated that stamping refers to a physical activity, which is
ignored by the functional requirements. However, “... and then issued”
specifies a change in the internal state of the system. This change
is refined into the following postcondition: The item is added to the
customer’s loaned-items.

With this reasoning, we generate the following elements of the clause C2
corresponding to the activity “borrow item”.

ConSpec 4.1: Library specification, clause C2

- C2:

Activity: Borrow items

Actors:

- Customers

Preconditions:

- Customer's membership must be valid

- Loaned-items must be less than 8

- Book's bar-code must be read

Postconditions:

- The item is added to the customer's loaned-items

Consequences:

- Return the description of the unsatisfied-precondition

Dependencies:

- C5

Through this example, we discussed some of the activities needed to refine
existing requirements into a ConSpec specification. One could be tempted
to automate this refinement process, and we do not discourage the reader
from attempting it. However, this activity is left out of the scope of our work,
because we prioritised other activities. Nonetheless, this example shows how
intuitive it is to specify functional requirements for a software application
using SpeCNL and ConSpec.



4.4. SUMMARY 61

4.4 Summary

In this chapter, the desired properties in requirements specifications were
defined. Our contributions to requirements engineering are presented in the
form of a controlled natural language designed to communicate requirements
(SpeCNL), and a specification document based on contracts and clauses
(ConSpec). The dentition of their elements and an example of their application
were also presented here.





Chapter 5

TOMM: a framework for
formal reasoning

In this chapter, we describe the theoretical foundations for our framework for
formal reasoning over class diagrams. The focus is on class diagrams since this
is the (structural) model we generate automatically from natural language
requirements. Its elements are a formalization based on predicate logic, a
calculus to infer class diagrams, and the axioms to define model validity and
equivalence. Throughout this chapter, we make use of the word reliability to
refer to the formal strengths of our formal systems. We defined the reliability
of our theories based on their soundness and completeness, as is it typically
done in formal systems[83, 125, 176].

5.1 Formalization

Expressing requirements specifications and class diagrams in a common
language is the first step towards formal reasoning. In Section 3.1.7.1, several
logics have been introduced, and here we present a formalization based on
predicate logic, which makes it possible to represent and use diagrams and
requirements within formal systems.

5.1.1 Requirements Formalization

In Chapter 4, a controlled natural language and a document structure for
the specification of functional requirements were presented. Through these
elements, requirements are processed thanks to the grammar rules followed,
which convey a specific meaning to every element in the specification. The
task at hand now is to capture the semantics in a logic language that enables

63



64CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

formal reasoning and seamless interaction with class diagrams. The elements
of this language are subsequently described.

5.1.1.1 Elements

In Sections 4.1 and 4.2, the parts of a contract in controlled natural language
using Backus-Naur notation were presented. However, these expressions are
not valid formulas in predicate logic; therefore they cannot be used in formal
reasoning. To solve this problem, formalization is required.

There are two ways to describe the formal notation for specifications, one
of them is by enumeration, which requires us to define a one-to-one mapping
from the parts of the specification to the elements of the formal notation
(cf. used in Section 5.1.2 to formalize class diagrams). The second one is to
provide a set of instructions to construct such mappings without enumerating
all of them, which is the method used next to describe the predicates of the
specification.

1. Every symbol that is a terminal or a non-terminal is interpreted as a
predicate in first-order logic.

For instance, the non-terminal ENTITY is assumed to be represented as
the predicate ENTITY(x). The same assumption holds for terminal symbols
such as maximum which is formalized through the predicate MAXIMUM(x).

2. If there is a non-terminal whose substitution rule requires more than one
non-terminal symbols, then these symbols are expressed as arguments
for the predicate representing the non-terminal. Terminals are not listed
in the arguments.

For example in the derivation rule

ACTION =⇒ MODAL VB

the non-terminal ACTION is replaced with the predicates ACTION(x, y) ∧
MODAL(x) ∧ VB(y). Terminals represent constant values within the struc-
tures, hence no need to add them as part of the predicate.

3. The predicate PART OF(a, b) maintains the relationships between com-
ponents and subcomponents of a clauses within a contract.

In addition to the clauses derived from the CNL and the contract structure,
the predicate above, read as ”b is part of a” is the one that maintains the
structure of the contract document. That is, any element represented by the



5.1. FORMALIZATION 65

variable b is part of the clause represented by the variable a. For example,
having predicates CLAUSE(a) and ACTION(x) the action x is assigned to
the clause a as PART OF(x, a). This predicate is of particular importance
when inferring class diagrams.

With these rules, all the elements of a ConSpec specification are formalized
into predicates, in such a way that only valid predicates are generated from
the requirements document. In the following section, an example is presented
to discuss the application of these rules.

5.1.1.2 Example

To demonstrate the application of the rules described in the previous section,
we use a simple library example. Complete details of the example care
provided in the Appendix A.2. The following snippet shows clause C2 of the
specification.

ConSpec 5.1: Library specification, clause C2

- C2:

Activity: Borrow items

Actors:

- Customers

Preconditions:

- Customer's membership must be valid

- Loaned-items must be less than 8

- Book's bar-code must be read

Postconditions:

- The item is added to the customer's loaned-items

Consequences:

- Return the description of the unsatisfied-precondition

Dependencies:

- C5

Substitutions showed in Grammar 5.1 exemplify the application of rules
in order to generate the activity of the clause.

ACTIVITY -> VBB ENTITY

VBB -> ‘Borrow’

ENTITY -> QUALIFIED‖ENTITY
QUALIFIED ENTITY -> QUALIFIER NOP

QUALIFIER -> LAMBDA

NOP -> ‘items’

Grammar 5.1: Activity generation for the library example

From these transformations we generate the following predicates:

ACTIVITY(borrow, items),VBB(borrow),NOP(items)

Grammar 5.2 shows the substitutions applied to generate the actor.



66CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

ACTOR -> ENTITY

ENTITY -> NON

NON -> ‘Customers’

Grammar 5.2: Actor generation for the library example

Generating the predicates

ACTOR(Customers),NON(Customers)

The first precondition “Customer’s membership must be valid” is gener-
ated using the substitutions shown in Grammar 5.3.

PRECONDITION -> CONDITION

CONDITION -> COMPARISONSENTENCE
COMPARISONSENTENCE− >ATTRIBUTECONSTRAINTADJ
ATTRIBUTE -> ENTITY APOS NON

ENTITY -> NON

NON -> ‘Customers’ | ‘membership’

CONSTRAINT -> OBLIGATION

OBLIGATION -> ‘must’ ‘be’

ADJ -> ‘valid’

Grammar 5.3: Precondition generation for the library example

From which the following predicates are generated

PRECONDITION(Customers,membership,must, be, valid)
NON(Customers),NON(membership),
OBLIGATION(mustbe),ADJ(valid)

,

A similar chain is applied to generate the other elements of the contract.
Note that our implementation, described later in Section 6.2.1, allows us to
generate these rules automatically. The evaluation of ConSpec is done in
Section 7.1, identifying some areas of improvement, such as comparison of
non-numerical elements. In the following section, a similar formalization for
class diagrams is described.

5.1.2 Class Diagram Formalization

Class diagrams have a well-defined semantics to represent the structure of a
system through the enumeration of its components and their relations. Class



5.1. FORMALIZATION 67

diagrams are usually presented graphically. For our work, we use predicate
logic to represent these elements mathematically, enabling the application of
formal methods, which is not possible over graphical representations.

Different kinds of semantics have been proposed for class diagrams, each
of them responding to a different kind of problem. For instance Cabot[59]
formalizes class diagrams and OCL constraints into a Constraint Satisfaction
Problem[187] in order to verify absence of constraint redundancies.

Berardi et al. proposed a formalization aimed for reasoning using first-
order logic[41], wherein the name of the classes, attributes, and operators are
treated as individual predicates in order to evaluate object instantiation. This
approach results in an infinite set of predicate names because each diagram
would have a different set of predicate names. Hence, establishing properties
based on the type of predicate would not be possible.

Chanda’s group has worked on the traceability of requirements and consis-
tency of class diagrams [66]. They propose the use of grammars to formalize
several diagrams and use transformation rules to maintain consistency.

Our approach targets a different problem from those previously mentioned,
as it aims to establish the relationship between diagrams and specifications
based on their constitutive elements. This problem is tackled by proposing
a finite set of predicates and using specific names as their arguments as is
shown next.

5.1.2.1 Elements

We present the elements required to formalize UML Class Diagrams in
preparation for reasoning activities.

Before defining the elements of a UML Class Diagram, it is necessary to
consider the basic building blocks that UML provides within this structural
model.

The UML Components are:

• Classifier types in UML: CU = {class, abstract, interface}

• Visibility: VU = {+,−,#, /,∼, ∗} where

– +: Public

– -: Private

– #: Protected

– /: Derived

– ∼: Package



68CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

– *: Random

– ε: Not specified

• Scope: SU = {classifier, instance, ε}

• Primitive Types: PU = {Integer, Boolean, String,
UnlimitedNatural, Real, ε}

• Cardinality Symbols: #U = N ∪ {m,n, ε, ∗,+, ?}

• Relation Types: Tr = {Association,Dependency,Aggregation,
Composition,Realization,Relation, ClassedAssociation}

In what follows, assume given a dictionary D consisting of all words, and
thus including all names of elements contained in a diagram. We hence define
a class diagram formally as follows.

Class Diagram
A class diagram is a 6-tuple containing the following elements:

CD : (C,A,O,R,H, T ) (5.1)

Where

• C is a subset of the dictionary D containing the names of all the classes
in the diagram, i.e.,
C ⊆ D

• A is a set of attribute pairs (class, attribute), where every class is an
element of the set C, and every attribute is an element of the dictionary,
i.e.,
A ⊆ (C ×D)

• O is a set of operation pairs (class, operation), where every class is an
element of the set C, and every operation is an element of the dictionary,
i.e.,
O ⊆ (C ×D)

• R is a set of relation pairs (source, target), where both source and target
are elements of the set C, and the source class is in a relationship with
target class, i.e.,
R ⊆ (C × C)



5.1. FORMALIZATION 69

• H is a set of pairs (super, sub), where both super and sub are elements
of the set C, sub is a subclass of super, and hence inherits from super,
i.e.,
H ⊆ (C × C)

• T is a set of valid types for the class diagram, it is the union of the
standard primitive types defined in UML, and all classes C contained
in the diagram, i.e.,
T ⊆ (C ∪ PU)

From the last item, we note that C is used to represent both the set of
class names used in a diagram and the type associated with it. It is generally
clear from the context what we mean. We note that from the definition above
classes, attributes and operations all have names and we are not imposing
any constraints on their uniqueness, etc. For example, two different classes c1
and c2 may have an attribute with the same name a, and hence (c1,a) and
(c2,a) both belong to the set of attribute pairs A. Furthermore, if (a,a)

belongs to A, then this would mean that there is a class with name a and
attribute a. Though this may be a poor design choice, we stress that our
formalization does not restrict any possibly erroneous specification.

Predicates
Together with the sets enumerated above, the following predicates are

used to define a Class Diagram:

• CLS(c, t) : indicates that the variable c (also a class name in C) is
associated to a classifier type where t indicates the type of classifier,
that is t ∈ CU .

• ATR(c, a, t, v, s) : is used to express that class c has an attribute a of
type t ∈ T , with visibility v ∈ VU and scope s ∈ SU .

• OPR(c, o, t, v, s, P ) : indicates that class c contains an operation o with
visibility v ∈ VU and scope s ∈ SU . This operation receives the set of
parameters P and has return type t ∈ T ∪ void.

– P ⊆ D × T : every element in P is a pair (n, t), where n is the
name of the parameter, and t is its type.

• TYPE(t) : indicates that t is a type. These predicates are required to
indicate the type for attributes, and the return type for the operations
within a class.



70CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

• REL(s, d, t, n, r,#l,#u) : indicates that there is a relationship (of type
t ∈ Tr) between classes s and d. This relation has name n, role name r
(at the d side), and #∗ indicates the cardinality of the relationship such
that #l,#u ∈ #U , and #l is the lower boundary, and #u is the upper
boundary.

• INH(g, s) : indicates that class g generalizes s, or conversely, that s is
a specialization of (inherits from) g.

Not all elements from the above predicates have to be defined, and we
either omit the undefined parameter when it is clear what we mean or write ε
explicitly for clarity. When possible we do the former to keep the presentation
more readable.

Though relations are currently not used in TOMM, they are included
in here for syntactical completeness. Each relation predicate represents one
single association from a source to a destination, which implies that in order
to express bidirectional relations, it is necessary to decompose the relation
into two separate predicates. This type of predicates can be used in the future
for validation of cardinality constraints.

Axioms
Notice that in this section classifier types, visibility and scope are omitted

to keep the predicates as short as possible, including only relevant elements
to identity every predicate.

• ∀x ∈ C|CLS(x) ∧ TYPE(x)

• ∀(x, y) ∈ A,∃z ∈ T |ATR(x, y, z) ∧ CLS(x) ∧ TYPE(z)

• ∀(x, y) ∈ O, ∃z ∈ T,∀(a, b) ∈ P |OPR(x, y, z, P )∧CLS(x)∧TYPE(x)∧
TYPE(b)

• ∀(x, y) ∈ R, t ∈ RT, n, r ∈ D,#l,#u ∈ S|REL(x, y, n, r,#l,#u) ∧
CLS(x) ∧ CLS(y)

• ∀(x, y) ∈ H| INH(x, y) ∧ CLS(x) ∧ CLS(y)

Considering that there are no constraints when manually drawing diagrams,
these predicates do not contain constraints either, making it possible to capture
any drawn diagram. We will deal with the validity of diagrams in Section 5.3,
where we check for properties such as circular inheritance.

Though these elements are sufficient to capture any diagram, some of
them, such as visibility or interfacing, are not further expanded since they
are irrelevant for the problem domain which we focus on.



5.1. FORMALIZATION 71

5.1.2.2 Example

The formalization shown above is sufficient to capture the elements of any
class diagram. We support this claim by showing how different diagrams are
expressed using this formalism. Our examples are taken from different sources
found in the literature, together with the NLRP benchmark repository[290].

Our first example is the diagram corresponding to the requirements for a
library system found in appendix A.1. Several proposals for this diagram are
found in the work of Callan[62], Harmain[142], Berardi[42] and Gelhausen[128],
all of them with different strategies for abstraction and different level of details.

We use the original diagram developed by Callan[62] to demonstrate the
basic features of our formalism.

Figure 5.1: Callan’s Class Diagram

This diagram encompasses examples of inheritance, aggregation, associ-
ation, and one association class. Its formal representation done manually
begins with the following sets.

D = {Library, search, update, member code, Issues, Membership_Card,

Has, Customer, name, address, date-of-birth, Loan Transaction,



72CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

borrow, renew, reserve, Borrows, Book, subject, Language Tape,

language, level, Loan Item, bar-code, title, check_in, check_out,

subsection, Hols, class mark}

C = {Library, Membership_Card, Customer, Loan Transaction,

Book, Language Tape, Loan Item, subsection}

A = {

(Loan Item, bar-code),

(Loan Item, title),

(Customer, name),

(Customer, address),

(Customer, date-of-birth),

(Book, subject),

(Language Tape, language),

(Language Tape, level)

}

O = {

(Loan Transaction, borrow),

(Loan Transaction, renew),

(Loan Transaction, reserve),

(Loan Item, check_in),

(Loan Item, check_out)

}

R = {

(Library, Membership_Card),

(Membership_Card, Customer),

(Customer, Loan Transaction),

(Customer, Book),

(Loan Transaction, Book),

(subsection, Loan Item),

(Library, subsection)

}

H = {

(Loan Item, Book),

(Loan Item, Language Tape)

}



5.1. FORMALIZATION 73

With the previous sets, we generate the following predicates corresponding
to the classes.

CLS(Library) ∧ TYPE(Library)
CLS(Membership Card) ∧ TYPE(Membership Card)
CLS(Customer) ∧ TYPE(Customer)
CLS(LoanTransaction) ∧ TYPE(LoanTransaction)
CLS(Book) ∧ TYPE(Book)
CLS(LanguageTape) ∧ TYPE(LanguageTape)
CLS(LoanItem) ∧ TYPE(LoanItem)
CLS(subsection) ∧ TYPE(subsection)

Some of the attributes of this class diagram are represented in the following
predicates.

ATR(LoanItem, title, ε, ε, instance) ∧ CLS(LoanItem) ∧ TYPE(ε)
ATR(LoanItem, barcode, String, ε, instance)
ATR(Customer, name, String, ε, instance) ∧ TYPE(String)
ATR(Customer, address, Address, Private, instance) ∧ TYPE(Address)
ATR(Book, subject, ε, Public, instance)

Note that the first row above uses the three predicates of the rule: ATR,
CLS and TYPE, however, in the following examples we skip them since some
classes and types have already been defined, and we know that P (x)∧P (x) `
P (x). Also, notice that we are referring uniquely to instance attributes. Even
though the visibility is not specified in the original diagram, we stated that
Customer.address is private and Book.subject is public to show the use of
different visibility levels.

None of the attributes has a type defined, hence the use of ε in most of
the cases. However, to extend this example, we provided Loan Item.bar-code,
Customer.name and Customer.address with specific types: a primitive String,
and a complex type Address. With this extension, the “Address” type should
also be defined as a class within a complete diagram, but this evaluation is
not considered until Chapter 7.

Some examples of operations are:

OPR(LoanTransaction, borrow, ε, ε, instance, {})
OPR(LoanItem, check in, void, Public, classifier, {(barcode, String)})

In this case, we kept Loan Transaction.borrow as in the diagram, where
the type and visibility are not specified, and there are no parameters received.



74CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

However, we extended Loan Item.check in in order to exemplify the remain-
ing components of an operation. Thus we defined return type to be void,
visibility to be Public, scope to be classifier, and parameters to be the String
representing the bar code of the item to be checked in. This representation of
the operation could be considered equivalent, for they solve the same problem
differently. We properly define equivalence in Section 5.4.

In the original diagram we observe different types of relations, which are:

REL(Library,MembershipCard,Relation, Issues,membercode, ε, ε)
REL(Library, subsection,Aggregation, ε, classmark, ε, ε)
REL(Customer,Book, ClassedRelation, borrows, ε, 0, 8)
REL(Customer, LoanTransaction, ClassedRelation, borrows, ε, ε, ε)
REL(LoanTransaction,Book, ClassedRelation, borrows, ε, ε, ε)

The first line captures the relation between Library and Membership Card
with the role name member code. The second entry captures an aggregation
from Library to subsection, with the role name class mark. The last three
entries represent the classed-relation borrows, between Customer and Book
through the class Loan Transaction.

Inheritance in Callan’s diagram exist between Loan Item, Book and
Language Tape, and they are captured in the following statements.

INH(LoanItem,Book)
INH(LoanItem,LanguageTape)

Note that though these predicates capture the diagram in Figure 5.1, they
do not provide any reasoning or verification on it. Reasoning rules will be
described in detail in Section 5.2, Section 5.3 and Section 5.4.

5.2 Class Model Inference

In Section 5.1, we presented the formalization of ConSpec specifications and
UML class diagrams. We defined predicates in first-order logic as the common
language to integrate and enable formal reasoning over these artefacts. These
predicates will be used here to describe a formal system that will enable us
to infer the predicates of a class diagram from the predicates of a ConSpec
specification.



5.2. CLASS MODEL INFERENCE 75

5.2.1 Inference Calculus

In logics, rules of inference are expressed in the following form, where premises
and conclusions are both valid formulas within the system. This representation
is read as “if premises 1, 2 and 3 hold, the conclusion also holds” .

Premise1 Premise2 Premise3
Conclusion

The well-formed formulas within our formal system are those of the form
of any of the predicates describing ConSpec specifications or class diagrams
defined in Sections 5.1.1.1 and 5.1.2.1 respectively.

The problem to solve is phrased as “Given the set of predicates describing
a specification, what predicates of a class diagram can be inferred?” From
here, it is assumed that the predicates of the specification are known to be
true; hence they are called axioms. The elements of the diagram are to be
proven; hence they are theorems. Then, it is the case that.

1. Any rule within the system can only be applied over axioms, or over
previously inferred theorems.

With the previous consideration, the following inference rules are defined.

Class Rule

This rule allows us to infer classes and types from the actors of a specification.
It is directly applied over the ACTOR predicate, which means that the
variable x can be either a qualified entity or any noun (plural or singular). In
this rule it is assumed that every class is a classifier type of UML; hence it
does not allow to infer abstract classes or interfaces.

ACTOR(x)

CLS(x, classifier) ∧ TYPE(x)

Non-parametric Operation Rule

In order to infer operations that do not take parameters, we have to apply
this rule. The premises required are the predicates CLS, ACTIVITY and
VBB. In here, the class is required to exist before inferring the operation, and
the activity defines the name of the operation, to do so, this predicate must
receive only one parameter, which must be a verb in the infinitive form. By
definition, all operations are of type ε, which means that no return type is
specified. Also all classes are public (+) by default and their scope is instance.
Finally, the set of parameters is empty, which indicates that the operation
receives no parameters.



76CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

CLS(x, *) ACTIVITY(y) VBB(y)

OPR(x, y, ε, +, instance, {})

Uni-parametric Operation Rule

This is an extended version of the non-parametric operation rule to deal
with operations that receive only one parameter. The difference is that this
extension requires the ACTIVITY predicate to receive a pair of parameters,
where the first one is a verb in the infinitive and the second one is a qualified
entity. It is observed that the type, visibility and scope of the operation
are the same as in the non-parametric version; however, the parameters are
composed by a set containing the qualified entity of the activity.

CLS(x, *) ACTIVITY(y, z) VBB(y) QUALIFIED ENTITY(z)

OPR(x, y, ε, +, instance, {z})

The current version of ConSpec only allows us to describe up to uni-
parametric operations; hence only these rules are part of the inference system.
Further research may extend ConSpec and the inference system to support a
more general form of parametric operations.

Attribute Rule

This rule is applied over structural sentences in order to infer the attributes
of a class. Notice that the application of this rule requires the class to exist
before inferring the attribute, hence no attribute can be inferred for a non-
existing class. The predicate for structural sentences requires three variables:
the attribute x, the corresponding form of the verb “to have” expressed in
the variable y, and the entity that has the attribute captured by the variable
z. Similarly to the operation rules, the type of the parameter is not specified
(ε), the visibility is public (+) and the scope is instance.

CLS(z, classifier) STRUCTURAL SENTENCE(x,y,z)

ATR(x, z, ε, +, instance)

Inheritance Rule

This rule is required in order to infer the inheritance of the classes within the
diagram from the type sentences of the specification. The predicate for type
sentences here contains two parameters, the entity being the subtype, which
is the variable x and the entity of the superclass, the variable y.



5.2. CLASS MODEL INFERENCE 77

TYPE SENTENCE(x, y)

INH(y,x)

These rules provide a basic inference system to generate the predicates of
a class diagram from a given specification. The consistency of our system is
established in the following section.

5.2.2 Reliability

The diagrams generated by our inference calculus can only be as reliable as
the rules used to generate it. To establish a measure of the reliability of our
inference method, its consistency, soundness and completeness will be proved.
To do so, a definition of each property is provided before the actual proof.

Definition 1. A formal system is consistent if and only if no contra-
dictions are derived from the application of the inference rules.

A contradiction occurs when a formula φ and its negation ¬φ are both
found within the axioms or the theorems of the system. The formulas for the
system proposed are predicates for the elements of diagrams and specifications.
The system is composed only by these predicates and the inference rules listed
before. None of the inference rules produces the negation of a predicate. From
which it follows that it is impossible to have a formula of the form ¬φ. Thus
the system cannot present any contradiction, that is, the system is consistent.

Definition 2. A formal system is sound if and only if every formula
that can be proved in the system is valid with respect to the semantics of
the system.

It is known that all formulas are predicates, and all the predicates proved
(derived) correspond uniquely to the elements of the class diagram. In
consequence, it is needed to establish the semantics of the predicates for the
diagram, to do so, the following conditions must be established.

1. Every formula can only be be applied in the context of a given clause.

The following statements define the semantics of the predicates for class
diagrams and ConsSpec specifications.



78CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

Definition 3. Semantics for diagram and specification predicates

1. CLS predicates are valid only if they are inferred from an ACTOR
predicate.

2. OPR predicates are valid only if they are inferred from an ACTIV-
ITY predicate.

3. ATR predicates are valid only if they are inferred from an STRUC-
TURAL SENTENCE predicate.

4. INH predicates are valid only if they are inferred from an
TYPE SENTENCE predicate.

That means that all formulas have to be applied one by one to every clause
in the contract. The class rule can only be applied in the actors section of the
contract. Operation rules must be applied in the activity section. Attribute
and inheritance rules can be applied in any of the condition fields, that is
preconditions, activity conditions, and postconditions.

From the rules listed in the previous section, it is clear that these relations
are satisfied, and since there are no other ways to generate predicates, it is
proved that the system is sound.

Definition 4. A formal system is complete with respect to a given
property if and only if every formula having that same property can be
derived using that system.

In this particular system, completeness is evaluated in terms of the predi-
cates of the class diagram, then the question to answer is “can the inference
rules proposed derive all the predicates associated with a class diagram?” ;
and the answer is no. It is enough to consider the diagram predicate REL,
which captures the relationships between classes; this predicate is not the
conclusion of any inference rule, and since these rules are the only way to
generate predicates, then REL predicates cannot be generated. Thus it is
proved that the system is not complete.

It has been proved that our inference system is consistent and sound,
though not complete. With this consideration, we move forward to exemplify
the use of our inference system in the following section.



5.2. CLASS MODEL INFERENCE 79

5.2.3 Example

To demonstrate the use of these rules, the clause C2 of the specification
presented in Section 4.3 is used as a reference, which expresses the requirements
for a basic library system. This clause is repeated in the following contract
segment.

ConSpec 5.2: Library specification, clause C2

- C2:

Activity: Borrow items

Actors:

- Customers

Preconditions:

- Customer's membership must be valid

- Loaned-items must be less than 8

- Book's bar-code must be read

Postconditions:

- The item is added to the customer's loaned-items

Consequences:

- Return the description of the unsatisfied-precondition

Dependencies:

- C5

As it was established in Section 5.2.2, the inference rules must be applied
in the context of each clause to maintain soundness. The class rule is applied
first as shown next to generate the class and type for the customer.

ACTOR(Customers)

CLS(Customers, classifier), TYPE(Customers)

The uni-parametric operation rule is then applied to the previously gener-
ated class and the activity of the clause. For clarity of the inference rule, the
following formula assignments are done.

α = CLS(Customers, classifier)

β = ACTIVITY(Borrow, items)

γ = VBB(Borrow)

δ = QUALIFIED ENTITY(items)

φ = OPR(Customers,Borrow,ε, +, instance, {items})

(5.2)



80CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

α β γ δ

φ

In this clause there are no structural sentences or type sentences; hence
there is no need to apply the attribute or inheritance rules. The partial class
model generated by inference from the clause 2 of the library specification
looks like follows:

CLS(Customers, class)
TYPE(Customers)
OPR(Customers,Borrow, ε,+, instance, {items})

We just illustrated the use of the inference rules within a ConSpec clause
for our simple library system. However, manual inference is time-consuming
and error-prone, and it is hence crucial to develop tools that automate this
process; this is the subject of Chapter 6.

In this section, we defined a formal system to infer class diagrams from
requirements specifications, stated the inference rules, established its consis-
tency and soundness, and demonstrated its application with an example. In
the next section, we describe a formal system for class diagram validation.

5.3 Class Model Validation

In Section 3.1.7.3, existing approaches for model verification were introduced,
together with the properties to be checked. A characteristic of these properties
is that they are checked within the model itself, i.e., they do not maintain
any relation with other artefacts, such as specifications. The novelty of our
approach is that it aims to establish a relationship between the model and
the specification, namely model validity.

This concept has been influenced by Somerville’s definition of require-
ments validation[281] described in Section 3.1.5.4. Sommerville states that
“requirements validation is the process of checking that requirements actually
define the system that the customer really wants”. In the same way, we
state that model validation is the process of checking that models define the
requirements specification as intended. Throughout this section, the elements
class diagram validation will be defined as a formal system. Also, we establish
its reliability and illustrate how it is used with an example.

5.3.1 Validation Calculus

In computer science, the correctness of a program is established through the
application of inference rules to every instruction within the program. In this



5.3. CLASS MODEL VALIDATION 81

way, the result of the program is inferred and compared with the expected
result according to the specification. These inference rules belong to Hoare
logic[150], and were introduced in Section 3.1.7.2.3.

Similarly, the validity of a model with respect to its specification is
established through the application of inference rules over the elements of
the model. In this case, the model corresponds to a class diagram, and the
specification corresponds to a ConSpec contract. Their elements are expressed
in the form of predicates, as described in Sections 5.1.1 and 5.1.2 respectively.
Before proceeding to define the rules for this formal system, some definitions
must be provided.

First, the relevant concepts must be defined as follows.

Definition 5. A model is valid if and only if it is sound and complete.
This definition is formalized as:

V alid(M) =⇒ Sound(M) ∧ Complete(M)

Where M is any given model.

Definition 6. A model is sound if and only if all of its elements are
derived from the specifications. It is formally expressed as:

Sound(M) =⇒ ∀φ ∈M, ∃ψ ∈ S | ψ |= Rφ

In here, M is the set of predicate formulas describing the model, S is the
set of predicate formulas describing the specification, φ is a predicate from
the model, and ψ is a predicate from the specification. In this context the
|= R symbol indicates that the predicate φ is inferred from the application
of the rule R over the predicate ψ.

In this way, soundness establishes the relation from the predicates of the
model M to the predicates of the specification S’.

Definition 7. A model is complete if and only if all the elements of the
specification are related to an element in the model. Using the previous
notation, we formally describe completeness as follows:

Complete(M) =⇒ ∀ψ ∈ S,∃φ ∈M | ψ |= Rφ



82CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

Inversely to soundness, completeness establishes the relation from the
predicates of the specification S’ to the predicates of the model M.

In Section 5.2.2 the completeness property for formal systems was dis-
cussed, and it was concluded that the absence of this property is to some
extent expected. That is the case, for instance, of the sentences that do
not contribute to a class diagram, such as “the age must be less than 15”
. In its current version, our formalism for diagrams does not support OCL
constraints, which would be required to capture this sentence. Another case
occurs with predicates that contain repeated elements, such as STRUC-
TURAL SENTENCE(users, have, age) and NOUN(age); both predicates are
part of S, but only one is used to derive an element of M.

With this consideration, it seems too restrictive to say that a model is
not valid just because it is not complete, as a consequence, the decision was
made to distinguish between two types of completeness, defined as:

Definition 8. A model presents total completeness if absolutely all
the elements of the specification are related to the elements of the diagram.
Hence the formal definition for completeness given before is the actual
definitions of total completeness, which is:

Totally Complete(M) =⇒ ∀ψ ∈ S,∃φ ∈M | ψ |= Rφ

Definition 9. A model presents partial completeness if a well-defined
subset of the elements of the specification is related to the elements of
the diagram. Partial completeness is formally defined as:

Partially Complete(M) =⇒ ∀ψ ∈ S ′, ∃φ ∈M | ψ |= Rφ

Where S ′ is the subset S ′ ⊂ S containing all the specification predicates
that must be used to infer elements for the diagram.

In the same way, validity cannot be just one property; it has to correspond
to the type of completeness observed in the model; thus we define the following
types of validity.

Definition 10. A model observes strong validity if it is sound and



5.3. CLASS MODEL VALIDATION 83

presents total completeness.

Strong V alidity(Model) =⇒
Sound(Model) ∧ Totally Complete(Model)

Definition 11. A model observes weak validity if and only if it is
sound an presents partial completeness.

Weak V alidity(Model) =⇒
Sound(Model) ∧ Partially Complete(Model)

The inference rules described in the previous section are applicable only
over a subset of the predicates of specifications. The same subset of predicates
will be used to establish weak validity in our validity calculus. This subset S ′

is defined as:

Definition 12. Subset of predicate statements for weak validity

S ′ = [ACTOR,ACTIV ITY, V BB,QUALIFIED ENTITY,

STRUCTURAL SENTENCE, TY PE SENTENCE]

In order to construct this validation calculus, the concept of semantic
equivalence is required to establish that two words can have the same meaning
in the context of the specification. For example, in a banking system, the
words “customer” and “client” may be equivalent. This relation is
particularly important when validating models against specifications because
it has been observed that terminology may vary from one artefact to another.
However, this variation should not affect the validity of the model. In here,
semantic equivalence is represented with the symbol ≈. This relation has
to be established manually before proving validity, so in the application of
validity rules, it is assumed to exist. In concrete we have that:

Definition 13. Semantic equivalence is the relation w1 ≈ w2, where
w1 and w2 are words that have the same meaning in the context of
the proof. If w1 and w2 are the same, then they are also semantically



84CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

equivalent, that is.
w1 = w2 =⇒ w1 ≈ w2

The definitions stated before, the inference rules from Section 5.2.1 the
semantics described in Section 5.2.2, and the semantic equivalence relation
just presented, are the blocks required to define the following axioms for
validity. These axioms are used to prove weak validity of a model M with
respect to a specification S ′.

Class Axiom

This axiom states that any class in M can be derived from S’ using the Actor
rule from the validation calculus.

αa |= C γx′ γx x ≈ x′

>

Where the predicate ACTOR(a) is represented by αa, the application
of the class rule is symbolised by |= A, the predicate CLS(x,∗)isγx, γx′

is the predicate CLS(x′, ∗)andtheexpressionx ≈ x′ represents the semantic
equivalence of x and x′. Note that the ∗ symbol in the CLS predicates represent
any value. From these premises, we conclude >, which means the axiom holds.

Operation Axiom

This axiom establishes that any operation in M is derived from an activity in
S’

δa |= O ωx′ ωx x ≈ x′

>

In this case, the formula δa represents the predicate ACTIVITY(a, ∗), the
formulas ωx and ωx′ represent OPR(∗, x, ∗, ∗, ∗, ∗) and OPR(∗, x’, ∗, ∗,
∗, ∗) respectively, and |= O represents the application of the operation rule
over δa to derive ωx′ The structure of this and next axioms follow the same
pattern as the class axiom.

Attribute Axiom

This axiom establishes the relationship between structural sentences and at-
tributes generated with the attribute rule.

σab |= A ρx′y′ ρxy x ≈ x′ ∧ y ≈ y′

>



5.3. CLASS MODEL VALIDATION 85

.
In a structural sentence, two distinctive elements are required: the entity

and the attribute of the entity. They are represented in the formula σab. for
the predicate STRUCTURAL SENTENCE(a,∗,b). The attribute predicate
ATR(x, y, ∗, ∗, ∗) is captured in the ρ formulas with parameters x, y and
x′, y′. This axiom holds if x ≈ x′ ∧ y ≈ y′, which means that both attributes
and both entities are semantically equivalent.

Inheritance Axiom

This axiom proves the relationship between inheritance predicates and type
sentences through the inheritance rule.

τab |= I ηx′y′ ηxy x ≈ x′ ∧ y ≈ y′

>
.

In this axiom the formula τ represents the TYPE SENTENCE predicate,
and the formula η represents the INH predicate. As usual, |= I represents the
application of the inheritance rule over the type sentence.

With these axioms, it is possible to determine the weak validity of a
model with respect to a specification based on the model soundness and partial
completeness. In the next section, the reliability of our axiom system is
discussed.

5.3.2 Reliability

Similarly to the inference calculus, the reliability of this validation calculus
depends on three properties: consistency, soundness and completeness.

First, we analyse consistency which is the lack of contradiction within
the formal system. To evaluate this property, it is necessary to look at the
formulas of the calculus and the inference rules. Notice that all the rules
produce tautologies; hence, contradictions are unreachable, that is, the system
is consistent.

To evaluate the soundness of the system it is necessary to differentiate it
from model soundness, which aims to establish a relation between models
and specifications. In contrast, system soundness establishes the relation
between the inferred formulas and their truth value with respect to a given
interpretation.

In Section 5.3.2 the interpretation for the formulas of the system was
provided. With the newly introduced rules for validation no new formulas
are generated, for all of them derive in a tautology. With this reasoning,



86CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

it is established that all existing formulas are axioms with properly-defined
interpretations; hence, the system is sound.

A similar case occurs for system completeness which shall not be confused
with model completeness. The system is complete if all the valid formulas can
be generated from the axioms and the inference rules. As already mentioned,
the inference rules only derive tautologies; hence no new formulas are gener-
ated. However, all possible formulas already exist as axioms; thus the system
is complete.

In conclusion, this formal system is consistent, sound and complete. In
the next section, we elaborate an example of model verification.

5.3.3 Example

The axioms for validity together with the definitions of model soundness and
partial completeness have been introduced, and our validity calculus has been
proven to be consistent, sound and complete. In this section, we demonstrate
how to prove weak validity of a given model. Once more we make use of
the library example. The predicates for the clause C2 of the specification are
shown below.

ACTOR(Customers)
ACTIV ITY (Borrow, items)
V BB(Borrow)
QUALIFIED ENTITY (items)

Together with the predicates of the specification, an equivalence relation
must be defined.

Customer ≈ Client
Customer ≈ Customers

For this example, the empty model denoted by M = {} or M = ∅ is
checked. To proceed, the class axiom is evaluated first over the actor clause,
from which the premise

ACTOR(Customers, classifier) |= C CLS(Customers)

is derived. However, the model M does not have a class predicate CLS(x)
such that x ≈ Customer hence the axiom does not hold, and the model is
incomplete.

Now assume the same model also has a predicate for the abstract class
customer, that is M = CLS(Customer, abstract). The first premise

ACTOR(Customers) |= C CLS(Customers, classifier)



5.4. CLASS MODEL EQUIVALENCE 87

is known to exist, the second premise CLS(Customer, abstract) also exists
because it was just added to the model. The third premise Customer ≈
Customers from the equivalence relations also exists. Since all the formulas
in M have an equivalent formula derived from the specification S, we infer
that the model is sound.

However, the specification S contains an ACTIVITY(Borrow, items)
whose production is not equivalent to any element in the model. To solve
this problem, predicate OPR(∗, Borrow, ∗, ∗, ∗, ∗) is added to the model. In
this way, the premise δa |= O ωx′ is applied, and the newly added predicate
takes the place of the premise ωx, with x = Borrow and x′ = Borrow the
premise x ≈ x′ also holds. In this way, the new model M is both sound, and
complete with respect to the predicates defined in S’ before.

These examples show an invalid model due to lack of soundness, and
invalid model due to lack of partial completeness, and finally a weakly valid
model.

Two calculus have been proposed, one for model inference and another
for model validation. In the following section, we provide a calculus for
equivalence.

5.4 Class Model Equivalence

The number of class diagrams created throughout the development life cycle
of a software application is considerable; this is usually the result of changes
in the requirements or in the software that are not updated in previously
existing diagrams. Another reason is that multiple stakeholders may generate
diagrams from different perspectives (also known as viewpoints), for instance,
there can be a diagram that describes only the problem domain, whereas
there are others that also capture the solution domain. For this reason, there
is a need to compare different class diagrams. Also, it makes it possible to
compare different solutions generated by different teams.

The first approach for diagram comparison may be based on human judge-
ment and perception. A stakeholder may, for instance, consider different
diagrams and decide on how similar they are or whether they are equivalent.
However, this manual approach is time-consuming and error-prone. Fur-
thermore, it is not practical for large system models. Our approach instead
relies on the formalization described in Section 5.1.2 and a formal system to
establish the equivalence of two class diagrams formally.

This work should reduce human effort and error in the scenarios described
before, at the same time that it is used to automatically check academic
assignments, purge documentation of existing software systems, evaluate



88CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

designs and generate augmentation for machine learning.
In this chapter, our approach for model comparison is expressed in terms

of a formal system to establish the equivalence of two models. An analysis of
its reliability and an example are also shown.

5.4.1 Equivalence Calculus

In this section, a formal system to compare class diagrams is described. It
takes two formal class models and establishes the equivalence relationship
between them. Two types of equivalence are defined here, which we call left
equivalence and right equivalence. They are determined based on a set of
axioms presented below.

Let us introduce first de definition of model equivalence.

Definition 14. Two models M1 and M2 are equivalent if:

1. For every predicate in M1 there is an equivalent predicate in M2.

∀φlX ∈M1, ∃ψmY ∈M2, φlX ≈ ψmY

2. For every predicate in M2 there is an equivalent predicate in M1.

∀ψmY ∈M2,∃φlX ∈M1, ψmY ≈ φlX

Where φ and ψ are formulas representing predicates of type l and m
applied to the tuple of parameters X and Y. Also, M1 and M2 are
equivalent if both are empty:

M1 = ∅ ∧M2 = ∅

In the previous definition, the concept of predicate equivalence has been
mentioned, and now it is defined as follows.

Definition 15. Two predicates φlX and ψmY with predicate names l and
m and parameters X and Y are equivalent if:

1. The predicate names of φ and ψ are the same.

l = m



5.4. CLASS MODEL EQUIVALENCE 89

2. The number of parameters is the same for both predicates.

|X| = |Y |

3. The i -th parameter in φ is equivalent to the i -th parameter in ψ.

∀xi, yi xi ≈ yi

Where xi ≈ yi is the same equivalence relation from Definition 13.

The previous axioms allow us to establish the equivalence of two class
diagrams through their models. However, it is the case that some diagrams
can be partially equivalent as well, that is to say, that they contain some
similar elements but not all of them. To differentiate these cases, two types
of equivalence are proposed: left equivalence and right equivalence, which are
defined as follows:

Definition 16. Left equivalence occurs when all the elements of M1

have an equivalent element in M2. This corresponds to the first rule of
Definition 14.

Definition 17. Right equivalence occurs when all the elements of M2

have an equivalent element in M1. This corresponds to the second rule of
Definition 14.

In this way, it is possible to establish a more accurate comparison between
the two class models. The following rules of inference allow us to reason about
the equivalence of every predicate φlX and ψmY within models M1 and M2.

Class Axiom

This axiom allows us to establish the equivalence between two classes.

γx γy x ≈ y

>

Where γx is a formula of the type CLASS(x) and γy is a formula of
the type CLASS(y). In here, x and y represent the name of the classes;
hence, the type of class (classifier, abstract or interface) does not affect their
equivalence.



90CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

Operation Axiom

This axiom allows us to establish the equivalence between two operation
predicates.

ωab ωxy a ≈ x ∧ b ≈ y

>

For these formulas, the predicate name is OPR, and the variables a, x
represent the class for the operation and the variables b, y represent the name
of the operation. Other parameters, such as visibility and scope are not
checked.

Attribute Axiom

This axiom allows us to establish the equivalence between two attribute
predicates.

ρab ρxy a ≈ x ∧ b ≈ y

>

The ATR predicates are checked here, where the variables a and x represent
the class of the attribute, and variables b and y represent the name of the
attribute.

Inheritance Axiom

The equivalence of the class inheritance captured in INH predicates is
established with this axiom.

ηab ηxy a ≈ x ∧ b ≈ y

>

In here, a and x are the names of the superclasses, and b and y are the
subclasses.

To this point, model equivalence has been defined, and two types of
equivalence have been discussed. The rules to prove equivalence have also
been presented. As it has been done with our inference and validation calculus,
we proceed now to evaluate the reliability of our equivalence calculus.



5.5. SUMMARY 91

5.4.2 Reliability

All the formal systems previously proposed have been evaluated in term of
consistency, soundness and completeness, not being this an exception, we
proceed to discuss these properties.

The inference rules defined within the equivalence calculus result all in
tautologies. As a result, no contradictions are derived; hence it is demonstrated
that the system is consistent.

The predicates of the class models are always true, no other predicates are
possible, and hence the system is sound and complete. With these properties
being demonstrated, an application of this calculus is given below.

5.4.3 Example

To demonstrate the usage of the equivalence calculus, we need two class
diagrams which we would like to compare and check for equivalence. Similarly
to the example of the validation calculus, we start with the empty model. Let
M1 = ∅ and M2 = ∅. By definition, these two models are equivalent.

Now assume that the predicate CLS(Customer, classifier) is added to M1.
There is not a premise of the type CLS(x, ∗) in M2 such that Customer ≈ x,
hence the class axiom does not hold over M1 and the model does not satisfy
left equivalence.

In addition, assume now that CLS(Client, abstract) ∈ M2 and that
Client ≈ Customer. In this case, the class axiom holds over M1, and it
is also the case for M2, hence both models are equivalent.

Now assume that INH(User, Client) ∈ M1. It is known that the class
axiom holds over M1 and M2, since there are no more elements in M2 then
the right equivalence is satisfied, however, the left equivalence is not, due to
the newly added class. These examples cover the evaluation of left and right
equivalence to determine model equivalence.

5.5 Summary

A framework for formal reasoning over class models was presented. The
framework encircles the formalization of ConSpec specifications and Class
Diagrams using predicates, and a calculus for model inference, validation and
comparison (aka. equivalence). Every calculus is accompanied by a set of
inference rules, an evaluation of its consistency, soundness and completeness,
and an example to illustrate its application. Though still limited, these formal
systems set the ground for new approaches to reason about models, and their
relation with requirements specifications. More importantly, the presented



92CHAPTER 5. TOMM: A FRAMEWORK FOR FORMAL REASONING

framework underlies the proof-of-concept that we have developed and which
is discussed in detail in Chapter 6.



Chapter 6

T4TOMM: a proof-of-concept
for TOMM

In this chapter, we describe the implementation of a proof-of-concept that
supports our formal framework developed through Sections 5.2, 5.3, and 5.4.
We have named this implementation T4TOMM, which stands for Tool 4
Thinking of Models and More, and in its current stage, it supports model
inference, validation and comparison. In order to implement these theories,
we have resorted to existing developments, such as languages, solvers and
processors, all of which will be discussed within the chapter. Towards the end
of the chapter, we will have introduced the elements of our implementation,
the justification of the decisions made, and the illustration of the usage of
T4TOMM.

T4TOMM currently supports the following functions:

• Automatic formalization of YAML-based ConSpec specifications into
SMT-LIB models.

• Automatic formalization of JSON-based class models into SMT-LIB
models.

• Automatic integration of SMT-LIB models to infer JSON class diagrams
from YAML ConSpec specifications.

• Automatic integration of SMT-LIB models to validate JSON class
diagrams against YAML ConSpec specifications.

• Automatic integration of SMT-LIB models to compare JSON class
diagrams.

93



94 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

• Processing of SMT-LIB models using CVC4 to generate, validate and
compare classes, attributes, operations and inheritance in class models.

• Partial JSON Class model extraction (mainly attributes and operations)
from image-based class diagrams.

6.1 Resources

In this section, we introduce the existing resources we have used in the
development of T4TOMM. They are separated into two categories, those
related to natural Language processing, and those related to formal reasoning
with satisfiability modulo theories.

Based on our experience with programming languages, we considered both
Java and Python as candidates for the development of our proof-of-concept.
We noticed a growing tendency in the use of Python in industry and open
source projects, and, hence, our choice of Python as the primary programming
language to develop T4TOMM. As a consequence, the selection of NLP and
SMT were also influenced by this decision.

6.1.1 Natural Language Processing

This category enumerates libraries that aid the processing of English texts, in
particular, those used to process ConSpec requirements specifications written
in SpeCNL. Two processing tasks are required within the implementation
of T4TOMM; they are parts-of-speech (POS) tagging, and sentence parsing
using Context Free Grammars (CFG).

The Natural Language Toolkit (NLTK)[44] was the most suitable candi-
date for both the tasks, primarily due to its compatibility with the leading
Operative Systems and the amount of data available thanks to its open-source
nature; this makes it a perfect fit for our proof-of-concept. Additionally, it is
also developed for Python, our choice of programming language.

Parts of speech tagging [206] is the activity that consists of identifying
the grammatical category of a word, i.e. Parts of Speech (POS) within a
sentence. Examples of POS in English are nouns, verbs and prepositions. The
most commonly used tags are appropriately defined in the Penn Treebank tag
set[20], which is also followed by most of the POS taggers. However, these
tags are not the same as the ones required for TOMM, as defined in Section
4.1.1. To solve this problem, we have defined the equivalences captured in
table 6.1

NLTK allows performing POS tagging in Python by providing an interface
to different taggers. For the implementation of T4TOMM, the off-the-shelf



6.1. RESOURCES 95

Table 6.1: Equivalence of POS tag

SpeCNL tag Treebank tag
NOS NN
NOP NNS
NOS NP
NOP NPS
VB VV
VBP VVD
VBI VBN
VBI VVN
VBB VVP
VB VVZ
VBB VB
ADJ JJ
INT CD

English tagger is sufficient to perform the desired task. In the current
implementation, we assume that the tagger returns the correct tags for each
sentence. However, we are aware that this is not always the case. Therefore,
we envision a future version where more than one tagger can be combined
with the user input in order to ensure that each word is correctly tagged.
This limitation does not affect the theory proposed in TOMM due to the
assumption mentioned before.

Sentence parsing consists of identifying the sequence of grammatical rules
necessary to the construction of a given sentence. The set of all possible rules
to enable this construction is called a Context Free Grammar (CFG) and
is composed of terminal and non-terminal symbols. Non-terminal symbols
are related to the words in the sentence, whereas non-terminal are treated
as placeholders in the parsing tree. For instance, in the sentence “dogs run”,
both words “dogs” and “run” are terminals, and we define “SENTENCE”,
“NOUN”, “VERB” to be non-terminals. Finally, the following CFG is used to
parse sentences that have a noun and a verb, like the one mentioned earlier.

SENTENCE -> NOUN VERB

NOUN -> dogs

VERB -> run

T4TOMM requires sentence parsing to validate that a specification is
properly written i.e. that it follows the rules described in SpeCNL and
ConSpec. T4TOMM also makes use of sentence parsing to formalize a
contract automatically.

This task is achieved utilizing NLTK parsing capabilities. In our current
implementation, we use the efficient Chart Parser, which generates a growing



96 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

chart with all possibilities for each subtree[44]. We parse individually every
element of the specification with its corresponding CFG, which then reuses
the elements of SpeCNL. These grammars are presented in Section 6.2 of this
chapter.

6.1.2 Satisfiability Modulo Theories

We introduced SMT solvers in Section 3.1.7.4 to evaluate logic formulas with
respect to a combination of the proposed theories. In this section, we will
discuss the elements used in the implementation of T4TOMM to support
the theories described as part of TOMM for model inference, validation and
comparison.

6.1.2.1 SMT-LIB

SMT-LIB[33, 34] is an international effort to provide a common language
to express SMT theories that to be used by different solvers. Together with
the input and output language, it describes theories for common types, such
as integer, real and floating-point numbers, and a set of logics to deal with
different elements, such as quantifiers and arrays. We opted for SMT-LIB
because it has been accepted as a standard by the major players in the SMT
community, and its documentation is accessible and clear.

The elements of SMT-LIB used within T4TOMM are constants, functions
and datatypes, together with quantifiers, logic operators, assertions, queries
and model descriptors. Though these elements are conceptually similar to
the ones found in major programming languages, writing SMT-LIB models
demands a change in the way we think about them. First of all, it follows
Polish (prefix) notation[141] i.e. the operator comes at the beginning, followed
by the operands. For example, instead of a+ b one must write +ab; in small
examples, this may seem trivial, but it becomes more complex when extended
to represent sufficiently complicated models. Another consideration is that
SMT-LIB is not a programming language, but a formal reasoning language,
which has no instructions or procedures are coded. Instead, constraints and
questions are expressed. These difficulties may seem overwhelming for any
software developer. Hence, the need for T4TOMM to ease the use of SMT
solvers with user-friendly models and specification.

6.1.2.2 CVC4

CVC4[35] is an SMT solver that supports both, its own language, and SMT-
LIB. Its more relevant features include support for datatypes, strings and



6.1. RESOURCES 97

finite sets. These features justify our decision of CVC4 over other solvers,
such as Z3[96]. In addition to these features, CVC4 provides binaries for
most major operating systems, which eases the installation and configuration
process.

Unlike NLTK, CVC4 itself does not integrate with Python, and though
there are official interfaces for C++ and Java, the Python API is neither
complete nor adequately documented. For this reason, CVC4 has to be
executed from a terminal session initiated from our python application, which
is in charge of generating the corresponding SMT-LIB models, as we will be
describing it in the next section.

SMT-LIB and CVC4 were chosen due to our familiarity with these tools,
in addition to their ability to deal with formal theories and to generate proofs.
SMT solvers also represent a potential for future support of OCL constraints.

6.1.3 Image processing

As part of T4TOMM, we have incorporated a module to extract information
from the graphic representation of class models. This is described in Section
6.6. This particular module requires the usage of several libraries for image
processing. Since our core application is developed in Python, we favoured the
usage of libraries written for Python. In particular, we have used scikit-image,
scikit-learn and pillow.

Scikit-image is a library that implements various Image Processing algo-
rithms. We made use of it in order to perform various image manipulations,
including colour transformations (RGB, grey scale and black and white), and
basic image filtering (line segmentation, skeletonization and labelling). These
algorithms are required to perform image segmentation.

Scikit-learn is a machine learning library that provides optimal implemen-
tations of the conventional algorithms within the field. In particular, we used
it to perform numeric clustering and segmentation. Both the image and the
learning libraries make use of the numpy library that contains mathematical
functions for data manipulation.

Pillow is a top-level implementation of the underlying Python Imaging
Library, which eases image generation and handling. We made use of this
library to generate intermediate representations during the segmentation
process, and to produce the images of individual segments.

In order to perform Optical Character Recognition (OCR), the task of
extracting text from images, we evaluated python-tesseract and google vision
API. We opted to use tesseract because it is free and performed better than
the Google vision API when extracting the information of the classes. We
also determined that from the different segmentation modes supported by



98 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

tesseract, the one that assumes that assume the image is a block of vertically
aligned text works the best to extract attributes and operations, though
it struggles to deal with class names. We accepted this trade-off because
intuitively we know that modifying one class name requires less effort than
modifying more than one attribute or operation.

These libraries allow us to extract the textual components for each class,
as described and Section 6.6.2.

6.2 Meta-Models

In this section, we present the SMT-LIB components that are reused for
the following tasks: inference, validation and comparison. We also present
the strategy used to instantiate each of these components with their specific
values for each of those tasks.

6.2.1 Specification

This meta-model contains the definition of all the used components of a
ConSpec requirements specification.

6.2.1.1 Datatypes

In Sections 5.2 and 5.3, we introduced a collection of rules used to derive
models from specifications and to validate models against specifications.
These rules require a formal representation in SMT-LIB using clauses, actors,
structural sentences and type sentences. There are in turn captured by the
following datatypes.

SMTLib 6.1: Specification Metamodel

; Spec datatypes

; Actor

(declare-datatypes ((Actor 0))

(((ACTOR (actor_name String)))))

; Clause

(declare-datatypes ((Clause 0))

(((CLAUSE

(activity String)

(c_actors (Set Actor))

))))

; Sentence

(declare-datatypes ((Sentence 0))

(((SENTENCE

(words (Set String))

))))

; Structural Sentence

(declare-datatypes ((Structural_S 0))



6.2. META-MODELS 99

(((STRUCT

(entity String)

(modal String)

(have String)

(property String)

))))

; Type Sentences

(declare-datatypes ((Type_S 0))

(((TYPE_S

(subtype String)

(isa String)

(type String)

))))

; CSD sets

(declare-fun clauses () (Set Clause))

(declare-fun actors () (Set Actor))

(declare-fun actors () (Set Actor))

(declare-fun struct_sents () (Set Structural_S))

(declare-fun type_sents () (Set Type_S))

These datatypes are reused in model inference and model validation as
well. Note that we have additionally added a Sentence datatype, something
not explicitly defined in our theories. However, this datatype helps the
implementation of the inference rules in SMT-LIB.

Also notice that in Section 5.2.1, we defined the structural sentence as
STRUCTURAL_SENTENCE(a,b,c) where a is an entity, b is a modal and c is a
property. Whereas in our SMT-LIB representation, we use the “have” element
with the intention of having a more readable model, of the type (STRUCT

"entity" "must" "have" "property") , which makes it more readable than
(STRUCT "entity" "must" "property") . The same reasoning is applied to
type sentence, which in our theory are captured as TYPE_SENTENCE(a, b)

but in our SMT-LIB meta-model are expressed as (TYPE_S "Admin" "is a"

"User") .

6.2.1.2 Automatic Formalization

In order to formalize contract specification, POS tagging and sentence parsing
are required. Each of the individual elements of a contract is parsed using a
specific grammar, as defined in Section 4.2.1 and built on top of the elements
of SpeCNL (Section 4.2). Each Context-Free Grammar is captured in a
modular file, and our NLPHandler builds dynamically the required grammar
based on the element of a clause to be parsed. For example, in order to
parse an action, the handler loads the specific grammar for actions, sentences,
concepts, and parts of speech.

The following CFGs exemplify the representation of the ones described in
Chapter 4 as read by NLTK.



100 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

MODAL -> ‘can’ | ‘must’ | MD

COMPARATOR -> INEQUALITY ‘or’ EQUALITY | INEQUALITY | EQUALITY |

COMPARATOR SYMBOL↪→

INEQUALITY -> ‘greater’ ‘than’ | ‘less’ ‘than’

EQUALITY -> ‘equal to’

COMPARATOR SYMBOL -> ‘>’ | ‘<’ | = | <= | >=

ENTITY -> PLURAL ENTITY | SINGULAR ENTITY | QUALIFIED ENTITY | NON |

ATTRIBUTE↪→

SINGULAR ENTITY -> SINGULAR INDICATOR QUALIFIER NOS

PLURAL ENTITY -> PLURAL INDICATOR QUALIFIER NOP

QUALIFIED ENTITY -> QUALIFIER NON

SINGULAR INDICATOR -> ‘a’ | ‘an’ | ‘one’ | ‘1’ | ‘the’

PLURAL INDICATOR -> INT | ‘the’

QUALIFIER -> ADJ | NN | VBI | QUALIFIER‘-’QUALIFIER | LAMBDA

ATTRIBUTE -> ENTITY APOS NON | NEUTRAL INDICATOR NON ‘of’ ‘the’ NON

ACTION -> VB | MODAL VB

Grammar 6.1: SpeCNL concepts



6.2. META-MODELS 101

SENTENCE -> STRUCTURAL SENTENCE | COMPARISON SENTENCE |

CARDINALITY SENTENCE | CONDITIONAL SENTENCE | TYPE SENTENCE |

CONSTRAINT SENTENCE

↪→

↪→

CONSTRAINT SENTENCE -> ATTRIBUTE ‘must’ ‘be’ EXPECTATION

EXPECTATION -> VBI | JJ

STRUCTURAL SENTENCE -> NON MODAL ‘have’ STRUCTURAL ITEM

STRUCTURAL ITEM -> ENTITY | ENTITY‘,’ STRUCTURAL ITEM | ENTITY‘, and

’STRUCTURAL ITEM↪→

COMPARISON SENTENCE -> ATTRIBUTE COMPARISON OPERATOR NUM

COMPARISON OPERATOR -> ‘must’ ‘be’ COMPARATOR

CARDINALITY SENTENCE -> ENTITY ACTION LIMIT NUM NON

LIMIT -> ‘up’ ‘to’ | ‘at’ ‘least’ | ‘maximum’ | ‘minimum’ |

‘exactly’↪→

CONDITIONAL SENTENCE -> ‘if’ CASE ‘then’ CONSEQUENCE

CASE -> ENTITY CONDITION MODE CONDITIONAL | CASE ‘and’ CASE | CASE

‘or’ CASE↪→

CONDITION MODE -> ‘is’ | ‘is’ ‘not’

CONDITIONAL -> COMPARATOR NUM | VBP | ADJ | NN

CONSEQUENCE -> VBB ENTITY

TYPE SENTENCE -> SUBTYPE ‘are’ TYPE

SUBTYPE -> PLURAL ENTITY

TYPE -> PLURAL ENTITY

Grammar 6.2: SpeCNL sentences

In addition to the elements of ConSpec and SpeCNL, it is necessary to add
rules to parse the terminals each sentence. However, it is technically infeasible
to list all possible terminal words as part of one single grammar. Hence, we
generate terminal rules dynamically for every individual element to be parsed
by tagging the words and adding the rules of the form POST_TAG -> 'word'

. For example, if the element to be parsed is the action “save document”,
tagging this sentence we obtain (W save) and (NN document). Thereby, we
generate the rules W -> 'save' and NN -> 'document' .

In this implementation, we deal with two types of semantic equivalence
based on word variations. The first type is synonyms, for which we make use
of WordNet[222] and its python API in order to query the synonyms for the
corresponding tagged word. The second type has to do with plurals, and the
third one with capitalization. These two types of word variation are tackle
with the python library call inflection1, which enables to generate different

1https://inflection.readthedocs.io/en/latest/



102 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

capitalization options and pluralization.
Additional word variations, such as domain-dependant semantics are not

deal with automatically; hence, they have to be explicitly stated in the formal
models. An example of this case is the concept “Customer” , which in a
banking domain can be equivalent to “Client” ; however, this is not the
case for marking companies, in which “Customer” refers to the users that
access the marking campaigns, while “Client” refers to the sponsors of such
campaigns.

In the formal models, equivalence is captured in the form of set membership,
due to the constraints of SMT-LIB. That is, if two words “w1” and “w2”
are equivalent, then they are members of the set same set. In this way, we
can find equivalent words by exploring the set of synonyms. An example is
shown in SMTLib 6.2

SMTLib 6.2: Example of sets for semantic equivalence and function to determine if two
words are equivalent

(declare-const syns_dict (Set Entry))

(assert (member (mk-entry (insert

"Paper" "paper" "PAPER" "Papers" "papers"

(singleton "Paper"))) syns_dict))

(assert (member (mk-entry (insert "submit" "SUBMIT" "Submit" "submits"

"subject" "SUBJECT" "Subject" "subjects"

(singleton "submit"))) syns_dict))

(assert (= syns_dict (as univset (Set Entry))))

define-fun is_syn ((w1 String) (w2 String)) Bool

(or

(= w1 w2)

(exists

((e Entry))

(and

(member e syns_dict)

(and

(member w1 (synonyms e))

(member w2 (synonyms e)))))))

In this way, we dynamically generate complete grammars that allow
parsing every individual element of the contract: actors, clauses numbers,
activities, conditions, etc..

One consideration is that the grammar for activity defined in Section
4.2.1 makes it difficult for the tagger to tag the corresponding verb properly.
To solve this problem, during the automatic formalization we prepend the
preposition “to” to the sentence before tagging. By performing this, the verb
is identified with the tag “VB”. This addition is only applicable to aid the
tagger, hence no need to add “to” in corresponding grammar.



6.2. META-MODELS 103

Figure 6.1: Contract Formalization Pipeline

Figure 6.1 illustrates the pipeline followed to formalize a specification into
its SMT-LIB representation. The dashed arrows represent activities that have
to be performed before moving to the next processing stage.

Notice that the input is a YAML file similar to what was depicted in 6.1.
We have chosen a YAML file for the contract because its structure based on
indentation is simple and does not require any additional symbols. With this
format, the specification document is written using only our CNL.

ConSpec 6.1: Specification structure

Title: Sample Contract

Version: 1

Clauses:

- C1:

Action: register user

Actors:

- Admins

Preconditions:

- User's name must be provided

- User's address must be provided

- User's date-of-birth must be provided

Action conditions:

- The system must generate a user id

Postconditions:

- The user id must be unique

- C2:

Action: delete user

Actors:

- Admins



104 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

Preconditions:

- User's name must be provided

- User's address must be provided

- User's date-of-birth must be provided

Consequences:

- Consequence 1

- Consequence 2

Dependencies:

- Dependency 1

- Dependency 2

6.2.2 Class Diagram

Similarly to the previous section, here, we present the SMT-LIB elements
that compose the meta-model of a Class Diagram. In addition to inference
and validation, this meta-model is used to compare two given class diagrams.

6.2.2.1 Datatypes

The following STM-LIB datatypes represent the predicates described in
Section 5.1.2.1.

SMTLib 6.3: Class Diagrams Datatypes

; UML datatypes

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String)

(cls_typ String)

))))

(declare-datatypes ( (Type 0) ) ( ((TYPE

(typ_nme String)

))))

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String)

(atr_nme String)

(atr_typ String)

(atr_vis String)

(atr_sco String)

))))

(declare-datatypes ( (Param 0) ) ( ((PARAM

(prm_nme String)

(prm_typ String)

)

(nil))))

(declare-datatypes ( (Operation 0) ) ( ((OPR

(opr_cls String)

(opr_nme String)

(opr_typ String)

(opr_vis String)

(opr_sco String)

(opr_prm Param)

))))

(declare-datatypes ( (Relation 0) ) ( ((REL

(rel_src String)

(rel_des String)



6.2. META-MODELS 105

(rel_typ String)

(rel_nme String)

(rel_rol String)

(rel_c_l String)

(rel_c_u String)

))))

(declare-datatypes ( (Inheritance 0) ) ( ((INH

(inh_sup String)

(inh_sub String)

))))

In addition to the predicates, we need to capture the sets described in
Section 5.1.2. However, instead of using the representation described in the
theory, the use of SMT-LIB demands an alternative declaration of the sets
by using the datatypes described in 6.3. This adaptation is depicted in 6.4.

SMTLib 6.4: Class Diagram Sets

; UML sets

(declare-fun classes () (Set Class))

(declare-fun types () (Set Type))

(declare-fun attributes () (Set Attribute))

(declare-fun operations () (Set Operation))

(declare-fun relations () (Set Relation))

(declare-fun inheritances () (Set Inheritance))

6.2.2.2 Automatic Formalization

In order to input a class diagram to T4TOMM, we have proposed a JSON
structure that enables us to capture the relevant elements of a diagram. The
OMG has defined the XML Metadata Interchange (XMI)[11] as a standard
to represent UML diagrams using tags. However, JSON documents have over
the years become predominant, especially in web technologies, due to their
simplified syntax. For this reason, we have considered JSON over XMI to
represent class diagrams, as a future version of T4TOMM is envisioned to be
accessed from any web browser and to provide web-services. The structure
proposed looks as follows.

JSON Model 6.1: Class Diagram structure

{

"classes": {

"classa": {

"name": "ClassA",

"attributes": {

"attra": {

"name": "attrA",

"type": "epsilon",

"visibility": "-",

"scope": "instance"



106 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

},

"attrb": {

"name": "attrB",

"type": "epsilon",

"visibility": "-",

"scope": "instance"

}

},

"operations": {

"opa-epsilon": {

"name": "opA",

"type": "epsilon",

"visibility": "+",

"scope": "instance",

"parameters": {}

},

"opb-epsilon": {

"name": "opB",

"type": "epsilon",

"visibility": "+",

"scope": "instance",

"parameters": {}

}

}

},

"classb": {

"name": "ClassB",

"attributes": {},

"operations": {}

}

},

"associations": {

"classa-classb-association": {

"source_class_name": "ClassA",

"destination_class_name": "ClassB",

"type": "association",

"name": "",

"role": "",

"lower_cardinality": 1,

"upper_cardinality": 1

}

}

}

The JSON representation is read by T4TOMM Python’s implementa-
tion producing the corresponding classes that are later translated into the
SMT elements described above. Notice that unlike the formalization of the
specification, this process does not require any natural language processing.

6.3 Inference

In Section 5.2.1, we described a set of rules that allows us to formally infer a
class model from a Activity requirements specification. In this section, we
provide the representation of these rules as SMT-LIB functions that enable
such inference from the meta-model described in Section 6.2.1.



6.3. INFERENCE 107

The following function captures the class rule, which allows us to infer
classes and types from the actors of a contract.

SMTLib 6.5: Class Rule

(define-fun infer-classes () Bool

(forall

((x Actor))

(=>

(member x actors)

(exists

((y Class))

(and

(member y classes)

(and

(=

(cls_nme y)

(actor_name x))

(=

(cls_typ y)

"classifier")))))))

(define-fun infer-types () Bool

(forall

((x Actor))

(=>

(member x actors)

(exists

((y Type))

(and

(member y types)

(=

(actor_name x)

(typ_nme y)))))))

In order to express the inference rules as constraints to generate the model,
we declare boolean functions. In our theory, we express the rule in terms of
an individual actor. However, in the function infer-classes , we use the
forall quantifier to assert that there is a class for every single actor, which
ensures completeness.

The infer-class function is read as “For every actor that is a member
of the set of actors of a specification, there exists a class that is member of
the set of classes of a diagram, such that the name of the class is the same as
the name of the actor, and that class is ‘classifier”’.

The membership constraints (member x actors) and (member y classes)

are significant because SMT solvers reason about the universe of elements.
That is, if we were reasoning about the integers 1, 2, 3 , CVC4 would try
to build a model based on the universe of integers, which would include other
integers besides 1, 2, 3 . Similarly, if we do not assert the membership of
the variable (x Actor) to the set (declare-fun actors () (Set Actor))

defined in the meta-model, we may be inferring classes for actors which do not



108 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

belong to the given specification. In this case, we used the “classifier” type
for all classes, because no further information can be automatically extracted
from the specification alone.

Note that unlike the class rule, our SMT-LIB implementation has a
separated inference for types; this is to help CVC4 by reducing complexity
with several quantifiers in one same formula. Additionally, the infer-types

function only states that the name of the type must be the same as the actor.
The operation rules used to infer simple and parameterized operations

presented in Section 5.2.1 are implemented in the following SMT-LIB model.

SMTLib 6.6: Class Rule

(define-fun infer-operations () Bool

(forall

((x Clause))

(=>

(member x clauses)

(infer-operation x))))

(define-fun infer-operation ((c Clause)) Bool

(forall

((a Actor))

(=>

(and

(member a actors)

(member a (g_actors c))

)

(member (mk-operation a (activity c)) operations))))

(define-fun mk-operation ((a Actor) (activity String)) Operation

(OPR (actor_name a) (get-activity activity) "e" "+" "instance" (get-param activity)))

(define-fun get-activity ((activity String)) String

(ite

(str.contains activity " ")

(str.substr activity 0 (str.indexof activity " " 0))

activity))

(define-fun get-param ((activity String)) Param

(ite

(str.contains activity " ")

(PARAM (str.substr activity (str.indexof activity " " 0) (str.len activity)) "e")

nil))

In this model, the function infer-operations is used to initialize the
inference process. This function is used to assert that for every clause
that belongs to the set of clauses of a specification, an operation has to
be inferred using the infer-operation function. The helper constructing
function mk-operation receives the actor and the activity of the clause and
instantiates a new instance operation.

To achieve this construction, the helper function get-activity parses
the activity string of the clause, so that it only takes the first word before a



6.4. VALIDATION 109

space. Besides, the get-param helper finds a possible parameter within the
activity string, assuming the parameter is found after the first space between
two words. The current implementation infers operations from activities
composed by only one verb and one parameter at most, for example, “register
user” and “login” .

This implementation allows identifying the actor of the activity as the class
of the operation, the first word of the activity as the name of the operation,
and the second word of the activity as the parameter, as required by the
corresponding inference rule.

Similar to the operation rule are the implementations of the attribute,
inheritance, and attribute rules. They all have initializer functions that
“iterates” over the elements of each set of the specification in order to infer its
corresponding element of the class diagram. The complete implementation of
the inference rules together with an example are provided in Appendix B.1

The output of the SMT-solver is an SMT-LIB model like the one shown
in CVC4 Output for inferred class model. In it, it is observed that all
classes, attributes, operations and inheritances are described as singletons.
Our python implementation parses this answer in order to generate the
corresponding python object, which, if needed, can be derived into the formal
representation of a diagram. A desirable extension would be a visualization
of the model generated in the form of a diagram.

SMTLib 6.7: CVC4 Output for inferred class model

(singleton (CLASS "Library" "classifier"))

(singleton (CLASS "Loan-Item" "classifier"))

(singleton (OPR "Library" "loans" "e" "+" "instance", (as emptyset (Set Params))))

(singleton (OPR "Library" "issues" "e" "+" "instance", (as emptyset (Set Params))))

(singleton (ATR "Books" "title" "e" "e" "e"))

(singleton (ATR "Members", "date-of-birth" "e" "e" "e")))

(singleton (INH "Loan-items" "Books"))

6.4 Validation

In Section 5.3.1, the rules necessary to validate a class model against a given
specification were discussed. Throughout this section, we will discuss the
structure of the SMT-LIB implementation of most relevant rules.

Both sections, validation and diagram equivalence, make use of the defi-
nition of concept equivalence. For T4TOMM, two words equivalent if they
have the same meaning, or if they have the same base word. For example,

“customer” and “Customer” are equivalent words varying only in capitaliza-
tion, “customer” and “customers” are equivalent varying in the number,



110 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

and “customer” and “client” have an equivalent meaning. In most general
cases, any synonyms of a word are its equivalent.

In order to define word equivalence, we provide the following SMT-LIB
model.

SMTLib 6.8: Word Equivalence

(declare-datatypes ( (Entry 0) ) ( ((mk-entry

(synonyms (Set String))

))))

(declare-const syns_dict (Set Entry))

(assert (member (mk-entry (insert

"w1" "word1" "Word1" "Word 1"

(singleton "w 1"))) syns_dict))

(assert (member (mk-entry (insert

"word2" "w2"

(singleton "W 2"))) syns_dict))

(assert (= syns_dict (as univset (Set Entry))))

In this model, the Entry datatype represents an element of the dictionary
of synonyms. Every entry is a set of equivalent strings. From the example
above, it is observed that “w1” , “word1” , “Word1” , “Word 1” , and

“w 1” are equivalent. Every set of equivalences is added to the dictionary,
which will then be used in the validation and equivalence tasks.

The current python implementation generates these sets automatically
by varying each of the words found in the class diagrams and the specifica-
tions. However, further semantic equivalence is required in order to enable
the introduction of exceptional cases. For example, in a bank system, the
terms “customer” and “cardholder” may be equivalent, which cannot be
automatically identified without user input.

The actor rule ∃CLS(x, e) ∈M,∃ACTOR(y) ∈ S | x ≈ y
expresses the basic condition that there is a class and a actor whose names
are equivalent.

In order to prove the soundness of the diagram, we have to prove that
this rule is true for all the classes, which we write in SMT-LIB as follows.

SMTLib 6.9: Class Soundness

; There is an actor thar derives the class

(define-fun check_class ((c Class)) Bool

(exists

((a Actor))

(and

(member a actors)



6.4. VALIDATION 111

(is_syn

(cls_nme c)

(actor_name a)

)

)

)

)

; All the classes come from an actor

(define-fun actors_rule () Bool

(forall

((c Class))

(=>

(member c classes)

(check_class c)

)

)

)

The function actors_rule allows to reason about all classes, while the
function check_class verifies that there is at least one actor whose name is
equivalent to the name of the class being analysed.

Inversely, we need a rule to verify completeness of the model, i.e. to check
that all the actors in the specification have an equivalent class in the diagram.
We use the following functions to prove class completeness.

SMTLib 6.10: Class completeness

(define-fun check_actor ((a Actor)) Bool

(exists

((c Class))

(and

(member c classes)

(is_syn

(actor_name a)

(cls_nme c)

)

)

)

)

(define-fun inverse_actors_rule () Bool

(forall

((a Actor))

(=>

(member a actors)

(check_actor a)

)

)

)

In this model, the function inverse_actors_sule allows to reason about
all the actors of the specification, while the function check_actor is respon-
sible for proving that there is a class whose name is equivalent to the name
of the actor.



112 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

A similar implementation is made for the remaining rules, which are fully
described in Appendixes B.2 and B.3. Note that these rules also depend on
the meta-model described in Section 6.2.

In order to check either completeness or soundness, we must evaluate
(assert) each of the rules, and we must assign the output to a variable that can
be queried in SMT-LIB to conclude the validity of the model. We demonstrate
these steps in the following model.

SMTLib 6.11: Checking for Soundness

;----------------------------------

; Validating model

;----------------------------------

(declare-const actors_validation Bool)

(declare-const operations_validation Bool)

(declare-const attributes_validation Bool)

(declare-const inheritances_validation Bool)

(assert (= actors_validation actors_rule))

(assert (= operations_validation operations_rule))

(assert (= attributes_validation attributes_rule))

(assert (= inheritances_validation inheritances_rule))

;----------------------------------

; Checks

;----------------------------------

(check-sat)

(get-value (actors_validation))

(get-value (operations_validation))

(get-value (attributes_validation))

(get-value (inheritances_validation))

(exit)

Notice that the boolean constants named as *_validation store the result
of the evaluation of the corresponding rule. For instance, actors_validation

stores the result of the boolean function actors_rule .
At the bottom of the model, we have the (check-sat) command which

effectively executes the solver in order to prove our rules. After checking for
the satisfiability of the model, we query the value of these variables. Should
all of them be true, we conclude that the diagram is sound with respect to the
specification. In these SMT-LIB models, the return value of the SMT solver is
unknown, because when using universal quantifiers, the solver cannot entirely
derive conclusions about the universe of elements. For this reason, we only
take into consideration the results for the specific rules, which constraint the
reasoning domain to the elements that are members of the sets that describe
the specification and the diagram.

The following model depicts the output of the solver when validating a
diagram against a specification using our implementation of the validation
rules for soundness.



6.5. EQUIVALENCE 113

SMTLib 6.12: Results for Soundness

((actors_validation true))

((operations_validation true))

((attributes_validation true))

((inheritances_validation true))

Notice that in this example, all variables are true, so we conclude that
diagram is sound.

6.5 Equivalence

In this section, we will discuss the SMT-LIB implementation of the theory
described in Section 5.4, related to model equivalence. The implementation
makes use of the class diagram meta-model described in Section 6.2 to
instantiate the components of the diagrams to be compared.

In our theory, we signalled semantic equivalence as the key to comparing
two class diagrams. In our current implementation, semantic equivalence is
implemented as the similarity in form and meaning between two words as
described in the previous section. That is, two words are equivalent if they
refer to the same base word and vary in number, spacing or capitalization, for
example, “word1” and “Words 1” . The implementation of an SMT-LIB
function that handles such equivalences is described in the model 6.8. With
this function, we can formally compare two models.

Our theory separates two types of partial equivalence. Left equivalence
occurs when all the elements of the first model have an equivalent element in
the second one. Inversely, right equivalence is satisfied when all the elements
of the second diagram have an equivalent in the first one. If both, left and
right equivalences are satisfied, then we conclude that both models satisfy
total equivalence.

The following model shows the function used to verify that for all the
classes in the first diagram, for which there is an equivalent class in the second
diagram.

SMTLib 6.13: Class Equivalence Checking

(define-fun check_classes ((s1 (Set Class)) (s2 (Set Class))) Bool

(forall

((x Class))

(=>

(member x s1)

(exists

((y Class))

(and



114 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

(member y s2)

(is_syn (cls_nme x) (cls_nme y))

)))))

This function, in particular, checks that for all the classes that belong
to the set of classes of the first diagram, for which exists another class that
belongs to the set of classes of the second diagram, such that the name of the
first class is equivalent to the name of the second class.

The implementation of the model to check the equivalence of dictionaries,
operations, attributes, relations and inheritances are found in Appendix B.4.

Similar to the validation task, the equivalence task depends on the result
of individual operations, which are also stored in boolean variables. The
definition of these variables are provided in Appendix ??

In order to verify left and right equivalence, our python program dynami-
cally generates two separate sub-models alternating the order of the diagrams.
After these sub-models are run, we establish the type of equivalence existing,
as well as identify which elements of the diagrams are not equivalent.

6.6 Class Model Extraction

At this point, TOMM provides the means to reason about class diagrams
formally. In the case of T4TOMM, we have required the diagram to be
described as a JSON file. However, this requirement imposes an extra effort
on the potential users of the T4TOMM, for diagrams typically exist as image
files. Intending to eliminate this additional effort, we have prototyped an
algorithm capable of extracting the information contained in class diagrams,
which generates the JSON description for the graphical representation of the
diagrams.

The extraction of class model elements is divided into two tasks. The first
one is to identify the graphical components of the diagrams in the image,
commonly known in the image processing community as image segmentation.
The second task requires optical character recognition (OCR) algorithms to
extract the relevant information from every image segment. Figure 6.2 depicts
the interaction between these tasks and will be described further next.

6.6.1 Image Segmentation

A class diagram is described as a composition of boxes and arrows, wherein
every box represents a class, and every arrow represents a relation between
classes. Employing image segmentation, we aim to divide the whole image into



6.6. CLASS MODEL EXTRACTION 115

Figure 6.2: Class Diagrams Extraction Process

Figure 6.3: Class Diagram Segmentation

clusters of pixels that belong to either a class, an arrow, or the background.
Figure 6.3 illustrates the goal of this task.

For instance, if a given class diagram is composed of 5 classes and 3
relations, then we have 9 possible labels (clusters) to be assigned to every
pixel. In general, the number of labels is defined as:

l = c+ r + 1 (6.1)

Where c is the number of classes, r the number of relations, and 1 represents
the background of the diagram or any other relevant information. Our current
implementation of T4TOMM requires the user input to specify the number
of classes and relations.

Class diagrams tend to be drawn differently depending on the tool used
to create them. Variations include lines and background colours, line widths,
connective shapes, fonts, amongst other features; this raises the need to
perform pre-processing to normalize the images to be analysed. After the
noise has been removed, images are segmented accordingly. Figure 6.4 depicts
the stages of image segmentation, which are line recognition, boxes recognition



116 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

Figure 6.4: Segmentation Process

and finally image segmentation.

During the lines detection stage, only relevant lines are selected, in
order to avoid the noise caused by the text within the boxes. It is assumed
that input diagrams are given in colour (RGB), which adds extra complexity
to the image. Hence, the first step of the pre-processing requires to transform
the image to greyscale, which then is binarized to have only two possible
values for each pixel, either black or white. The algorithm works better on
images with a black background and white lines, so if required, the colours
of each pixel are inverted so that non-background pixels are white. Binary
images are then skeletonized so that only pixels representing the contours
of the objects are kept. Finally the probabilistic Hough line transformation
method[174, 283] is used to recognize valid lines. The resulting image is
exported as a PNG file to be used in the following stage of the process. The
different operations performed over the input image in this stage are shown
in Figure 6.5.

Similarly to the lines detection stage, the rectangles detection stage
requires to remove colour and to binarize the image as shown in Figure
6.6. The goal of this stage is to produce rectangular shapes based on the
lines obtained in the previous stage, by building intricate skeletons from the
relevant individual lines. These skeletons are exported as well and used in
the next stage to identify classes.

Finally, in the segmentation stage, the rectangles formed before are used
to cluster pixels that represent classes. In Figure 6.7 two approaches are
compared: labelling based on neighbour pixels, and k-means[143, 202]. For
small diagrams, the accuracy of both is almost the same, but on bigger



6.7. SUMMARY 117

diagrams, k-means is more precise, for it is indicated exactly how many
clusters are there. This difference is shown in Figure 6.8. Once all segments
have been appropriately identified, every region is saved as an individual
image that is used later to extract the information about the class.

6.6.2 Information Extraction

With the image segmented using k-means (or any other similar method), we
feed every individual class to the text processor. It will retrieve the contents
of the box line by line. This text must be processed in order to identify the
type and name of the component. The following basic rules are followed to
identify the individual elements of a class:

• Class name if the text belongs to the first or second line, and starts
with a capital letter.

• Attribute every line starting from the second, that starts with lower
case or a visibility symbol, and not containing parenthesis.

• Operator every line starting from the second, that starts with lower
case or a visibility symbol and containing parenthesis.

We these rules, we can parse the contents of every class image as shown
in Figure 6.9. Note that this implementation only works on classes that have
been written following the standard UML notation.

The prototype implementation currently only works for a limited set of
ideal class diagrams, particularly those that are very clear with classes that
are sufficiently spaced. However, as a proof-of-concept, it certainly illustrates
how our formal framework can be extended with the usage of image processing
in order to reduce human effort in favour of better automation.

6.7 Summary

In this chapter, a proof-of-concept to support TOMM was proposed, namely
T4TOMM. In order to make TOMM easily accessed, automatic formalization
of ConSpec specifications is performed. Similarly, class models are partially
obtained from the images of class diagrams, which are then formalized. SMT-
LIB models generated from the processes described above are then and checked
using SMT-Solvers to determine model validity and equivalence, together with
the model inference from specifications. Some of the limitations of T4TOMM
are briefly mentioned here and further explored in the following chapter.



118 CHAPTER 6. T4TOMM: A PROOF-OF-CONCEPT FOR TOMM

F
ig
u
re

6
.5
:

L
in

es
d

etectio
n

p
ro

cess

F
ig
u
re

6
.6
:

R
ecta

n
g
les

d
etectio

n
p

ro
cess

F
ig
u
re

6
.7
:

S
eg

m
en

ts
d

etectio
n

p
ro

cess



6.7. SUMMARY 119

Figure 6.8: Comparison of labelling vs k-means

Figure 6.9: Class information extraction





Chapter 7

Evaluation

Through this chapter we describe the different aspects involved in the evalu-
ation of our contributions, including the evaluation methodology, the cases
to be evaluated, the actual evaluation and the results for each of the items
enumerated in Section 1.4

First we evaluate our specification format for functional requirements
(ConSpec + SpeCNL). This format is evaluated by manually translating exist-
ing requirements from different sources and domains into SpeCNL sentences
within a ConSpec specification. For each of these requirements, we discuss
the extension of the requirements that we were able to express in SpeCNL
and the limitations that we came across. We highlight the results regarding
functional requirements, and we discuss future work to improve and extend
this specification format.

For model generation we refer to the requirements of the library system
introduced in Chapter 2 restructured as a ConSpec specification, and we
use T4TOMM to infer its corresponding class model. We then manually
check that all the classes, attributes, operations and inheritances expected
are present in the inferred model.

For model validation, we evaluate four individual cases. First, we check
an invalid mode, to make sure our theory is capable of determining when a
diagram is neither sound nor complete with respect to a given specification.
Then we check a model that we know is sound, but not complete, that is,
that it lacks some elements that exist in the specification. Then we check
model completeness alone in a diagram that has all the elements of the
specification, but also additional elements. We finally check a valid model,
that is, a model that is sound and complete. All these checks are done using
our proof-of-concept and manually modified diagrams that satisfy each case.

For model comparison, we follow a similar approach to the one of model
validation. We use T4TOMM to check for two models that are different, then

121



122 CHAPTER 7. EVALUATION

we check for left, right and total equivalence of manually modified diagrams
that satisfy these scenarios.

The evaluation of these theories includes first a demonstration of their
manual application, and then we proceed to evaluate the specific cases using
T4TOMM. All these theories are evaluated with respect to the current capa-
bilities of TOMM, that is, reasoning about classes, attributes, operations and
inheritances. Additional elements such as OCL constraints or associations
are not evaluated. The obtained results are manually compared against the
expected ones, and then, they are discussed individually in each subsection.
The threats for validity are discussed towards the end of the corresponding
section.

In addition, we evaluate T4TOMM for model extraction, which is a
secondary contribution. We extract class models from existing class diagrams
from different sources. For each existing class diagram, we manually count
the number of classes, attributes and operations, and then we compare those
results with the ones obtained from our proof-of-concept.

7.1 ConSpec and SpeCNL

In Chapter 4 we presented our document structure, ConSpec, and our con-
trolled natural language SpeCNL used to specify functional requirements. In
this section, we discuss the process followed to evaluate their capabilities and
limitations in comparison with requirements documents written in English,
with no pre-defined structure. We present here a selection of requirements
from a collection of publicly available requirements documents, and we anal-
yse the process required to rewrite these original requirements into ConSpec
specifications.

7.1.1 Evaluation Methodology

The evaluation of ConSpec and SpeCNL was done by comparing existing
requirements documents with their corresponding ConSpec representation.
First, we investigated and identified sources for requirements documents
in English. Then we curated a subset of requirements to be used in our
evaluation, by defining a representative combination of features, which are:
source, length, and domain. The source feature represents the origin of
the requirements, which we classified into research publications, academic
materials and technical documentation for real systems. The length of each
original document was determined by the number of words if it does not
exceed 1000 words or the number of pages in the case it does exceed 1000



7.1. CONSPEC AND SPECNL 123

words. Finally, the domain feature refers to the business sector related to the
system being specified, such as finance or transportation.

Using boundary and combinatorial analysis[56], we chose the shortest and
longest requirements from each source, and then we made sure to include
samples for several domains, the resulting set is shown in Table 7.1. These
requirements were then manually translated into SpeCNL sentences within
their corresponding ConSpec document. The translation process allowed us
to identify several sentences that could not be represented in our proposed
format. We then analysed and discussed the structure and meaning of these
sentences, together with the limitations of our specification format that
prevented us from capturing them properly. These activities are further
discussed in Section 7.1.2 for each original requirements document.

7.1.2 Evaluation Cases

While class diagrams can be obtained from different sources, such as examples
in books, assignments from educational courses, and peer-reviewed publica-
tions, requirements specifications or requirements documents are not equally
available. However, we managed to find an attempt to collect requirements
documents aimed to benchmark tools that generate UML diagrams from
natural language requirements[289].

This collection goes by the name NLRP-Bench and is available as an
online repository of classified requirements and diagrams. It contains several
requirements documents from different sources in German and English, to-
gether with a smaller set of class and activity diagrams, associated with some
of these requirements.

After inspecting this collection, and following our evaluation methodology
proposed in Section 7.1.1, we chose a subset of requirements to be used in
our evaluation, which is shown in Table 7.1. These requirements define the
cases discussed in this section.

7.1.2.1 Ships Description

The first requirements to be analysed are named Ships Description1, which
describe a minimal version of the components of ships. This example has
been used in exam questions and has been developed by Prof. Walter F.
Tichy from the Karlsruher Institut für Technologie (KIT), who is also one of
the authors of NLRP-Bench. The original text is shown Text 7.1.

1http://nlrp.ipd.kit.edu/index.php/Ships

http://nlrp.ipd.kit.edu/index.php/Ships


124 CHAPTER 7. EVALUATION

Table 7.1: Evaluation Cases for ConSpec and SpeCNL

Requirements Source Length Domain

Ships Description Academic 49 words Transportation

Trains Description Academic 78 words Transportation

ATM Simulation Academic 750 words Banking

ACME Library Academic 16 pages Business

Simplified Library Research 217 words Business

Steam-Boiler Research 10 pages Hardware

Laws of Chess Research 18 pages Gaming

Whois Protocol Technical 100 words Protocol

Light Control System Technical 13 pages Hardware

Ships are either passenger ships or container ships. A passenger ship may have one or more
restaurants, which each are equipped with a certain number of seats. Each ship has at least
one diesel engine. A diesel engine comprises several cylinders. Each cylinder has valves and a
combustion chamber.

Text 7.1: Ships Description Requirements

Table 7.2 shows the translation of the original sentences into SpeCNL. In
the original text, it is noted that most of the verbs, coloured in blue, refer to
the properties of the ships. Thus they can be rewritten as structural sentences
defined in Section 4.1.3, that is the case of sentences s2, s4 and s5. This
is possible because the expressions “are equiped with” and “compromises”
are equivalent of the verb “to have” for this particular example. Sentence s1
is shows the usage of type sentence, described in Section 4.1.3, which generate
sentences s1.1 and s1.2. Finally, s3 is translated into a cardinality sentence
to indicate the minimum number of cylinders for each engine. Notice that
though s2 also mentions the cardinality of the number of restaurants in a
passenger ship, the modal may supersedes the role of the cardinality.

Our ConSpec format expects every requirement to be expressed in terms
of actions, but these requirements do not describe any action to take place
within the system, which implies that no clauses can be written. In order
to deal with this problem, we introduced a neutral action to indicate the
existence of something, regardless of whether there are actions to be taken or
not. The neutral action corresponds to sentence “somethign exists” , which
is supported by SpeCNL; however, its usage would indicate that in the class
diagram related this specification (whether generated or validated), there



7.1. CONSPEC AND SPECNL 125

Table 7.2: Translation of Ships Description requirements into SpeCNL sentences

Original sentence SpecCNL translation Element

s1 Ships are either passenger
ships or container ships

s1.1 Passenger-ships are
ships

Type sen-
tence

s1.2 Container-ships are
ships

Type sen-
tence

s2 A passenger-ship may have
one or more restaurants, which
each are equipped with a certain
number of seats

s2.1 Passenger-ships may
have restaurants

Structural
sentence

s2.2 Restaurants have
seats

Structural
sentence

s3 Each ship has at least one
diesel engine

s3.1 Ships have at least one
diesel-engine

Cardinality
sentence

s4 A diesel engine comprises
several cylinders

s4.1 Diesel-engines have
cylinders

Structural
sentence

s5 Each cylinder has valves and
a combustion chamber

s5.1 Cylinders have valves
and combustion chambers

Structural
sentence

must be a class named “Somethign” with a method named “exists” . This
peculiarity has to be taken into consideration in future versions of ConSpec,
and specific ways of dealing with the neutral action will have to be further
defined in TOMM as well.

For this particular example, the neutral action corresponds to the sentence
“ships exist” , where ships are the actors and exist is the action for the only
clause of the contract in which the properties of the ships will be specified.
Because the neutral action is a special case, given that it is not executed, the
components of the clause are expressed within the action conditions section,
as shown in ConSpec 7.1.

ConSpec 7.1: Ships Description ConSpec

- C1:

Action: exist

Actors:

- Ships

Action conditions:

- Passenger-ships are ships

- Container-ships are ships

- Passenger-ships may have restaurants

- Restaurants have seats

- Ships have at least 1 diesel-engine

- Diesel-engines have cylinders

- Cylinders have valves and combustion-chambers

From this example, we concluded that SpeCNL is sufficient to express these



126 CHAPTER 7. EVALUATION

requirements with the sentences provided, but ConSpec requires to handle
the existential neutral action. This observation also opens the question about
the existence of other neutral actions that should be considered; however, this
question will be left for future work, as discussed in Section 8.2.

7.1.2.2 Trains Description

The next example is the trains description2 system, which is another exam
question from Tichy. Unlike the example of the ships, this example does
contain some functionality to be specified, and its structures are more complex.
The full requirements are described in Text 7.2.

A freight train is a train whose carriages are only freight cars. The cars of a passenger train
are at least one passenger coach and a maximum of one dining car. Each train has one or two
locomotives. Coaches are composed of up to one big room and one or more compartments. Each
coach has air conditioning which can be turned on or off. Each air conditioner can only be
operated up to a specified maximum ambient temperature.

Text 7.2: Trains Description Requirements

Table 7.3 shows the translation of these requirements into SpeCNL. This
example consists of more cardinality and type sentences, together with actions
and comparison sentences. Sentence s6 compares the temperature of the
air conditioner with the maximum ambient temperature, which is another
variable. However, comparison sentences in SpeCNL do not allow comparison
with variables. Instead, an actual numeric value must be provided; for this
reason, we had to assume a value for the maximum ambient temperature. We
also had to assume that cars, carriages, coaches are all equivalent in some
way and that they all are carriages with specific sub-types.

With this translation, we observed the possible limitation in comparison
sentences concerning the usage of variables. However, although this feature
reduces the flexibility of SpeCNL, it also assures that the corresponding values
are always provided, and in fact, it forces the users to think of these values
when writing requirements.

The specification showed in ConSpec 7.2 corresponds to these requirements.
Notice that alike ships specification; we again need to write a neutral action
for the existence of trains an all of their components. An alternative would
have been to write these sentences as preconditions for the switch-on action.
However, that would require us to either include them also in the switch-off
action, which is redundant or to establish a dependency between switch-on
and switch-off only to indicate the existence of the components of the system,

2http://nlrp.ipd.kit.edu/index.php/Trains

http://nlrp.ipd.kit.edu/index.php/Trains


7.1. CONSPEC AND SPECNL 127

Table 7.3: Translation of Trains Description requirements into SpeCNL sentences

Original sentence SpecCNL translation Element

s1 A freight train is a
train whose carriages are
only freight cars

s1.1 Trains have carriages Structural
sentence

s1.2 Freight-trains are trains Type sen-
tence

s1.3 Freight-cars are carriages Type sen-
tence

s1.4 Freight-trains have freight-
cars

Structural
sentence

s2 The cars of a passenger
train are at least one
passenger coach and a
maximum one diner coach

s2.1 Passenger-trains are trains Type sen-
tence

s2.2 Passenger-coaches are car-
riages

Type sen-
tence

s2.3 Dining-cars are carriages Type sen-
tence

s2.4 Passenger-trains must have
at least 1 passenger-coach

Cardinality
sentence

s2.5 Passenger-trains must have
at most 1 dining area

Cardinality
sentence

s3 Each trains has one or
two locomotives

s3.1 Trains must have at least one
locomotive

Cardinality
sentence

s2.2 Trains must have at most two
locomotives

Cardinality
sentence

s4 Coaches are composed
of up to two big room and
one or more
compartments

s4.1 Coaches can have one big-
room

Cardinality
sentence

s4.2 Coaches have at least 1 com-
partment

Cardinality
sentence

s5 Each coach has
air-conditioning which can
be switched on or off

s5.1 Coaches have air-
conditioning

Structural
sentence

s5.2 Switch-on air-conditioning Action

s5.2 Switch-off air-conditioning Action

s6 Each air conditioner
can only be operated up
to a specified ambient
ambient temperature

s6.1 Air-conditioning’s tempera-
ture must be less than or equal
to 32

Comparison
sentence



128 CHAPTER 7. EVALUATION

which may lead to unexpected behaviour. For these reasons, it was determined
that having a neutral action to be reused as a dependency for switch-on and
switch-off actions was the best alternative. Though situations like this one
do not affect the generation and validation of class models, better handling
procedures are required when dealing with other types of models, such as
sequence diagrams, or OCL constraints. However, these models are not part
of the scope of our current research and will be part of future work.

ConSpec 7.2: Trains Description ConSpec

- C1:

Action: exist

Actors:

- Trains

Action conditions:

- Trains have carriages

- Freight-trains are trains

- Freight-cars are carriages

- Freight-trains have freight-carriages

- Passenger-trains are trains

- Passenger-coaches are carriages

- Dinning-cars are carriages

- Passenger-trains must have at least 1 passenger-coach

- Passenger-trains must have at most 1 dinning-car

- Trains must have at least 1 locomotive

- Trains must have at most 2 locomotives

- Coaches can have 1 big-room

- Coaches have at least 1 compartment

- Coaches have air-conditioning

- Air-conditioning's temperature must be less or equal than 32

- C2:

Action: Switch-on

Actors:

- Air-conditioning

Postconditions:

- Air-conditioning's temperature must be less or equal than 32

Dependencies:

- C1

- C3:

Action: Switch-off

Actors:

- Air-conditioning

Dependencies:

- C2

7.1.2.3 ATM Simulation

The length of the requirements document for the ATM Simulation3 system
and the ACME University Library Information System4 makes it unreasonable

3http://nlrp.ipd.kit.edu/index.php/ATM_Simulation
4http://nlrp.ipd.kit.edu/index.php/ERS_ACME_-_University_Library_

Information_System

http://nlrp.ipd.kit.edu/index.php/ATM_Simulation
http://nlrp.ipd.kit.edu/index.php/ERS_ACME_-_University_Library_Information_System
http://nlrp.ipd.kit.edu/index.php/ERS_ACME_-_University_Library_Information_System


7.1. CONSPEC AND SPECNL 129

to add them within this dissertation. However, they are available for reference
in their corresponding URLs found in the footnotes. We present and discuss
now only the elements that are relevant to this evaluation.

The ATM simulation is a peculiar case, for it defines the interaction of
hardware and software. For this reason, we do not expect SpeCNL and Con-
Spec to be prepared to deal with the entire set of requirements. Nonetheless,
this exercise helps to provide an insight into their potential to deal with more
complex systems.

The original requirements document is verbose, thus translating sentence
by sentence is not the best approach. Instead, the specification was writ-
ten from scratch with a simplified interpretation of the requirements. The
specification segment showed in ConSpec 7.3 demonstrates the support of
preconditions, conditional sentences, consequences, and dependencies.

ConSpec 7.3: ATM Simulation ConSpec

- C1:

Action: exist

Actors:

- ATM

Action conditions:

- ATMs have card-reader

- ATMs have keyboard

- ATMs have display

- C2:

Action: exist

Actors:

- Customer

- C3:

Action: read card

Actors:

- card-readers

- C4:

Action: insert PIN

Actors:

- Customer

Dependencies:

- C3

- C5:

Action: validate PIN

Actors:

- Bank

Preconditions:

- if attempts is >= 3 then retain card

Dependencies:

- C4

- C6

Consequences:

- re-enter PIN

- C6:

Action: communicate bank

Actors:

- ATM

Preconditions:

- ATMs have communication link



130 CHAPTER 7. EVALUATION

- C7:

Action: withdraw amount

Actors:

- Customer

Preconditions:

- amount must be valid

Dependencies:

- C5

- C6

- C8:

Action: get balance

Actors:

- Customer

Dependencies:

- C5

When writing these specifications, some issues arose, including the loss
of certain information that cannot be expressed in SpeCNL. One example
is the expression “multiples of $20.00” as part of the precondition for
cash withdrawal. The comparison sentences in SpeCNL are, once again, not
prepared to deal with comparisons other than numeric in adjectives. Hence,
advance mathematical comparisons like this one are considered as future
work.

7.1.2.4 ACME Library

The requirements for the ACME University Library Information System are
written in an extensive document that conforms to the guidelines of the IEEE
discussed in Section 3.2.1. We pay particular attention to the section of
functional requirements which lists 32 requirements. In order to demonstrated
the derivation of its specification, some of the requirements are shown in
Text 7.3, and their representation is shown in ConSpec 7.4.

• Req(01) Users shall be able to reserve books, irrespective of whether or not the requested
book is on loan.

• Req(02) Users shall not be able to reserve reference works.

• Req(04) The reservation shall be valid for any copy of a particular book. For example,
if there are five copies of Don Quixote, any one of these copies shall be considered to be
reserved.

• Req(13) Library users shall be able to borrow books.

• Req(14) The loan period shall be 7 days for students and administrative and support staff
and 15 days for faculty.

• Req(25) Library users shall have to return the books before the loan period expires.

• Req(26) If a book is returned late, the system shall suspend the user for two days for
every day the book is overdue.



7.1. CONSPEC AND SPECNL 131

Text 7.3: ACME Library Requirements

ConSpec 7.4: ACME Library ConSpec

- C1:

Action: reserve book

Actors:

- User

Preconditions:

- Book has copies

Action conditions:

- if book is not reference-work then reserve book

- if book is loaned then reserve book

- if book is not loaned then reserve book

- if book has copies then reserve copies

- C2:

Action: borrow book

Actors:

- User

Preconditions:

- loan has period

Action conditions:

- if user is not faculty then loan's period is 7

- if user is faculty then loan's period is 15

- C3:

Action: return book

Actors:

- User

Action conditions:

- if loan's period is expired then suspend user

In this particular example, some information is lost due to the structure
of the conditional sentences. The requirement Req(26) estates that the
suspension period must be two times the number of days overdue. However,
this statement cannot be expressed as a consequence of the form CONSEQUENCE

-> VBB ENTITY . A possible solution would be to express “user suspend” as
an additional clause and then break down the constraints in simpler ones.
However, the current structure of ConSpec does not keep any relation between
clause actions and consequences in conditional sentences. This discovery points
us out to an important aspect that ought to be considered in the next version
of our specification formats.

In the next section, we discuss the particularities found when SpeCNL is
being used to specify the requirements found in publications.

7.1.2.5 Simplified Library

The library example has been published with the work of Callan[62], Har-
main[142], Kim[171], and Bajwa[26]. This text was also used in Section 4.3
as an example of the refinement process used to generate ConSpec specifica-
tions. The complete text and its specification are found in Appendix A.1 and
Appendix section A.2.



132 CHAPTER 7. EVALUATION

7.1.2.6 Steam Boiler

The Steam-Boiler Control Specification Problem 5 is a document that describes
a system to control the level of water in a steam-boiler. It was initially taken
from the International Software Safety Symposium organised by the Institute
for Risk Research, where it was used as a competition problem. However,
the current requirements publicly available are an adaptation for a particular
boiler system published by Abrial[7].

The whole system is integrated by the steam-boiler, the water level mea-
surement device, the pumps, the control device and the steam measurement
device. The main program’s behaviour, the subject of our specification, has
five operation modes: initialisation, normal, degraded, rescue and emergency
stop. In ConSpec 7.5, we illustrate the specification of the normal mode.

ConSpec 7.5: Steam Boiler ConSpec

- C1:

Action: operate normal-mode

Actors:

- Boiler

Action conditions:

- If water-level is equal to 15 then activate pumps

- If water-level is more than 95 then deactivate pumps

- If water-level-measuring-unit is failing then operate rescue-mode

- If water-level is equal to 10 then operate emergency-stop

- If water-level is equal to 100 then operate emergency-stop

When translating these requirements, similar assumptions to the train
specification had to be made. There is a need to compare water levels
with normal and maximum values, which are not explicitly indicated in the
requirements. Hence, we indicated 15 and 95 for normal values, and 10 and
100 for extreme values. This assumption not only solves the problem partially
but also helped to discover that the current specification for comparators
does not allow to express comparison with ranges, for example, “x is between
a and b” . It is also interesting to note the relation of these requirements
with state diagrams, which are not currently supported by TOMM. These
extensions will be considered in a future version of SpeCNL.

7.1.2.7 Laws of Chess

FIDE laws of Chess6 specification has been published in the handbook of
the World Chess Federation. It contains all the rules and movements allows
in chess, described in a structured and illustrated manner. The document

5http://nlrp.ipd.kit.edu/index.php/Steam_Boiler
6http://nlrp.ipd.kit.edu/index.php/FIDE_laws_of_chess

http://nlrp.ipd.kit.edu/index.php/Steam_Boiler
http://nlrp.ipd.kit.edu/index.php/FIDE_laws_of_chess


7.1. CONSPEC AND SPECNL 133

is divided into articles describing the goals of the game, the description of
the pieces, their starting configuration, the moves allowed for each piece,
the sequence of actions and the termination conditions, together with some
additional particularities. Unlike previous cases, this document does not
describe the requirements of a system on itself, but the rules of a game, which
are specified in ConSpec 7.6.

ConSpec 7.6: Laws of Chess ConSpec

- C1:

Action: set-up

Actors:

- Game

Preconditions:

- Kings are pieces

- Queens are pieces

- Rooks are pieces

- C2:

Action: check move

Actors:

- Piece

- C3:

Action: move

Actors:

- Piece

- C4:

Action: start

Actors:

- Game

Action conditions:

- if piece is moved then check move

Postconditions:

- check end game

Dependencies:

- C1

In this example, only kings, queens and rooks were specified as pieces, but
it had to be done in separate statements; this can be improved by adding
several subtypes into one single statement like “Kings, Queens and Rooks
are Pieces” . Besides, it was noticed that the sequence of actions for a game
could be better described through referencing other clauses within the pre
and postconditions.

7.1.2.8 Whois Protocol

Academic and published requirements often tend to be related to common
scenarios, things that one can come across daily, and whose elements result
familiar to most of the people. In contrast, the real systems explored to be
explored now require knowledge of the particular domain they belong to;
they use specific terminology and are typically defined in terms of several
components.



134 CHAPTER 7. EVALUATION

The Whois Protocol7 is characterised by the sequence of steps that must
be followed. The description text is rather short and is shown in Text 7.4.

A WHOIS server listens on TCP port 43 for requests from WHOIS clients. The WHOIS client
makes a text request to the WHOIS server, then the WHOIS server replies with text content. All
requests are terminated with ASCII CR and then ASCII LF. The response might contain more
than one line of text, so the presence of ASCII CR or ASCII LF characters does not indicate the
end of the response. The WHOIS server closes its connection as soon as the output is finished.
The closed TCP connection is the indication to the client that the response has been received.

Text 7.4: Whois Protocol Requirements

The steps for the protocol are properly described in the ConSpec 7.7.
However, the termination for the requests could not be specified due to the
limitations of comparison sentences. C5 expresses the sequence to be followed
in the form of conditional sentences and this sequence is again established
through the dependencies in C3 and C4. This duplication of information can
be removed by allowing ConSpec to use clauses within the conditions of an
action.

ConSpec 7.7: Whois Protocol ConSpec

- C1:

Action: listen request

Actors:

- Server

Preconditions:

- Server has ports

- Listening-port is 43

- C2:

Action: make request

Actors:

- Client

Action conditions:

- Send text

Postconditions:

- Receive response

- C3:

Action: reply request

Actors:

- Server

Action conditions:

- send text

Postconditions:

- Close connection

Dependencies:

- C1

- C2

- C4:

Action: receive response

Actors:

7http://nlrp.ipd.kit.edu/index.php/Whois_Protocol

http://nlrp.ipd.kit.edu/index.php/Whois_Protocol


7.1. CONSPEC AND SPECNL 135

- Client

Dependencies:

- C3

- C5:

Action: execute

Actors:

Protocol

Action conditions:

- if protocol started then make request

- if server is listening then reply request

- if request replied then receive response

7.1.2.9 Light Control System

Next example is the RE UTS Light Control System8. The purpose of the
system is to update the control of the lights of the 4th floor, in building
32 of the University of Kaiserslautern, Germany. The document describes
the schematics for the sensors and actuators on the floor, together with a
description for every room. Additionally, the functional needs are listed,
which are used to generate the specification for our benchmarking.

The specification showed in ConSpec 7.8 illustrates some of the functional-
ity specified. Though this example describes a real-life system, there are only
a number of functionalities that can be specified using SpeCNL. The reason
is that this document describes mainly the features, locations and behaviour
of the physical components (hardware).

ConSpec 7.8: Light Control System ConSpec

- C1:

Action: activate safe-illumination

Actors:

- Light

- C2:

Action: change scene

Actors:

- Light

- C2:

Action: set default-scene

Actors:

- Light

- C2:

Action: set transition-time

Actors:

- Light

- C3:

Action: change light

Actors:

- Room

Preconditions:

- Rooms have lights

Action conditions:

8http://nlrp.ipd.kit.edu/index.php/RE_UTS_Light_Control_System

http://nlrp.ipd.kit.edu/index.php/RE_UTS_Light_Control_System


136 CHAPTER 7. EVALUATION

- if room is recently-occupied then activate safe-illumination

- if light-scene is changed then keep scene

- if room is unoccupied then reset lights

To this point requirement for academic, published and real systems have
been presented together with their corresponding ConSpec specification. The
summary of our findings is presented in Section 7.1.3.

7.1.3 Summary of Evaluation for ConSpec and Spec-
CNL

Through the manual translation of existing requirements into ConSpec speci-
fications, it was possible to evaluate the strengths and limitations of SpeCNL
and ConSpec. The limitations observed and areas of improvement are now
discussed.

7.1.3.1 Areas of improvement for SpeCNL

Regarding the SpeCNL language, areas of opportunity were identified. One
of them is comparison sentences, which allow only single numeric values
and adjectives, leading to loss of certain information, and hence the need
to extend them to support ranges, and variables. It was also observed that
type sentences could be simplified, including several subtypes in one single
statement. Another enhancement has to be done in conditional sentences to
support more complex structures, for example, alternative conditions and
simultaneous conditions.

A more general aspect to be considered has to do not with the language
itself, but with the way it is used. Currently, it is needed to identify manually
equivalent concepts within the domain of each specification. However, further
research on natural language processing and discourse analysis can help to
automate this process[25, 82, 267, 305, 306, 311]. Besides, we envision that
future developments of deep learning in machine translation[23, 69, 284] will
allow us to translate requirements documents into ConSpec specifications
automatically.

7.1.3.2 Areas of improvement for ConSpec

Concerning ConSpec, we observed the constant need for a neutral existen-
tial action to specify structural components of a system with no actions,
which could potentially lead to entity-relationship diagrams[67, 287]. This
observation also raises concerns about the possible existence of other neutral



7.2. TOMM AND T4TOMM 137

actions, which will have to be investigated further. Though SpeCNL does
allow to express neutral existential actions, ConSpec does not provide a proper
definition or semantics for it, and TOMM is not equipped to deal with these
actions.

Another area of improvement for ConSpec is the relationship between
clauses. In particular, we observed the need to relate the conditions of one
clause to other clauses. This extension will be crucial for TOMM to support
other than class diagrams, in particular, sequence and state diagrams.

Finally, we propose the inclusion of an open field within each clause, that
allows documenting in common English aspects that cannot be expressed in
SpeCNL. This feature will allow minimising loss of information caused due to
unseen limitations of ConSpec and SpeCNL.

7.1.3.3 Conclusion

At the beginning of Chapter 4 the desired properties for requirements spec-
ifications were described. Now we provide a summary of their presence or
absence in our proposed requirements specification.

The precise definition of the parts for every clause (see Section 4.2)
and their application is shown in this evaluation, allows us to argue that
ConSpec specifications are indeed structured. In this evaluation, we also
demonstrated the use of SpeCNL sentences to describe existing requirements.
The simplicity of these rules demonstrates clarity as a feature present in
ConSpec specifications.

We also observed that ConSpec specifications can be redundant and
ambiguous. The former is needed in order to enable a relationship with
class diagrams, while the later will have to be dealt with in future work.
Also, verifiable and correctness features are not an explicit part of ConSpec
specification, however, they that can be achieved in combination with TOMM.

In spite of the areas of improvement identified, which will be addressed in
the future developments, through this exercise we have demonstrated that
SpeCNL and ConSpec are capable of capturing various existing requirements
from different sources, with different lengths and for different domains, as it
was defined in our evaluation methodology (Section 7.1.1). We now proceed
to discuss the evaluation of TOMM in Section 7.2

7.2 TOMM and T4TOMM

In this section, we describe the methodology used to evaluate TOMM as a
formal framework to generate, validate and infer class models. Also, we define



138 CHAPTER 7. EVALUATION

a series of cases to be used in the evaluation of each of these activities. The
results obtained from the evaluation are summarised in Section 7.2.6.

7.2.1 Evaluation Methodology

TOMM is a formal framework that contains theories to conduct specific
reasoning tasks over class models. We evaluate these theories over properly
defined cases that represent the expected outputs for each theory, which will
be compared against the actual outputs of reasoning using TOMM. In order
to assist in the evaluation of these scenarios, we make use of T4TOMM,
which, as described in Chapter 6, automates the reasoning activities when the
appropriate model representations are provided. Both, manual application of
the reasoning rules, and automated reasoning using T4TOMM are included
in this evaluation.

Table 7.4 shows the different cases to be evaluated for each reasoning
activity. Specific needs for each evaluation are described in the corresponding
case section.

Table 7.4: Evaluation cases for TOMM and T4TOMM

Activity Case

Generation
- Inferring model manually
- Inferring model with T4TOMM

Validation

- Manual validation
- Checking invalid model using T4TOMM
- Checking sound model using T4TOMM
- Checking complete model using T4TOMM
- Checking valid model using T4TOMM

Comparison

- Manual comparison
- Comparing not equivalent models using T4TOMM
- Comparing models with left equivalence using T4TOMM
- Comparing models with right equivalence using T4TOMM
- Comparing equivalent models using T4TOMM

These cases are organised in such a way that resources can be used
progressively. For example, a class model inferred from a given specification
can also be used to check for validity, and to be compared with other existing
models.

7.2.2 Evaluation of Model Generation

In this section, we evaluate the generation of class models using the inference
rules defined in TOMM. First, we demonstrated the manual applications of



7.2. TOMM AND T4TOMM 139

the rules, and then we execute the inference rules encoded in T4TOMM.

7.2.2.1 Inferring model manually

For this case, it is required to have a ConSpec specification that will generate
a model for its corresponding class diagram. The example of the library
proposed by Callan[62] will be used; this is due to the number of diagrams
available and its tendency to be used in evaluations within this area of
research.

To discuss the evaluation of our framework the segment of the original
requirements shown in Text 7.5 will be used.

A library issues loan items to customers. Each customer is known as a member and is issued
a membership card that shows a unique member number. Along with the membership number,
other details on a customer must be kept such as a name, address, and date of birth. A loan
item is uniquely identified by a bar code. There are two types of loan items, language tapes, and
books. A language tape has a title language (e.g. French), and level (e.g. beginner. A book has
a title, and author(s).

Text 7.5: Segment of the requirements for the Library system
described by Callan[62]

In order to infer a class diagram, the ConSpec specification and its corre-
sponding formalisation are required. To present only the relevant information,
the ε elements of the predicates through this section have been omitted, this,
however, does not represent a change in the original formalisation.

The corresponding ConSpec specification shown in ConSpec 7.9 was
manually generated by us, following the steps exemplified in Section 7.1.2.1.
The predicates showed in Predicates 7.1 were also generated manually and
will be used to demonstrate the manual application of the inference rules.

ConSpec 7.9: Specification of the Library system proposed by Callan[62]

Title: Callan Library System

Version: 1.0

Clauses:

- C1:

Action: exists

Actors:

- Customers

- Members

- Books

- Language-tapes

Activity Conditions:

- Customers are members

- Members have member-id

- Members have name



140 CHAPTER 7. EVALUATION

- Members have address

- Members have date-of-birth

- C2:

Action: loans loan-item

Actors:

- Library

Preconditions:

- Items must have bar-code

- Books are items

- Books must have title

- Books must have author

- Tapes are items

- Tapes must have language

- tapes must have level

- C3:

Action: issues membership-card

Actors:

- Library

Action conditions:

- if id is valid then generate id

Dependencies:

- C2

Predicates 7.1: Predicates for the ConSpec specification of the Library system shown in
ConSpec 7.9

S_1 = {

ACTOR(Library)

ACTOR(Customer)

ACTOR(Member)

ACTOR(Loan-items)

ACTOR(Language-tapes)

ACTOR(Books)

ACTIVITY(loans. loan-item)

ACTIVITY(issues. membership-card)

TYPE_SENTENCE(books, are, loan-items)

TYPE_SENTENCE(language-tapes,

are, loan-items)

TYPE_SENTENCE(Customers, are, Members)

STRUCTURAL_SENTENCE(Books, have, title)

STRUCTURAL_SENTENCE(Books, have, author)

STRUCTURAL_SENTENCE(Language-tapes,

have, title-language)

STRUCTURAL_SENTENCE(Language-tapes,

have, level)

STRUCTURAL_SENTENCE(Members,

have, member-id)

STRUCTURAL_SENTENCE(Members,

have, name)

STRUCTURAL_SENTENCE(Members,

have, address)

STRUCTURAL_SENTENCE(Members,

have, date-of-birth)

}

The model Mv shown in Predicates 7.2 was generated manually applying
the inference rules proposed in Section 5.2.1. Each element of the model
is generated by applying its corresponding rule, for example, the following
applications allow to infer CLS(Library) and INH(Members, Customers)



7.2. TOMM AND T4TOMM 141

ACTOR(Library)

CLS(Library, classifier), TYPE(Library)

TYPE SENTENCE(Customers, Members)

INH(Members,Customers)

Predicates 7.2: Predicates for the class model manually inferred from Predicates 7.1

M_v = {

CLS(Library)

CLS(Customer)

CLS(Member)

CLS(Loan-items)

CLS(Language-tapes)

CLS(Books)

TYPE(Library)

TYPE(Customer)

TYPE(Member)

TYPE(Loan-items)

TYPE(Language-tapes)

TYPE(Books)

OPR(Library, loans, {Loan-item})

OPR(Library, issues. {Membership-card})

INH(Loan-items, Books)

INH(Loan-items, Language-tapes)

INH(Members, Customers)

ATR(Books, title)

ATR(Books, author)

ATR(Language-tapes, title-language)

ATR(Language-tapes, level)

ATR(Members, member-id)

ATR(Members, name)

ATR(Members, address)

ATR(Members, date-of-birth)

}

The manual application of all the inference rules is rather verbose; hence
it is not included in here. However, an important observation is that for
classes existing in other predicates, they always have to be declared within
the actors section of a class. This can be avoided by extending the other
rules (inheritance, attribute and operation) to infer the classes they refer to
automatically.

7.2.2.2 Inferring model with T4TOMM

The current implementation of T4TOMM was run from the terminal, with
the file containing the ConSpec specification above. Before inferring the class
model, the specification shown in ConSpec 7.9 was automatically translated by
T4TOMM in an SMT-LIB model that includes the corresponding SMT-LIB
representation of the inference rules. SMTLib 7.1 contains a snippet of the
encoding of the inference rules, together with the SMT-LIB formalization



142 CHAPTER 7. EVALUATION

of the ConSpec specification, the full model is provided in Appendix C.1 as
SMTLib C.1. This model is processed by CVC4 and infers the corresponding
SMT-LIB model representing the inferred class model, which is shown in
SMTLib 7.2.

SMTLib 7.1: Segment of SMT-LIB model to infer class model from ConSpec 7.9

;----------------------------------

; Specification elements

;----------------------------------

(declare-datatypes ((Structural_S 0))

(((STRUCT

(entity String)

(modal String)

(have String)

(property String)

))))

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String)

(atr_nme String)

(atr_typ String)

(atr_vis String)

(atr_sco String)

))))

(define-fun get-param ((activity String)) Param

(ite

(str.contains activity " ")

(PARAM (str.substr activity (str.indexof activity " " 0) (str.len activity)) "e")

nil))

(define-fun infer-classes () Bool

(forall

((x Actor))

(=>

(member x actors)

(exists

((y Class))

(and

(member y classes)

(and

(=

(cls_nme y)

(actor_name x))

(=

(cls_typ y)

"class")))))))

(declare-const C1a (Set Actor))

(assert (member (ACTOR "Customers") C1a))

(assert (member (ACTOR "Members") C1a))

(assert (member (ACTOR "Books") C1a))

(assert (member (ACTOR "Language-tapes") C1a))

(declare-const C1 Clause)



7.2. TOMM AND T4TOMM 143

(assert (= C1 (CLAUSE "exists" C1a )))

(assert (instantiate-clause C1))

(declare-const C2a (Set Actor))

(assert (member (ACTOR "Library") C2a))

(declare-const C2 Clause)

(assert (= C2 (CLAUSE "loans loan-item" C2a )))

(assert (instantiate-clause C2))

(declare-const C3a (Set Actor))

(assert (member (ACTOR "Library") C3a))

(declare-const C3 Clause)

(assert (= C3 (CLAUSE "issues membership-card" C3a )))

(assert (instantiate-clause C3))

(assert (member (STRUCT "Items" "must" "have" "bar-code") struct_sents))

(assert (member (TYPE_S "Books" "are" "items") type_sents))

(assert (member (STRUCT "Books" "must" "have" "title") struct_sents))

(assert (member (STRUCT "Books" "must" "have" "author") struct_sents))

(assert (member (TYPE_S "Tapes" "are" "items") type_sents))

(assert (member (STRUCT "Tapes" "must" "have" "language") struct_sents))

(assert (member (STRUCT "tapes" "must" "have" "level") struct_sents))

SMTLib 7.2: SMT-LIB code representing the class model inferred from SMTLib C.1
using CVC4

((classes (union (union (union (union (singleton (CLASS "Customers" "class")) (singleton

(CLASS "Members" "class"))) (singleton (CLASS "Books" "class"))) (singleton (CLASS

"Language-tapes" "class"))) (singleton (CLASS "Library" "class")))))

↪→
↪→

((types (union (union (union (union (singleton (TYPE "Customers")) (singleton (TYPE

"Members"))) (singleton (TYPE "Books"))) (singleton (TYPE "Language-tapes")))

(singleton (TYPE "Library")))))

↪→
↪→

((operations (union (union (union (union (singleton (OPR "Customers" "exists" "e" "+"

"instance" nil)) (singleton (OPR "Members" "exists" "e" "+" "instance" nil)))

(singleton (OPR "Books" "exists" "e" "+" "instance" nil))) (singleton (OPR

"Language-tapes" "exists" "e" "+" "instance" nil))) (singleton (OPR "Library" "loans"

"e" "+" "instance" (PARAM " loan-item" "e"))))))

↪→
↪→
↪→
↪→

((relations (singleton (REL "Library" " loan-item" "Association" "loans" "e" "*" "*"))))

((attributes (union (union (union (union (singleton (ATR "Items" "bar-code" "e" "e" "e"))

(singleton (ATR "Books" "title" "e" "e" "e"))) (singleton (ATR "Books" "author" "e"

"e" "e"))) (singleton (ATR "Tapes" "language" "e" "e" "e"))) (singleton (ATR "tapes"

"level" "e" "e" "e")))))

↪→
↪→
↪→

((inheritances (union (singleton (INH "items" "Books")) (singleton (INH "items"

"Tapes")))))↪→

By looking at the segment of predicates in Predicates 7.2 and the SMT-Lib
code in SMTLib 7.2 we can notice that they do contain similar elements.
Though the notation of the predicates is simplified for the sake of clarity, the
names of classes, types, attributes, operations and inheritances are explicitly
stated, and they match the ones obtained with the inference rules.



144 CHAPTER 7. EVALUATION

T4TOMM also allows generating automatically the JSON representation
of the SMT-LIB class model inferred, which is shown in JSON Model 7.1.

JSON Model 7.1: JSON representation of the model inferred in SMTLib 7.2

{

"classes": {

"customers": {

"name": "Customers",

"class_type": "class",

"attributes": {},

"operations": {

"exists-epsilon": {

"name": "exists",

"parameters": {}

}

}

},

"members": {

"name": "Members",

"class_type": "class",

"attributes": {},

"operations": {

"exists-epsilon": {

"name": "exists",

"parameters": {}

}

}

},

"books": {

"name": "Books",

"class_type": "class",

"attributes": {

"title": {

"name": "title"

},

"author": {

"name": "author"

}

},

"operations": {

"exists-epsilon": {

"name": "exists",

"parameters": {}

}

}

},

"language-tapes": {

"name": "Language-tapes",

"class_type": "class",

"attributes": {},

"operations": {

"exists-epsilon": {

"name": "exists",

"parameters": {}

}

}

},

"library": {

"name": "Library",



7.2. TOMM AND T4TOMM 145

"class_type": "class",

"attributes": {},

"operations": {

"loans-epsilon-loan-item-epsilon": {

"name": "loans",

"parameters": {

"loan-item-epsilon": {

"name": "loan-item",

}

}

}

}

},

"items": {

"name": "Items",

"class_type": "class",

"attributes": {

"bar-code": {

"name": "bar-code"

}

},

"operations": {}

},

"tapes": {

"name": "Tapes",

"class_type": "class",

"attributes": {

"language": {

"name": "language"

},

"level": {

"name": "level"

}

},

"operations": {}

}

},

"associations": {

"items-books-inheritance": {

"source_class_name": "items",

"destination_class_name": "Books",

"type": "inheritance",

"name": "",

"role": "",

"lower_cardinality": 1,

"upper_cardinality": 1

},

"items-tapes-inheritance": {

"source_class_name": "items",

"destination_class_name": "Tapes",

"type": "inheritance",

"name": "",

"role": "",

"lower_cardinality": 1,

"upper_cardinality": 1

}

}

}

In this way, we demonstrate that the formal system proposed in Sec-



146 CHAPTER 7. EVALUATION

Figure 7.1: Kim’s class diagram for the Library system

tion 5.2.1 and the implementation described in Section 6.3 are indeed capable
of inferring class models from ConSpec specifications as expected.

7.2.3 Evaluation of Model Validation

In this section, we describe the evaluation of our theory to validate class
diagrams with respect to ConSpec specifications. To do so, we demonstrate
the manual process of validation, and subsequently, we use T4TOMM to
evaluate invalid, sound, complete and valid model.

7.2.3.1 Manual validation

For this case, we refer again to the library system described in Text 7.5. In
particular we will check the class diagram proposed by Kim[171] in Figure 7.1
against the specification shown in ConSpec 7.9, whose predicate formalization
has been manually done in Predicates 7.1. The predicate formalisation for
Kim’s diagram has been done manually, and a simplified version of some of
its predicates is shown in Predicates 7.3.

Predicates 7.3: Predicate formalization of Kim’s class diagram[171] shown in Figure 7.1



7.2. TOMM AND T4TOMM 147

M_k = {

CLS(Reader)

ATR(Reader, id, Int)

ATR(Reader, name, String)

ATR(Reader, address, String)

OPR(Reader, Create)

OPR(Reader, ModifyName)

CLS(Loan)

ATR(Loan, loanDate, Date)

ATR(Loan, dueDate, Date)

OPR(Loan, CheckOverdue)

CLS(Copy)

ATR(Copy, copyNo, Int)

OPR(Copy, Create)

CLS(Publication)

ATR(Publication, title, String)

ATR(Publication, publisher, String)

OPR(Publication, Create)

OPR(Publication, ModifyTitle)

CLS(Periodical)

ATR(Periodical, volume, Int)

ATR(Periodical, editor, String)

OPR(Periodical, ModifyEditor)

CLS(Book)

ATR(Book, author, String)

OPR(Book, ModifyAuthor)

}

In order to evaluate this model, a semantic equivalence relation is required
to be able to distinguish which elements have the same meaning. 7.1 list the
semantic equivalent words for this diagram.

LoanTransaction ≈ Loan

Reader ≈ Customer ≈ Customers (7.1)

Semantic equivalences required to validate Predicates 7.3

Now the soundness of Mk, shown in Predicates 7.3 is evaluated by applying
the validation rules to all the elements of the model. The first predicate to be
evaluated is CLS(Reader), which requires a clause of the type ACTOR(x) |=
CLS(x) such that x ≈ Reader, by assigning x = Customer, the following
application of the class axiom is obtained. The variable x is used instead of
Customer to keep the application within the margins of the page.

ACTOR(x) |= CLS(x) CLS(Reader) x ≈ Reader

>

Because the axiom holds, it is concluded that the class “Reader” is valid.
The same process is applied to the classes “Loan” , “Copy” , “Publication”



148 CHAPTER 7. EVALUATION

, “Periodical” , and “Book” , from which only “Loan” and “Book” are
valid. Because the other three are not, we conclude that the model is not
sound with no need for checking other predicates.

In order to validate completeness the predicates from S1 are checked one by
one. Starting with ACTOR(Library), there should exist a predicate CLS(x)
in Mk such that x ≈ Library. Because the set of semantic equivalences does
not have an equivalent for “Library” , this axiom requires x = Library, that
is, to have CLS(Library) in Mk, which is not the case, hence the model is
also incomplete. Since the model is neither complete nor sound, then it is
proved to be invalid with respect to S1.

7.2.3.2 Checking invalid model using T4TOMM

In Section 7.2.3.1 we proved manually that the diagram from Figure 7.1 is
invalid with respect to the specification ConSpec 7.9. In here we demonstrate
how to reach the same conclusion using T4TOMM.

First, we had to manually generate the JSON class model representing
the Figure 7.1. A segment of this JSON model is shown in JSON Model 7.2,
and the full model (JSON Model C.1) is provided in Appendix C.2.

JSON Model 7.2: JSON segment of a invalid model with respect to ConSpec 7.9

{

"classes": {

"loan": {

"name": "Loan",

"class_type": "class",

"attributes": {

"loandate": {

"name": "loandate",

"type": "Date"

},

"duedate": {

"name": "duedate",

"type": "Date"

}

},

"operations": {

"check-overdue": {

"name": "CheckOverdue",

"parameters": {}

}

}

},

"copy": {

"name": "Copy",

"attributes": {},

"operations": {}

},

"reader": {

"name": "Reader"

},



7.2. TOMM AND T4TOMM 149

"publication": {}

},

"associations": {

"publication-periodical-inheritance": {

"source_class_name": "Publication",

"destination_class_name": "Periodical",

"type": "inheritance",

"name": "",

"role": "",

"lower_cardinality": 1,

"upper_cardinality": 1

}

}

}

This model was then automatically translated using T4TOMM into SMT-
LIB, illustrated in SMTLib 7.3.

SMTLib 7.3: Segment of SMT-LIB model to check an invalid class model (JSON
Model C.1) against ConSpec 7.9

(declare-datatypes ((Clause 0))

(((CLAUSE

(activity String)

(c_actors (Set Actor))

))))

; Class Diagram

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String)

(cls_typ String)

))))

;----------------------------------

; Sets

;----------------------------------

(declare-const clauses (Set Clause))

(assert (= clauses (as univset (Set Clause))))

; Class Diagram

(declare-const classes (Set Class))

; There is an actor thar derives the class

(define-fun check_class ((c Class)) Bool

(exists

((a Actor))

(and

(member a actors)

(is_syn

(cls_nme c)

(actor_name a)

)

)

)

)

; All the classes come from an actor



150 CHAPTER 7. EVALUATION

(define-fun actors_rule () Bool

(forall

((c Class))

(=>

(member c classes)

(check_class c)

)

)

)

;----------------------------------

; Specification

;----------------------------------

(declare-const C1a (Set Actor))

(assert (member (ACTOR "Customers") C1a))

(declare-const C1 Clause)

(assert (= C1 (CLAUSE "exists" C1a )))

(assert (instantiate-clause C1))

(assert (member (STRUCT "Items" "must" "have" "bar-code") struct_sents))

;----------------------------------

; Class model

;----------------------------------

; Classes

(assert (member (CLASS "Loan" "classifier") classes))

(assert (member (CLASS "Copy" "classifier") classes))

; Operations

(assert (member (OPR "Loan" "CheckOverdue" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Copy" "Create" "" "" "" (PARAM "" "")) operations))

; Attributes

(assert (member (ATR "Loan" "loandate" "" "" "") attributes))

(assert (member (ATR "Loan" "duedate" "" "" "") attributes))

;Inheritances

(assert (member (INH "Publication" "Periodical") inheritances))

(assert (member (INH "Publication" "Book") inheritances))

(assert (= (card inheritances) 2))

;----------------------------------

; Validating model

;----------------------------------

(declare-const classes_validation Bool)

(declare-const operations_validation Bool)

(declare-const attributes_validation Bool)

(declare-const inheritances_validation Bool)

(declare-const relations_validation Bool)

(assert (= classes_validation actors_rule))

(assert (= operations_validation operations_rule))

(assert (= attributes_validation attributes_rule))

(assert (= inheritances_validation inheritances_rule))

;----------------------------------

; Checks

;----------------------------------



7.2. TOMM AND T4TOMM 151

(check-sat)

(get-value (classes_validation))

(get-value (operations_validation))

(get-value (attributes_validation))

(get-value (inheritances_validation))

(exit)

We know this diagram is invalid because the classes and the attributes it
contains cannot be generated from ConSpec 7.9. The solution generated by
the SMT solver is captured in SMTLib 7.4, and it shows that the validation
of actors, operations, and attributes does not hold for soundness and com-
pleteness, while inheritance does hold for soundness, but not for completeness.
These results match the observations made in the manual validation described
in Section 7.2.3.1. Thus T4TOMM exhibits the adequate expected behaviour
for model validation.

SMTLib 7.4: SMT-LIB code resulting from the validation of the invalid model
SMTLib C.2

; Soundness

((classes_validation false))

((operations_validation false))

((attributes_validation false))

((inheritances_validation false))

; Completeness

((inverse_classes_validation false))

((inverse_operations_validation false))

((inverse_attributes_validation false))

((inverse_inheritances_validation false))

The complete JSON class model, and the SMT-LIB representation gener-
ated by T4TOMM are available in Appendix C.2 as JSON Model C.1 and
SMTLib C.2 respectively.

7.2.3.3 Checking sound model using T4TOMM

For the evaluation of this case, we use a sound but incomplete class model
with respect to ConSpec 7.9. We achieved this by removing one attribute and
one operation from the class “Books” in the inferred model shown in JSON
Model 7.1. A snippet of the modified class is presented in JSON Model 7.3.

JSON Model 7.3: JSON segment of a sound but incomplete model with respect to
ConSpec 7.9

{

"classes": {

"books": {



152 CHAPTER 7. EVALUATION

"name": "Books",

"class_type": "class",

"attributes": {

"author": {

"name": "author"

}

},

"operations": {}

}

},

"associations": {

"items-books-inheritance": {

"source_class_name": "items",

"destination_class_name": "Books",

"type": "inheritance"

}

}

}

A portion of the SMT-LIB model generated by T4TOMM can be observed
in SMTLib 7.5. This model is checked by CVC4, and generates the outputs
shown in SMTLib 7.6. From here, it is observed that the model soundness
holds for all the elements, and completeness fails for attributes and operations.
The complete JSON and SMT-LIB models are included in Appendix C.2.0.2

SMTLib 7.5: Segment of SMT-LIB model to check a sound but incomplete class model
(JSON Model C.2) against ConSpec 7.9

;----------------------------------

; Sets

;----------------------------------

; Specification

(declare-const clauses (Set Clause))

(assert (= clauses (as univset (Set Clause))))

; Class Diagram

(declare-const classes (Set Class))

;----------------------------------

; Synonyms

;----------------------------------

(declare-const syns_dict (Set Entry))

(assert (member (mk-entry (insert

"Customers" "customers" "CUSTOMERS" "Customer" "customer"

"CUSTOMER" "client" "CLIENT" "Client" "clients"

(singleton "Customers"))) syns_dict))

(assert (= syns_dict (as univset (Set Entry))))

;----------------------------------

; Constructors and helpers

;----------------------------------

(define-fun is_syn ((w1 String) (w2 String)) Bool

(or

(= w1 w2)

(exists



7.2. TOMM AND T4TOMM 153

((e Entry))

(and

(member e syns_dict)

(and

(member w1 (synonyms e))

(member w2 (synonyms e)))))))

(define-fun instantiate-clause ((c Clause)) Bool

(and

(member c clauses)

(forall

((a Actor))

(=>

(member a (c_actors c))

(member a actors)

)

)

)

)

;----------------------------------

; Inference rules

;----------------------------------

; There is an actor thar derives the class

(define-fun check_class ((c Class)) Bool

(exists

((a Actor))

(and

(member a actors)

(is_syn

(cls_nme c)

(actor_name a)

)

)

)

)

;----------------------------------

; Specification

;----------------------------------

(declare-const C1a (Set Actor))

(assert (member (ACTOR "Customers") C1a))

(assert (instantiate-clause C1))

(declare-const C2a (Set Actor))

(assert (member (ACTOR "Library") C2a))

(assert (member (TYPE_S "Books" "are" "items") type_sents))

(assert (= (card struct_sents) 5))

(assert (= struct_sents (as univset (Set Structural_S))))

;----------------------------------

; Class model

;----------------------------------

; Classes

(assert (member (CLASS "Customers" "classifier") classes))

; Operations

(assert (member (OPR "Customers" "exists" "" "" "" (PARAM "" "")) operations))



154 CHAPTER 7. EVALUATION

; Attributes

(assert (member (ATR "Books" "author" "" "" "") attributes))

;Inheritances

(assert (member (INH "items" "Books") inheritances))

;----------------------------------

; Validating model

;----------------------------------

(declare-const classes_validation Bool)

(assert (= classes_validation actors_rule))

;----------------------------------

; Checks

;----------------------------------

(check-sat)

(get-value (classes_validation))

(get-value (operations_validation))

(get-value (attributes_validation))

(get-value (inheritances_validation))

(exit)

SMTLib 7.6: SMT-LIB code resulting from the validation of the model SMTLib C.3

; Soundness

((classes_validation true))

((operations_validation true))

((attributes_validation true))

((inheritances_validation true))

; Completeness

((inverse_classes_validation false))

((inverse_operations_validation false))

((inverse_attributes_validation false))

((inverse_inheritances_validation true))

7.2.3.4 Checking complete model using T4TOMM

We evaluated this case similarly to Section 7.2.3.3, by using a complete
but not sound model. We modified the diagram inferred in Section 7.2.2.2,
this time to add a random class “RandomClass” with a random attribute

“randomAttribute” , which cannot be related to any element in ConSpec 7.9.
The class added to the original diagram is shown in JSON Model 7.4,

and a segment of its formal representation is included in SMTLib 7.7. The
complete models are available in Appendix C.2.0.2.

JSON Model 7.4: JSON segment of a complete but not sound model with respect to
ConSpec 7.9

{

"classes": {

"randomclass": {

"name": "RandomClass",



7.2. TOMM AND T4TOMM 155

"class_type": "class",

"attributes": {

"randomattribute": {

"name": "randomAttribute"

}

},

"operations": {}

}

}

}

SMTLib 7.7: Segment of SMT-LIB model to check a complete but not sound class model
(JSON Model C.3) against ConSpec 7.9

(define-fun inverese_operations_rule () Bool

(forall

((c Clause))

(=>

(member c clauses)

(check_activity (activity c))

)

)

)

(define-fun check_structures ((s Structural_S)) Bool

(exists

((a Attribute))

(and

(member a attributes)

(is_syn

(property s)

(atr_nme a)

)

)

)

)

;----------------------------------

; Specification

;----------------------------------

(declare-const C1a (Set Actor))

(assert (member (ACTOR "Customers") C1a))

(assert (member (ACTOR "Members") C1a))

(assert (member (STRUCT "Tapes" "must" "have" "language") struct_sents))

(assert (member (STRUCT "tapes" "must" "have" "level") struct_sents))

;----------------------------------

; Class model

;----------------------------------

; Classes

(assert (member (CLASS "RandomClass" "classifier") classes))

; Attributes

(assert (member (ATR "RandomClass" "randomAttribute" "" "" "") attributes))

(assert (member (ATR "Books" "title" "" "" "") attributes))

;----------------------------------

; Validating model

;----------------------------------

(declare-const inverse_classes_validation Bool)

(declare-const inverse_attributes_validation Bool)



156 CHAPTER 7. EVALUATION

(assert (= inverse_classes_validation inverse_actors_rule))

(assert (= inverse_attributes_validation inverese_attributes_rule))

;----------------------------------

; Checks

;----------------------------------

(check-sat)

(get-value (inverse_classes_validation))

(get-value (inverse_attributes_validation))

From the results shown in SMTLib 7.8 it can be seen that the model is
complete, but not sound with respect to classes and attributes, since there
are classes and attributes that do not belong to the specification. This is the
expected result, confirming that our framework behaves as expected.

SMTLib 7.8: SMT-LIB code resulting from the validation of the model SMTLib C.4

; soundness

((classes_validation false))

((operations_validation true))

((attributes_validation false))

((inheritances_validation true))

; completeness

((inverse_classes_validation true))

((inverse_operations_validation true))

((inverse_attributes_validation true))

((inverse_inheritances_validation true))

7.2.3.5 Checking valid model using T4TOMM

In this section we demonstrate the validation of the class model inferred in
JSON Model 7.1. This diagram is known to be valid because it was in fact
generated directly from the specification.

By running T4TOMM validation function we obtain the formal model
represented in SMTLib 7.9, which after being evaluated by CVC4 generates
the output shown in SMTLib 7.10. From this output, it is concluded that
the diagram is sound, and complete with respect to specification ConSpec 7.9
as expected.

SMTLib 7.9: Segment of SMT-LIB model to check an invalid class model (JSON
Model C.1) against ConSpec 7.9

(declare-datatypes ((Clause 0))

(((CLAUSE

(activity String)

(c_actors (Set Actor))

))))



7.2. TOMM AND T4TOMM 157

; Class Diagram

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String)

(cls_typ String)

))))

;----------------------------------

; Sets

;----------------------------------

(declare-const clauses (Set Clause))

(assert (= clauses (as univset (Set Clause))))

; Class Diagram

(declare-const classes (Set Class))

; There is an actor thar derives the class

(define-fun check_class ((c Class)) Bool

(exists

((a Actor))

(and

(member a actors)

(is_syn

(cls_nme c)

(actor_name a)

)

)

)

)

; All the classes come from an actor

(define-fun actors_rule () Bool

(forall

((c Class))

(=>

(member c classes)

(check_class c)

)

)

)

;----------------------------------

; Specification

;----------------------------------

(declare-const C1a (Set Actor))

(assert (member (ACTOR "Customers") C1a))

(declare-const C1 Clause)

(assert (= C1 (CLAUSE "exists" C1a )))

(assert (instantiate-clause C1))

(assert (member (STRUCT "Items" "must" "have" "bar-code") struct_sents))

;----------------------------------

; Class model

;----------------------------------

; Classes

(assert (member (CLASS "Loan" "classifier") classes))

(assert (member (CLASS "Copy" "classifier") classes))



158 CHAPTER 7. EVALUATION

; Operations

(assert (member (OPR "Loan" "CheckOverdue" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Copy" "Create" "" "" "" (PARAM "" "")) operations))

; Attributes

(assert (member (ATR "Loan" "loandate" "" "" "") attributes))

(assert (member (ATR "Loan" "duedate" "" "" "") attributes))

;Inheritances

(assert (member (INH "Publication" "Periodical") inheritances))

(assert (member (INH "Publication" "Book") inheritances))

(assert (= (card inheritances) 2))

;----------------------------------

; Validating model

;----------------------------------

(declare-const classes_validation Bool)

(declare-const operations_validation Bool)

(declare-const attributes_validation Bool)

(declare-const inheritances_validation Bool)

(declare-const relations_validation Bool)

(assert (= classes_validation actors_rule))

(assert (= operations_validation operations_rule))

(assert (= attributes_validation attributes_rule))

(assert (= inheritances_validation inheritances_rule))

;----------------------------------

; Checks

;----------------------------------

(check-sat)

(get-value (classes_validation))

(get-value (operations_validation))

(get-value (attributes_validation))

(get-value (inheritances_validation))

(exit)

SMTLib 7.10: SMT-LIB code resulting from the validation of the invalid model
SMTLib C.2

; Soundness

((classes_validation false))

((operations_validation false))

((attributes_validation false))

((inheritances_validation false))

; Completeness

((inverse_classes_validation false))

((inverse_operations_validation false))

((inverse_attributes_validation false))

((inverse_inheritances_validation false))

Through these sections, we demonstrated how TOMM is capable of suc-
cessfully checking invalid, incomplete, not sound and valid class models with
respect to classes, attributes, operations and inheritances. Other types of
associations (aggregation, composition, etc.) are not currently supported,



7.2. TOMM AND T4TOMM 159

Figure 7.2: Class Diagrams for Library Example

hence are not included in this evaluation. Threats to validity include the
validation of complex and existing diagrams which have not been properly
generated. In addition, T4TOMM relies entirely on CVC4; hence, problems
related to this SMT solver will be inhered by our tool.

7.2.4 Evaluation of Model Comparison

In this section we evaluate four possible scenarios, being a comparison of not
equivalent models the first one. Left and right equivalent models are evaluated
by modifying a base model used for the comparison. Finally, providing two
equivalent models, we evaluate the overall approach. These comparisons are
made through T4TOMM; however, we initially describe the manual operation
of our comparison theory.

7.2.4.1 Manual Comparison

For this case, the diagrams developed by Callan[62] and Kim[171] are to be
manually formalised and compared. The former is depicted in Figure 7.2 and
the later was introduced in Section 7.2.3.1 as Figure 7.1.

Predicates 7.4 are used to formalize Callan’s diagram as Mc with the
ε parameters omitted. The predicates for Kim’s model are presented in
Predicates 7.3 as Mk

Predicates 7.4: Predicate formalization of Callan’s class diagram shown in Figure 7.2



160 CHAPTER 7. EVALUATION

M_c={

CLS(Library),

OPR(Library, search),

OPR(Library, update),

CLS(Membership_Card),

CLS(Customer),

ATR(Customer, name),

ATR(Customer, address),

ATR(Customer, date-of-birth),

CLS(Section),

CLS(Loan Item),

ATR(Loan Item, bar-code),

ATR(Loan Item, title),

OPR(Loan Item, check_in),

OPR(Loan Item, check_out),

CLS(Book),

ATR(Book, subject),

CLS(Language Tape),

ATR(Language Tape, language),

ATR(Language Tape, level),

CLS(Loan Transaction),

OPR(Loan Transaction, borrow),

OPR(Loan Transaction, renew),

OPR(Loan Transaction, reserve)

}

The equivalence of these two class models will be checked now. First left
equivalence will be evaluated, that is for all elements in Predicates 7.4 there
is an equivalence element in Predicates 7.3.

The class CLS(Library) is evaluated first through the class axiom of
Section 5.4.1 must be checked. There is not a predicate CLS(x) such that
Library ≈ x, hence the predicate does not hold for this class. In consequence,
we conclude that left equivalence does not hold.

Right equivalence is checked now, starting with the predicate CLS(Reader)
from Mk. In this particular case, the class axiom holds, as it is shown in the
following application of the corresponding inference rule, given that all the
premises are available.

CLS(Reader) CLS(Customer) Reader ≈ Customer

>
However, this axiom is not applicable for all classes in Mk, as it happens

with the class CLS(Copy) from Mk, which has no equivalent class in Mc.
Hence, right equivalence is also not satisfied. In conclusion, it has been
manually proved that these two diagrams are not equivalent according to our
comparison theory.

7.2.4.2 Comparing not equivalent models using T4TOMM

For this evaluation case, we use the same class models from Section 7.2.4.1
(Figure 7.2 and Figure 7.1). T4TOMM requires to provide these models in a



7.2. TOMM AND T4TOMM 161

JSON format. fragments of these JSON files are shown in JSON Model 7.1
and JSON Model 7.2 respectively, and their corresponding SMT-LIB models
are combined in SMTLib C.2.

The output of T4TOMM is shown in SMTLib 7.11. In it, it is observed
that neither left nor right equivalence are satisfied, which corresponds to the
expected behaviour.

SMTLib 7.11: SMT-LIB model with the solution of not equivalent models

; Left equivalence

((equiv_classes false))

((equiv_attributes false))

((equiv_operations false))

((equiv_inheritances false))

((are_equivalent false))

; Right equivalence

((equiv_classes false))

((equiv_attributes false))

((equiv_operations false))

((equiv_inheritances false))

((are_equivalent false))

7.2.4.3 Comparing models with left equivalence using T4TOMM

In order to evaluate left equivalence alone, we have taken the class model
shown in JSON Model 7.1 and its modified version show in JSON Model C.3,
which includes an additional class. We expect this model to be left equivalent
because we know that all elements in JSON Model 7.1 are definitely present
in JSON Model C.3.

SMTLib 7.12: SMT-LIB model with the solution of left equivalent models

; Left equivalence

((equiv_classes true))

((equiv_attributes true))

((equiv_operations true))

((equiv_inheritances true))

((are_equivalent true))

; Right equivalence

((equiv_classes false))

((equiv_attributes true))

((equiv_operations true))

((equiv_inheritances true))

((are_equivalent true))

7.2.4.4 Comparing models with right equivalence using T4TOMM

We evaluate right equivalence by comparing the base class model show in
JSON Model 7.1 against the reduced model shown in JSON Model C.2. The



162 CHAPTER 7. EVALUATION

model SMT-LIB model shown in SMTLib C.7 is evaluated by CVC4 which
generates the solution shown in SMTLib 7.13. From this solution is it observed
that left equivalence fails for the classes, while right equivalence holds for all
the attributes, as it is expected.

SMTLib 7.13: SMT-LIB model with the solution of right equivalent models

; Left equivalence

((equiv_classes false))

((equiv_attributes true))

((equiv_operations true))

((equiv_inheritances true))

((are_equivalent true))

; Right equivalence

((equiv_classes true))

((equiv_attributes true))

((equiv_operations true))

((equiv_inheritances true))

((are_equivalent true))

7.2.4.5 Comparing equivalent models using T4TOMM

In this final evaluation, we compare a base model (JSON Model 7.1) against
itself using some substitutions in the name of the classes, by semantically
equivalent words. The complete SMT-LIB model (SMTLib C.8) is checked
and the results shown in SMTLib 7.14 are obtained. From these results, we
conclude that both models are proved to be equivalent as expected.

SMTLib 7.14: SMT-LIB model with the solution of equivalent models

; Left equivalence

((equiv_classes true))

((equiv_attributes true))

((equiv_operations true))

((equiv_inheritances true))

((are_equivalent true))

; Right equivalence

((equiv_classes true))

((equiv_attributes true))

((equiv_operations true))

((equiv_inheritances true))

((are_equivalent true))

7.2.5 Class Model Extractions with T4TOMM

We define model extraction as the recognition of elements from graphical
representations of a class model (diagrams), Its implementation, presented in



7.2. TOMM AND T4TOMM 163

Section 6.6, is evaluated by providing different class diagrams as images, and
measuring the number of elements extracted correctly.

The set of diagrams used in the evaluation were drawn from two different
sources. The first corresponding to diagrams that were already available in
research publications and websites. The second one corresponding to diagrams
generated by us using CASE tools explicitly for this evaluation.

We aimed to cover various types of diagrams as much as possible. These
include partial class diagrams that have classes without attributes or classes
with attributes but without any operations and complete diagrams containing
classes, attributes and operations. Table 7.5 lists all the diagrams used in
our evaluation, alongside their source, and the main features they cover.
Due to space constraints (and also avoid information overload), we include
only a subset of the diagrams along with their individual evaluation and
the corresponding extracted JSON Class Model, containing only relevant
fields such as the name for the class, attributes and operations. However, the
remaining diagrams and their extracted models in entirety are available in
Appendix C.4.

Table 7.5: Set of Class Diagrams used to evaluate model extraction

Id Source Feature
Figure C.1 generated attributes
Figure C.2 generated operations
Figure 7.3 generated complete
Figure C.3 generated coloured
Figure C.4 existing attributes
Figure C.5 existing classes
Figure C.6 existing complete
Figure C.7 existing complex
Figure C.8 existing hand

We do not expect our current implementation to cover all these scenarios
satisfactorily since it is not the purpose of our research. However, T4TOMM
includes this feature as an additional contribution to aid the usage of TOMM,
hence the need to evaluate its capabilities and limitations as well.

7.2.5.1 Extraction of complete diagram generated by us

In here we evaluate an ideal diagram for T4TOMM, which contains classes,
attributes and operations. This diagram has been generated using CASE tools
which results in more regular shapes for the classes (boxes) in comparison
with diagrams drawn by hand. The diagram corresponds to Figure 7.3 and
the results are shown in Table 7.6.



164 CHAPTER 7. EVALUATION

Figure 7.3: Class diagram generated by us
containing classes, attributes and operations

This diagram has 2 classes: “Paper” and “Researcher” . The 3 attributes
for each paper are “title” , “wordCount” and “studentPaper” , plus 2
attributes for each researcher, “name” and “isStudent” , for a total of 5
attributes. This diagram contains 1 method for the paper: “submmit” .

The output of T4TOMM is shown in JSON Model 7.5.

JSON Model 7.5: Extracted JSON class model from a
complete class diagram generated by us

{

"classes": {

"class15567096207013591": {

"name": "Class15567096207013591",

"class_type": "class",

"attributes": {

"wordcount": {

"name": "wordCount"

},

"studentpaper": {

"name": "studentPaper"

}

},

"operations": {

"submit-epsilon": {

"name": "submit",

"parameters": {}

}

}

},

"class1556709621266361": {



7.2. TOMM AND T4TOMM 165

"name": "Class1556709621266361",

"class_type": "class",

"attributes": {

"name": {

"name": "name"

},

"isstudent": {

"name": "isStudent"

}

},

"operations": {}

}

},

"associations": {}

}

It is observed that the extraction algorithm implemented in T4TOMM
is capable of extracting the names of two attributes for the papers, namely

“wordCount” and “studenPaper” , and 2 attributes for the researchers, namely
“name” and “isStudent” . In addition one operation for papers is extracted:
“submit” . Note that for this case, the name of the classes was not identified,
hence T4TOMM assigned unique names to the assume classes, in order to
group the attributes and operations extracted. These results are summarised
in Table 7.6

Table 7.6: Evaluation of model extraction
for complete class diagram generated by us

Item Expected Obtained
Classes 2 0

Attributes 5 4

Operations 1 1

7.2.5.2 Extraction of complete existing diagram

In here we evaluate an existing diagram which satisfies the same criteria
of the one generated by us in Section 7.2.5.1. This diagram is shown in
Figure 7.4, the extracted model is shown in JSON Model 7.6, and the results
are summarised in Table 7.7

JSON Model 7.6: Extracted JSON class model from an
existing complete class diagram

{

"classes": {

"class1556712268236669": {

"name": "Class1556712268236669",



166 CHAPTER 7. EVALUATION

Figure 7.4: Existing class diagram
containing classes, attributes and operations

"class_type": "class",

"attributes": {

"update": {

"name": "update"

}

},

"operations": {}

},

"section": {

"name": "Section",

"class_type": "class",

"attributes": {

"holds": {

"name": "Holds"

},

"loanitem": {

"name": "LoanItem"

},

"title": {

"name": "title"

}

},

"operations": {}

},

"issues": {

"name": "Issues",

"class_type": "class",

"attributes": {},

"operations": {}

},

"languagetape": {

"name": "LanguageTape",

"class_type": "class",



7.2. TOMM AND T4TOMM 167

"attributes": {

"language": {

"name": "language"

},

"level": {

"name": "level"

}

},

"operations": {}

},

"class1556712270651666": {

"name": "Class1556712270651666",

"class_type": "class",

"attributes": {

"subject": {

"name": "subject"

},

"tion": {

"name": "tion"

}

},

"operations": {}

},

"class1556712271316668": {

"name": "Class1556712271316668",

"class_type": "class",

"attributes": {

"customer": {

"name": "customer"

},

"name": {

"name": "name"

},

"address": {

"name": "address"

}

},

"operations": {}

},

"bostows": {

"name": "BOSTOWS",

"class_type": "class",

"attributes": {

"borrow": {

"name": "borrow"

},

"renew": {

"name": "renew"

},

"reserve": {

"name": "reserve"

}

},

"operations": {}

}

},

"associations": {}

}

We observed that “update” was extracted as an attribute, but it should be



168 CHAPTER 7. EVALUATION

a method. However, this problem is attributed to the original class diagram,
which is unclear even for a person. Individual observation has to be done
to decide whether “search” and “update” are attributes or operations a

“Library” , because there is no proper sectioning in the class box, and there is
no use of parenthesis for any methods in the diagram.

It is also interesting to note that the class “Loan Item” is being extracted
as an attribute for the class “Section” , this has to do with the alignment
of the boxes in the diagram. Another noticeable problem is that the class

“Customer” was not identified on its own, but it was assigned as an attribute
for the randomly guessed class “Class1556712271316668” . The class that
was extracted the best is “Language Tape” with two attributes, “language”
and “level” .

Table 7.7: Evaluation of model extraction
for existing complete class diagram

Item Expected Obtained
Classes 7 3

Attributes 8 6

Operations 7 0

In summary, only 3 out of 7 classes were extracted correctly, only 6 out
of 8 real attributes were extracted, but additional attributes were generated
either by mistaking class names or operations with attributes or by addling
misidentified text. No operations were identified property because the diagram
does not use parenthesis for the operations.

7.2.5.3 Results

Based on the evaluation of the extraction feature of T4TOMM, we concluded
that though it does indeed help to extract some information from class
diagrams, there is still a long way to go so that it will be entirely usable. The
results are for each case are summarised in Table 7.8. Not that in this table
we only count the items that are extracted correctly; for instance, if there is
a random class or a miss-constructed attribute, it will not be considered in
the count.

A particular case arose when extracting information from the existing
diagram containing only classes (Figure C.5). This particular diagram causes
the image processing library to crash, resulting in an empty class model
to be generated. Based on this problem we reflect upon the decency on
external libraries, which can always have some impact on the performance of
T4TOMM.



7.2. TOMM AND T4TOMM 169

Table 7.8: Summary of results for Class Model extraction with T4TOMM

Classes Attributes Operations
Diagram Expected Obtained Expected Obtained Expected Obtained

Figure C.1 2 0 5 3 0 0

Figure C.2 2 0 0 0 5 2

Figure 7.3 2 0 5 4 1 1

Figure C.3 6 4 9 6 3 2

Figure C.4 15 5 7 3 0 0

Figure C.5 18 0 0 0 0 0

Figure C.6 7 3 8 6 7 0

Figure C.7 29 0 11 3 26 0

Figure C.8 4 0 13 1 8 0

Regarding the graphical features of class diagrams, we noticed that ex-
traction works better over diagrams that make use of proper sectioning for
operations and attributes. While colouring diagrams does not have any effect
on the current extraction, bigger spacing between boxes does help to identify
classes better, In addition to the graphical properties, we observed that natu-
ral language processing could be used to identify operations and attributes
based on POS tagging. This evaluation shows that indeed T4TOMM helps to
extract some information from class diagrams in order to enable processing
within the implementation of our theories.

7.2.6 Summary of Evaluation for TOMM and T4TOMM

In Section 7.2.2, Section 7.2.3 and Section 7.2.4 we evaluated of formal theories
for model generation, validation, and comparison by defining specific cases
that cover the possible outcomes for the theories. The manual application of
each theory was initially demonstrated, and T4TOMM was used to automate
the evaluation process of the cases identified.

The evaluation of our theory for model generation covers the case of formal
inference, which showed to work as expected regarding inference of classes,
attributes, operations and inheritances.

The evaluation of model validation was done by checking an invalid model,
a sound model, a complete model, and a valid model. Once again, the theory
and its implementation on T4TOMM showed to derive the expected results.

Model comparison was evaluated by checking not equivalent class models,
as well as models presenting right equivalence, left equivalence, and total



170 CHAPTER 7. EVALUATION

equivalence. T4TOMM was able to perform these comparisons satisfactorily.

In addition to our theories, we evaluated model extraction using T4TOMM.
We demonstrate that despite its limitations, it is nonetheless capable of
extracting some elements of class diagrams, mostly attributes and operations.
It showed to perform better over diagrams with clear layouts that follow the
conventional notations of UML.

The application of our approach is evident here, for one might be tempted,
based on the graphic representation of the class diagrams, to say that they
seem valid, or equivalent. However, this observation has no proper grounds to
be accepted, which is the problem addressed with TOMM.

7.2.6.1 Threats to validity

Our theories are shown to work properly over a subset of elements that are
part of class diagrams, namely classes, attributes, operations and inheritance
relations. However, this does not guarantee that these theories will be able
to support other elements, such as aggregations or compositions as they are.
Some extensions or modifications may be required to support not only new
relations in class diagrams, but also additional diagrams, such as use cases,
sequence diagrams, and other not-UML diagrams.

Regarding model comparison, we currently deal with models that have
the same structure with variations on the nomenclature of their individual
elements. Comparison based on functionality and design patterns will have
to be included as future work.

In addition to the limitations of our theories proposed in TOMM, we
reflect on the limitations of our proof-of-concept. The current implementation
of T4TOMM requires processing using a Python interpreter[263], the NLTK
library[199] to process ConSpec specification, CVC4[35] to solve the SMT-
LIB models, and pytesseract[225] to extract models from diagrams. These
dependencies constitute an external threat to validity for T4TOMM.

Though or theories have been evaluated against existing class diagrams
and specifications, the number of possibilities out there makes us aware of
unseen potential limitations that may arise when dealing with more complex
diagrams and specifications alike.

Although the current versions of TOMM and T4TOMM are considerably
restrictive and present some threats to validity, they also demonstrate how
to establish a formal foundation to reason about class diagrams, which also
motivate further research.



7.3. SUMMARY 171

7.3 Summary

In this chapter, the applicability of SpecCNL and ConSpec was evaluated
within several domains and requirements with different complexities. They
demonstrated to be functional to some extent, but areas of improvement
present, especially with comparison sentences, and the relation between the
elements of a contract.

The usage of TOMM was discussed with several cases applicable, and
the results were compared with those obtained from T4TOMM. Alike our
specification format, our formal framework and our tool to support it are
limited yet; however, their core components have been demonstrated to be
useful and extensible.





Chapter 8

Conclusions

Our research has been motivated by the need to provide better support
for software developers to improve the quality of software produced more
generally in a variety of non-critical domains. This support comes in the
form of integrated automated tools that make it easier to validate and verify
the software as it is being developed. Verification is often done through
the use of formal methods that are difficult to use or understand. In this
research, we aimed to provide a framework that would facilitate the use of
specific formal method techniques, including very scalable techniques such as
constraint solvers, outside their usual area of application. The core of our
framework combines the following formal reasoning activities: generation of
models by inference, validation of existing models and comparison of models
to determine their equivalence.

These reasoning activities are achieved employing deductive systems that
are currently still relatively simple, supporting only basic types of constructs
within class diagrams, that is, classes, attributes, methods and inheritance.
However, the theories proposed here demonstrate how these diagrams can be
made more reliable, and the same theories can be extended to cover more
complex structures, such as OCL constraints and relations, and also other
types of diagrams including use cases and activity diagrams. The novelty
of our work has also been to embrace the formulation of requirements, and
how through the use of NLP we can improve the generated models and hence
tackle a significant source of ambiguity and failure in software development. A
further novel contribution of our work concerns the analysis and comparison
of models for their equivalence. There are many ways in which such notions
of model equivalence can be used to improve models. It can, for instance, be
used to clarify how a model may compare to other possible alternative models
to the same approach. Moreover, we have shown the strength and potential
of our work to combine constraint solvers with machine learning techniques

173



174 CHAPTER 8. CONCLUSIONS

to enable even more varied tool support and tool integration. Even if done
at a smaller scale, we showed evidence of how our approach could facilitate
development if extended further.

Within our formalization, we have shown how several predicates can
capture requirement specifications and class diagrams. Through the examples
and the evaluation, we showed how these predicates facilitate three reasoning
activities over class models: validation, generation and comparison. In
addition, we introduced our specification document structure based on contract
clauses using our proposed version of English sentences named SpeCNL.
Encouraging results have been obtained from the evaluation of our controlled
language and specification document, for they have shown their plausible
application in real life requirements. We have also identified a few extensions
that can be added to enhance their applicability.

Our theories for model validation, generation and comparison were explic-
itly evaluated by successfully comparing the outcome of our proof-of-concept
against the expected output. We showed that for all the different scenarios
the theories hold for relatively simple models containing classes, attributes,
operations and inheritance. Further evaluation to determine its validity re-
garding more complex diagrams is not included in this research. T4TOMM
showed to implement these theories properly and to aid in their usage since
formal STM-LIB models are automatically generated and checked.

In order to use T4TOMM, however, class models have to be represented
as JSON structures. This representation is partially supported by our imple-
mentation for model extraction, which is also part of T4TOMM. However,
these models still require considerable manual corrections before being used
within our formal theories.

8.1 Threats to Validity

We have evaluated our theories through the proof-of-concept represented by
T4TOMM. However, this implementation has several external dependencies
that limit the validity of our tool, and thus the validity of our theories. For
instance, we assume that the results of the SMT solver are correct, and then
we use that information to conduct our evaluation. However, should the SMT
solver misbehave, the trust in our theories would have to be reassessed.

Besides, we assume that most of the functional requirements follow a
similar structure and thus they can be expressed using SpeCNL. However,
we advert the complexity of natural language, and we are aware that this
assumption may not always hold.

Our theories are applicable for a limited set of activities (generation, vali-



8.2. FUTURE WORK 175

dation and comparison) over a small set of artefacts (functional requirements
and class models); however, little can be adequately concluded about its
application over other activities, such as model checking or model refinement.
We are also limited regarding the conclusions for other diagrams, though we
argue that these foundations can be extended to other UML models, we have
thus far no evidence that this is effectively the case, and further research is
needed to validate this claim.

Given the uniqueness of our approach, in which we deal with the semantic
equivalence of elements alone. It was challenging to find similar work that
defines evaluation metrics suitable for our approach. As we progress with this
research, we will be able to generate a more precise set of metrics for more
standard evaluation.

8.2 Future Work

The work we proposed to do was very ambitious, and we have described
before the contributions we have made as well as the novelty of our approach.
There are also some elements that can be explored further and in particular
elements of our framework that can be extended accordingly. In this section,
we discuss some of the possible areas of future work.

Automatic requirements translation

Currently, in order to use TOMM or T4TOMM, the specifications have to be
given in ConSpec format, which requires a manual translation of the original
requirements. Further research about machine translation would lead to a
partially-automated process in which existing requirements can be converted
into ConSpec specifications without human effort.

The set of ConSpec specifications generated manually as part of the
evaluation could also be used in a probabilistic approach for automated
translation of specifications. This task would be done by generating all the
possible SpeCNL alternatives for each sentence in the original text, and then
finding the most likely to be the correct translation in comparison with the
examples on the training set and in relation with the SpeCNL grammar.

Another possible approach for requirements translation could be to use
Recurrent Neural Networks (RNNs) with encodings to detect translation
patterns (rules) to be applied. Though these algorithms may help this task,
there would still be (in principle) some pre-processing required by the user,
who is the expert in the domain of the specification. For instance, the
machine could assume that “customer” and “client” are the same, but



176 CHAPTER 8. CONCLUSIONS

the correctness of such an assumption depends on the context of the given
application. In order to avoid introducing mistakes, there should be an option
for the user to decide/override such assumptions. In any case, either of
these approaches can be implemented in order to automate the translation of
requirements into ConSpec specifications supported by our framework.

ConSpec editor

In addition to the translation of existing requirements, a ConSpec editor
would also aid the creation of specifications. This editor would contain the
contract structure of the specifications so that the user would be able to
enter details more easily, possibly also making use of visual blocks. Real-time
checking of specifications could also be considered in order to make sure that
errors can be found as early as when the user adds a requirement. Finally,
further features such as automatic word completion and auto-correction based
on our grammar defined in Section 4.1 could be added to enrich the ConSpec
editor and make the approach more user-friendly.

Reasoning framework

The current version of TOMM contains theories to reason about structural
properties of class diagrams. However, we expect that these foundations make
it possible to develop and extend the theory further, in order to consider
behavioural aspects, and additional diagrams.

An important observation about our inference calculus defined in Section
5.2 is that classes used in attribute, operation and inheritance rules must be
first declared as actors within the specification, resulting in an unnecessary
number of actors. This situation can be improved by extending the inference
rules so that they also generate all the referred classes.

Our validity calculus allows us to establish weak validity and partial
completeness properly. However, a more comprehensive set of inference rules
would allow us to extend this calculus in order to support strong validity and
total completeness, which requires us to weaken existing rules and to extend
our definitions for validity.

T4TOMM

Our present implementation of T4TOMM can be extended further through a
web-based interface that eases diagram visualization, generation and interac-
tion, in addition to an editor for ConSpec and support for SMT-solvers other



8.3. FINAL REMARKS 177

than CVC4, and exploration of model size, and space limitations, which has
not been done yet.

The approach used for class model extraction using k-means can be
developed by further investigating other machine learning techniques. In
particular, our comparison of class diagrams can be used in Generative
Adversarial Networks to generate learning data.

8.3 Final Remarks

Our work and proposed framework were inspired by real needs in practice to
verify the validity of software models more formally. Our framework is a step
in that direction and has given us valuable insights into what can be done.
We developed a framework TOMM which aimed to introduce novelty and
clear benefits mainly at the requirements engineering stage of the development
process. Some of our earlier work had worked on other stages of development,
and it was an area which we perceived was lacking solutions.

Ours is an approach towards an automated reasoning framework that
tackles requirements specification and engineering more systematically. Our
evaluation has, nonetheless, shown us that there are still various areas of
improvement that need to be researched further to meet our overall vision
of tools for seamless verification of software at all stages of the development
process.

Possible extensions for the formal systems were discussed to support other
diagrams and other elements within class diagrams. Enhancements to our
specification language and document structure can be pursued further, both
at the foundational level and for the tools to support them. Improvements and
extensions for T4TOMM have been discussed and will be explored further,
specifically those related to techniques from machine learning to explore
further the benefits that such integration can make for software development.





Appendices

179





Appendix A

Library Example

A.1 Requirements

A library issues loan items to customers. Each customer is
known as a member and is issued a membership card that shows
a unique member number. Along with the membership number,
other details on a customer must be kept such as a name, address,
and date of birth. The library is made up of a number of subject
sections. Each section is denoted by a classification mark. A loan
item is uniquely identified by a bar code. There are two types of
loan items, language tapes, and books. A language tape has a
title language (e.g. French), and level (e.g. beginner). A book has
a title, and author(s). A customer may borrow up to a maximum
of 8 items. An item can be borrowed, reserved or renewed to
extend a current loan. When an item is issued the customer’s
membership number is scanned via a bar code reader or entered
manually. If the membership is still valid and the number of items
on loan less than 8, the book bar code is read, either via the bar
code reader or entered manually. If the item can be issued (e.g.
not reserved) the item is stamped and then issued. The library
must support the facility for an item to be searched and for a
daily update of records.

A.2 Contract Specification Document

Title: Library System

System Version: 1

Contracts:

181



182 APPENDIX A. LIBRARY EXAMPLE

- C1:

Action: register member

Actors:

- Customers

Preconditions:

- Member's name must be provided

- Member's address must be provided

- Member's date-of-birth must be provided

Action conditions:

- The system must generate a member-id

Postconditions:

- The member-id must be unique

- C2:

Action: register subject

Actors:

- Admins

Action conditions:

- The subject has a classification-mark

-C3:

Action: register item

Actors:

- Admins

Preconditions:

- The item's bar-code must be unique

Action conditions:

- Items can be language-tapes or books

- Language-tapes have title and level

- Books have title and author

-C4:

Action: borrow item

Actors:

- Members

Preconditions:

- Member-id must be valid

- Number of loaned-items must be less than 8

Action conditions:

- Members can borrow up to 8 items

Postconditions:

- The item must be stamped

- C5:

Action: reserve item

Actors:

- Members

- C6:

Action: reserve item

Actors:

- Members

-C7:

Action: extend loan

Actors:

- Members

- C8:

Action: scan member-id

Actors:

- Admins



A.2. CONTRACT SPECIFICATION DOCUMENT 183

Action conditions:

- The member-id's bar-code can be scanned

- The member-id can be typed

- C9:

Action: search item

Actors:

- Admins

- Members

- C10:

Action: update records

Actors:

- Admins





Appendix B

SMT-LIB models

B.1 Inference example

SMTLib B.1: Inference Example for Library System

(set-option :produce-models true)

(set-logic ALL_SUPPORTED)

;----------------------------------

; Datatypes

;----------------------------------

; Spec datatypes

(declare-datatypes ((Actor 0)) (((ACTOR (actor_name String)))))

(declare-datatypes ((Clause 0))

(((CLAUSE

(activity String)

(g_actors (Set Actor))

))))

(declare-datatypes ((Structural_S 0))

(((STRUCT

(entity String)

(modal String)

(have String)

(property String)

))))

(declare-datatypes ((Type_S 0))

(((TYPE_S

(subtype String)

(isa String)

(type String)

))))

; UML datatypes

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String) (cls_typ String) ))))

185



186 APPENDIX B. SMT-LIB MODELS

(declare-datatypes ( (Type 0) ) ( ((TYPE

(typ_nme String) ))))

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String) (atr_nme String) (atr_typ String)

(atr_vis String) (atr_sco String) ))))

(declare-datatypes ( (Param 0) ) ( ((PARAM

(prm_nme String) (prm_typ String)) (nil) )))

(declare-datatypes ( (Operation 0) ) ( ((OPR

(opr_cls String) (opr_nme String) (opr_typ String)

(opr_vis String) (opr_sco String) (opr_prm Param)))))

(declare-datatypes ( (Relation 0) ) ( ((REL

(rel_src String) (rel_des String) (rel_typ String)

(rel_nme String) (rel_rol String) (rel_c_l String)

(rel_c_u String) ))))

(declare-datatypes ( (Inheritance 0) ) ( ((INH

(inh_sup String) (inh_sub String) ))))

(declare-datatypes ( (ClassDiagram 0) ) ( ((CD

(dictionary (Set String)) (classes (Set Class))

(types (Set Type)) (attributes (Set Attribute))

(operations (Set Operation)) (relations (Set Relation))

(inheritance (Set Inheritance)) ))))

;----------------------------------

; Sets

;----------------------------------

; CSD sets

(declare-fun clauses () (Set Clause))

(declare-fun actors () (Set Actor))

(declare-fun struct_sents () (Set Structural_S))

(declare-fun type_sents () (Set Type_S))

(assert (= clauses (as univset (Set Clause))))

(assert (= actors (as univset (Set Actor))))

; UML sets

(declare-fun classes () (Set Class))

(declare-fun types () (Set Type))

(declare-fun attributes () (Set Attribute))

(declare-fun operations () (Set Operation))

(declare-fun relations () (Set Relation))

(declare-fun inheritances () (Set Inheritance))

;----------------------------------

; Constructors and helpers

;----------------------------------

(define-fun instantiate-clause ((c Clause)) Bool

(and

(member c clauses)

(forall

((a Actor))

(=>

(member a (g_actors c))

(member a actors)))))



B.1. INFERENCE EXAMPLE 187

(define-fun get-param ((activity String)) Param

(ite

(str.contains activity " ")

(PARAM (str.substr activity (str.indexof activity " " 0) (str.len activity)) "e")

nil))

(define-fun get-activity ((activity String)) String

(ite

(str.contains activity " ")

(str.substr activity 0 (str.indexof activity " " 0))

activity))

(define-fun mk-operation ((a Actor) (activity String)) Operation

(OPR (actor_name a) (get-activity activity) "e" "+" "instance" (get-param activity)))

(define-fun mk-relation ((o Operation)) Relation

(REL (opr_cls o) (prm_nme (opr_prm o)) "Association" (opr_nme o) "e" "*" "*"))

(define-fun mk-attribute ((s Structural_S)) Attribute

(ATR (entity s) (property s) "e" "e" "e")

)

(define-fun mk-inheritance ((t Type_S)) Inheritance

(INH (type t) (subtype t))

)

;----------------------------------

; Inference rules

;----------------------------------

; For all actors in the set of actors, there is a class in the set of classes such that

the name of the actor and the name of the class are the same.↪→
(define-fun infer-classes () Bool

(forall

((x Actor))

(=>

(member x actors)

(exists

((y Class))

(and

(member y classes)

(and

(=

(cls_nme y)

(actor_name x))

(=

(cls_typ y)

"classifier")))))))

; For all actors in the set of actors, there is a type in the set of types such that the

name of the actor and the name of the class are the same.↪→
(define-fun infer-types () Bool

(forall

((x Actor))

(=>

(member x actors)

(exists

((y Type))

(and

(member y types)



188 APPENDIX B. SMT-LIB MODELS

(=

(actor_name x)

(typ_nme y)))))))

(define-fun infer-attribute ((s Structural_S)) Bool

(member (mk-attribute s) attributes)

)

(define-fun infer-attributes () Bool

(forall

((x Structural_S))

(=>

(member x struct_sents)

(infer-attribute x)))

)

(define-fun infer-operation ((c Clause)) Bool

(forall

((a Actor))

(=>

(and

(member a actors)

(member a (g_actors c))

)

(member (mk-operation a (activity c)) operations))))

(define-fun infer-operations () Bool

(forall

((x Clause))

(=>

(member x clauses)

(infer-operation x))))

(define-fun infer-relation ((o Operation)) Bool

(member (mk-relation o) relations))

(define-fun infer-relations () Bool

(forall

((x Operation))

(=>

(and

(member x operations)

(distinct

nil

(opr_prm x)))

(infer-relation x))))

(define-fun infer-inheritance ((t Type_S)) Bool

(member (mk-inheritance t) inheritances)

)

(define-fun infer-inheritances () Bool

(forall

((x Type_S))

(=>

(member x type_sents)

(infer-inheritance x)))

)

;----------------------------------

; Specification elements



B.1. INFERENCE EXAMPLE 189

;----------------------------------

(declare-const c1a (Set Actor))

(assert (member (ACTOR "manager") c1a))

(assert (member (ACTOR "user") c1a))

(declare-const c1 Clause)

(assert (= c1 (CLAUSE "registers users" c1a )))

(assert (instantiate-clause c1))

(declare-const c2a (Set Actor))

(assert (member (ACTOR "superadmin") c2a))

(assert (member (ACTOR "manager") c2a))

(assert (member (ACTOR "admin") c2a))

(declare-const c2 Clause)

(assert (= c2 (CLAUSE "delete users" c2a )))

(assert (instantiate-clause c2))

(declare-const c3a (Set Actor))

(assert (member (ACTOR "manager") c3a))

(assert (member (ACTOR "user") c3a))

(declare-const c3 Clause)

(assert (= c3 (CLAUSE "edit users" c3a )))

(assert (instantiate-clause c3))

(declare-const c4a (Set Actor))

(assert (member (ACTOR "user") c4a))

(declare-const c4 Clause)

(assert (= c4 (CLAUSE "login" c4a )))

(assert (instantiate-clause c4))

(assert (member (STRUCT "users" "must" "have" "name") struct_sents))

(assert (member (STRUCT "users" "can" "have" "address") struct_sents))

(assert (member (STRUCT "users" "must" "have" "age") struct_sents))

(assert (member (TYPE_S "admin" "is a" "user") type_sents))

(assert (member (TYPE_S "manager" "is an" "admin") type_sents))

(assert (member (TYPE_S "users" "are a" "user") type_sents))

;----------------------------------

; Infering model

;----------------------------------

(assert infer-operations)

(assert infer-classes)

(assert infer-types)

(assert infer-relations)

(assert infer-attributes)

(assert infer-inheritances)

;----------------------------------

; Checks

;----------------------------------

(check-sat)

(get-value (clauses))

(get-value (actors))

(get-value (struct_sents))

(get-value (type_sents))

(get-value (classes))

(get-value (types))

(get-value (operations))

(get-value (relations))



190 APPENDIX B. SMT-LIB MODELS

(get-value (attributes))

(get-value (inheritances))

(exit)

B.2 Soundness Model

SMTLib B.2: Soundness Model

; There is an actor thar derives the class

(define-fun check_class ((c Class)) Bool

(exists

((a Actor))

(and

(member a actors)

(is_syn

(cls_nme c)

(actor_name a)

)

)

)

)

; All the classes come from an actor

(define-fun actors_rule () Bool

(forall

((c Class))

(=>

(member c classes)

(check_class c)

)

)

)

; There is

(define-fun check_operation ((o Operation)) Bool

(exists

((c Clause))

(and

(member c clauses)

(is_syn

(opr_nme o)

(activity c)

)

)

)

)

; All the operations come from the specification

(define-fun operations_rule () Bool

(forall

((o Operation))

(=>

(member o operations)

(check_operation o)

)

)



B.3. COMPLETENESS MODEL 191

)

(define-fun check_attribute ((a Attribute)) Bool

(exists

((s Structural_S))

(and

(member s struct_sents)

(is_syn

(atr_nme a)

(property s)

)

)

)

)

(define-fun attributes_rule () Bool

(forall

((a Attribute))

(=>

(member a attributes)

(check_attribute a)

)

)

)

(define-fun check_inheritance ((h Inheritance)) Bool

(exists

((s Type_S))

(and

(member s type_sents)

(is_syn (inh_sup h) (type s))

(is_syn (inh_sub h) (subtype s))

)

)

)

(define-fun inheritances_rule () Bool

(forall

((h Inheritance))

(=>

(member h inheritances)

(check_inheritance h)

)

)

)

B.3 Completeness Model

SMTLib B.3: Completeness Model

(define-fun check_actor ((a Actor)) Bool

(exists

((c Class))

(and

(member c classes)

(is_syn

(actor_name a)

(cls_nme c)



192 APPENDIX B. SMT-LIB MODELS

)

)

)

)

(define-fun inverse_actors_rule () Bool

(forall

((a Actor))

(=>

(member a actors)

(check_actor a)

)

)

)

(define-fun check_activity ((a String)) Bool

(exists

((o Operation))

(and

(member o operations)

(is_syn

a

(opr_nme o)

)

)

)

)

(define-fun inverese_operations_rule () Bool

(forall

((c Clause))

(=>

(member c clauses)

(check_activity (activity c))

)

)

)

(define-fun check_structures ((s Structural_S)) Bool

(exists

((a Attribute))

(and

(member a attributes)

(is_syn

(property s)

(atr_nme a)

)

)

)

)

(define-fun inverese_attributes_rule () Bool

(forall

((s Structural_S))

(=>

(member s struct_sents)

(check_structures s)

)

)

)

(define-fun check_types ((s Type_S)) Bool



B.4. EQUIVALENCE RULES 193

(exists

((h Inheritance))

(and

(member h inheritances)

(is_syn (inh_sub h) (subtype s))

(is_syn (inh_sup h) (type s))

)

)

)

(define-fun inverese_inheritances_rule () Bool

(forall

((s Type_S))

(=>

(member s type_sents)

(check_types s)

)

)

)

B.4 Equivalence rules

SMTLib B.4: Equivalence Rules

;----------------------------------

; Inference rules

;----------------------------------

(define-fun check_dictionary ((s1 (Set String)) (s2 (Set String))) Bool

(forall

((x String))

(=>

(member x s1)

(exists

((y String))

(and

(member y s2)

(is_syn x y)

)

)

)

)

)

(define-fun check_classes ((s1 (Set Class)) (s2 (Set Class))) Bool

(forall

((x Class))

(=>

(member x s1)

(exists

((y Class))

(and

(member y s2)

(is_syn (cls_nme x) (cls_nme y))

)

)

)



194 APPENDIX B. SMT-LIB MODELS

)

)

(define-fun check_types ((s1 (Set Type)) (s2 (Set Type))) Bool

(forall

((x Type))

(=>

(member x s1)

(exists

((y Type))

(and

(member y s2)

(is_syn (typ_nme x) (typ_nme y))

)

)

)

)

)

(define-fun check_attributes ((s1 (Set Attribute)) (s2 (Set Attribute))) Bool

(forall

((x Attribute))

(=>

(member x s1)

(exists

((y Attribute))

(and

(member y s2)

(is_syn (atr_cls x) (atr_cls y))

(is_syn (atr_nme x) (atr_nme y))

)

)

)

)

)

(define-fun check_operations ((s1 (Set Operation)) (s2 (Set Operation))) Bool

(forall

((x Operation))

(=>

(member x s1)

(exists

((y Operation))

(and

(member y s2)

(is_syn (opr_nme x) (opr_nme y))

)

)

)

)

)

(define-fun check_inheritances ((s1 (Set Inheritance)) (s2 (Set Inheritance))) Bool

(forall

((x Inheritance))

(=>

(member x s1)

(exists

((y Inheritance))

(and

(member y s2)

(is_syn (inh_sup x) (inh_sup y))



B.4. EQUIVALENCE RULES 195

(is_syn (inh_sub x) (inh_sub y))

)

)

)

)

)

;----------------------------------

; Class Diagram 1

;----------------------------------

;Dictionary

(declare-const dictionary1 (Set String))

(assert (member "customer" dictionary1))

(assert (member "client" dictionary1))

(assert (member "card" dictionary1))

(assert (= (card dictionary1) 3))

;Classes

(declare-const classes1 (Set Class))

(assert (member (CLASS "Customer" "classifier") classes1))

(assert (member (CLASS "Account" "classifier") classes1))

(assert (= (card classes1) 2))

;Types

(declare-const types1 (Set Type))

(assert (member (TYPE "Customer") types1))

(assert (member (TYPE "Client") types1))

(assert (member (TYPE "Card") types1))

(assert (= (card types1) 3))

;Attributes

(declare-const attributes1 (Set Attribute))

(assert (member (ATR "Customer" "name" "" "" "") attributes1))

(assert (member (ATR "Customer" "card" "" "" "") attributes1))

(assert (member (ATR "Card" "number" "" "" "") attributes1))

(assert (= (card attributes1) 3))

;Operations

(declare-const operations1 (Set Operation))

(assert (member (OPR "Admin" "insert" "" "" "" (PARAM "user" "")) operations1))

(assert (member (OPR "User" "delete" "" "" "" (PARAM "user" "")) operations1))

(assert (member (OPR "User" "edit" "" "" "" (PARAM "user" "")) operations1))

(assert (= (card operations1) 3))

;Relations

(declare-const relations1 (Set Relation))

(assert (member (REL "Customer" "Account" "association" "" "" "" "") relations1))

(assert (member (REL "Account" "Card" "association" "" "" "" "") relations1))

(assert (= (card relations1) 2))

;Inheritances

(declare-const inheritances1 (Set Inheritance))

(assert (member (INH "User" "Admin") inheritances1))

(assert (member (INH "DebitAccount" "Account") inheritances1))

(assert (member (INH "CreditAccount" "Account") inheritances1))

(assert (= (card inheritances1) 3))

;Class Diagram

(declare-const diagram1 ClassDiagram)

(assert (= diagram1

(CD dictionary1 classes1 types1 attributes1 operations1 relations1 inheritances1)))

;----------------------------------

; Class Diagram 2

;----------------------------------

;Dictionary

(declare-const dictionary2 (Set String))

(assert (member "Clients" dictionary2))



196 APPENDIX B. SMT-LIB MODELS

(assert (member "clients" dictionary2))

(assert (member "debit card" dictionary2))

(assert (= (card dictionary2) 3))

;Classes

(declare-const classes2 (Set Class))

(assert (member (CLASS "Client" "classifier") classes2))

(assert (member (CLASS "Account" "classifier") classes2))

(assert (= (card classes2) 2))

;Types

(declare-const types2 (Set Type))

(assert (member (TYPE "Customer") types2))

(assert (member (TYPE "Card") types2))

(assert (= (card types2) 2))

;Attributes

(declare-const attributes2 (Set Attribute))

(assert (member (ATR "Client" "name" "" "" "") attributes2))

(assert (member (ATR "Client" "card" "" "" "") attributes2))

(assert (member (ATR "Card" "card number" "" "" "") attributes2))

(assert (= (card attributes2) 3))

;Operations

(declare-const operations2 (Set Operation))

(assert (member (OPR "User" "create" "" "" "" (PARAM "user" "")) operations2))

(assert (member (OPR "User" "delete" "" "" "" (PARAM "user" "")) operations2))

(assert (member (OPR "User" "edit" "" "" "" (PARAM "user" "")) operations2))

(assert (= (card operations2) 3))

;Relations

(declare-const relations2 (Set Relation))

(assert (member (REL "Customer" "Account" "association" "" "" "" "") relations2))

(assert (member (REL "Account" "Card" "association" "" "" "" "") relations2))

(assert (= (card relations2) 2))

;Inheritances

(declare-const inheritances2 (Set Inheritance))

(assert (member (INH "User" "Admin") inheritances2))

(assert (member (INH "DebitAccount" "Account") inheritances2))

(assert (member (INH "CreditAccount" "Account") inheritances2))

(assert (= (card inheritances2) 3))

;Class Diagram

(declare-const diagram2 ClassDiagram)

(assert (= diagram2

(CD dictionary2 classes2 types2 attributes2 operations2 relations2 inheritances2)))

;----------------------------------

; Checks

;----------------------------------

(declare-const equiv_dicts Bool)

(declare-const equiv_classes Bool)

(declare-const equiv_types Bool)

(declare-const equiv_attributes Bool)

(declare-const equiv_operations Bool)

(declare-const equiv_inheritances Bool)

(assert (= equiv_dicts (check_dictionary dictionary1 dictionary2)))

(assert (= equiv_classes (check_classes classes1 classes2)))

(assert (= equiv_types (check_types types1 types2)))

(assert (= equiv_attributes (check_attributes attributes1 attributes2)))

(assert (= equiv_operations (check_operations operations1 operations2)))

(assert (= equiv_inheritances (check_inheritances inheritances1 inheritances2)))

(define-fun equiv_diagrams () Bool

(and

equiv_dicts

equiv_classes



B.4. EQUIVALENCE RULES 197

equiv_types

equiv_attributes

equiv_operations

equiv_inheritances

)

)

(declare-const are_equivalent Bool)

(assert (= equiv_diagrams are_equivalent))

(check-sat)

(get-value (equiv_dicts))

(get-value (equiv_classes))

(get-value (equiv_types))

(get-value (equiv_attributes))

(get-value (equiv_operations))

(get-value (equiv_inheritances))

(get-value (are_equivalent))

(exit)





Appendix C

Evaluation

C.1 Model Inference

SMTLib C.1: Full SMT-LIB model to infer class model from ConSpec 7.9

(set-option :produce-models true)

(set-logic ALL_SUPPORTED)

;----------------------------------

; Datatypes

;----------------------------------

; Spec datatypes

(declare-datatypes ((Actor 0)) (((ACTOR (actor_name String)))))

(declare-datatypes ((Clause 0))

(((CLAUSE

(activity String)

(g_actors (Set Actor))

))))

(declare-datatypes ((Structural_S 0))

(((STRUCT

(entity String)

(modal String)

(have String)

(property String)

))))

(declare-datatypes ((Type_S 0))

(((TYPE_S

(subtype String)

(isa String)

(type String)

))))

; UML datatypes

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String) (cls_typ String) ))))

(declare-datatypes ( (Type 0) ) ( ((TYPE

(typ_nme String) ))))

199



200 APPENDIX C. EVALUATION

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String) (atr_nme String) (atr_typ String)

(atr_vis String) (atr_sco String) ))))

(declare-datatypes ( (Param 0) ) ( ((PARAM

(prm_nme String) (prm_typ String)) (nil) )))

(declare-datatypes ( (Operation 0) ) ( ((OPR

(opr_cls String) (opr_nme String) (opr_typ String)

(opr_vis String) (opr_sco String) (opr_prm Param)))))

(declare-datatypes ( (Relation 0) ) ( ((REL

(rel_src String) (rel_des String) (rel_typ String)

(rel_nme String) (rel_rol String) (rel_c_l String)

(rel_c_u String) ))))

(declare-datatypes ( (Inheritance 0) ) ( ((INH

(inh_sup String) (inh_sub String) ))))

(declare-datatypes ( (ClassDiagram 0) ) ( ((CD

(dictionary (Set String)) (classes (Set Class))

(types (Set Type)) (attributes (Set Attribute))

(operations (Set Operation)) (relations (Set Relation))

(inheritance (Set Inheritance)) ))))

;----------------------------------

; Sets

;----------------------------------

; CSD sets

(declare-fun clauses () (Set Clause))

(declare-fun actors () (Set Actor))

(declare-fun struct_sents () (Set Structural_S))

(declare-fun type_sents () (Set Type_S))

(assert (= clauses (as univset (Set Clause))))

(assert (= actors (as univset (Set Actor))))

; UML sets

(declare-fun classes () (Set Class))

(declare-fun types () (Set Type))

(declare-fun attributes () (Set Attribute))

(declare-fun operations () (Set Operation))

(declare-fun relations () (Set Relation))

(declare-fun inheritances () (Set Inheritance))

;----------------------------------

; Constructors and helpers

;----------------------------------

(define-fun instantiate-clause ((c Clause)) Bool

(and

(member c clauses)

(forall

((a Actor))

(=>

(member a (g_actors c))

(member a actors)))))

(define-fun get-param ((activity String)) Param

(ite

(str.contains activity " ")



C.1. MODEL INFERENCE 201

(PARAM (str.substr activity (str.indexof activity " " 0) (str.len activity)) "e")

nil))

(define-fun get-activity ((activity String)) String

(ite

(str.contains activity " ")

(str.substr activity 0 (str.indexof activity " " 0))

activity))

(define-fun mk-operation ((a Actor) (activity String)) Operation

(OPR (actor_name a) (get-activity activity) "e" "+" "instance" (get-param activity)))

(define-fun mk-relation ((o Operation)) Relation

(REL (opr_cls o) (prm_nme (opr_prm o)) "Association" (opr_nme o) "e" "*" "*"))

(define-fun mk-attribute ((s Structural_S)) Attribute

(ATR (entity s) (property s) "e" "e" "e")

)

(define-fun mk-inheritance ((t Type_S)) Inheritance

(INH (type t) (subtype t))

)

;----------------------------------

; Inference rules

;----------------------------------

; For all actors in the set of actors, there is a class in the set of classes such that

the name of the actor and the name of the class are the same.↪→
(define-fun infer-classes () Bool

(forall

((x Actor))

(=>

(member x actors)

(exists

((y Class))

(and

(member y classes)

(and

(=

(cls_nme y)

(actor_name x))

(=

(cls_typ y)

"class")))))))

; For all actors in the set of actors, there is a type in the set of types such that the

name of the actor and the name of the class are the same.↪→
(define-fun infer-types () Bool

(forall

((x Actor))

(=>

(member x actors)

(exists

((y Type))

(and

(member y types)

(=

(actor_name x)

(typ_nme y)))))))



202 APPENDIX C. EVALUATION

(define-fun infer-attribute ((s Structural_S)) Bool

(member (mk-attribute s) attributes)

)

(define-fun infer-attributes () Bool

(forall

((x Structural_S))

(=>

(member x struct_sents)

(infer-attribute x)))

)

(define-fun infer-operation ((c Clause)) Bool

(forall

((a Actor))

(=>

(and

(member a actors)

(member a (g_actors c))

)

(member (mk-operation a (activity c)) operations))))

(define-fun infer-operations () Bool

(forall

((x Clause))

(=>

(member x clauses)

(infer-operation x))))

(define-fun infer-relation ((o Operation)) Bool

(member (mk-relation o) relations))

(define-fun infer-relations () Bool

(forall

((x Operation))

(=>

(and

(member x operations)

(distinct

nil

(opr_prm x)))

(infer-relation x))))

(define-fun infer-inheritance ((t Type_S)) Bool

(member (mk-inheritance t) inheritances)

)

(define-fun infer-inheritances () Bool

(forall

((x Type_S))

(=>

(member x type_sents)

(infer-inheritance x)))

)

;----------------------------------

; Specification elements

;----------------------------------

(declare-const C1a (Set Actor))



C.1. MODEL INFERENCE 203

(assert (member (ACTOR "Customers") C1a))

(assert (member (ACTOR "Members") C1a))

(assert (member (ACTOR "Books") C1a))

(assert (member (ACTOR "Language-tapes") C1a))

(declare-const C1 Clause)

(assert (= C1 (CLAUSE "exists" C1a )))

(assert (instantiate-clause C1))

(declare-const C2a (Set Actor))

(assert (member (ACTOR "Library") C2a))

(declare-const C2 Clause)

(assert (= C2 (CLAUSE "loans loan-item" C2a )))

(assert (instantiate-clause C2))

(declare-const C3a (Set Actor))

(assert (member (ACTOR "Library") C3a))

(declare-const C3 Clause)

(assert (= C3 (CLAUSE "issues membership-card" C3a )))

(assert (instantiate-clause C3))

(assert (member (STRUCT "Items" "must" "have" "bar-code") struct_sents))

(assert (member (TYPE_S "Books" "are" "items") type_sents))

(assert (member (STRUCT "Books" "must" "have" "title") struct_sents))

(assert (member (STRUCT "Books" "must" "have" "author") struct_sents))

(assert (member (TYPE_S "Tapes" "are" "items") type_sents))

(assert (member (STRUCT "Tapes" "must" "have" "language") struct_sents))

(assert (member (STRUCT "tapes" "must" "have" "level") struct_sents))

;£fill: type sentences

;----------------------------------

; Infering model

;----------------------------------

(assert infer-operations)

(assert infer-classes)

(assert infer-types)

(assert infer-relations)

(assert infer-attributes)

(assert infer-inheritances)

;----------------------------------

; Checks

;----------------------------------

(check-sat)

(get-value (classes))

(get-value (types))

(get-value (operations))

(get-value (relations))

(get-value (attributes))

(get-value (inheritances))

(exit)



204 APPENDIX C. EVALUATION

C.2 Model Validation

C.2.0.1 Invalid class model

JSON Model C.1: Full JSON of an invalid model with respect to ConSpec 7.9

{

"classes": {

"loan": {

"name": "Loan",

"class_type": "class",

"attributes": {

"loandate": {

"name": "loandate",

"type": "Date"

},

"duedate": {

"name": "duedate",

"type": "Date"

}

},

"operations": {

"check-overdue": {

"name": "CheckOverdue",

"parameters": {}

}

}

},

"copy": {

"name": "Copy",

"class_type": "class",

"attributes": {

"loandate": {

"name": "copyno",

"type": "Int"

}

},

"operations": {

"create": {

"name": "Create",

"parameters": {}

}

}

},

"reader": {

"name": "Reader",

"class_type": "class",

"attributes": {

"id": {

"name": "id",

"type": "Int"

},

"name": {

"name": "name",

"type": "String"

},

"address": {

"name": "address",

"type": "String"

}



C.2. MODEL VALIDATION 205

},

"operations": {

"create": {

"name": "Create",

"parameters": {}

},

"modifyname": {

"name": "ModifyName",

"parameters": {}

}

}

},

"publication": {

"name": "Publication",

"class_type": "class",

"attributes": {

"title": {

"name": "title",

"type": "String"

},

"publisher": {

"name": "publisher",

"type": "String"

}

},

"operations": {

"create": {

"name": "Create",

"parameters": {}

},

"modifytitle": {

"name": "ModifyTitle",

"parameters": {}

}

}

},

"periodical": {

"name": "Periodical",

"class_type": "class",

"attributes": {

"volume": {

"name": "volume",

"type": "Int"

},

"editor": {

"name": "editor",

"type": "String"

}

},

"operations": {

"modifyeditor": {

"name": "ModifyEditor",

"parameters": {}

}

}

},

"book": {

"name": "Book",

"class_type": "class",

"attributes": {

"author": {

"name": "author",



206 APPENDIX C. EVALUATION

"type": "String"

}

},

"operations": {

"modifyauthor": {

"name": "ModifyAuthor",

"parameters": {}

}

}

}

},

"associations": {

"publication-periodical-inheritance": {

"source_class_name": "Publication",

"destination_class_name": "Periodical",

"type": "inheritance",

"name": "",

"role": "",

"lower_cardinality": 1,

"upper_cardinality": 1

},

"publication-book-inheritance": {

"source_class_name": "Publication",

"destination_class_name": "Book",

"type": "inheritance",

"name": "",

"role": "",

"lower_cardinality": 1,

"upper_cardinality": 1

}

}

}

SMTLib C.2: Full SMT-LIB model to check an invalid class model (JSON Model C.1)
against ConSpec 7.9

(set-option :produce-models true)

(set-logic ALL_SUPPORTED)

;----------------------------------

; Datatypes

;----------------------------------

; Synonyms

(declare-datatypes ( (Entry 0) ) ( ((mk-entry

(synonyms (Set String))

))))

; Specification

(declare-datatypes ((Actor 0)) (((ACTOR (actor_name String)))))

(declare-datatypes ((Clause 0))

(((CLAUSE

(activity String)

(c_actors (Set Actor))

))))

(declare-datatypes ((Sentence 0))

(((SENTENCE

(words (Set String))

))))



C.2. MODEL VALIDATION 207

(declare-datatypes ((Structural_S 0))

(((STRUCT

(entity String)

(modal String)

(have String)

(property String)

))))

(declare-datatypes ((Type_S 0))

(((TYPE_S

(subtype String)

(isa String)

(type String)

))))

; Class Diagram

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String)

(cls_typ String)

))))

(declare-datatypes ( (Type 0) ) ( ((TYPE

(typ_nme String)

))))

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String)

(atr_nme String)

(atr_typ String)

(atr_vis String)

(atr_sco String)

))))

(declare-datatypes ( (Param 0) ) ( ((PARAM

(prm_nme String)

(prm_typ String)

)

(nil))))

(declare-datatypes ( (Operation 0) ) ( ((OPR

(opr_cls String)

(opr_nme String)

(opr_typ String)

(opr_vis String)

(opr_sco String)

(opr_prm Param)

))))

(declare-datatypes ( (Relation 0) ) ( ((REL

(rel_src String)

(rel_des String)

(rel_typ String)

(rel_nme String)

(rel_rol String)

(rel_c_l String)

(rel_c_u String)

))))

(declare-datatypes ( (Inheritance 0) ) ( ((INH

(inh_sup String)

(inh_sub String)

))))

;----------------------------------

; Sets

;----------------------------------

; Synonyms



208 APPENDIX C. EVALUATION

; Specification

(declare-const clauses (Set Clause))

(declare-const actors (Set Actor))

(declare-const sentences (Set Sentence))

(declare-const struct_sents (Set Structural_S))

(declare-const type_sents (Set Type_S))

(assert (= clauses (as univset (Set Clause))))

(assert (= actors (as univset (Set Actor))))

(assert (= sentences (as univset (Set Sentence))))

; Class Diagram

(declare-const classes (Set Class))

(declare-const types (Set Type))

(declare-const attributes (Set Attribute))

(declare-const operations (Set Operation))

(declare-const relations (Set Relation))

(declare-const inheritances (Set Inheritance))

;----------------------------------

; Synonyms

;----------------------------------

(declare-const syns_dict (Set Entry))

(assert (member (mk-entry (insert

"Paper" "paper" "PAPER" "Papers" "papers"

(singleton "Paper"))) syns_dict))

(assert (member (mk-entry (insert

"title" "TITLE" "Title" "titles" "statute_title" "STATUTE_TITLE"

"StatuteTitle" "statuteTitle" "statute-title" "statute_titles" "Statute

Title" "rubric" "RUBRIC" "Rubric" "rubrics"

↪→
↪→
(singleton "title"))) syns_dict))

(assert (member (mk-entry (insert

"word-count" "WORD-COUNT" "Word-count" "word_count" "word-counts"

"word_counts" "Word Count"

(singleton "word-count"))) syns_dict))

(assert (member (mk-entry (insert

"student-indicator" "STUDENT-INDICATOR" "Student-indicator"

"student_indicator" "student-indicators" "student_indicators"

"Student Indicator"

(singleton "student-indicator"))) syns_dict))

(assert (member (mk-entry (insert

"authors" "AUTHORS" "Authors" "author" "writer" "WRITER"

"Writer" "writers" "AUTHOR" "Author"

(singleton "authors"))) syns_dict))

(assert (member (mk-entry (insert

"referees" "REFEREES" "Referees" "referee" "REFEREE" "Referee"

"ref" "REF" "Ref" "refs"

(singleton "referees"))) syns_dict))

(assert (member (mk-entry (insert

"Researcher" "researcher" "RESEARCHER" "Researchers" "researchers"

"research_worker" "RESEARCH_WORKER" "ResearchWorker" "researchWorker"

"research-worker" "research_workers" "Research Worker" "investigator"

"INVESTIGATOR" "Investigator" "investigators"

(singleton "Researcher"))) syns_dict))

(assert (member (mk-entry (insert



C.2. MODEL VALIDATION 209

"name" "NAME" "Name" "names"

(singleton "name"))) syns_dict))

(assert (= syns_dict (as univset (Set Entry))))

;----------------------------------

; Constructors and helpers

;----------------------------------

(define-fun is_syn ((w1 String) (w2 String)) Bool

(or

(= w1 w2)

(exists

((e Entry))

(and

(member e syns_dict)

(and

(member w1 (synonyms e))

(member w2 (synonyms e)))))))

(define-fun instantiate-clause ((c Clause)) Bool

(and

(member c clauses)

(forall

((a Actor))

(=>

(member a (c_actors c))

(member a actors)

)

)

)

)

;----------------------------------

; Inference rules

;----------------------------------

; There is an actor thar derives the class

(define-fun check_class ((c Class)) Bool

(exists

((a Actor))

(and

(member a actors)

(is_syn

(cls_nme c)

(actor_name a)

)

)

)

)

; All the classes come from an actor

(define-fun actors_rule () Bool

(forall

((c Class))

(=>

(member c classes)

(check_class c)

)



210 APPENDIX C. EVALUATION

)

)

; There is

(define-fun check_operation ((o Operation)) Bool

(exists

((c Clause))

(and

(member c clauses)

(is_syn

(opr_nme o)

(activity c)

)

)

)

)

; All the operations come from the specification

(define-fun operations_rule () Bool

(forall

((o Operation))

(=>

(member o operations)

(check_operation o)

)

)

)

(define-fun check_attribute ((a Attribute)) Bool

(exists

((s Structural_S))

(and

(member s struct_sents)

(is_syn

(atr_nme a)

(property s)

)

)

)

)

(define-fun attributes_rule () Bool

(forall

((a Attribute))

(=>

(member a attributes)

(check_attribute a)

)

)

)

(define-fun check_inheritance ((h Inheritance)) Bool

(exists

((s Type_S))

(and

(member s type_sents)

(is_syn (inh_sup h) (type s))

(is_syn (inh_sub h) (subtype s))

)

)

)



C.2. MODEL VALIDATION 211

(define-fun inheritances_rule () Bool

(forall

((h Inheritance))

(=>

(member h inheritances)

(check_inheritance h)

)

)

)

(define-fun check_relation ((r Relation)) Bool

(exists

((s Sentence))

(and

(member s sentences)

(member (rel_src r) (words s))

(member (rel_des r) (words s))

)

)

)

(define-fun relations_rule () Bool

(forall

((r Relation))

(=>

(member r relations)

(check_relation r)

)

)

)

;----------------------------------

; Specification

;----------------------------------

(declare-const C1a (Set Actor))

(assert (member (ACTOR "Customers") C1a))

(assert (member (ACTOR "Members") C1a))

(assert (member (ACTOR "Books") C1a))

(assert (member (ACTOR "Language-tapes") C1a))

(declare-const C1 Clause)

(assert (= C1 (CLAUSE "exists" C1a )))

(assert (instantiate-clause C1))

(declare-const C2a (Set Actor))

(assert (member (ACTOR "Library") C2a))

(declare-const C2 Clause)

(assert (= C2 (CLAUSE "loans loan-item" C2a )))

(assert (instantiate-clause C2))

(declare-const C3a (Set Actor))

(assert (member (ACTOR "Library") C3a))

(declare-const C3 Clause)

(assert (= C3 (CLAUSE "issues membership-card" C3a )))

(assert (instantiate-clause C3))

(assert (= (card actors) 6))

(assert (= actors (as univset (Set Actor))))

(assert (= (card clauses) 3))

(assert (= clauses (as univset (Set Clause))))



212 APPENDIX C. EVALUATION

(assert (member (STRUCT "Items" "must" "have" "bar-code") struct_sents))

(assert (member (TYPE_S "Books" "are" "items") type_sents))

(assert (member (STRUCT "Books" "must" "have" "title") struct_sents))

(assert (member (STRUCT "Books" "must" "have" "author") struct_sents))

(assert (member (TYPE_S "Tapes" "are" "items") type_sents))

(assert (member (STRUCT "Tapes" "must" "have" "language") struct_sents))

(assert (member (STRUCT "tapes" "must" "have" "level") struct_sents))

(assert (= (card struct_sents) 5))

(assert (= struct_sents (as univset (Set Structural_S))))

(assert (= (card type_sents) 2))

(assert (= type_sents (as univset (Set Type_S))))

; Shadow actors for inverse actors rule

(assert (= actors (as univset (Set Actor))))

;----------------------------------

; Class model

;----------------------------------

; Classes

(assert (member (CLASS "Loan" "classifier") classes))

(assert (member (CLASS "Copy" "classifier") classes))

(assert (member (CLASS "Reader" "classifier") classes))

(assert (member (CLASS "Publication" "classifier") classes))

(assert (member (CLASS "Periodical" "classifier") classes))

(assert (member (CLASS "Book" "classifier") classes))

(assert (= (card classes) 6))

(assert (= classes (as univset (Set Class))))

; Operations

(assert (member (OPR "Loan" "CheckOverdue" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Copy" "Create" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Reader" "Create" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Reader" "ModifyName" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Publication" "Create" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Publication" "ModifyTitle" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Periodical" "ModifyEditor" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Book" "ModifyAuthor" "" "" "" (PARAM "" "")) operations))

(assert (= (card operations) 8))

; Attributes

(assert (member (ATR "Loan" "loandate" "" "" "") attributes))

(assert (member (ATR "Loan" "duedate" "" "" "") attributes))

(assert (member (ATR "Copy" "copyno" "" "" "") attributes))

(assert (member (ATR "Reader" "id" "" "" "") attributes))

(assert (member (ATR "Reader" "name" "" "" "") attributes))

(assert (member (ATR "Reader" "address" "" "" "") attributes))

(assert (member (ATR "Publication" "title" "" "" "") attributes))

(assert (member (ATR "Publication" "publisher" "" "" "") attributes))

(assert (member (ATR "Periodical" "volume" "" "" "") attributes))

(assert (member (ATR "Periodical" "editor" "" "" "") attributes))

(assert (member (ATR "Book" "author" "" "" "") attributes))

(assert (= (card attributes) 11))



C.2. MODEL VALIDATION 213

;Inheritances

(assert (member (INH "Publication" "Periodical") inheritances))

(assert (member (INH "Publication" "Book") inheritances))

(assert (= (card inheritances) 2))

;Relations

(assert (= (card relations) 0))

;----------------------------------

; Validating model

;----------------------------------

(declare-const classes_validation Bool)

(declare-const operations_validation Bool)

(declare-const attributes_validation Bool)

(declare-const inheritances_validation Bool)

(declare-const relations_validation Bool)

(assert (= classes_validation actors_rule))

(assert (= operations_validation operations_rule))

(assert (= attributes_validation attributes_rule))

(assert (= inheritances_validation inheritances_rule))

;----------------------------------

; Checks

;----------------------------------

(check-sat)

(get-value (classes_validation))

(get-value (operations_validation))

(get-value (attributes_validation))

(get-value (inheritances_validation))

(exit)

C.2.0.2 Sound class model

JSON Model C.2: Full JSON of a sound but incomplete model with respect to Con-
Spec 7.9

{

"classes": {

"customers": {

"name": "Customers",

"class_type": "class",

"attributes": {},

"operations": {

"exists-epsilon": {

"name": "exists"

},

"parameters": {}

}

},

"members": {

"name": "Members",

"class_type": "class",

"attributes": {},

"operations": {

"exists-epsilon": {

"name": "exists"

},



214 APPENDIX C. EVALUATION

"parameters": {}

}

},

"books": {

"name": "Books",

"class_type": "class",

"attributes": {

"author": {

"name": "author"

}

},

"operations": {}

},

"language-tapes": {

"name": "Language-tapes",

"class_type": "class",

"attributes": {},

"operations": {

"exists-epsilon": {

"name": "exists"

},

"parameters": {}

}

},

"library": {

"name": "Library",

"class_type": "class",

"attributes": {},

"operations": {

"loans-epsilon-loan-item-epsilon": {

"name": "loans"

},

"parameters": {

"loan-item-epsilon": {

"name": "loan-item"

}

}

}

},

"items": {

"name": "Items",

"class_type": "class",

"attributes": {

"bar-code": {

"name": "bar-code"

}

},

"operations": {}

},

"tapes": {

"name": "Tapes",

"class_type": "class",

"attributes": {

"language": {

"name": "language"

},

"level": {

"name": "level"

}

},

"operations": {}

}



C.2. MODEL VALIDATION 215

},

"associations": {

"items-books-inheritance": {

"source_class_name": "items",

"destination_class_name": "Books",

"type": "inheritance",

"name": "",

"role": "",

"lower_cardinality": 1,

"upper_cardinality": 1

},

"items-tapes-inheritance": {

"source_class_name": "items",

"destination_class_name": "Tapes",

"type": "inheritance",

"name": "",

"role": "",

"lower_cardinality": 1,

"upper_cardinality": 1

}

}

}

SMTLib C.3: Full SMT-LIB model to check a sound but incomplete class model (JSON
Model C.2) against ConSpec 7.9

(set-option :produce-models true)

(set-logic ALL_SUPPORTED)

;----------------------------------

; Datatypes

;----------------------------------

; Synonyms

(declare-datatypes ( (Entry 0) ) ( ((mk-entry

(synonyms (Set String))

))))

; Specification

(declare-datatypes ((Actor 0)) (((ACTOR (actor_name String)))))

(declare-datatypes ((Clause 0))

(((CLAUSE

(activity String)

(c_actors (Set Actor))

))))

(declare-datatypes ((Sentence 0))

(((SENTENCE

(words (Set String))

))))

(declare-datatypes ((Structural_S 0))

(((STRUCT

(entity String)

(modal String)

(have String)

(property String)

))))

(declare-datatypes ((Type_S 0))

(((TYPE_S



216 APPENDIX C. EVALUATION

(subtype String)

(isa String)

(type String)

))))

; Class Diagram

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String)

(cls_typ String)

))))

(declare-datatypes ( (Type 0) ) ( ((TYPE

(typ_nme String)

))))

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String)

(atr_nme String)

(atr_typ String)

(atr_vis String)

(atr_sco String)

))))

(declare-datatypes ( (Param 0) ) ( ((PARAM

(prm_nme String)

(prm_typ String)

)

(nil))))

(declare-datatypes ( (Operation 0) ) ( ((OPR

(opr_cls String)

(opr_nme String)

(opr_typ String)

(opr_vis String)

(opr_sco String)

(opr_prm Param)

))))

(declare-datatypes ( (Relation 0) ) ( ((REL

(rel_src String)

(rel_des String)

(rel_typ String)

(rel_nme String)

(rel_rol String)

(rel_c_l String)

(rel_c_u String)

))))

(declare-datatypes ( (Inheritance 0) ) ( ((INH

(inh_sup String)

(inh_sub String)

))))

;----------------------------------

; Sets

;----------------------------------

; Synonyms

; Specification

(declare-const clauses (Set Clause))

(declare-const actors (Set Actor))

(declare-const sentences (Set Sentence))

(declare-const struct_sents (Set Structural_S))

(declare-const type_sents (Set Type_S))

(assert (= clauses (as univset (Set Clause))))

(assert (= actors (as univset (Set Actor))))

(assert (= sentences (as univset (Set Sentence))))

; Class Diagram



C.2. MODEL VALIDATION 217

(declare-const classes (Set Class))

(declare-const types (Set Type))

(declare-const attributes (Set Attribute))

(declare-const operations (Set Operation))

(declare-const relations (Set Relation))

(declare-const inheritances (Set Inheritance))

;----------------------------------

; Synonyms

;----------------------------------

(declare-const syns_dict (Set Entry))

(assert (member (mk-entry (insert

"Paper" "paper" "PAPER" "Papers" "papers"

(singleton "Paper"))) syns_dict))

(assert (member (mk-entry (insert

"title" "TITLE" "Title" "titles" "statute_title" "STATUTE_TITLE"

"StatuteTitle" "statuteTitle" "statute-title" "statute_titles" "Statute

Title" "rubric" "RUBRIC" "Rubric" "rubrics"

↪→
↪→
(singleton "title"))) syns_dict))

(assert (member (mk-entry (insert

"word-count" "WORD-COUNT" "Word-count" "word_count" "word-counts"

"word_counts" "Word Count"

(singleton "word-count"))) syns_dict))

(assert (member (mk-entry (insert

"student-indicator" "STUDENT-INDICATOR" "Student-indicator"

"student_indicator" "student-indicators" "student_indicators"

"Student Indicator"

(singleton "student-indicator"))) syns_dict))

(assert (member (mk-entry (insert

"authors" "AUTHORS" "Authors" "author" "writer" "WRITER"

"Writer" "writers" "AUTHOR" "Author"

(singleton "authors"))) syns_dict))

(assert (member (mk-entry (insert

"referees" "REFEREES" "Referees" "referee" "REFEREE" "Referee"

"ref" "REF" "Ref" "refs"

(singleton "referees"))) syns_dict))

(assert (member (mk-entry (insert

"Researcher" "researcher" "RESEARCHER" "Researchers" "researchers"

"research_worker" "RESEARCH_WORKER" "ResearchWorker" "researchWorker"

"research-worker" "research_workers" "Research Worker" "investigator"

"INVESTIGATOR" "Investigator" "investigators"

(singleton "Researcher"))) syns_dict))

(assert (member (mk-entry (insert

"name" "NAME" "Name" "names"

(singleton "name"))) syns_dict))

(assert (= syns_dict (as univset (Set Entry))))

;----------------------------------

; Constructors and helpers

;----------------------------------

(define-fun is_syn ((w1 String) (w2 String)) Bool



218 APPENDIX C. EVALUATION

(or

(= w1 w2)

(exists

((e Entry))

(and

(member e syns_dict)

(and

(member w1 (synonyms e))

(member w2 (synonyms e)))))))

(define-fun instantiate-clause ((c Clause)) Bool

(and

(member c clauses)

(forall

((a Actor))

(=>

(member a (c_actors c))

(member a actors)

)

)

)

)

;----------------------------------

; Inference rules

;----------------------------------

; There is an actor thar derives the class

(define-fun check_class ((c Class)) Bool

(exists

((a Actor))

(and

(member a actors)

(is_syn

(cls_nme c)

(actor_name a)

)

)

)

)

; All the classes come from an actor

(define-fun actors_rule () Bool

(forall

((c Class))

(=>

(member c classes)

(check_class c)

)

)

)

; There is

(define-fun check_operation ((o Operation)) Bool

(exists

((c Clause))

(and

(member c clauses)



C.2. MODEL VALIDATION 219

(is_syn

(opr_nme o)

(activity c)

)

)

)

)

; All the operations come from the specification

(define-fun operations_rule () Bool

(forall

((o Operation))

(=>

(member o operations)

(check_operation o)

)

)

)

(define-fun check_attribute ((a Attribute)) Bool

(exists

((s Structural_S))

(and

(member s struct_sents)

(is_syn

(atr_nme a)

(property s)

)

)

)

)

(define-fun attributes_rule () Bool

(forall

((a Attribute))

(=>

(member a attributes)

(check_attribute a)

)

)

)

(define-fun check_inheritance ((h Inheritance)) Bool

(exists

((s Type_S))

(and

(member s type_sents)

(is_syn (inh_sup h) (type s))

(is_syn (inh_sub h) (subtype s))

)

)

)

(define-fun inheritances_rule () Bool

(forall

((h Inheritance))

(=>

(member h inheritances)

(check_inheritance h)

)

)

)



220 APPENDIX C. EVALUATION

(define-fun check_relation ((r Relation)) Bool

(exists

((s Sentence))

(and

(member s sentences)

(member (rel_src r) (words s))

(member (rel_des r) (words s))

)

)

)

(define-fun relations_rule () Bool

(forall

((r Relation))

(=>

(member r relations)

(check_relation r)

)

)

)

;----------------------------------

; Specification

;----------------------------------

(declare-const C1a (Set Actor))

(assert (member (ACTOR "Customers") C1a))

(assert (member (ACTOR "Members") C1a))

(assert (member (ACTOR "Books") C1a))

(assert (member (ACTOR "Language-tapes") C1a))

(declare-const C1 Clause)

(assert (= C1 (CLAUSE "exists" C1a )))

(assert (instantiate-clause C1))

(declare-const C2a (Set Actor))

(assert (member (ACTOR "Library") C2a))

(declare-const C2 Clause)

(assert (= C2 (CLAUSE "loans loan-item" C2a )))

(assert (instantiate-clause C2))

(declare-const C3a (Set Actor))

(assert (member (ACTOR "Library") C3a))

(declare-const C3 Clause)

(assert (= C3 (CLAUSE "issues membership-card" C3a )))

(assert (instantiate-clause C3))

(assert (= (card actors) 6))

(assert (= actors (as univset (Set Actor))))

(assert (= (card clauses) 3))

(assert (= clauses (as univset (Set Clause))))

(assert (member (STRUCT "Items" "must" "have" "bar-code") struct_sents))

(assert (member (TYPE_S "Books" "are" "items") type_sents))

(assert (member (STRUCT "Books" "must" "have" "title") struct_sents))

(assert (member (STRUCT "Books" "must" "have" "author") struct_sents))

(assert (member (TYPE_S "Tapes" "are" "items") type_sents))

(assert (member (STRUCT "Tapes" "must" "have" "language") struct_sents))

(assert (member (STRUCT "tapes" "must" "have" "level") struct_sents))



C.2. MODEL VALIDATION 221

(assert (= (card struct_sents) 5))

(assert (= struct_sents (as univset (Set Structural_S))))

(assert (= (card type_sents) 2))

(assert (= type_sents (as univset (Set Type_S))))

; Shadow actors for inverse actors rule

(assert (= actors (as univset (Set Actor))))

;----------------------------------

; Class model

;----------------------------------

; Classes

(assert (member (CLASS "Customers" "classifier") classes))

(assert (member (CLASS "Members" "classifier") classes))

(assert (member (CLASS "Books" "classifier") classes))

(assert (member (CLASS "Language-tapes" "classifier") classes))

(assert (member (CLASS "Library" "classifier") classes))

(assert (member (CLASS "Items" "classifier") classes))

(assert (member (CLASS "Tapes" "classifier") classes))

(assert (= (card classes) 7))

(assert (= classes (as univset (Set Class))))

; Operations

(assert (member (OPR "Customers" "exists" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Members" "exists" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Language-tapes" "exists" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Library" "loans loan-item" "" "" "" (PARAM "loan-item" ""))

operations))↪→
(assert (= (card operations) 4))

; Attributes

(assert (member (ATR "Books" "author" "" "" "") attributes))

(assert (member (ATR "Items" "bar-code" "" "" "") attributes))

(assert (member (ATR "Tapes" "language" "" "" "") attributes))

(assert (member (ATR "Tapes" "level" "" "" "") attributes))

(assert (= (card attributes) 4))

;Inheritances

(assert (member (INH "items" "Books") inheritances))

(assert (member (INH "items" "Tapes") inheritances))

(assert (= (card inheritances) 2))

;Relations

(assert (= (card relations) 0))

;----------------------------------

; Validating model

;----------------------------------

(declare-const classes_validation Bool)

(declare-const operations_validation Bool)

(declare-const attributes_validation Bool)

(declare-const inheritances_validation Bool)

(declare-const relations_validation Bool)

(assert (= classes_validation actors_rule))

(assert (= operations_validation operations_rule))



222 APPENDIX C. EVALUATION

(assert (= attributes_validation attributes_rule))

(assert (= inheritances_validation inheritances_rule))

;----------------------------------

; Checks

;----------------------------------

(check-sat)

(get-value (classes_validation))

(get-value (operations_validation))

(get-value (attributes_validation))

(get-value (inheritances_validation))

(exit)

C.2.0.3 Complete class model

JSON Model C.3: Full JSON of a complete but not sound model with respect to
ConSpec 7.9

{

"classes": {

"randomclass": {

"name": "RandomClass",

"class_type": "class",

"attributes": {

"randomattribute": {

"name": "randomAttribute"

}

},

"operations": {}

},

"customers": {

"name": "Customers",

"class_type": "class",

"attributes": {},

"operations": {

"exists-epsilon": {

"name": "exists",

"parameters": {}

}

}

},

"members": {

"name": "Members",

"class_type": "class",

"attributes": {},

"operations": {

"exists-epsilon": {

"name": "exists",

"parameters": {}

}

}

},

"books": {

"name": "Books",

"class_type": "class",

"attributes": {

"title": {

"name": "title"



C.2. MODEL VALIDATION 223

},

"author": {

"name": "author"

}

},

"operations": {

"exists-epsilon": {

"name": "exists",

"parameters": {}

}

}

},

"language-tapes": {

"name": "Language-tapes",

"class_type": "class",

"attributes": {},

"operations": {

"exists-epsilon": {

"name": "exists",

"parameters": {}

}

}

},

"library": {

"name": "Library",

"class_type": "class",

"attributes": {},

"operations": {

"loans-epsilon-loan-item-epsilon": {

"name": "loans",

"parameters": {

"loan-item-epsilon": {

"name": "loan-item"

}

}

}

}

},

"items": {

"name": "Items",

"class_type": "class",

"attributes": {

"bar-code": {

"name": "bar-code"

}

},

"operations": {}

},

"tapes": {

"name": "Tapes",

"class_type": "class",

"attributes": {

"language": {

"name": "language"

},

"level": {

"name": "level"

}

},

"operations": {}

}

},



224 APPENDIX C. EVALUATION

"associations": {

"items-books-inheritance": {

"source_class_name": "items",

"destination_class_name": "Books",

"type": "inheritance",

"name": "",

"role": "",

"lower_cardinality": 1,

"upper_cardinality": 1

},

"items-tapes-inheritance": {

"source_class_name": "items",

"destination_class_name": "Tapes",

"type": "inheritance",

"name": "",

"role": "",

"lower_cardinality": 1,

"upper_cardinality": 1

}

}

}

SMTLib C.4: Full SMT-LIB model to check a complete but not sound class model (JSON
Model C.3) against ConSpec 7.9

(set-option :produce-models true)

(set-logic ALL_SUPPORTED)

;----------------------------------

; Datatypes

;----------------------------------

; Synonyms

(declare-datatypes ( (Entry 0) ) ( ((mk-entry

(synonyms (Set String))

))))

; Specification

(declare-datatypes ((Actor 0)) (((ACTOR (actor_name String)))))

(declare-datatypes ((Clause 0))

(((CLAUSE

(activity String)

(c_actors (Set Actor))

))))

(declare-datatypes ((Sentence 0))

(((SENTENCE

(words (Set String))

))))

(declare-datatypes ((Structural_S 0))

(((STRUCT

(entity String)

(modal String)

(have String)

(property String)

))))

(declare-datatypes ((Type_S 0))



C.2. MODEL VALIDATION 225

(((TYPE_S

(subtype String)

(isa String)

(type String)

))))

; Class Diagram

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String)

(cls_typ String)

))))

(declare-datatypes ( (Type 0) ) ( ((TYPE

(typ_nme String)

))))

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String)

(atr_nme String)

(atr_typ String)

(atr_vis String)

(atr_sco String)

))))

(declare-datatypes ( (Param 0) ) ( ((PARAM

(prm_nme String)

(prm_typ String)

)

(nil))))

(declare-datatypes ( (Operation 0) ) ( ((OPR

(opr_cls String)

(opr_nme String)

(opr_typ String)

(opr_vis String)

(opr_sco String)

(opr_prm Param)

))))

(declare-datatypes ( (Relation 0) ) ( ((REL

(rel_src String)

(rel_des String)

(rel_typ String)

(rel_nme String)

(rel_rol String)

(rel_c_l String)

(rel_c_u String)

))))

(declare-datatypes ( (Inheritance 0) ) ( ((INH

(inh_sup String)

(inh_sub String)

))))

;----------------------------------

; Sets

;----------------------------------

; Specification

(declare-const actors (Set Actor))

(declare-const clauses (Set Clause))

(declare-const sentences (Set Sentence))

(declare-const struct_sents (Set Structural_S))

(declare-const type_sents (Set Type_S))

; Class Diagram

(declare-const classes (Set Class))



226 APPENDIX C. EVALUATION

(declare-const types (Set Type))

(declare-const attributes (Set Attribute))

(declare-const operations (Set Operation))

(declare-const relations (Set Relation))

(declare-const inheritances (Set Inheritance))

;----------------------------------

; Synonyms

;----------------------------------

(declare-const syns_dict (Set Entry))

(assert (member (mk-entry (insert

"Paper" "paper" "PAPER" "Papers" "papers"

(singleton "Paper"))) syns_dict))

(assert (member (mk-entry (insert

"title" "TITLE" "Title" "titles" "statute_title" "STATUTE_TITLE"

"StatuteTitle" "statuteTitle" "statute-title" "statute_titles" "Statute

Title" "rubric" "RUBRIC" "Rubric" "rubrics"

↪→
↪→
(singleton "title"))) syns_dict))

(assert (member (mk-entry (insert

"word-count" "WORD-COUNT" "Word-count" "word_count" "word-counts"

"word_counts" "Word Count"

(singleton "word-count"))) syns_dict))

(assert (member (mk-entry (insert

"student-indicator" "STUDENT-INDICATOR" "Student-indicator"

"student_indicator" "student-indicators" "student_indicators"

"Student Indicator"

(singleton "student-indicator"))) syns_dict))

(assert (member (mk-entry (insert

"authors" "AUTHORS" "Authors" "author" "writer" "WRITER"

"Writer" "writers" "AUTHOR" "Author"

(singleton "authors"))) syns_dict))

(assert (member (mk-entry (insert

"referees" "REFEREES" "Referees" "referee" "REFEREE" "Referee"

"ref" "REF" "Ref" "refs"

(singleton "referees"))) syns_dict))

(assert (member (mk-entry (insert

"Researcher" "researcher" "RESEARCHER" "Researchers" "researchers"

"research_worker" "RESEARCH_WORKER" "ResearchWorker" "researchWorker"

"research-worker" "research_workers" "Research Worker" "investigator"

"INVESTIGATOR" "Investigator" "investigators"

(singleton "Researcher"))) syns_dict))

(assert (member (mk-entry (insert

"name" "NAME" "Name" "names"

(singleton "name"))) syns_dict))

(assert (= syns_dict (as univset (Set Entry))))

;----------------------------------

; Constructors and helpers

;----------------------------------

(define-fun is_syn ((w1 String) (w2 String)) Bool



C.2. MODEL VALIDATION 227

(or

(= w1 w2)

(exists

((e Entry))

(and

(member e syns_dict)

(and

(member w1 (synonyms e))

(member w2 (synonyms e)))))))

(define-fun instantiate-clause ((c Clause)) Bool

(and

(member c clauses)

(forall

((a Actor))

(=>

(member a (c_actors c))

(member a actors)

)

)

)

)

;----------------------------------

; Inference rules

;----------------------------------

(define-fun check_actor ((a Actor)) Bool

(exists

((c Class))

(and

(member c classes)

(is_syn

(actor_name a)

(cls_nme c)

)

)

)

)

(define-fun inverse_actors_rule () Bool

(forall

((a Actor))

(=>

(member a actors)

(check_actor a)

)

)

)

(define-fun check_activity ((a String)) Bool

(exists

((o Operation))

(and

(member o operations)

(is_syn

a

(opr_nme o)

)

)

)



228 APPENDIX C. EVALUATION

)

(define-fun inverese_operations_rule () Bool

(forall

((c Clause))

(=>

(member c clauses)

(check_activity (activity c))

)

)

)

(define-fun check_structures ((s Structural_S)) Bool

(exists

((a Attribute))

(and

(member a attributes)

(is_syn

(property s)

(atr_nme a)

)

)

)

)

(define-fun inverese_attributes_rule () Bool

(forall

((s Structural_S))

(=>

(member s struct_sents)

(check_structures s)

)

)

)

(define-fun check_types ((s Type_S)) Bool

(exists

((h Inheritance))

(and

(member h inheritances)

(is_syn (inh_sub h) (subtype s))

(is_syn (inh_sup h) (type s))

)

)

)

(define-fun inverese_inheritances_rule () Bool

(forall

((s Type_S))

(=>

(member s type_sents)

(check_types s)

)

)

)

(define-fun check_relation_sentences ((s Sentence)) Bool

(exists

((r Relation))

(and

(member r relations)

(member (rel_des r) (words s))



C.2. MODEL VALIDATION 229

(member (rel_src r) (words s))

)

)

)

(define-fun inverse_relations_rule () Bool

(forall

((s Sentence))

(=>

(member s sentences)

(check_relation_sentences s)

)

)

)

;----------------------------------

; Specification

;----------------------------------

(declare-const C1a (Set Actor))

(assert (member (ACTOR "Customers") C1a))

(assert (member (ACTOR "Members") C1a))

(assert (member (ACTOR "Books") C1a))

(assert (member (ACTOR "Language-tapes") C1a))

(declare-const C1 Clause)

(assert (= C1 (CLAUSE "exists" C1a )))

(assert (instantiate-clause C1))

(declare-const C2a (Set Actor))

(assert (member (ACTOR "Library") C2a))

(declare-const C2 Clause)

(assert (= C2 (CLAUSE "loans loan-item" C2a )))

(assert (instantiate-clause C2))

(declare-const C3a (Set Actor))

(assert (member (ACTOR "Library") C3a))

(declare-const C3 Clause)

(assert (= C3 (CLAUSE "issues membership-card" C3a )))

(assert (instantiate-clause C3))

(assert (= (card actors) 6))

(assert (= actors (as univset (Set Actor))))

(assert (= (card clauses) 3))

(assert (= clauses (as univset (Set Clause))))

(assert (member (STRUCT "Items" "must" "have" "bar-code") struct_sents))

(assert (member (TYPE_S "Books" "are" "items") type_sents))

(assert (member (STRUCT "Books" "must" "have" "title") struct_sents))

(assert (member (STRUCT "Books" "must" "have" "author") struct_sents))

(assert (member (TYPE_S "Tapes" "are" "items") type_sents))

(assert (member (STRUCT "Tapes" "must" "have" "language") struct_sents))

(assert (member (STRUCT "tapes" "must" "have" "level") struct_sents))

(assert (= (card struct_sents) 5))

(assert (= struct_sents (as univset (Set Structural_S))))

(assert (= (card type_sents) 2))

(assert (= type_sents (as univset (Set Type_S))))



230 APPENDIX C. EVALUATION

;£fill: type sentences

;----------------------------------

; Class model

;----------------------------------

; Classes

(assert (member (CLASS "RandomClass" "classifier") classes))

(assert (member (CLASS "Customers" "classifier") classes))

(assert (member (CLASS "Members" "classifier") classes))

(assert (member (CLASS "Books" "classifier") classes))

(assert (member (CLASS "Language-tapes" "classifier") classes))

(assert (member (CLASS "Library" "classifier") classes))

(assert (member (CLASS "Items" "classifier") classes))

(assert (member (CLASS "Tapes" "classifier") classes))

(assert (= (card classes) 8))

(assert (= classes (as univset (Set Class))))

; Operations

(assert (member (OPR "Customers" "exists" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Members" "exists" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Books" "exists" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Language-tapes" "exists" "" "" "" (PARAM "" "")) operations))

(assert (member (OPR "Library" "loans loan-item" "" "" "" (PARAM "loan-item" ""))

operations))↪→
(assert (= (card operations) 5))

(assert (= operations (as univset (Set Operation))))

; Attributes

(assert (member (ATR "RandomClass" "randomAttribute" "" "" "") attributes))

(assert (member (ATR "Books" "title" "" "" "") attributes))

(assert (member (ATR "Books" "author" "" "" "") attributes))

(assert (member (ATR "Items" "bar-code" "" "" "") attributes))

(assert (member (ATR "Tapes" "language" "" "" "") attributes))

(assert (member (ATR "Tapes" "level" "" "" "") attributes))

(assert (= (card attributes) 6))

(assert (= attributes (as univset (Set Attribute))))

;Inheritances

(assert (member (INH "items" "Books") inheritances))

(assert (member (INH "items" "Tapes") inheritances))

(assert (= (card inheritances) 2))

(assert (= inheritances (as univset (Set Inheritance))))

;Relations

(assert (= (card relations) 0))

(assert (= relations (as univset (Set Relation))))

;----------------------------------

; Validating model

;----------------------------------

(declare-const inverse_classes_validation Bool)

(declare-const inverse_operations_validation Bool)

(declare-const inverse_attributes_validation Bool)

(declare-const inverse_inheritances_validation Bool)

(declare-const inverse_relations_validation Bool)

(assert (= inverse_classes_validation inverse_actors_rule))

(assert (= inverse_operations_validation inverese_operations_rule))

(assert (= inverse_attributes_validation inverese_attributes_rule))

(assert (= inverse_inheritances_validation inverese_inheritances_rule))



C.3. MODEL COMPARISON 231

;----------------------------------

; Checks

;----------------------------------

(check-sat)

(get-value (inverse_classes_validation))

(get-value (inverse_operations_validation))

(get-value (inverse_attributes_validation))

(get-value (inverse_inheritances_validation))

(exit)

C.3 Model Comparison

C.3.0.1 Not equivalent class models

SMTLib C.5: Full SMT-LIB model to check not equivalent models

(set-option :produce-models true)

(set-logic ALL_SUPPORTED)

;----------------------------------

; Datatypes and structures

;----------------------------------

(declare-datatypes ( (Entry 0) ) ( ((mk-entry

(synonyms (Set String))

))))

; UML datatypes

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String) (cls_typ String) ))))

(declare-datatypes ( (Type 0) ) ( ((TYPE

(typ_nme String) ))))

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String) (atr_nme String) (atr_typ String)

(atr_vis String) (atr_sco String) ))))

(declare-datatypes ( (Param 0) ) ( ((PARAM

(prm_nme String) (prm_typ String)) (nil) )))

(declare-datatypes ( (Operation 0) ) ( ((OPR

(opr_cls String) (opr_nme String) (opr_typ String)

(opr_vis String) (opr_sco String) (opr_prm Param)))))

(declare-datatypes ( (Relation 0) ) ( ((REL

(rel_src String) (rel_des String) (rel_typ String)

(rel_nme String) (rel_rol String) (rel_c_l String)

(rel_c_u String) ))))

(declare-datatypes ( (Inheritance 0) ) ( ((INH

(inh_sup String) (inh_sub String) ))))



232 APPENDIX C. EVALUATION

(declare-datatypes ( (ClassDiagram 0) ) ( ((CD

(dictionary (Set String)) (classes (Set Class))

(types (Set Type)) (attributes (Set Attribute))

(operations (Set Operation)) (relations (Set Relation))

(inheritance (Set Inheritance)) ))))

;----------------------------------

; Synonyms

;----------------------------------

(declare-const syns_dict (Set Entry))

(assert (member (mk-entry (insert

"Paper" "paper" "PAPER" "Papers" "papers"

(singleton "Paper"))) syns_dict))

(assert (member (mk-entry (insert

"title" "TITLE" "Title" "titles" "statute_title" "STATUTE_TITLE"

"StatuteTitle" "statuteTitle" "statute-title" "statute_titles" "Statute

Title" "rubric" "RUBRIC" "Rubric" "rubrics"

↪→
↪→
(singleton "title"))) syns_dict))

(assert (member (mk-entry (insert

"word-count" "WORD-COUNT" "Word-count" "word_count" "word-counts"

"word_counts" "Word Count"

(singleton "word-count"))) syns_dict))

(assert (member (mk-entry (insert

"student-indicator" "STUDENT-INDICATOR" "Student-indicator"

"student_indicator" "student-indicators" "student_indicators"

"Student Indicator"

(singleton "student-indicator"))) syns_dict))

(assert (member (mk-entry (insert

"authors" "AUTHORS" "Authors" "author" "writer" "WRITER"

"Writer" "writers" "AUTHOR" "Author"

(singleton "authors"))) syns_dict))

(assert (member (mk-entry (insert

"referees" "REFEREES" "Referees" "referee" "REFEREE" "Referee"

"ref" "REF" "Ref" "refs"

(singleton "referees"))) syns_dict))

(assert (member (mk-entry (insert

"Researcher" "researcher" "RESEARCHER" "Researchers" "researchers"

"research_worker" "RESEARCH_WORKER" "ResearchWorker" "researchWorker"

"research-worker" "research_workers" "Research Worker" "investigator"

"INVESTIGATOR" "Investigator" "investigators"

(singleton "Researcher"))) syns_dict))

(assert (member (mk-entry (insert

"name" "NAME" "Name" "names"

(singleton "name"))) syns_dict))

(assert (= syns_dict (as univset (Set Entry))))

;----------------------------------

; Constructors and helpers

;----------------------------------



C.3. MODEL COMPARISON 233

(define-fun is_syn ((w1 String) (w2 String)) Bool

(or

(= w1 w2)

(exists

((e Entry))

(and

(member e syns_dict)

(and

(member w1 (synonyms e))

(member w2 (synonyms e)))))))

;----------------------------------

; Inference rules

;----------------------------------

(define-fun check_dictionary ((s1 (Set String)) (s2 (Set String))) Bool

(forall

((x String))

(=>

(member x s1)

(exists

((y String))

(and

(member y s2)

(is_syn x y)

)

)

)

)

)

(define-fun check_classes ((s1 (Set Class)) (s2 (Set Class))) Bool

(forall

((x Class))

(=>

(member x s1)

(exists

((y Class))

(and

(member y s2)

(is_syn (cls_nme x) (cls_nme y))

)

)

)

)

)

(define-fun check_types ((s1 (Set Type)) (s2 (Set Type))) Bool

(forall

((x Type))

(=>

(member x s1)

(exists

((y Type))

(and

(member y s2)

(is_syn (typ_nme x) (typ_nme y))

)

)

)

)



234 APPENDIX C. EVALUATION

)

(define-fun check_attributes ((s1 (Set Attribute)) (s2 (Set Attribute))) Bool

(forall

((x Attribute))

(=>

(member x s1)

(exists

((y Attribute))

(and

(member y s2)

(is_syn (atr_cls x) (atr_cls y))

(is_syn (atr_nme x) (atr_nme y))

)

)

)

)

)

(define-fun check_operations ((s1 (Set Operation)) (s2 (Set Operation))) Bool

(forall

((x Operation))

(=>

(member x s1)

(exists

((y Operation))

(and

(member y s2)

(is_syn (opr_nme x) (opr_nme y))

)

)

)

)

)

(define-fun check_relations ((s1 (Set Relation)) (s2 (Set Relation))) Bool

(forall

((x Relation))

(=>

(member x s1)

(exists

((y Relation))

(and

(member y s2)

(is_syn (rel_src x) (rel_src y))

(is_syn (rel_des x) (rel_des y))

)

)

)

)

)

(define-fun check_inheritances ((s1 (Set Inheritance)) (s2 (Set Inheritance))) Bool

(forall

((x Inheritance))

(=>

(member x s1)

(exists

((y Inheritance))

(and

(member y s2)



C.3. MODEL COMPARISON 235

(is_syn (inh_sup x) (inh_sup y))

(is_syn (inh_sub x) (inh_sub y))

)

)

)

)

)

;----------------------------------

; Class Diagram 1

;----------------------------------

;Dictionary 1

(declare-const dictionary1 (Set String))

;£fill: dictionary 1

;Classes 1

(declare-const classes1 (Set Class))

(assert (member (CLASS "Paper" "classifier") classes1))

(assert (member (CLASS "Researcher" "classifier") classes1))

(assert (= (card classes1) 2))

;Types 1

(declare-const types1 (Set Type))

;£fill: types 1

;Attributes 1

(declare-const attributes1 (Set Attribute))

(assert (member (ATR "Paper" "title" "" "" "") attributes1))(assert (member (ATR "Paper"

"word-count" "" "" "") attributes1))(assert (member (ATR "Paper" "student-indicator"

"" "" "") attributes1))(assert (member (ATR "Paper" "authors" "" "" "")

attributes1))(assert (member (ATR "Paper" "referees" "" "" "") attributes1))(assert

(member (ATR "Researcher" "name" "" "" "") attributes1))(assert (member (ATR

"Researcher" "student-indicator" "" "" "") attributes1))(assert (= (card attributes1)

7))

↪→
↪→
↪→
↪→
↪→
↪→

;Operations 1

(declare-const operations1 (Set Operation))

(assert (= (card operations1) 0))

;Relations 1

(declare-const relations1 (Set Relation))

(assert (= (card relations1) 0))

;Inheritances 1

(declare-const inheritances1 (Set Inheritance))

(assert (= (card inheritances1) 0))

;Class Diagram 1

(declare-const diagram1 ClassDiagram)

(assert (= diagram1

(CD dictionary1 classes1 types1 attributes1 operations1 relations1 inheritances1)))

;----------------------------------

; Class Diagram 2

;----------------------------------

;Dictionary 2

(declare-const dictionary2 (Set String))

;£fill: dictionary 2

;Classes 2



236 APPENDIX C. EVALUATION

(declare-const classes2 (Set Class))

(assert (member (CLASS "Paper" "classifier") classes2))

(assert (member (CLASS "Researcher" "classifier") classes2))

(assert (= (card classes2) 2))

;Types 2

(declare-const types2 (Set Type))

;£fill: types 2

;Attributes 2

(declare-const attributes2 (Set Attribute))

(assert (member (ATR "Paper" "title" "" "" "") attributes2))(assert (member (ATR "Paper"

"word-count" "" "" "") attributes2))(assert (member (ATR "Paper" "student-indicator"

"" "" "") attributes2))(assert (member (ATR "Paper" "authors" "" "" "")

attributes2))(assert (member (ATR "Paper" "referees" "" "" "") attributes2))(assert

(member (ATR "Researcher" "name" "" "" "") attributes2))(assert (member (ATR

"Researcher" "student-indicator" "" "" "") attributes2))(assert (= (card attributes2)

7))

↪→
↪→
↪→
↪→
↪→
↪→

;Operations 2

(declare-const operations2 (Set Operation))

(assert (= (card operations2) 0))

;Relations 2

(declare-const relations2 (Set Relation))

(assert (= (card relations2) 0))

;Inheritances 2

(declare-const inheritances2 (Set Inheritance))

(assert (= (card inheritances2) 0))

;Class Diagram 2

(declare-const diagram2 ClassDiagram)

(assert (= diagram2

(CD dictionary2 classes2 types2 attributes2 operations2 relations2 inheritances2)))

;----------------------------------

; Checks

;----------------------------------

(declare-const equiv_dicts Bool)

(declare-const equiv_classes Bool)

(declare-const equiv_types Bool)

(declare-const equiv_attributes Bool)

(declare-const equiv_operations Bool)

(declare-const equiv_relations Bool)

(declare-const equiv_inheritances Bool)

(assert (= equiv_classes (check_classes classes1 classes2)))

(assert (= equiv_attributes (check_attributes attributes1 attributes2)))

(assert (= equiv_operations (check_operations operations1 operations2)))

(assert (= equiv_inheritances (check_inheritances inheritances1 inheritances2)))

(define-fun equiv_diagrams () Bool

(and

equiv_classes

equiv_attributes

equiv_operations

equiv_inheritances

)

)

(declare-const are_equivalent Bool)



C.3. MODEL COMPARISON 237

(assert (= equiv_diagrams are_equivalent))

(check-sat)

(get-value (equiv_classes))

(get-value (equiv_attributes))

(get-value (equiv_operations))

(get-value (equiv_inheritances))

(get-value (are_equivalent))

(exit)

C.3.0.2 Left equivalent class models

SMTLib C.6: Full SMT-LIB model to check left equivalent models

(set-option :produce-models true)

(set-logic ALL_SUPPORTED)

;----------------------------------

; Datatypes and structures

;----------------------------------

(declare-datatypes ( (Entry 0) ) ( ((mk-entry

(synonyms (Set String))

))))

; UML datatypes

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String) (cls_typ String) ))))

(declare-datatypes ( (Type 0) ) ( ((TYPE

(typ_nme String) ))))

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String) (atr_nme String) (atr_typ String)

(atr_vis String) (atr_sco String) ))))

(declare-datatypes ( (Param 0) ) ( ((PARAM

(prm_nme String) (prm_typ String)) (nil) )))

(declare-datatypes ( (Operation 0) ) ( ((OPR

(opr_cls String) (opr_nme String) (opr_typ String)

(opr_vis String) (opr_sco String) (opr_prm Param)))))

(declare-datatypes ( (Relation 0) ) ( ((REL

(rel_src String) (rel_des String) (rel_typ String)

(rel_nme String) (rel_rol String) (rel_c_l String)

(rel_c_u String) ))))

(declare-datatypes ( (Inheritance 0) ) ( ((INH

(inh_sup String) (inh_sub String) ))))

(declare-datatypes ( (ClassDiagram 0) ) ( ((CD

(dictionary (Set String)) (classes (Set Class))

(types (Set Type)) (attributes (Set Attribute))

(operations (Set Operation)) (relations (Set Relation))

(inheritance (Set Inheritance)) ))))



238 APPENDIX C. EVALUATION

;----------------------------------

; Synonyms

;----------------------------------

(declare-const syns_dict (Set Entry))

(assert (member (mk-entry (insert

"Paper" "paper" "PAPER" "Papers" "papers"

(singleton "Paper"))) syns_dict))

(assert (member (mk-entry (insert

"title" "TITLE" "Title" "titles" "statute_title" "STATUTE_TITLE"

"StatuteTitle" "statuteTitle" "statute-title" "statute_titles" "Statute

Title" "rubric" "RUBRIC" "Rubric" "rubrics"

↪→
↪→
(singleton "title"))) syns_dict))

(assert (member (mk-entry (insert

"word-count" "WORD-COUNT" "Word-count" "word_count" "word-counts"

"word_counts" "Word Count"

(singleton "word-count"))) syns_dict))

(assert (member (mk-entry (insert

"student-indicator" "STUDENT-INDICATOR" "Student-indicator"

"student_indicator" "student-indicators" "student_indicators"

"Student Indicator"

(singleton "student-indicator"))) syns_dict))

(assert (member (mk-entry (insert

"authors" "AUTHORS" "Authors" "author" "writer" "WRITER"

"Writer" "writers" "AUTHOR" "Author"

(singleton "authors"))) syns_dict))

(assert (member (mk-entry (insert

"referees" "REFEREES" "Referees" "referee" "REFEREE" "Referee"

"ref" "REF" "Ref" "refs"

(singleton "referees"))) syns_dict))

(assert (member (mk-entry (insert

"Researcher" "researcher" "RESEARCHER" "Researchers" "researchers"

"research_worker" "RESEARCH_WORKER" "ResearchWorker" "researchWorker"

"research-worker" "research_workers" "Research Worker" "investigator"

"INVESTIGATOR" "Investigator" "investigators"

(singleton "Researcher"))) syns_dict))

(assert (member (mk-entry (insert

"name" "NAME" "Name" "names"

(singleton "name"))) syns_dict))

(assert (= syns_dict (as univset (Set Entry))))

;----------------------------------

; Constructors and helpers

;----------------------------------

(define-fun is_syn ((w1 String) (w2 String)) Bool

(or

(= w1 w2)

(exists

((e Entry))



C.3. MODEL COMPARISON 239

(and

(member e syns_dict)

(and

(member w1 (synonyms e))

(member w2 (synonyms e)))))))

;----------------------------------

; Inference rules

;----------------------------------

(define-fun check_dictionary ((s1 (Set String)) (s2 (Set String))) Bool

(forall

((x String))

(=>

(member x s1)

(exists

((y String))

(and

(member y s2)

(is_syn x y)

)

)

)

)

)

(define-fun check_classes ((s1 (Set Class)) (s2 (Set Class))) Bool

(forall

((x Class))

(=>

(member x s1)

(exists

((y Class))

(and

(member y s2)

(is_syn (cls_nme x) (cls_nme y))

)

)

)

)

)

(define-fun check_types ((s1 (Set Type)) (s2 (Set Type))) Bool

(forall

((x Type))

(=>

(member x s1)

(exists

((y Type))

(and

(member y s2)

(is_syn (typ_nme x) (typ_nme y))

)

)

)

)

)

(define-fun check_attributes ((s1 (Set Attribute)) (s2 (Set Attribute))) Bool

(forall

((x Attribute))



240 APPENDIX C. EVALUATION

(=>

(member x s1)

(exists

((y Attribute))

(and

(member y s2)

(is_syn (atr_cls x) (atr_cls y))

(is_syn (atr_nme x) (atr_nme y))

)

)

)

)

)

(define-fun check_operations ((s1 (Set Operation)) (s2 (Set Operation))) Bool

(forall

((x Operation))

(=>

(member x s1)

(exists

((y Operation))

(and

(member y s2)

(is_syn (opr_nme x) (opr_nme y))

)

)

)

)

)

(define-fun check_relations ((s1 (Set Relation)) (s2 (Set Relation))) Bool

(forall

((x Relation))

(=>

(member x s1)

(exists

((y Relation))

(and

(member y s2)

(is_syn (rel_src x) (rel_src y))

(is_syn (rel_des x) (rel_des y))

)

)

)

)

)

(define-fun check_inheritances ((s1 (Set Inheritance)) (s2 (Set Inheritance))) Bool

(forall

((x Inheritance))

(=>

(member x s1)

(exists

((y Inheritance))

(and

(member y s2)

(is_syn (inh_sup x) (inh_sup y))

(is_syn (inh_sub x) (inh_sub y))

)

)

)



C.3. MODEL COMPARISON 241

)

)

;----------------------------------

; Class Diagram 1

;----------------------------------

;Dictionary 1

(declare-const dictionary1 (Set String))

;£fill: dictionary 1

;Classes 1

(declare-const classes1 (Set Class))

(assert (member (CLASS "Paper" "classifier") classes1))

(assert (member (CLASS "Researcher" "classifier") classes1))

(assert (= (card classes1) 2))

;Types 1

(declare-const types1 (Set Type))

;£fill: types 1

;Attributes 1

(declare-const attributes1 (Set Attribute))

(assert (member (ATR "Paper" "title" "" "" "") attributes1))(assert (member (ATR "Paper"

"word-count" "" "" "") attributes1))(assert (member (ATR "Paper" "student-indicator"

"" "" "") attributes1))(assert (member (ATR "Paper" "authors" "" "" "")

attributes1))(assert (member (ATR "Paper" "referees" "" "" "") attributes1))(assert

(member (ATR "Researcher" "name" "" "" "") attributes1))(assert (member (ATR

"Researcher" "student-indicator" "" "" "") attributes1))(assert (= (card attributes1)

7))

↪→
↪→
↪→
↪→
↪→
↪→

;Operations 1

(declare-const operations1 (Set Operation))

(assert (= (card operations1) 0))

;Relations 1

(declare-const relations1 (Set Relation))

(assert (= (card relations1) 0))

;Inheritances 1

(declare-const inheritances1 (Set Inheritance))

(assert (= (card inheritances1) 0))

;Class Diagram 1

(declare-const diagram1 ClassDiagram)

(assert (= diagram1

(CD dictionary1 classes1 types1 attributes1 operations1 relations1 inheritances1)))

;----------------------------------

; Class Diagram 2

;----------------------------------

;Dictionary 2

(declare-const dictionary2 (Set String))

;£fill: dictionary 2

;Classes 2

(declare-const classes2 (Set Class))

(assert (member (CLASS "Paper" "classifier") classes2))

(assert (member (CLASS "Researcher" "classifier") classes2))

(assert (= (card classes2) 2))



242 APPENDIX C. EVALUATION

;Types 2

(declare-const types2 (Set Type))

;£fill: types 2

;Attributes 2

(declare-const attributes2 (Set Attribute))

(assert (member (ATR "Paper" "title" "" "" "") attributes2))(assert (member (ATR "Paper"

"word-count" "" "" "") attributes2))(assert (member (ATR "Paper" "student-indicator"

"" "" "") attributes2))(assert (member (ATR "Paper" "authors" "" "" "")

attributes2))(assert (member (ATR "Paper" "referees" "" "" "") attributes2))(assert

(member (ATR "Researcher" "name" "" "" "") attributes2))(assert (member (ATR

"Researcher" "student-indicator" "" "" "") attributes2))(assert (= (card attributes2)

7))

↪→
↪→
↪→
↪→
↪→
↪→

;Operations 2

(declare-const operations2 (Set Operation))

(assert (= (card operations2) 0))

;Relations 2

(declare-const relations2 (Set Relation))

(assert (= (card relations2) 0))

;Inheritances 2

(declare-const inheritances2 (Set Inheritance))

(assert (= (card inheritances2) 0))

;Class Diagram 2

(declare-const diagram2 ClassDiagram)

(assert (= diagram2

(CD dictionary2 classes2 types2 attributes2 operations2 relations2 inheritances2)))

;----------------------------------

; Checks

;----------------------------------

(declare-const equiv_dicts Bool)

(declare-const equiv_classes Bool)

(declare-const equiv_types Bool)

(declare-const equiv_attributes Bool)

(declare-const equiv_operations Bool)

(declare-const equiv_relations Bool)

(declare-const equiv_inheritances Bool)

(assert (= equiv_classes (check_classes classes1 classes2)))

(assert (= equiv_attributes (check_attributes attributes1 attributes2)))

(assert (= equiv_operations (check_operations operations1 operations2)))

(assert (= equiv_inheritances (check_inheritances inheritances1 inheritances2)))

(define-fun equiv_diagrams () Bool

(and

equiv_classes

equiv_attributes

equiv_operations

equiv_inheritances

)

)

(declare-const are_equivalent Bool)

(assert (= equiv_diagrams are_equivalent))

(check-sat)

(get-value (equiv_classes))

(get-value (equiv_attributes))



C.3. MODEL COMPARISON 243

(get-value (equiv_operations))

(get-value (equiv_inheritances))

(get-value (are_equivalent))

(exit)

C.3.0.3 Right equivalent class models

SMTLib C.7: Full SMT-LIB model to check right equivalent models

(set-option :produce-models true)

(set-logic ALL_SUPPORTED)

;----------------------------------

; Datatypes and structures

;----------------------------------

(declare-datatypes ( (Entry 0) ) ( ((mk-entry

(synonyms (Set String))

))))

; UML datatypes

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String) (cls_typ String) ))))

(declare-datatypes ( (Type 0) ) ( ((TYPE

(typ_nme String) ))))

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String) (atr_nme String) (atr_typ String)

(atr_vis String) (atr_sco String) ))))

(declare-datatypes ( (Param 0) ) ( ((PARAM

(prm_nme String) (prm_typ String)) (nil) )))

(declare-datatypes ( (Operation 0) ) ( ((OPR

(opr_cls String) (opr_nme String) (opr_typ String)

(opr_vis String) (opr_sco String) (opr_prm Param)))))

(declare-datatypes ( (Relation 0) ) ( ((REL

(rel_src String) (rel_des String) (rel_typ String)

(rel_nme String) (rel_rol String) (rel_c_l String)

(rel_c_u String) ))))

(declare-datatypes ( (Inheritance 0) ) ( ((INH

(inh_sup String) (inh_sub String) ))))

(declare-datatypes ( (ClassDiagram 0) ) ( ((CD

(dictionary (Set String)) (classes (Set Class))

(types (Set Type)) (attributes (Set Attribute))

(operations (Set Operation)) (relations (Set Relation))

(inheritance (Set Inheritance)) ))))

;----------------------------------

; Synonyms

;----------------------------------

(declare-const syns_dict (Set Entry))



244 APPENDIX C. EVALUATION

(assert (member (mk-entry (insert

"Paper" "paper" "PAPER" "Papers" "papers"

(singleton "Paper"))) syns_dict))

(assert (member (mk-entry (insert

"title" "TITLE" "Title" "titles" "statute_title" "STATUTE_TITLE"

"StatuteTitle" "statuteTitle" "statute-title" "statute_titles" "Statute

Title" "rubric" "RUBRIC" "Rubric" "rubrics"

↪→
↪→
(singleton "title"))) syns_dict))

(assert (member (mk-entry (insert

"word-count" "WORD-COUNT" "Word-count" "word_count" "word-counts"

"word_counts" "Word Count"

(singleton "word-count"))) syns_dict))

(assert (member (mk-entry (insert

"student-indicator" "STUDENT-INDICATOR" "Student-indicator"

"student_indicator" "student-indicators" "student_indicators"

"Student Indicator"

(singleton "student-indicator"))) syns_dict))

(assert (member (mk-entry (insert

"authors" "AUTHORS" "Authors" "author" "writer" "WRITER"

"Writer" "writers" "AUTHOR" "Author"

(singleton "authors"))) syns_dict))

(assert (member (mk-entry (insert

"referees" "REFEREES" "Referees" "referee" "REFEREE" "Referee"

"ref" "REF" "Ref" "refs"

(singleton "referees"))) syns_dict))

(assert (member (mk-entry (insert

"Researcher" "researcher" "RESEARCHER" "Researchers" "researchers"

"research_worker" "RESEARCH_WORKER" "ResearchWorker" "researchWorker"

"research-worker" "research_workers" "Research Worker" "investigator"

"INVESTIGATOR" "Investigator" "investigators"

(singleton "Researcher"))) syns_dict))

(assert (member (mk-entry (insert

"name" "NAME" "Name" "names"

(singleton "name"))) syns_dict))

(assert (= syns_dict (as univset (Set Entry))))

;----------------------------------

; Constructors and helpers

;----------------------------------

(define-fun is_syn ((w1 String) (w2 String)) Bool

(or

(= w1 w2)

(exists

((e Entry))

(and

(member e syns_dict)

(and

(member w1 (synonyms e))

(member w2 (synonyms e)))))))

;----------------------------------



C.3. MODEL COMPARISON 245

; Inference rules

;----------------------------------

(define-fun check_dictionary ((s1 (Set String)) (s2 (Set String))) Bool

(forall

((x String))

(=>

(member x s1)

(exists

((y String))

(and

(member y s2)

(is_syn x y)

)

)

)

)

)

(define-fun check_classes ((s1 (Set Class)) (s2 (Set Class))) Bool

(forall

((x Class))

(=>

(member x s1)

(exists

((y Class))

(and

(member y s2)

(is_syn (cls_nme x) (cls_nme y))

)

)

)

)

)

(define-fun check_types ((s1 (Set Type)) (s2 (Set Type))) Bool

(forall

((x Type))

(=>

(member x s1)

(exists

((y Type))

(and

(member y s2)

(is_syn (typ_nme x) (typ_nme y))

)

)

)

)

)

(define-fun check_attributes ((s1 (Set Attribute)) (s2 (Set Attribute))) Bool

(forall

((x Attribute))

(=>

(member x s1)

(exists

((y Attribute))

(and

(member y s2)

(is_syn (atr_cls x) (atr_cls y))



246 APPENDIX C. EVALUATION

(is_syn (atr_nme x) (atr_nme y))

)

)

)

)

)

(define-fun check_operations ((s1 (Set Operation)) (s2 (Set Operation))) Bool

(forall

((x Operation))

(=>

(member x s1)

(exists

((y Operation))

(and

(member y s2)

(is_syn (opr_nme x) (opr_nme y))

)

)

)

)

)

(define-fun check_relations ((s1 (Set Relation)) (s2 (Set Relation))) Bool

(forall

((x Relation))

(=>

(member x s1)

(exists

((y Relation))

(and

(member y s2)

(is_syn (rel_src x) (rel_src y))

(is_syn (rel_des x) (rel_des y))

)

)

)

)

)

(define-fun check_inheritances ((s1 (Set Inheritance)) (s2 (Set Inheritance))) Bool

(forall

((x Inheritance))

(=>

(member x s1)

(exists

((y Inheritance))

(and

(member y s2)

(is_syn (inh_sup x) (inh_sup y))

(is_syn (inh_sub x) (inh_sub y))

)

)

)

)

)

;----------------------------------

; Class Diagram 1

;----------------------------------



C.3. MODEL COMPARISON 247

;Dictionary 1

(declare-const dictionary1 (Set String))

;£fill: dictionary 1

;Classes 1

(declare-const classes1 (Set Class))

(assert (member (CLASS "Paper" "classifier") classes1))

(assert (member (CLASS "Researcher" "classifier") classes1))

(assert (= (card classes1) 2))

;Types 1

(declare-const types1 (Set Type))

;£fill: types 1

;Attributes 1

(declare-const attributes1 (Set Attribute))

(assert (member (ATR "Paper" "title" "" "" "") attributes1))(assert (member (ATR "Paper"

"word-count" "" "" "") attributes1))(assert (member (ATR "Paper" "student-indicator"

"" "" "") attributes1))(assert (member (ATR "Paper" "authors" "" "" "")

attributes1))(assert (member (ATR "Paper" "referees" "" "" "") attributes1))(assert

(member (ATR "Researcher" "name" "" "" "") attributes1))(assert (member (ATR

"Researcher" "student-indicator" "" "" "") attributes1))(assert (= (card attributes1)

7))

↪→
↪→
↪→
↪→
↪→
↪→

;Operations 1

(declare-const operations1 (Set Operation))

(assert (= (card operations1) 0))

;Relations 1

(declare-const relations1 (Set Relation))

(assert (= (card relations1) 0))

;Inheritances 1

(declare-const inheritances1 (Set Inheritance))

(assert (= (card inheritances1) 0))

;Class Diagram 1

(declare-const diagram1 ClassDiagram)

(assert (= diagram1

(CD dictionary1 classes1 types1 attributes1 operations1 relations1 inheritances1)))

;----------------------------------

; Class Diagram 2

;----------------------------------

;Dictionary 2

(declare-const dictionary2 (Set String))

;£fill: dictionary 2

;Classes 2

(declare-const classes2 (Set Class))

(assert (member (CLASS "Paper" "classifier") classes2))

(assert (member (CLASS "Researcher" "classifier") classes2))

(assert (= (card classes2) 2))

;Types 2

(declare-const types2 (Set Type))

;£fill: types 2

;Attributes 2

(declare-const attributes2 (Set Attribute))



248 APPENDIX C. EVALUATION

(assert (member (ATR "Paper" "title" "" "" "") attributes2))(assert (member (ATR "Paper"

"word-count" "" "" "") attributes2))(assert (member (ATR "Paper" "student-indicator"

"" "" "") attributes2))(assert (member (ATR "Paper" "authors" "" "" "")

attributes2))(assert (member (ATR "Paper" "referees" "" "" "") attributes2))(assert

(member (ATR "Researcher" "name" "" "" "") attributes2))(assert (member (ATR

"Researcher" "student-indicator" "" "" "") attributes2))(assert (= (card attributes2)

7))

↪→
↪→
↪→
↪→
↪→
↪→

;Operations 2

(declare-const operations2 (Set Operation))

(assert (= (card operations2) 0))

;Relations 2

(declare-const relations2 (Set Relation))

(assert (= (card relations2) 0))

;Inheritances 2

(declare-const inheritances2 (Set Inheritance))

(assert (= (card inheritances2) 0))

;Class Diagram 2

(declare-const diagram2 ClassDiagram)

(assert (= diagram2

(CD dictionary2 classes2 types2 attributes2 operations2 relations2 inheritances2)))

;----------------------------------

; Checks

;----------------------------------

(declare-const equiv_dicts Bool)

(declare-const equiv_classes Bool)

(declare-const equiv_types Bool)

(declare-const equiv_attributes Bool)

(declare-const equiv_operations Bool)

(declare-const equiv_relations Bool)

(declare-const equiv_inheritances Bool)

(assert (= equiv_classes (check_classes classes1 classes2)))

(assert (= equiv_attributes (check_attributes attributes1 attributes2)))

(assert (= equiv_operations (check_operations operations1 operations2)))

(assert (= equiv_inheritances (check_inheritances inheritances1 inheritances2)))

(define-fun equiv_diagrams () Bool

(and

equiv_classes

equiv_attributes

equiv_operations

equiv_inheritances

)

)

(declare-const are_equivalent Bool)

(assert (= equiv_diagrams are_equivalent))

(check-sat)

(get-value (equiv_classes))

(get-value (equiv_attributes))

(get-value (equiv_operations))

(get-value (equiv_inheritances))

(get-value (are_equivalent))

(exit)



C.3. MODEL COMPARISON 249

C.3.0.4 Equivalent class models

SMTLib C.8: Full SMT-LIB model to check equivalent models

(set-option :produce-models true)

(set-logic ALL_SUPPORTED)

;----------------------------------

; Datatypes and structures

;----------------------------------

(declare-datatypes ( (Entry 0) ) ( ((mk-entry

(synonyms (Set String))

))))

; UML datatypes

(declare-datatypes ( (Class 0) ) ( ((CLASS

(cls_nme String) (cls_typ String) ))))

(declare-datatypes ( (Type 0) ) ( ((TYPE

(typ_nme String) ))))

(declare-datatypes ( (Attribute 0) ) ( ((ATR

(atr_cls String) (atr_nme String) (atr_typ String)

(atr_vis String) (atr_sco String) ))))

(declare-datatypes ( (Param 0) ) ( ((PARAM

(prm_nme String) (prm_typ String)) (nil) )))

(declare-datatypes ( (Operation 0) ) ( ((OPR

(opr_cls String) (opr_nme String) (opr_typ String)

(opr_vis String) (opr_sco String) (opr_prm Param)))))

(declare-datatypes ( (Relation 0) ) ( ((REL

(rel_src String) (rel_des String) (rel_typ String)

(rel_nme String) (rel_rol String) (rel_c_l String)

(rel_c_u String) ))))

(declare-datatypes ( (Inheritance 0) ) ( ((INH

(inh_sup String) (inh_sub String) ))))

(declare-datatypes ( (ClassDiagram 0) ) ( ((CD

(dictionary (Set String)) (classes (Set Class))

(types (Set Type)) (attributes (Set Attribute))

(operations (Set Operation)) (relations (Set Relation))

(inheritance (Set Inheritance)) ))))

;----------------------------------

; Synonyms

;----------------------------------

(declare-const syns_dict (Set Entry))

(assert (member (mk-entry (insert

"Paper" "paper" "PAPER" "Papers" "papers"

(singleton "Paper"))) syns_dict))

(assert (member (mk-entry (insert



250 APPENDIX C. EVALUATION

"title" "TITLE" "Title" "titles" "statute_title" "STATUTE_TITLE"

"StatuteTitle" "statuteTitle" "statute-title" "statute_titles" "Statute

Title" "rubric" "RUBRIC" "Rubric" "rubrics"

↪→
↪→
(singleton "title"))) syns_dict))

(assert (member (mk-entry (insert

"word-count" "WORD-COUNT" "Word-count" "word_count" "word-counts"

"word_counts" "Word Count"

(singleton "word-count"))) syns_dict))

(assert (member (mk-entry (insert

"student-indicator" "STUDENT-INDICATOR" "Student-indicator"

"student_indicator" "student-indicators" "student_indicators"

"Student Indicator"

(singleton "student-indicator"))) syns_dict))

(assert (member (mk-entry (insert

"authors" "AUTHORS" "Authors" "author" "writer" "WRITER"

"Writer" "writers" "AUTHOR" "Author"

(singleton "authors"))) syns_dict))

(assert (member (mk-entry (insert

"referees" "REFEREES" "Referees" "referee" "REFEREE" "Referee"

"ref" "REF" "Ref" "refs"

(singleton "referees"))) syns_dict))

(assert (member (mk-entry (insert

"Researcher" "researcher" "RESEARCHER" "Researchers" "researchers"

"research_worker" "RESEARCH_WORKER" "ResearchWorker" "researchWorker"

"research-worker" "research_workers" "Research Worker" "investigator"

"INVESTIGATOR" "Investigator" "investigators"

(singleton "Researcher"))) syns_dict))

(assert (member (mk-entry (insert

"name" "NAME" "Name" "names"

(singleton "name"))) syns_dict))

(assert (= syns_dict (as univset (Set Entry))))

;----------------------------------

; Constructors and helpers

;----------------------------------

(define-fun is_syn ((w1 String) (w2 String)) Bool

(or

(= w1 w2)

(exists

((e Entry))

(and

(member e syns_dict)

(and

(member w1 (synonyms e))

(member w2 (synonyms e)))))))

;----------------------------------

; Inference rules

;----------------------------------

(define-fun check_dictionary ((s1 (Set String)) (s2 (Set String))) Bool

(forall



C.3. MODEL COMPARISON 251

((x String))

(=>

(member x s1)

(exists

((y String))

(and

(member y s2)

(is_syn x y)

)

)

)

)

)

(define-fun check_classes ((s1 (Set Class)) (s2 (Set Class))) Bool

(forall

((x Class))

(=>

(member x s1)

(exists

((y Class))

(and

(member y s2)

(is_syn (cls_nme x) (cls_nme y))

)

)

)

)

)

(define-fun check_types ((s1 (Set Type)) (s2 (Set Type))) Bool

(forall

((x Type))

(=>

(member x s1)

(exists

((y Type))

(and

(member y s2)

(is_syn (typ_nme x) (typ_nme y))

)

)

)

)

)

(define-fun check_attributes ((s1 (Set Attribute)) (s2 (Set Attribute))) Bool

(forall

((x Attribute))

(=>

(member x s1)

(exists

((y Attribute))

(and

(member y s2)

(is_syn (atr_cls x) (atr_cls y))

(is_syn (atr_nme x) (atr_nme y))

)

)

)

)



252 APPENDIX C. EVALUATION

)

(define-fun check_operations ((s1 (Set Operation)) (s2 (Set Operation))) Bool

(forall

((x Operation))

(=>

(member x s1)

(exists

((y Operation))

(and

(member y s2)

(is_syn (opr_nme x) (opr_nme y))

)

)

)

)

)

(define-fun check_relations ((s1 (Set Relation)) (s2 (Set Relation))) Bool

(forall

((x Relation))

(=>

(member x s1)

(exists

((y Relation))

(and

(member y s2)

(is_syn (rel_src x) (rel_src y))

(is_syn (rel_des x) (rel_des y))

)

)

)

)

)

(define-fun check_inheritances ((s1 (Set Inheritance)) (s2 (Set Inheritance))) Bool

(forall

((x Inheritance))

(=>

(member x s1)

(exists

((y Inheritance))

(and

(member y s2)

(is_syn (inh_sup x) (inh_sup y))

(is_syn (inh_sub x) (inh_sub y))

)

)

)

)

)

;----------------------------------

; Class Diagram 1

;----------------------------------

;Dictionary 1

(declare-const dictionary1 (Set String))

;£fill: dictionary 1

;Classes 1



C.3. MODEL COMPARISON 253

(declare-const classes1 (Set Class))

(assert (member (CLASS "Paper" "classifier") classes1))

(assert (member (CLASS "Researcher" "classifier") classes1))

(assert (= (card classes1) 2))

;Types 1

(declare-const types1 (Set Type))

;£fill: types 1

;Attributes 1

(declare-const attributes1 (Set Attribute))

(assert (member (ATR "Paper" "title" "" "" "") attributes1))(assert (member (ATR "Paper"

"word-count" "" "" "") attributes1))(assert (member (ATR "Paper" "student-indicator"

"" "" "") attributes1))(assert (member (ATR "Paper" "authors" "" "" "")

attributes1))(assert (member (ATR "Paper" "referees" "" "" "") attributes1))(assert

(member (ATR "Researcher" "name" "" "" "") attributes1))(assert (member (ATR

"Researcher" "student-indicator" "" "" "") attributes1))(assert (= (card attributes1)

7))

↪→
↪→
↪→
↪→
↪→
↪→

;Operations 1

(declare-const operations1 (Set Operation))

(assert (= (card operations1) 0))

;Relations 1

(declare-const relations1 (Set Relation))

(assert (= (card relations1) 0))

;Inheritances 1

(declare-const inheritances1 (Set Inheritance))

(assert (= (card inheritances1) 0))

;Class Diagram 1

(declare-const diagram1 ClassDiagram)

(assert (= diagram1

(CD dictionary1 classes1 types1 attributes1 operations1 relations1 inheritances1)))

;----------------------------------

; Class Diagram 2

;----------------------------------

;Dictionary 2

(declare-const dictionary2 (Set String))

;£fill: dictionary 2

;Classes 2

(declare-const classes2 (Set Class))

(assert (member (CLASS "Paper" "classifier") classes2))

(assert (member (CLASS "Researcher" "classifier") classes2))

(assert (= (card classes2) 2))

;Types 2

(declare-const types2 (Set Type))

;£fill: types 2

;Attributes 2

(declare-const attributes2 (Set Attribute))



254 APPENDIX C. EVALUATION

(assert (member (ATR "Paper" "title" "" "" "") attributes2))(assert (member (ATR "Paper"

"word-count" "" "" "") attributes2))(assert (member (ATR "Paper" "student-indicator"

"" "" "") attributes2))(assert (member (ATR "Paper" "authors" "" "" "")

attributes2))(assert (member (ATR "Paper" "referees" "" "" "") attributes2))(assert

(member (ATR "Researcher" "name" "" "" "") attributes2))(assert (member (ATR

"Researcher" "student-indicator" "" "" "") attributes2))(assert (= (card attributes2)

7))

↪→
↪→
↪→
↪→
↪→
↪→

;Operations 2

(declare-const operations2 (Set Operation))

(assert (= (card operations2) 0))

;Relations 2

(declare-const relations2 (Set Relation))

(assert (= (card relations2) 0))

;Inheritances 2

(declare-const inheritances2 (Set Inheritance))

(assert (= (card inheritances2) 0))

;Class Diagram 2

(declare-const diagram2 ClassDiagram)

(assert (= diagram2

(CD dictionary2 classes2 types2 attributes2 operations2 relations2 inheritances2)))

;----------------------------------

; Checks

;----------------------------------

(declare-const equiv_dicts Bool)

(declare-const equiv_classes Bool)

(declare-const equiv_types Bool)

(declare-const equiv_attributes Bool)

(declare-const equiv_operations Bool)

(declare-const equiv_relations Bool)

(declare-const equiv_inheritances Bool)

(assert (= equiv_classes (check_classes classes1 classes2)))

(assert (= equiv_attributes (check_attributes attributes1 attributes2)))

(assert (= equiv_operations (check_operations operations1 operations2)))

(assert (= equiv_inheritances (check_inheritances inheritances1 inheritances2)))

(define-fun equiv_diagrams () Bool

(and

equiv_classes

equiv_attributes

equiv_operations

equiv_inheritances

)

)

(declare-const are_equivalent Bool)

(assert (= equiv_diagrams are_equivalent))

(check-sat)

(get-value (equiv_classes))

(get-value (equiv_attributes))

(get-value (equiv_operations))

(get-value (equiv_inheritances))

(get-value (are_equivalent))

(exit)



C.4. CLASS DIAGRAMS FOR MODEL EXTRACTION 255

Figure C.1: Class diagram containing only attributes generated by us

C.4 Class Diagrams for Model Extraction

C.4.1 Diagram generated by us containing only attributes

JSON Model C.4: Extracted JSON class model from a class diagram generated by us
containing only attributes

{

"classes": {

"class1556741427092573": {

"name": "Class1556741427092573",

"class_type": "class",

"attributes": {

"wordcount": {

"name": "wordCount"

},

"studentpaper": {

"name": "studentPaper"

}

},

"operations": {}

},

"class15567414275395752": {

"name": "Class15567414275395752",

"class_type": "class",

"attributes": {

"isstudent": {

"name": "isStudent"

}

},

"operations": {}

}

},

"associations": {}

}



256 APPENDIX C. EVALUATION

Figure C.2: Class diagram containing only operations generated by us

C.4.2 Diagram generated by us containing only oper-
ations

JSON Model C.5: Extracted JSON class model from a class diagram generated by us
containing only operations

{

"classes": {

"class1556741534929416": {

"name": "Class1556741534929416",

"class_type": "class",

"attributes": {},

"operations": {

"reject-epsilon": {

"name": "reject",

"parameters": {}

}

}

},

"class15567415355371758": {

"name": "Class15567415355371758",

"class_type": "class",

"attributes": {},

"operations": {

"writepaper-epsilon": {

"name": "writePaper",

"parameters": {}

}

}

}

},

"associations": {}

}



C.4. CLASS DIAGRAMS FOR MODEL EXTRACTION 257

Figure C.3: Coloured class diagram generated by us

C.4.3 Coloured Diagram generated by us

JSON Model C.6: Extracted JSON class model from a coloured class diagram generated
by us

{

"classes": {

"users": {

"name": "Users",

"class_type": "class",

"attributes": {

"name": {

"name": "name"

},

"address": {

"name": "address"

}

},

"operations": {

"exists-epsilon": {

"name": "exists",

"parameters": {}

}

}

},

"library": {

"name": "Library",

"class_type": "class",

"attributes": {},

"operations": {

"loanscopy-epsilon": {

"name": "loanscopy",



258 APPENDIX C. EVALUATION

"parameters": {}

}

}

},

"class1556741604235644": {

"name": "Class1556741604235644",

"class_type": "class",

"attributes": {},

"operations": {}

},

"books": {

"name": "Books",

"class_type": "class",

"attributes": {

"title": {

"name": "title"

},

"author": {

"name": "author"

}

},

"operations": {}

},

"class15567416047291602": {

"name": "Class15567416047291602",

"class_type": "class",

"attributes": {},

"operations": {}

},

"tapes": {

"name": "Tapes",

"class_type": "class",

"attributes": {

"language": {

"name": "language"

},

"level": {

"name": "level"

}

},

"operations": {}

}

},

"associations": {}

}

C.4.4 Existing diagram containing only attributes

JSON Model C.7: Extracted JSON class model from an existing class diagram containing
only attributes

{

"classes": {

"class1556714237249346": {

"name": "Class1556714237249346",

"class_type": "class",

"attributes": {

"maximum": {



C.4. CLASS DIAGRAMS FOR MODEL EXTRACTION 259

Figure C.4: Existing class diagram containing only attributes

"name": "maximum"

}

},

"operations": {}

},

"library": {

"name": "Library",

"class_type": "class",

"attributes": {},

"operations": {}

},

"class155671423788433": {

"name": "Class155671423788433",

"class_type": "class",

"attributes": {},

"operations": {}

},

"class1556714238102322": {

"name": "Class1556714238102322",

"class_type": "class",

"attributes": {},

"operations": {}

},

"customer": {

"name": "Customer",

"class_type": "class",

"attributes": {

"7": {

"name": "7"

}

},

"operations": {}

},



260 APPENDIX C. EVALUATION

"someone": {

"name": "Someone",

"class_type": "class",

"attributes": {

"membersh": {

"name": "Membersh"

},

"attiunique": {

"name": "attiunique"

}

},

"operations": {}

},

"class1556714239051326": {

"name": "Class1556714239051326",

"class_type": "class",

"attributes": {},

"operations": {}

},

"class1556714239662323": {

"name": "Class1556714239662323",

"class_type": "class",

"attributes": {},

"operations": {}

},

"class1556714240075325": {

"name": "Class1556714240075325",

"class_type": "class",

"attributes": {

"nique": {

"name": "nique"

}

},

"operations": {}

},

"class1556714240442323": {

"name": "Class1556714240442323",

"class_type": "class",

"attributes": {

"titlelanguage": {

"name": "Titlelanguage"

}

},

"operations": {}

},

"class1556714240746324": {

"name": "Class1556714240746324",

"class_type": "class",

"attributes": {},

"operations": {}

},

"class1556714241006322": {

"name": "Class1556714241006322",

"class_type": "class",

"attributes": {},

"operations": {}

},

"book": {

"name": "Book",

"attributes": {

"title": {

"name": "Title"



C.4. CLASS DIAGRAMS FOR MODEL EXTRACTION 261

Figure C.5: Existing class diagram containing only classes

}

},

"operations": {}

},

"loan": {

"name": "Loan",

"class_type": "class",

"attributes": {},

"operations": {}

},

"section": {

"name": "Section",

"class_type": "class",

"attributes": {},

"operations": {}

}

},

"associations": {}

}

C.4.5 Existing diagram containing only classes

JSON Model C.8: Extracted JSON class model from an existing class diagram containing
only attributes

{

"classes": {},

"associations": {}

}



262 APPENDIX C. EVALUATION

Figure C.6: Existing complete diagram with attributes and operations

C.4.6 Existing complete diagram containing attributes,
and operations

JSON Model C.9: Extracted JSON class model from an existing complete class diagram
with attributes and operations

{

"classes": {

"class1556712268236669": {

"name": "Class1556712268236669",

"class_type": "class",

"attributes": {

"update": {

"name": "update"

}

},

"operations": {}

},

"section": {

"name": "Section",

"class_type": "class",

"attributes": {

"holds": {

"name": "Holds"

},

"loanitem": {

"name": "LoanItem"

},

"title": {

"name": "title"

}



C.4. CLASS DIAGRAMS FOR MODEL EXTRACTION 263

},

"operations": {}

},

"issues": {

"name": "Issues",

"class_type": "class",

"attributes": {},

"operations": {}

},

"languagetape": {

"name": "LanguageTape",

"class_type": "class",

"attributes": {

"language": {

"name": "language"

},

"level": {

"name": "level"

}

},

"operations": {}

},

"class1556712270651666": {

"name": "Class1556712270651666",

"class_type": "class",

"attributes": {

"subject": {

"name": "subject"

},

"tion": {

"name": "tion"

}

},

"operations": {}

},

"class1556712271316668": {

"name": "Class1556712271316668",

"class_type": "class",

"attributes": {

"customer": {

"name": "customer"

},

"name": {

"name": "name"

},

"address": {

"name": "address"

}

},

"operations": {}

},

"bostows": {

"name": "BOSTOWS",

"class_type": "class",

"attributes": {

"borrow": {

"name": "borrow"

},

"renew": {

"name": "renew"

},

"reserve": {



264 APPENDIX C. EVALUATION

"name": "reserve"

}

},

"operations": {}

}

},

"associations": {}

}

C.4.7 Existing complex diagram

JSON Model C.10: Extracted JSON class model from an existing class diagram with a
complex set of connections

{

"classes": {

"class1556716751375274": {

"name": "Class1556716751375274",

"class_type": "class",

"attributes": {

"ee": {

"name": "ee"

}

},

"operations": {}

},

"class15567167518818901": {

"name": "Class15567167518818901",

"class_type": "class",

"attributes": {

"what": {

"name": "what"

},

"life": {

"name": "life"

}

},

"operations": {}

},

"class1556716752278167": {

"name": "Class1556716752278167",

"class_type": "class",

"attributes": {},

"operations": {}

},

"each": {

"name": "Each",

"class_type": "class",

"attributes": {

"custor": {

"name": "custor"

}

},

"operations": {}

},

"class15567167534231628": {

"name": "Class15567167534231628",

"class_type": "class",



C.4. CLASS DIAGRAMS FOR MODEL EXTRACTION 265

Figure C.7: Existing complex class diagram



266 APPENDIX C. EVALUATION

"attributes": {

"eee": {

"name": "eee"

},

"1iototfac": {

"name": "1iototFac"

}

},

"operations": {}

},

"class1556716755416943": {

"name": "Class1556716755416943",

"class_type": "class",

"attributes": {

"number": {

"name": "number"

},

"wher": {

"name": "wher"

},

"ner": {

"name": "ner"

}

},

"operations": {}

},

"class1556716756123987": {

"name": "Class1556716756123987",

"class_type": "class",

"attributes": {

"donor": {

"name": "donor"

},

"receiver": {

"name": "receiver"

}

},

"operations": {}

},

"class1556716757365777": {

"name": "Class1556716757365777",

"class_type": "class",

"attributes": {

"a": {

"name": "a"

},

"librar": {

"name": "librar"

},

"teayalqualtyv": {

"name": "Teayalqualtyv"

}

},

"operations": {}

},

"class1556716758488799": {

"name": "Class1556716758488799",

"class_type": "class",

"attributes": {

"rary": {

"name": "rary"

},



C.4. CLASS DIAGRAMS FOR MODEL EXTRACTION 267

"eceiver": {

"name": "eceiver"

},

"nthine": {

"name": "nThine"

}

},

"operations": {}

},

"at": {

"name": "At",

"class_type": "class",

"attributes": {

"roydonor": {

"name": "roydonor"

},

"oonvsiventhins": {

"name": "oonvsivenThins"

}

},

"operations": {}

},

"class1556716761924104": {

"name": "Class1556716761924104",

"class_type": "class",

"attributes": {

"y": {

"name": "y"

},

"loanitemeo": {

"name": "loanitemeo"

}

},

"operations": {}

},

"class1556716763607081": {

"name": "Class1556716763607081",

"class_type": "class",

"attributes": {},

"operations": {}

},

"class15567167653221372": {

"name": "Class15567167653221372",

"class_type": "class",

"attributes": {

"vy1": {

"name": "vy1"

},

"et": {

"name": "et"

},

"a": {

"name": "a"

}

},

"operations": {}

},

"class1556716765926251": {

"name": "Class1556716765926251",

"class_type": "class",

"attributes": {

"details": {



268 APPENDIX C. EVALUATION

"name": "details"

},

"ler": {

"name": "ler"

}

},

"operations": {}

},

"class1556716766995095": {

"name": "Class1556716766995095",

"class_type": "class",

"attributes": {

"|receiver": {

"name": "|receiver"

},

"1": {

"name": "1"

}

},

"operations": {}

},

"class15567167681133708": {

"name": "Class15567167681133708",

"class_type": "class",

"attributes": {

",": {

"name": ","

},

"ini": {

"name": "inI"

}

},

"operations": {}

},

"class15567167687911091": {

"name": "Class15567167687911091",

"class_type": "class",

"attributes": {

"qualifies": {

"name": "qualifies"

}

},

"operations": {}

},

"i": {

"name": "I",

"class_type": "class",

"attributes": {

"clerk": {

"name": "clerk"

}

},

"operations": {}

},

"class1556716771411355": {

"name": "Class1556716771411355",

"class_type": "class",

"attributes": {},

"operations": {}

},

"class1556716772780141": {

"name": "Class1556716772780141",



C.4. CLASS DIAGRAMS FOR MODEL EXTRACTION 269

"class_type": "class",

"attributes": {

"yshott": {

"name": "yshott"

}

},

"operations": {}

},

"class1556716773079196": {

"name": "Class1556716773079196",

"class_type": "class",

"attributes": {

"quality": {

"name": "quality"

},

"giventh": {

"name": "givenTh"

}

},

"operations": {}

},

"class1556716773577837": {

"name": "Class1556716773577837",

"class_type": "class",

"attributes": {

"owner": {

"name": "owner"

}

},

"operations": {

"extend-epsilon": {

"name": "extend",

"parameters": {}

}

}

},

"class1556716774501925": {

"name": "Class1556716774501925",

"class_type": "class",

"attributes": {

"giventhing": {

"name": "givenThing"

}

},

"operations": {}

},

"class1556716775492167": {

"name": "Class1556716775492167",

"class_type": "class",

"attributes": {

"owner": {

"name": "owner"

},

".": {

"name": "."

}

},

"operations": {}

},

"eoee": {

"name": "Eoee",

"class_type": "class",



270 APPENDIX C. EVALUATION

"attributes": {

"|": {

"name": "|"

},

"number": {

"name": "number"

}

},

"operations": {}

},

"class155671677753823": {

"name": "Class155671677753823",

"class_type": "class",

"attributes": {

"ywner": {

"name": "ywner"

},

"level": {

"name": "level"

}

},

"operations": {}

},

"class1556716778787598": {

"name": "Class1556716778787598",

"class_type": "class",

"attributes": {

"giventh": {

"name": "givenTh"

},

"giventhingps": {

"name": "givenThingps"

}

},

"operations": {}

},

"class1556716779265207": {

"name": "Class1556716779265207",

"class_type": "class",

"attributes": {},

"operations": {}

}

},

"associations": {}

}

C.4.8 Existing diagram drawn by hand

JSON Model C.11: Extracted JSON class model from an existing class diagram drawn
by hand

{

"classes": {

"xn": {

"name": "XN",

"class_type": "class",

"attributes": {},

"operations": {}



C.4. CLASS DIAGRAMS FOR MODEL EXTRACTION 271

Figure C.8: Existing class diagram drawn by hand

},

"name": {

"name": "Name",

"class_type": "class",

"attributes": {

"mvebec": {

"name": "Mvebec"

},

"fees": {

"name": "Fees"

},

"asted": {

"name": "aSted"

},

"beepset": {

"name": "BeepSet"

},

"aymartenheslis": {

"name": "ayMartenhesLis"

}

},

"operations": {}

},

"class1556741952920076": {

"name": "Class1556741952920076",

"class_type": "class",

"attributes": {

"fdisk": {

"name": "fdisk"

},

"<": {

"name": "<"

}



272 APPENDIX C. EVALUATION

},

"operations": {}

},

"class1556741953701626": {

"name": "Class1556741953701626",

"class_type": "class",

"attributes": {},

"operations": {}

}

},

"associations": {}

}



List of Figures

2.1 Class Diagrams for Library Example . . . . . . . . . . . . . . 8
2.2 Schematic diagram for TOMM . . . . . . . . . . . . . . . . . . 10
2.3 The kiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Two diagrams representing the same requirements for a library

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Schematics for T4TOMM . . . . . . . . . . . . . . . . . . . . 13

3.1 Waterfall Model . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 An example of a Requirements Communication Cycle . . . . . 23
3.3 UML Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 UML Class Diagrams Cheat Sheet . . . . . . . . . . . . . . . . 28
3.5 Usage of our Comparison Theory to within a CNN that gener-

ates class models from requirements documents . . . . . . . . 37
3.6 Tototl Implementation . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Callan’s Class Diagram . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Contract Formalization Pipeline . . . . . . . . . . . . . . . . . 103
6.2 Class Diagrams Extraction Process . . . . . . . . . . . . . . . 115
6.3 Class Diagram Segmentation . . . . . . . . . . . . . . . . . . . 115
6.4 Segmentation Process . . . . . . . . . . . . . . . . . . . . . . . 116
6.5 Lines detection process . . . . . . . . . . . . . . . . . . . . . . 118
6.6 Rectangles detection process . . . . . . . . . . . . . . . . . . . 118
6.7 Segments detection process . . . . . . . . . . . . . . . . . . . . 118
6.8 Comparison of labelling vs k-means . . . . . . . . . . . . . . . 119
6.9 Class information extraction . . . . . . . . . . . . . . . . . . . 119

7.1 Kim’s class diagram for the Library system . . . . . . . . . . . 146
7.2 Class Diagrams for Library Example . . . . . . . . . . . . . . 159
7.3 Class diagram generated by us containing classes, attributes

and operations . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4 Existing class diagram containing classes, attributes and oper-

ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

273



274 LIST OF FIGURES

C.1 Class diagram containing only attributes generated by us . . . 255
C.2 Class diagram containing only operations generated by us . . . 256
C.3 Coloured class diagram generated by us . . . . . . . . . . . . . 257
C.4 Existing class diagram containing only attributes . . . . . . . 259
C.5 Existing class diagram containing only classes . . . . . . . . . 261
C.6 Existing complete diagram with attributes and operations . . 262
C.7 Existing complex class diagram . . . . . . . . . . . . . . . . . 265
C.8 Existing class diagram drawn by hand . . . . . . . . . . . . . 271



List of Tables

3.1 Long term history of the current 10 most used programming
languages from the TIOBE index[58] . . . . . . . . . . . . . . 16

6.1 Equivalence of POS tag . . . . . . . . . . . . . . . . . . . . . . 95

7.1 Evaluation Cases for ConSpec and SpeCNL . . . . . . . . . . 124
7.2 Translation of Ships Description requirements into SpeCNL

sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 Translation of Trains Description requirements into SpeCNL

sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4 Evaluation cases for TOMM and T4TOMM . . . . . . . . . . 138
7.5 Set of Class Diagrams used to evaluate model extraction . . . 163
7.6 Evaluation of model extraction for complete class diagram

generated by us . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.7 Evaluation of model extraction for existing complete class

diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.8 Summary of results for Class Model extraction with T4TOMM 169

275



List of Grammars

4.1 POS in SpeCNL . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Modals in SpeCNL . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Comparators in SpeCNL . . . . . . . . . . . . . . . . . . . . . 50
4.4 Entities in SpeCNL . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Attributes in SpeCNL . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Actions in SpeCNL . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Structural Sentences in SpeCNL . . . . . . . . . . . . . . . . . 52
4.8 Comparison Sentences in SpeCNL . . . . . . . . . . . . . . . . 52
4.9 Cardinality Sentences in SpeCNL . . . . . . . . . . . . . . . . 52
4.10 Conditional Sentences in SpeCNL . . . . . . . . . . . . . . . . 53
4.11 Type Sentences in SpeCNL . . . . . . . . . . . . . . . . . . . . 53
4.12 Structure for cluse number in ConSpec . . . . . . . . . . . . . 54
4.13 Structure for activities in ConSpec . . . . . . . . . . . . . . . 55
4.14 Structure for actors in ConSpec . . . . . . . . . . . . . . . . . 55
4.15 Structure for conditions in ConSpec . . . . . . . . . . . . . . . 56
4.16 Structure for consequences in ConSpec . . . . . . . . . . . . . 56
4.17 Structure for dependencies in ConSpec . . . . . . . . . . . . . 56

5.1 Activity generation for the library example . . . . . . . . . . . 65
5.2 Actor generation for the library example . . . . . . . . . . . . 66
5.3 Precondition generation for the library example . . . . . . . . 66

6.1 SpeCNL concepts . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 SpeCNL sentences . . . . . . . . . . . . . . . . . . . . . . . . 101

276



List of Texts

2.1 Original requirements for the Library system described by
Callan[62] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7.1 Ships Description Requirements . . . . . . . . . . . . . . . . . 124
7.2 Trains Description Requirements . . . . . . . . . . . . . . . . 126
7.3 ACME Library Requirements . . . . . . . . . . . . . . . . . . 130
7.4 Whois Protocol Requirements . . . . . . . . . . . . . . . . . . 134
7.5 Segment of the requirements for the Library system described

by Callan[62] . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

277



List of ConSpec Specifications

4.1 Library specification, clause C2 . . . . . . . . . . . . . . . . . 60

5.1 Library specification, clause C2 . . . . . . . . . . . . . . . . . 65
5.2 Library specification, clause C2 . . . . . . . . . . . . . . . . . 79

6.1 Specification structure . . . . . . . . . . . . . . . . . . . . . . 103

7.1 Ships Description ConSpec . . . . . . . . . . . . . . . . . . . . 125
7.2 Trains Description ConSpec . . . . . . . . . . . . . . . . . . . 128
7.3 ATM Simulation ConSpec . . . . . . . . . . . . . . . . . . . . 129
7.4 ACME Library ConSpec . . . . . . . . . . . . . . . . . . . . . 131
7.5 Steam Boiler ConSpec . . . . . . . . . . . . . . . . . . . . . . 132
7.6 Laws of Chess ConSpec . . . . . . . . . . . . . . . . . . . . . . 133
7.7 Whois Protocol ConSpec . . . . . . . . . . . . . . . . . . . . . 134
7.8 Light Control System ConSpec . . . . . . . . . . . . . . . . . 135
7.9 Specification of the Library system proposed by Callan[62] . . 139

278



List of JSON Class Models

6.1 Class Diagram structure . . . . . . . . . . . . . . . . . . . . . 105

7.1 JSON representation of the model inferred in SMTLib 7.2 . . 144
7.2 JSON segment of a invalid model with respect to ConSpec 7.9 148
7.3 JSON segment of a sound but incomplete model with respect

to ConSpec 7.9 . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.4 JSON segment of a complete but not sound model with respect

to ConSpec 7.9 . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.5 Extracted JSON class model from a complete class diagram

generated by us . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.6 Extracted JSON class model from an existing complete class

diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.1 Full JSON of an invalid model with respect to ConSpec 7.9 . . 204
C.2 Full JSON of a sound but incomplete model with respect to

ConSpec 7.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
C.3 Full JSON of a complete but not sound model with respect to

ConSpec 7.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
C.4 Extracted JSON class model from a class diagram generated

by us containing only attributes . . . . . . . . . . . . . . . . . 255
C.5 Extracted JSON class model from a class diagram generated

by us containing only operations . . . . . . . . . . . . . . . . . 256
C.6 Extracted JSON class model from a coloured class diagram

generated by us . . . . . . . . . . . . . . . . . . . . . . . . . . 257
C.7 Extracted JSON class model from an existing class diagram

containing only attributes . . . . . . . . . . . . . . . . . . . . 258
C.8 Extracted JSON class model from an existing class diagram

containing only attributes . . . . . . . . . . . . . . . . . . . . 261
C.9 Extracted JSON class model from an existing complete class

diagram with attributes and operations . . . . . . . . . . . . . 262
C.10 Extracted JSON class model from an existing class diagram

with a complex set of connections . . . . . . . . . . . . . . . . 264

279



280 LIST OF JSON CLASS MODELS

C.11 Extracted JSON class model from an existing class diagram
drawn by hand . . . . . . . . . . . . . . . . . . . . . . . . . . 270



List of Predicates

7.1 Predicates for the ConSpec specification of the Library system
shown in ConSpec 7.9 . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Predicates for the class model manually inferred from Predi-
cates 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3 Predicate formalization of Kim’s class diagram[171] shown in
Figure 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Predicate formalization of Callan’s class diagram shown in
Figure 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

281



List of SMTLib models

6.1 Specification Metamodel . . . . . . . . . . . . . . . . . . . . . 98
6.2 Example of sets for semantic equivalence and function to de-

termine if two words are equivalent . . . . . . . . . . . . . . . 102
6.3 Class Diagrams Datatypes . . . . . . . . . . . . . . . . . . . . 104
6.4 Class Diagram Sets . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 Class Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.6 Class Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.7 CVC4 Output for inferred class model . . . . . . . . . . . . . 109
6.8 Word Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.9 Class Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.10 Class completeness . . . . . . . . . . . . . . . . . . . . . . . . 111
6.11 Checking for Soundness . . . . . . . . . . . . . . . . . . . . . . 112
6.12 Results for Soundness . . . . . . . . . . . . . . . . . . . . . . . 113
6.13 Class Equivalence Checking . . . . . . . . . . . . . . . . . . . 113

7.1 Segment of SMT-LIB model to infer class model from ConSpec 7.9142
7.2 SMT-LIB code representing the class model inferred from

SMTLib C.1 using CVC4 . . . . . . . . . . . . . . . . . . . . . 143
7.3 Segment of SMT-LIB model to check an invalid class model

(JSON Model C.1) against ConSpec 7.9 . . . . . . . . . . . . . 149
7.4 SMT-LIB code resulting from the validation of the invalid

model SMTLib C.2 . . . . . . . . . . . . . . . . . . . . . . . . 151
7.5 Segment of SMT-LIB model to check a sound but incomplete

class model (JSON Model C.2) against ConSpec 7.9 . . . . . . 152
7.6 SMT-LIB code resulting from the validation of the model

SMTLib C.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.7 Segment of SMT-LIB model to check a complete but not sound

class model (JSON Model C.3) against ConSpec 7.9 . . . . . . 155
7.8 SMT-LIB code resulting from the validation of the model

SMTLib C.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.9 Segment of SMT-LIB model to check an invalid class model

(JSON Model C.1) against ConSpec 7.9 . . . . . . . . . . . . . 156

282



LIST OF SMTLIB MODELS 283

7.10 SMT-LIB code resulting from the validation of the invalid
model SMTLib C.2 . . . . . . . . . . . . . . . . . . . . . . . . 158

7.11 SMT-LIB model with the solution of not equivalent models . . 161
7.12 SMT-LIB model with the solution of left equivalent models . . 161
7.13 SMT-LIB model with the solution of right equivalent models . 162
7.14 SMT-LIB model with the solution of equivalent models . . . . 162

B.1 Inference Example for Library System . . . . . . . . . . . . . 185
B.2 Soundness Model . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.3 Completeness Model . . . . . . . . . . . . . . . . . . . . . . . 191
B.4 Equivalence Rules . . . . . . . . . . . . . . . . . . . . . . . . . 193

C.1 Full SMT-LIB model to infer class model from ConSpec 7.9 . 199
C.2 Full SMT-LIB model to check an invalid class model (JSON

Model C.1) against ConSpec 7.9 . . . . . . . . . . . . . . . . . 206
C.3 Full SMT-LIB model to check a sound but incomplete class

model (JSON Model C.2) against ConSpec 7.9 . . . . . . . . . 215
C.4 Full SMT-LIB model to check a complete but not sound class

model (JSON Model C.3) against ConSpec 7.9 . . . . . . . . . 224
C.5 Full SMT-LIB model to check not equivalent models . . . . . 231
C.6 Full SMT-LIB model to check left equivalent models . . . . . . 237
C.7 Full SMT-LIB model to check right equivalent models . . . . . 243
C.8 Full SMT-LIB model to check equivalent models . . . . . . . . 249



List of Equations

7.1 Semantic equivalences required to validate Predicates 7.3 . . . 147

284



List of Acronyms

BNF Backus–Naur form. 1, 54, 58

CNL Controlled Natural Language. 1, 45, 54–57, 61, 64, 65

DbC Design By Contract. 1

FOL First Order Logic. 1, 37, 38, 46

NLP Natural Language Processing. 1, 55

POS Parts of Speech. 1, 55, 56

RE Requirements Engineering. 1, 24, 26, 44, 51

REP Requirements Engineering Process. 1, 51, 60

SE Software Engineering. 1, 22, 51

UML Unified Model Language. 1

285





Bibliography

[1] Object Management Group (OMG). Requirements Interchange Format
(ReqIF) Specification, Version 1.2. http://www.omg.org/spec/

ReqIF/1.2. 2016.

[2] Mariem Abdouli, Wahiba Ben Abdessalem Karaa, and Henda Ben
Ghezala. “Survey of works that transform requirements into UML
diagrams”. In: 2016 IEEE 14th International Conference on Software
Engineering Research, Management and Applications (SERA). IEEE.
2016, pp. 117–123.

[3] Parosh Aziz Abdulla et al. “A survey of regular model checking”.
In: International Conference on Concurrency Theory. Springer. 2004,
pp. 35–48.

[4] Habtamu Abie, Reijo M Savola, and Ilesh Dattani. “Robust, secure,
self-adaptive and resilient messaging middleware for business critical
systems”. In: 2009 Computation World: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns. IEEE. 2009,
pp. 153–160.

[5] Pekka Abrahamsson et al. “Agile software development methods: Re-
view and analysis”. In: arXiv preprint arXiv:1709.08439 (2017).

[6] Pekka Abrahamsson et al. “New directions on agile methods: a com-
parative analysis”. In: Software Engineering, 2003. Proceedings. 25th
International Conference on. IEEE. 2003, pp. 244–254.

[7] Jean-Raymond Abrial. “Steam-boiler control specification problem”.
In: Formal Methods for Industrial Applications. Springer, 1996, pp. 500–
509.

[8] Jean-Raymond Abrial, Egon Börger, Hans Langmaack, et al. Formal
methods for industrial applications: Specifying and programming the
steam boiler control. Vol. 9. Springer Science & Business Media, 1996.

287

http://www.omg.org/spec/ReqIF/1.2
http://www.omg.org/spec/ReqIF/1.2


288 BIBLIOGRAPHY

[9] A. Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski. “Soft-
ware inspections: an effective verification process”. In: IEEE software
6.3 (1989), pp. 31–36.

[10] W Richards Adrion, Martha A Branstad, and John C Cherniavsky.
“Validation, verification, and testing of computer software”. In: ACM
Computing Surveys (CSUR) 14.2 (1982), pp. 159–192.

[11] Marcus Alanen and Ivan Porres. Model interchange using OMG stan-
dards. IEEE, 2005.

[12] Emin Aleskerov, Bernd Freisleben, and Bharat Rao. “Cardwatch: A
neural network based database mining system for credit card fraud
detection”. In: Proceedings of the IEEE/IAFE 1997 computational
intelligence for financial engineering (CIFEr). IEEE. 1997, pp. 220–
226.

[13] Mack Alford. Software Requirements Engineering Methodology. Wiley
Online Library, 1979.

[14] Agile Alliance. Manifesto for Agile Software Development. 2001. url:
https://agilemanifesto.org/.

[15] Paul Ammann and Jeff Offutt. Introduction to software testing. Cam-
bridge University Press, 2016.

[16] Michaël Armand et al. “A modular integration of SAT/SMT solvers
to Coq through proof witnesses”. In: International Conference on
Certified Programs and Proofs. Springer. 2011, pp. 135–150.

[17] Deborah J Armstrong. “The quarks of object-oriented development”.
In: Communications of the ACM 49.2 (2006), pp. 123–128.

[18] Ken Arnold, James Gosling, and David Holmes. The Java programming
language. Addison Wesley Professional, 2005.

[19] Colin Atkinson and Thomas Kuhne. “Model-driven development: a
metamodeling foundation”. In: IEEE software 20.5 (2003), pp. 36–41.

[20] Eric Atwell. “The University of Pennsylvania (Penn) Treebank Tag-
set”. In: University of Pennsylvania (1990), p. 48.

[21] Franz Baader and Ulrike Sattler. “An overview of tableau algorithms
for description logics”. In: Studia Logica 69.1 (2001), pp. 5–40.

[22] Franz Baader et al. The description logic handbook: Theory, imple-
mentation and applications. Cambridge university press, 2003.

[23] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural
machine translation by jointly learning to align and translate”. In:
arXiv preprint arXiv:1409.0473 (2014).

https://agilemanifesto.org/


BIBLIOGRAPHY 289

[24] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[25] Stacey Bailey and Detmar Meurers. “Diagnosing meaning errors in
short answers to reading comprehension questions”. In: Proceedings of
the Third Workshop on Innovative Use of NLP for Building Educational
Applications. Association for Computational Linguistics. 2008, pp. 107–
115.

[26] Imran Sarwar Bajwa and M Abbas Choudhary. “From natural language
software specifications to UML class models”. In: International Con-
ference on Enterprise Information Systems. Springer. 2011, pp. 224–
237.

[27] Imran Sarwar Bajwa, Mark G Lee, and Behzad Bordbar. “SBVR
Business Rules Generation from Natural Language Specification.” In:
AAAI spring symposium: AI for business agility. 2011, pp. 2–8.

[28] Imran Sarwar Bajwa and Muhammad Anwar Shahzada. “Automated
Generation of OCL Constraints: NL based Approach vs Pattern Based
Approach”. In: Mehran University Research Journal of Engineering
and Technology 36.2 (2017), pp. 243–254.

[29] Mira Balaban, Azzam Maraee, and Arnon Sturm. “Management of
correctness problems in UML class diagrams towards a pattern-based
approach”. In: International Journal of Information System Modeling
and Design (IJISMD) 1.4 (2010), pp. 24–47.

[30] Rajiv D Banker et al. “Software complexity and maintenance costs”.
In: Communications of the ACM 36.11 (1993), pp. 81–95.

[31] Horace B Barlow. “Unsupervised learning”. In: Neural computation
1.3 (1989), pp. 295–311.

[32] Mike Barnett, K Rustan M Leino, and Wolfram Schulte. “The Spec#
programming system: An overview”. In: International Workshop on
Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices. Springer. 2004, pp. 49–69.

[33] Clark Barrett, Aaron Stump, and Cesare Tinelli. “The satisfiability
modulo theories library (SMT-LIB)(2010)”. In: SMT-LIB. org 156
(2016).

[34] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. “The smt-lib stan-
dard: Version 2.0”. In: Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories (Edinburgh, England). Vol. 13. 2010,
p. 14.



290 BIBLIOGRAPHY

[35] Clark Barrett et al. “Cvc4”. In: International Conference on Computer
Aided Verification. Springer. 2011, pp. 171–177.

[36] Victor R Basili and David M Weiss. “Evaluation of a software require-
ments document by analysis of change data”. In: Proceedings of the 5th
international conference on Software engineering. IEEE Press. 1981,
pp. 314–323.

[37] Bernhard Beckert, Reiner Hähnle, and Peter H Schmitt. Verification
of object-oriented software: The KeY approach. Springer-Verlag, 2007.

[38] Alex E Bell. “Death by UML fever”. In: Queue 2.1 (2004), p. 72.

[39] Thomas E Bell and Thomas A Thayer. “Software requirements: Are
they really a problem?” In: Proceedings of the 2nd international con-
ference on Software engineering. IEEE Computer Society Press. 1976,
pp. 61–68.

[40] Herbert D Benington. “Production of large computer programs”. In:
Annals of the History of Computing 5.4 (1983), pp. 350–361.

[41] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. “Rea-
soning on UML class diagrams”. In: Artificial intelligence 168.1-2
(2005), pp. 70–118.

[42] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. “Rea-
soning on UML class diagrams using description logic based systems”.
In: Proc. of the KI’2001 Workshop on Applications of Description
Logics. Vol. 44. 2001.

[43] Jan A. Bergstra and JV Tucker. “Some natural structures which
fail to possess a sound and decidable Hoare-like logic for their while-
programs”. In: Theoretical Computer Science: the journal of the EATCS
17.3 (1982), pp. 303–315.

[44] Steven Bird and Edward Loper. “NLTK: the natural language toolkit”.
In: Proceedings of the ACL 2004 on Interactive poster and demon-
stration sessions. Association for Computational Linguistics. 2004,
p. 31.

[45] Christopher M Bishop. Pattern recognition and machine learning.
springer, 2006.

[46] Christopher M Bishop et al. Neural networks for pattern recognition.
Oxford university press, 1995.

[47] Barry W. Boehm. “Verifying and validating software requirements and
design specifications”. In: IEEE software 1.1 (1984), p. 75.



BIBLIOGRAPHY 291

[48] Wendy Boggs and Michael Boggs. Mastering UML with Rational Rose.
Sybex San Francisco, CA, 1999.

[49] Grady Booch. “UML in action”. In: Communications of the ACM
42.10 (1999), pp. 26–28.

[50] Alex Borgida. “On the relative expressiveness of description logics and
predicate logics”. In: Artificial intelligence 82.1-2 (1996), pp. 353–367.

[51] Jürgen Börstler. “User-centered requirements engineering in record-an
overview”. In: the Nordic Workshop on Programming Environment
Research, Proceedings NWPER. Vol. 96. 1996, pp. 149–156.

[52] Jonathan P Bowen and Michael G Hinchey. “Seven more myths of
formal methods”. In: IEEE software 12.4 (1995), pp. 34–41.

[53] Jonathan Bowen and Victoria Stavridou. “Safety-critical systems,
formal methods and standards”. In: Software Engineering Journal 8.4
(1993), pp. 189–209.

[54] Karin K Breitman and Julio Cesar Sampaio do Prado Leite. “Ontology
as a requirements engineering product”. In: Requirements Engineering
Conference, 2003. Proceedings. 11th IEEE International. IEEE. 2003,
pp. 309–319.

[55] Davide Bresolin et al. “Decidable and undecidable fragments of Halpern
and Shoham’s interval temporal logic: towards a complete classifica-
tion”. In: International Conference on Logic for Programming Artificial
Intelligence and Reasoning. Springer. 2008, pp. 590–604.

[56] Stephen Brown, Tom Lysaght, and Deshi Ye. Software Testing: Prin-
ciples and Practice. China Machine Press, 2012.

[57] Gregory D. Buzzard and Trevor N. Mudge. “Object-based computing
and the ADA programming language”. In: Computer 3 (1985), pp. 11–
19.

[58] TIOBE software BV. TIOBE Index. 2018. url: https://www.tiobe.
com/tiobe-index/ (visited on 03/17/2018).

[59] Jordi Cabot, Robert Claris, Daniel Riera, et al. “Verification of UM-
L/OCL class diagrams using constraint programming”. In: Software
Testing Verification and Validation Workshop, 2008. ICSTW’08. IEEE
International Conference on. IEEE. 2008, pp. 73–80.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/


292 BIBLIOGRAPHY

[60] Jordi Cabot, Robert Clarisó, and Daniel Riera. “UMLtoCSP: a tool for
the formal verification of UML/OCL models using constraint program-
ming”. In: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. ACM. 2007, pp. 547–
548.

[61] Christian Cachin, Rachid Guerraoui, and Lúıs Rodrigues. Introduction
to reliable and secure distributed programming. Springer Science &
Business Media, 2011.

[62] Robert E Callan. Building Object-Oriented Systems: An introduction
from concepts to implementation in C++. Computational Mechanics,
1994.

[63] Diego Calvanese et al. “Reasoning in Expressive Description Logics.”
In: Handbook of automated reasoning 2 (2001), pp. 1581–1634.

[64] H Frank Cervone. “Understanding agile project management methods
using Scrum”. In: OCLC Systems & Services: International digital
library perspectives 27.1 (2011), pp. 18–22.

[65] Patrice Chalin et al. “Beyond assertions: Advanced specification and
verification with JML and ESC/Java2”. In: International Sympo-
sium on Formal Methods for Components and Objects. Springer. 2005,
pp. 342–363.

[66] Jayeeta Chanda et al. “Traceability of requirements and consistency
verification of UML use case, activity and Class diagram: A Formal ap-
proach”. In: Methods and Models in Computer Science, 2009. ICM2CS
2009. Proceeding of International Conference on. IEEE. 2009, pp. 1–4.

[67] Peter Pin-Shan Chen. “The entity-relationship model—toward a uni-
fied view of data”. In: ACM Transactions on Database Systems (TODS)
1.1 (1976), pp. 9–36.

[68] Weiwei Cheng and Eyke Hüllermeier. “Combining instance-based learn-
ing and logistic regression for multilabel classification”. In: Machine
Learning 76.2-3 (2009), pp. 211–225.

[69] Kyunghyun Cho et al. “Learning phrase representations using RNN
encoder-decoder for statistical machine translation”. In: arXiv preprint
arXiv:1406.1078 (2014).

[70] Sam Chung and Yun-Sik Lee. “Reverse software engineering with uml
for web site maintenance”. In: Proceedings of the First International
Conference on Web Information Systems Engineering. Vol. 2. IEEE.
2000, pp. 157–161.



BIBLIOGRAPHY 293

[71] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. “Automatic
verification of finite-state concurrent systems using temporal logic
specifications”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 8.2 (1986), pp. 244–263.

[72] Edmund M Clarke, Orna Grumberg, and David E Long. “Model
checking and abstraction”. In: ACM transactions on Programming
Languages and Systems (TOPLAS) 16.5 (1994), pp. 1512–1542.

[73] Edmund M Clarke and Jeannette M Wing. “Formal methods: State of
the art and future directions”. In: ACM Computing Surveys (CSUR)
28.4 (1996), pp. 626–643.

[74] Edmund M Clarke et al. Handbook of model checking. Springer, 2018.

[75] Manuel Clavel and Marina Egea. “ITP/OCL: A rewriting-based valida-
tion tool for UML+ OCL static class diagrams”. In: International Con-
ference on Algebraic Methodology and Software Technology. Springer.
2006, pp. 368–373.

[76] Adam Coates, Andrew Ng, and Honglak Lee. “An analysis of single-
layer networks in unsupervised feature learning”. In: Proceedings of
the fourteenth international conference on artificial intelligence and
statistics. 2011, pp. 215–223.

[77] Alistair Cockburn. “Structuring use cases with goals”. In: Journal of
object-oriented programming 10.5 (1997), pp. 56–62.

[78] Morris R Cohen. “The basis of contract”. In: Harvard Law Review
46.4 (1933), pp. 553–592.

[79] David R Cok. “OpenJML: JML for Java 7 by extending OpenJDK”.
In: NASA Formal Methods Symposium. Springer. 2011, pp. 472–479.

[80] David R Cok and Joseph R Kiniry. “Esc/java2: Uniting esc/java and
jml”. In: International Workshop on Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. Springer. 2004, pp. 108–128.

[81] Peter Alan Coldicott et al. Automation of software application engi-
neering using machine learning and reasoning. US Patent 8,607,190.
Dec. 2013.

[82] Ronan Collobert and Jason Weston. “A unified architecture for natural
language processing: Deep neural networks with multitask learning”. In:
Proceedings of the 25th international conference on Machine learning.
ACM. 2008, pp. 160–167.



294 BIBLIOGRAPHY

[83] Stephen A Cook. “Soundness and completeness of an axiom system
for program verification”. In: SIAM Journal on Computing 7.1 (1978),
pp. 70–90.

[84] Kendra Cooper and Mabo Ito. “1.6. 2 Formalizing a Structured Natural
Language Requirements Specification Notation”. In: INCOSE Inter-
national Symposium. Vol. 12. 1. Wiley Online Library. 2002, pp. 1025–
1032.

[85] Dan Craigen, Susan Gerhart, and Ted Ralston. “An international sur-
vey of industrial applications of formal methods”. In: Z User Workshop,
London 1992. Springer. 1993, pp. 1–5.

[86] John N Crossley. What is mathematical logic? Courier Corporation,
1990.

[87] Raúl Cruz-Barbosa and Alfredo Vellido. “Semi-supervised analysis of
human brain tumours from partially labeled MRS information, using
manifold learning models”. In: International journal of neural systems
21.01 (2011), pp. 17–29.

[88] Wendy L Currie and Philip Seltsikas. “Delivering business critical
information systems though application service providers: the need
for a market segmentation strategy”. In: International Journal of
Innovation Management 5.03 (2001), pp. 323–349.

[89] Vijay D’silva, Daniel Kroening, and Georg Weissenbacher. “A survey
of automated techniques for formal software verification”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 27.7 (2008), pp. 1165–1178.

[90] Aspassia Daskalopulu and Marek Sergot. “The representation of legal
contracts”. In: AI & SOCIETY 11.1-2 (1997), pp. 6–17.

[91] Thomas H Davenport et al. Mission critical: Realizing the promise of
enterprise systems. Harvard Business Press, 2000.

[92] Charles Day. “Python power”. In: Computing in Science & Engineering
16.1 (2014), p. 88.

[93] William HE Day and Herbert Edelsbrunner. “Efficient algorithms
for agglomerative hierarchical clustering methods”. In: Journal of
classification 1.1 (1984), pp. 7–24.

[94] Andrea De Lucia et al. “An experimental comparison of ER and UML
class diagrams for data modelling”. In: Empirical Software Engineering
15.5 (2010), pp. 455–492.



BIBLIOGRAPHY 295

[95] Leonardo De Moura and Nikolaj Bjørner. “Satisfiability modulo theo-
ries: introduction and applications”. In: Communications of the ACM
54.9 (2011), pp. 69–77.

[96] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT
solver”. In: International conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 2008, pp. 337–340.

[97] Stéphane Demri, Deepak D’Souza, and Régis Gascon. “A decidable
temporal logic of repeating values”. In: International Symposium on
Logical Foundations of Computer Science. Springer. 2007, pp. 180–194.

[98] Diego Dermeval et al. “A systematic review on the use of ontologies
in requirements engineering”. In: Software Engineering (SBES), 2014
Brazilian Symposium on. IEEE. 2014, pp. 1–10.

[99] Kurt W Derr. Applying OMT: A Practical step-by-step guide to using
the Object Modeling Technique. Cambridge University Press, 1995.

[100] David Detlefs, Greg Nelson, and James B Saxe. “Simplify: a theorem
prover for program checking”. In: Journal of the ACM (JACM) 52.3
(2005), pp. 365–473.

[101] Edsger W Dijkstra. “Cooperating sequential processes”. In: The origin
of concurrent programming. Springer, 1968, pp. 65–138.

[102] Edsger Wybe Dijkstra. Notes on structured programming. 1970.

[103] Jun Ding et al. “Convolutional neural network with data augmentation
for SAR target recognition”. In: IEEE Geoscience and remote sensing
letters 13.3 (2016), pp. 364–368.

[104] Natalia Dragan, Michael L Collard, and Jonathan I Maletic. “Auto-
matic identification of class stereotypes”. In: 2010 IEEE International
Conference on Software Maintenance. IEEE. 2010, pp. 1–10.

[105] R Geoff Dromey. “Cornering the chimera [software quality]”. In: IEEE
Software 13.1 (1996), pp. 33–43.

[106] Michael Dummett. “Wittgenstein’s philosophy of mathematics”. In:
The Philosophical Review 68.3 (1959), pp. 324–348.

[107] Bruno Dutertre and Leonardo De Moura. “The yices smt solver”. In:
Tool paper at http://yices. csl. sri. com/tool-paper. pdf 2.2 (2006),
pp. 1–2.

[108] Matthew B Dwyer, George S Avrunin, and James C Corbett. “Property
specification patterns for finite-state verification”. In: Proceedings of
the second workshop on Formal methods in software practice. ACM.
1998, pp. 7–15.



296 BIBLIOGRAPHY

[109] Sean R Eddy. “Hidden markov models”. In: Current opinion in struc-
tural biology 6.3 (1996), pp. 361–365.

[110] PAUL N Edwards. “From baggage to the PC, minus the hype”. In:
IEEE Spectrum 34.2 (1997), pp. 10–12.

[111] Golnaz Elahi, Eric Yu, and Nicola Zannone. “A modeling ontology
for integrating vulnerabilities into security requirements conceptual
foundations”. In: International Conference on Conceptual Modeling.
Springer. 2009, pp. 99–114.

[112] Herbert Enderton and Herbert B Enderton. A mathematical introduc-
tion to logic. Elsevier, 2001.

[113] Michael Fagan. “Design and code inspections to reduce errors in
program development”. In: Software pioneers. Springer, 2002, pp. 575–
607.

[114] Michael E Fagan. “Advances in software inspections”. In: Pioneers and
Their Contributions to Software Engineering. Springer, 2001, pp. 335–
360.

[115] Kirill Fakhroutdinov. UML Diagrams. Diagrams characteristics. Ac-
cessed: 2018-12-29. 2012.

[116] Tom Fawcett and Foster Provost. “Adaptive fraud detection”. In: Data
mining and knowledge discovery 1.3 (1997), pp. 291–316.

[117] Norman Fenton and James Bieman. Software metrics: a rigorous and
practical approach. CRC press, 2014.

[118] Melvin Fitting. First-order logic and automated theorem proving. Springer
Science & Business Media, 2012.

[119] Robert L Flood and Michael C Jackson. Critical systems thinking.
Springer, 1991.

[120] Kevin Forsberg and Harold Mooz. “The relationship of system engi-
neering to the project cycle”. In: INCOSE International Symposium.
Vol. 1. 1. Wiley Online Library. 1991, pp. 57–65.

[121] Martin Fowler, Cris Kobryn, and Kendall Scott. UML distilled: a
brief guide to the standard object modeling language. Addison-Wesley
Professional, 2004.

[122] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. “Real-time motion
planning for agile autonomous vehicles”. In: Journal of guidance,
control, and dynamics 25.1 (2002), pp. 116–129.



BIBLIOGRAPHY 297

[123] Norbert E Fuchs, Uta Schwertel, and Rolf Schwitter. “Attempto Con-
trolled English—not just another logic specification language”. In:
International Workshop on Logic Programming Synthesis and Trans-
formation. Springer. 1998, pp. 1–20.

[124] Adam Funk et al. “Clone: Controlled language for ontology editing”.
In: The Semantic Web. Springer, 2007, pp. 142–155.

[125] Martin Furer, Oded Goldreich, and Yishay Mansour. “On completeness
and soundness in interactive proof systems”. In: (1989).

[126] Robert P Futrelle et al. “Extraction, layout analysis and classification
of diagrams in PDF documents”. In: Seventh International Conference
on Document Analysis and Recognition, 2003. Proceedings. IEEE. 2003,
pp. 1007–1013.

[127] Elena Garćıa-Barriocanal, Miguel-Angel Sicilia, and Salvador Sánchez-
Alonso. “Usability evaluation of ontology editors”. In: Knowledge
Organization 32.1 (2005), pp. 1–9.

[128] Tom Gelhausen. “Modellextraktion aus natürlichen Sprachen : eine
Methode zur systematischen Erstellung von Domänenmodellen”. Ger-
man. PhD thesis. Karlsruhe Institute of Technology, 2010. 303 pp.
isbn: 978-3-86644-547-5. doi: 10.5445/KSP/1000019366.

[129] Gerhard Gentzen. “Investigations into logical deduction”. In: American
philosophical quarterly 1.4 (1964), pp. 288–306.

[130] Susan Gerhart, Dan Craigen, and Ted Ralston. “Experience with
formal methods in critical systems”. In: IEEE Software 11.1 (1994),
pp. 21–28.

[131] Robert L Glass. “The Standish report: does it really describe a software
crisis?” In: Communications of the ACM 49.8 (2006), pp. 15–16.

[132] Kurt Gödel. On formally undecidable propositions of Principia Mathe-
matica and related systems. Courier Corporation, 1992.

[133] Amrit L. Goel. “Software reliability models: Assumptions, limitations,
and applicability”. In: IEEE Transactions on software engineering 12
(1985), pp. 1411–1423.

[134] Martin Gogolla, Fabian Büttner, and Mark Richters. “USE: A UML-
based specification environment for validating UML and OCL”. In:
Science of Computer Programming 69.1-3 (2007), pp. 27–34.

[135] Martin Gogolla and Mark Richters. “Equivalence rules for UML class
diagrams”. In: The Unified Modeling Language, UML 98 (1998), pp. 87–
96.

https://doi.org/10.5445/KSP/1000019366


298 BIBLIOGRAPHY

[136] Martin Gogolla and Mark Richters. “Expressing UML class diagrams
properties with OCL”. In: Object Modeling with the OCL. Springer,
2002, pp. 85–114.

[137] Joseph A Goguen and Charlotte Linde. “Techniques for requirements
elicitation”. In: Requirements Engineering, 1993., Proceedings of IEEE
International Symposium on. IEEE. 1993, pp. 152–164.

[138] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in
neural information processing systems. 2014, pp. 2672–2680.

[139] Anthony Hall. “Seven myths of formal methods”. In: IEEE software
7.5 (1990), pp. 11–19.

[140] Catalina Hallett, Donia Scott, and Richard Power. “Composing ques-
tions through conceptual authoring”. In: Computational linguistics
33.1 (2007), pp. 105–133.

[141] Charles L Hamblin. “Translation to and from Polish Notation”. In:
The Computer Journal 5.3 (1962), pp. 210–213.

[142] Harmain M Harmain and R Gaizauskas. “CM-Builder: an automated
NL-based CASE tool”. In: Automated Software Engineering, 2000.
Proceedings ASE 2000. The Fifteenth IEEE International Conference
on. IEEE. 2000, pp. 45–53.

[143] John A Hartigan and Manchek A Wong. “Algorithm AS 136: A k-
means clustering algorithm”. In: Journal of the Royal Statistical Society.
Series C (Applied Statistics) 28.1 (1979), pp. 100–108.

[144] Simon Haykin. Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994.

[145] Simon S Haykin et al. Neural networks and learning machines. Vol. 3.
Pearson education Upper Saddle River, 2009.

[146] Kathryn L. Heninger. “Specifying software requirements for complex
systems: New techniques and their application”. In: IEEE Transactions
on Software Engineering 1 (1980), pp. 2–13.

[147] Hatem Herchi and Wahiba Ben Abdessalem. “From user requirements
to UML class diagram”. In: arXiv preprint arXiv:1211.0713 (2012).

[148] Ann M Hickey and Alan M Davis. “An ontological approach to re-
quirements elicitation technique selection”. In: Ontologies. Springer,
2007, pp. 403–431.

[149] Michael G Hinchey and Jonathan Peter Bowen. Applications of formal
methods. Vol. 1. Prentice Hall New Jersey, 1995.



BIBLIOGRAPHY 299

[150] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”.
In: Commun. ACM 12.10 (Oct. 1969), pp. 576–580. issn: 0001-0782.
doi: 10.1145/363235.363259. url: http://doi.acm.org/10.1145/
363235.363259.

[151] C. A. R. Hoare. Chapter II: Notes on data structuring. Academic Press
Ltd., 1972.

[152] Gerard J. Holzmann. “The model checker SPIN”. In: IEEE Transac-
tions on software engineering 23.5 (1997), pp. 279–295.

[153] Ian Horrocks and Ulrike Sattler. “Ontology reasoning in the SHOQ
(D) description logic”. In: IJCAI. Vol. 1. 3. 2001, pp. 199–204.

[154] SL Howells, RJ Maxwell, and JR Griffiths. “Classification of tumour
1H NMR spectra by pattern recognition”. In: NMR in Biomedicine
5.2 (1992), pp. 59–64.

[155] Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew, et al. “Extreme
learning machine: a new learning scheme of feedforward neural net-
works”. In: Neural networks 2 (2004), pp. 985–990.

[156] Ullrich Hustadt, Renate A Schmidt, and Lilia Georgieva. “A survey of
decidable first-order fragments and description logics”. In: Journal of
Relational Methods in Computer Science 1.251-276 (2004), p. 3.

[157] The Standish Group International. The CHAOS Report (1994). Tech.
rep. The Standish Group, 1995.

[158] Nathan Isaacs. “The standardizing of contracts”. In: The Yale Law
Journal 27.1 (1917), pp. 34–48.

[159] IEC ISO. IEEE. 29148: 2011-Systems and software engineering-Requirements
engineering. Tech. rep. IEEE, 2011.

[160] Tommi Jaakkola and David Haussler. “Exploiting generative mod-
els in discriminative classifiers”. In: Advances in neural information
processing systems. 1999, pp. 487–493.

[161] Daniel Jackson. Software Abstractions: logic, language, and analysis.
MIT press, 2012.

[162] Ivar Jacobson, Grady Booch, and Jim Rumbaugh. “The Objectory
Software Development Process”. In: ISBN: 0-201-57169-2, Addison
Wesley (1997).

[163] Anil K Jain. “Data clustering: 50 years beyond K-means”. In: Pattern
recognition letters 31.8 (2010), pp. 651–666.

https://doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259


300 BIBLIOGRAPHY

[164] Aman Jatain and Deepti Gaur. “Reverse Engineering of Object Ori-
ented System using Hierarchical Clustering”. In: INTERNATIONAL
ARAB JOURNAL OF INFORMATION TECHNOLOGY 15.5 (2018),
pp. 857–865.

[165] Magne Jørgensen and Kjetil Moløkken-Østvold. “How large are soft-
ware cost overruns? A review of the 1994 CHAOS report”. In: Infor-
mation and Software Technology 48.4 (2006), pp. 297–301.

[166] Dan Jurafsky and James H Martin. Speech and language processing.
Vol. 3. Pearson London: 2014.

[167] Ivan Jureta, John Mylopoulos, and Stephane Faulkner. “Revisiting
the core ontology and problem in requirements engineering”. In: Inter-
national Requirements Engineering, 2008. RE’08. 16th IEEE. IEEE.
2008, pp. 71–80.

[168] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore.
“Reinforcement learning: A survey”. In: Journal of artificial intelligence
research 4 (1996), pp. 237–285.

[169] Vasanthi Kaliappan and Norhayati Mohd Ali. “Improving Consistency
of UML Diagrams and Its Implementation Using Reverse Engineering
Approach”. In: Bulletin of Electrical Engineering and Informatics 7.4
(2018), pp. 665–672.

[170] Peter Kaye. The new private international law of contract of the
European Community: implementation of the EEC’s Contractual Obli-
gations Convention in England and Wales under the Contracts (Appli-
cable Law) Act 1990. Dartmouth, 1993.

[171] Soon-Kyeong Kim and Carrington David. “Formalizing the UML class
diagram using Object-Z”. In: International Conference on the Unified
Modeling Language. Springer. 1999, pp. 83–98.

[172] Durk P Kingma et al. “Semi-supervised learning with deep generative
models”. In: Advances in neural information processing systems. 2014,
pp. 3581–3589.

[173] Joseph R Kiniry and David R Cok. “{ESC/Java2}: Uniting {ESC/Java}
and {JML}: Progress and issues in building and using {ESC/Java2}
and a report on a case study involving the use of {ESC/Java2} to
verify portions of an {Internet} voting tally system”. In: Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices. Ed. by
Gilles BartheLilian BurdyMarieke HuismanJean-Louis LanetTraian
Muntean. 2005.



BIBLIOGRAPHY 301

[174] Nahum Kiryati, Yuval Eldar, and Alfred M Bruckstein. “A probabilistic
Hough transform”. In: Pattern recognition 24.4 (1991), pp. 303–316.

[175] Barbara Kitchenham and Shari Lawrence Pfleeger. “Software quality:
the elusive target [special issues section]”. In: IEEE software 13.1
(1996), pp. 12–21.

[176] Thomas Kleymann. “Hoare logic and VDM: Machine-checked sound-
ness and completeness proofs”. In: (1998).

[177] John C Knight. “Safety critical systems: challenges and directions”.
In: Proceedings of the 24th international conference on software engi-
neering. ACM. 2002, pp. 547–550.

[178] Donald E Knuth. “Backus normal form vs. backus naur form”. In:
Communications of the ACM 7.12 (1964), pp. 735–736.

[179] Calvin Ko, Manfred Ruschitzka, and Karl Levitt. “Execution monitor-
ing of security-critical programs in distributed systems: A specification-
based approach”. In: Proceedings. 1997 IEEE Symposium on Security
and Privacy (Cat. No. 97CB36097). IEEE. 1997, pp. 175–187.

[180] Teuvo Kohonen. “The self-organizing map”. In: Proceedings of the
IEEE 78.9 (1990), pp. 1464–1480.

[181] Ralf Kollmann et al. “A study on the current state of the art in tool-
supported UML-based static reverse engineering”. In: Ninth Working
Conference on Reverse Engineering, 2002. Proceedings. IEEE. 2002,
pp. 22–32.

[182] Gerald Kotonya and Ian Sommerville. Requirements engineering: pro-
cesses and techniques. Wiley Publishing, 1998.

[183] Philippe Kruchten. The rational unified process: an introduction. Addison-
Wesley Professional, 2004.

[184] R Krzysztof and D Kozen. “Limits for automatic verification of finite-
state concurrent systems”. In: Information Processing Letters 22 (1986),
pp. 307–309.

[185] Tobias Kuhn. “A survey and classification of controlled natural lan-
guages”. In: Computational Linguistics 40.1 (2014), pp. 121–170.

[186] Deeptimahanti Deva Kumar and Ratna Sanyal. “Static UML model
generator from analysis of requirements (SUGAR)”. In: 2008 Advanced
Software Engineering and Its Applications. IEEE. 2008, pp. 77–84.

[187] Vipin Kumar. “Algorithms for constraint-satisfaction problems: A
survey”. In: AI magazine 13.1 (1992), p. 32.



302 BIBLIOGRAPHY

[188] Zijad Kurtanović and Walid Maalej. “Automatically Classifying Func-
tional and Non-functional Requirements Using Supervised Machine
Learning”. In: Requirements Engineering Conference (RE), 2017 IEEE
25th International. IEEE. 2017, pp. 490–495.

[189] Marta Kwiatkowska, Gethin Norman, and David Parker. “PRISM:
Probabilistic symbolic model checker”. In: International Conference on
Modelling Techniques and Tools for Computer Performance Evaluation.
Springer. 2002, pp. 200–204.

[190] Leslie Lamport. “Proving the correctness of multiprocess programs”.
In: IEEE transactions on software engineering 2 (1977), pp. 125–143.

[191] Phillip A Laplante and Colin J Neill. “The demise of the waterfall
model is imminent”. In: Queue 1.10 (2004), p. 10.

[192] James R Larus et al. “Righting software”. In: IEEE software 21.3
(2004), pp. 92–100.

[193] Gary T Leavens, Albert L Baker, and Clyde Ruby. “JML: A notation
for detailed design”. In: behavioral specifications of Businesses and
Systems. Springer, 1999, pp. 175–188.

[194] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”.
In: nature 521.7553 (2015), p. 436.

[195] Seok Won Lee and Robin A Gandhi. “Ontology-based active require-
ments engineering framework”. In: Software Engineering Conference,
2005. APSEC’05. 12th Asia-Pacific. IEEE. 2005, 8–pp.

[196] Andy Liaw, Matthew Wiener, et al. “Classification and regression by
randomForest”. In: R news 2.3 (2002), pp. 18–22.

[197] Richard J Lipton. “A necessary and sufficient condition for the exis-
tence of Hoare logics”. In: Foundations of Computer Science, 1977.,
18th Annual Symposium on. IEEE. 1977, pp. 1–6.

[198] Xavier Llora and Josep M Garrell. “Evolution of decision trees”. In:
Forth Catalan Conference on Artificial Intelligence (CCIA’2001). 2001,
pp. 115–122.

[199] Edward Loper and Steven Bird. “NLTK: the natural language toolkit”.
In: arXiv preprint cs/0205028 (2002).

[200] Pericles Loucopoulos and Vassilios Karakostas. System requirements
engineering. McGraw-Hill, Inc., 1995.



BIBLIOGRAPHY 303

[201] Jan Luts et al. “A combined MRI and MRSI based multiclass system for
brain tumour recognition using LS-SVMs with class probabilities and
feature selection”. In: Artificial intelligence in medicine 40.2 (2007),
pp. 87–102.

[202] James MacQueen et al. “Some methods for classification and analysis
of multivariate observations”. In: Proceedings of the fifth Berkeley sym-
posium on mathematical statistics and probability. Vol. 1. 14. Oakland,
CA, USA. 1967, pp. 281–297.

[203] Sonal Mahajan and William GJ Halfond. “WebSee: A tool for debug-
ging HTML presentation failures”. In: 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST).
IEEE. 2015, pp. 1–8.

[204] Michael S Mahoney. “Finding a history for software engineering”. In:
IEEE Annals of the History of Computing 26.1 (2004), pp. 8–19.

[205] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems: Specification. Springer Science & Business Media,
2012.

[206] Christopher D Manning. “Part-of-speech tagging from 97% to 100%: is
it time for some linguistics?” In: International conference on intelligent
text processing and computational linguistics. Springer. 2011, pp. 171–
189.

[207] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini.
“Building a large annotated corpus of English: The Penn Treebank”.
In: Computational linguistics 19.2 (1993), pp. 313–330.

[208] Diana Marosin, Marc Van Zee, and Sepideh Ghanavati. “Formalizing
and modeling enterprise architecture (EA) principles with goal-oriented
requirements language (GRL)”. In: International Conference on Ad-
vanced Information Systems Engineering. Springer. 2016, pp. 205–
220.

[209] Philippe Martin. “Knowledge representation in CGLF, CGIF, KIF,
frame-CG and formalized-english”. In: International Conference on
Conceptual Structures. Springer. 2002, pp. 77–91.

[210] Cathy Maugis, Gilles Celeux, and Marie-Laure Martin-Magniette.
“Variable selection for clustering with Gaussian mixture models”. In:
Biometrics 65.3 (2009), pp. 701–709.

[211] Catherine Meadows. “Applying formal methods to the analysis of a key
management protocol”. In: Journal of Computer Security 1.1 (1992),
pp. 5–35.



304 BIBLIOGRAPHY

[212] Juan Jose Mendoza Santana. “Construct by Contract: An Approach
for Developing Reliable Software”. MA thesis. National University of
Ireland, Maynooth, 2013.

[213] Juan Jose Mendoza Santana. “Tototl: A tool for automated formaliza-
tion and verification of NL specifications”. MA thesis. University of St
Andrews, 2014.

[214] Juan Jose Mendoza Santana and Juliana Küster Filipe Bowles. “A
logic-based approach to software development”. In: COCONAT 2015.
Conference on Computing Natural Reasoning. 2015.

[215] Tom Mens and Pieter Van Gorp. “A taxonomy of model transfor-
mation”. In: Electronic Notes in Theoretical Computer Science 152
(2006), pp. 125–142.

[216] Bertrand Meyer. “Dependable software”. In: Dependable Systems:
Software, Computing, Networks. Springer, 2006, pp. 1–33.

[217] Bertrand Meyer. Design by contract. Prentice Hall, 2002.

[218] Bertrand Meyer. “Eiffel: A language and environment for software
engineering”. In: Journal of Systems and Software 8.3 (1988), pp. 199–
246.

[219] Bertrand Meyer. Object-oriented software construction. Vol. 2. Prentice
hall New York, 1988.

[220] Farid Meziane and Sunil Vadera. “Artificial intelligence in software
engineering: Current developments and future prospects”. In: Artificial
intelligence applications for improved software engineering development:
New prospects. IGI Global, 2010, pp. 278–299.

[221] Huaikou Miao, Ling Liu, and Li Li. “Formalizing UML models with
Object-Z”. In: International Conference on Formal Engineering Meth-
ods. Springer. 2002, pp. 523–534.

[222] George Miller. WordNet: An electronic lexical database. MIT press,
1998.

[223] Guy W Mineau, Bernard Moulin, and John F Sowa. “Conceptual
Graphs for Knowledge Representation First International Conference
on Conceptual Structures, ICCS’93 Quebec City, Canada, August 4–7,
1993 Proceedings”. In: Conference proceedings ICCS-ConceptStruct.
Springer. 1993, p. 12.

[224] Enrique A Miranda et al. “Using reverse engineering techniques to
infer a system use case model”. In: Journal of Software: Evolution and
Process 31.2 (2019), e2121.



BIBLIOGRAPHY 305

[225] Aditi Mithal and Ponnurangam Kumaraguru. “Optical character recog-
nition tool”. In: (2017).

[226] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

[227] John D Musa. “A theory of software reliability and its application”.
In: IEEE transactions on software engineering 3 (1975), pp. 312–327.

[228] John D. Musa and A. Frank Ackerman. “Quantifying software vali-
dation: when to stop testing?” In: IEEE Software 6.3 (1989), pp. 19–
27.

[229] Glenford J Myers et al. The art of software testing. Vol. 2. Wiley
Online Library, 2004.

[230] Joseph Myers. “Apple v. microsoft: Virtual identity in the gui wars”.
In: Richmond Journal of Law & Technology 1.1 (1995), p. 5.

[231] Sastry Nanduri and Spencer Rugaber. “Requirements validation via
automated natural language parsing”. In: Journal of Management
Information Systems 12.3 (1995), pp. 9–19.

[232] Peter Naur. “Software engineering”. In: Report of a conference spon-
sored by the NATO Science Committee, Garmisch, Germany, 7-11
Oct. 1968. 1969.

[233] Jiquan Ngiam et al. “Multimodal deep learning”. In: Proceedings of the
28th international conference on machine learning (ICML-11). 2011,
pp. 689–696.

[234] Oscar Nierstrasz. “A Survey of Object-Oriented Concepts”. In: Object-
oriented Concepts, Databases, and Applications. Ed. by Won Kim and
F. H. Lochovsky. New York, NY, USA: ACM, 1989, pp. 3–21.

[235] Bashar Nuseibeh and Steve Easterbrook. “Requirements engineering: a
roadmap”. In: Proceedings of the Conference on the Future of Software
Engineering. ACM. 2000, pp. 35–46.

[236] OMG. Semantics of Business Vocabulary and Business Rules (SBVR).
Tech. rep. OMG, 2008.

[237] OMG. Semantics of Business Vocabulary and Business Rules (SBVR),
V1.4. Annex E - Overview of the Approach. Tech. rep. OMG, 2016.

[238] Ashwin Panchapakesan, Rami Abielmona, and Emil Petriu. “A python-
based design-by-contract evolutionary algorithm framework with aug-
mented diagnostic capabilities”. In: Evolutionary Computation (CEC),
2013 IEEE Congress on. IEEE. 2013, pp. 2517–2524.



306 BIBLIOGRAPHY

[239] Shashank Pandit et al. “Netprobe: a fast and scalable system for fraud
detection in online auction networks”. In: Proceedings of the 16th
international conference on World Wide Web. ACM. 2007, pp. 201–
210.

[240] Kui-Hong Park, Yong-Jae Kim, and Jong-Hwan Kim. “Modular Q-
learning based multi-agent cooperation for robot soccer”. In: Robotics
and Autonomous Systems 35.2 (2001), pp. 109–122.

[241] Tom Pender, Eugene McSheffrey, and Lou Varveris. UML bible. Vol. 1.
Wiley New York, 2003.

[242] Paulo F Pires et al. “Integrating ontologies, model driven, and CNL in a
multi-viewed approach for requirements engineering”. In: Requirements
Engineering 16.2 (2011), pp. 133–160.

[243] Amir Pnueli. “Applications of temporal logic to the specification and
verification of reactive systems: a survey of current trends”. In: Current
trends in Concurrency. Springer, 1986, pp. 510–584.

[244] Klaus Pohl. Requirements engineering: fundamentals, principles, and
techniques. Springer Publishing Company, Incorporated, 2010.

[245] Klaus Pohl et al. “Applying AI techniques to requirements engineer-
ing: The NATURE prototype”. In: Proceedings ICSE-Workshop on
Research Issues in the Intersection Between Software Engineering and
Artificial Intelligence. 1994.

[246] Hendrik Post et al. “Linking functional requirements and software ver-
ification”. In: 2009 17th IEEE International Requirements Engineering
Conference. IEEE. 2009, pp. 295–302.

[247] Richard Power. “OWL Simplified English: a finite-state language for
ontology editing”. In: International Workshop on Controlled Natural
Language. Springer. 2012, pp. 44–60.

[248] Aswin Pranam. “Software Development Methodologies”. In: Product
Management Essentials. Springer, 2018, pp. 65–74.

[249] Roger S Pressman. Software engineering: a practitioner’s approach.
Palgrave Macmillan, 2005.

[250] Zhihua Qu. Cooperative control of dynamical systems: applications to
autonomous vehicles. Springer Science & Business Media, 2009.

[251] Truong Ho-Quang et al. “Automatic classification of uml class dia-
grams from images”. In: 2014 21st Asia-Pacific Software Engineering
Conference. Vol. 1. IEEE. 2014, pp. 399–406.



BIBLIOGRAPHY 307

[252] Anna Queralt and Ernest Teniente. “Reasoning on UML class diagrams
with OCL constraints”. In: International Conference on Conceptual
Modeling. Springer. 2006, pp. 497–512.

[253] Ernst Rabel. “The Statute of Frauds and Comparative Legal History”.
In: LQ Rev. 63 (1947), p. 174.

[254] Lawrence R Rabiner and Biing-Hwang Juang. “An introduction to
hidden Markov models”. In: ieee assp magazine 3.1 (1986), pp. 4–16.

[255] Steven R Rakitin. Software verification and validation for practitioners
and managers. Artech House, Inc., 2001.

[256] Ravi Ramamoorthi and James Arvo. “Creating generative models
from range images”. In: Proceedings of the 26th annual conference on
Computer graphics and interactive techniques. Citeseer. 1999, pp. 195–
204.

[257] M Ranzato et al. “On deep generative models with applications to
recognition”. In: (2011).

[258] Manny Rayner et al. “OMG unified modeling language specification”.
In: Version 1.3,© 1999 Object Management Group, Inc. Citeseer.
2005.

[259] Jeremy Reimer. “A History of the GUI”. In: Ars Technica 5 (2005),
pp. 1–17.

[260] Mark Reynolds et al. “A decidable temporal logic of parallelism”. In:
Notre Dame Journal of Formal Logic 38.3 (1997), pp. 419–436.

[261] Dennis M Ritchie, Brian W Kernighan, and Michael E Lesk. The C
programming language. Bell Laboratories, 1975.

[262] José Mat́ıas Rivero et al. “From mockups to user interface models: an
extensible model driven approach”. In: International Conference on
Web Engineering. Springer. 2010, pp. 13–24.

[263] Guido Rossum. “Python reference manual”. In: (1995).

[264] Raymond J Rubey, Joseph A Dana, and Peter W Biche. “Quantitative
aspects of software validation”. In: IEEE Transactions on Software
Engineering 2 (1975), pp. 150–155.

[265] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified modeling
language reference manual, the. Pearson Higher Education, 2004.

[266] Nayan B Ruparelia. “Software development lifecycle models”. In: ACM
SIGSOFT Software Engineering Notes 35.3 (2010), pp. 8–13.



308 BIBLIOGRAPHY

[267] Mrinmaya Sachan et al. “Learning answer-entailing structures for
machine comprehension”. In: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Vol. 1. 2015, pp. 239–249.

[268] Hossein Saiedian. “An invitation to formal methods”. In: Computer
29.4 (1996), pp. 16–17.

[269] Jean E Sammet. “The early history of COBOL”. In: History of pro-
gramming languages I. ACM. 1978, pp. 199–243.

[270] Douglas C Schmidt. “Model-driven engineering”. In: COMPUTER-
IEEE COMPUTER SOCIETY- 39.2 (2006), p. 25.

[271] Bran Selic. “The pragmatics of model-driven development”. In: IEEE
software 20.5 (2003), pp. 19–25.

[272] Claude Elwood Shannon. “A mathematical theory of communication”.
In: Bell system technical journal 27.3 (1948), pp. 379–423.

[273] Shreta Sharma and SK Pandey. “Integrating AI techniques in require-
ments phase: a literature review”. In: (2014).

[274] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. “Checking
safety properties using induction and a SAT-solver”. In: International
conference on formal methods in computer-aided design. Springer. 2000,
pp. 127–144.

[275] Zvi Shiller and Y-R Gwo. “Dynamic motion planning of autonomous
vehicles”. In: IEEE Transactions on Robotics and Automation 7.2
(1991), pp. 241–249.

[276] Keng Siau and Lihyunn Lee. “Are use case and class diagrams com-
plementary in requirements analysis? An experimental study on use
case and class diagrams in UML”. In: Requirements engineering 9.4
(2004), pp. 229–237.

[277] Katja Siegemund et al. “Towards ontology-driven requirements engi-
neering”. In: Workshop semantic web enabled software engineering at
10th international semantic web conference (ISWC), Bonn. 2011.

[278] Mathias Soeken et al. “Verifying UML/OCL models using Boolean
satisfiability”. In: Proceedings of the Conference on Design, Automation
and Test in Europe. European Design and Automation Association.
2010, pp. 1341–1344.

[279] Richard Soley et al. “Model driven architecture”. In: OMG white paper
308.308 (2000), p. 5.



BIBLIOGRAPHY 309

[280] Ian Sommerville. Software Engineering. 6th. Addison-Wesley, 2001.

[281] Ian Sommerville. Software Engineering. 10th. Pearson Education, 2015.

[282] Volker Sperschneider and Grigoris Antoniou. Logic; A Foundation for
Computer Science (International Computer Science Series). Addison-
Wesley Longman Publishing Co., Inc., 1991.

[283] Richard S Stephens. “Probabilistic approach to the Hough transform”.
In: Image and vision computing 9.1 (1991), pp. 66–71.

[284] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence
learning with neural networks”. In: Advances in neural information
processing systems. 2014, pp. 3104–3112.

[285] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[286] CMMI Product Team. “Capability maturity model® integration
(CMMI SM), version 1.1”. In: CMMI for Systems Engineering, Soft-
ware Engineering, Integrated Product and Process Development, and
Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1. 1) (2002).

[287] Toby J Teorey, Dongqing Yang, and James P Fry. “A logical de-
sign methodology for relational databases using the extended entity-
relationship model”. In: ACM Computing Surveys (CSUR) 18.2 (1986),
pp. 197–222.

[288] Richard H Thayer, Sidney C Bailin, and M Dorfman. Software require-
ments engineerings. IEEE Computer Society Press, 1997.

[289] Walter F. Tichy, Mathias Landhäußer, and Sven J. Körner. “Nlrp-
bench: A benchmark for natural language requirements processing”.
In: Software-engineering and management 2015. Ed. by Uwe Aßmann
et al. Bonn: Gesellschaft für Informatik e.V., 2015, pp. 159–164.

[290] Walter F Tichy and Sven J Koerner. “Text to software: developing
tools to close the gaps in software engineering”. In: Proceedings of the
FSE/SDP workshop on Future of software engineering research. ACM.
2010, pp. 379–384.

[291] Kristina Toutanova and Christopher D Manning. “Enriching the knowl-
edge sources used in a maximum entropy part-of-speech tagger”. In:
Proceedings of the 2000 Joint SIGDAT conference on Empirical meth-
ods in natural language processing and very large corpora: held in
conjunction with the 38th Annual Meeting of the Association for Com-
putational Linguistics-Volume 13. Association for Computational Lin-
guistics. 2000, pp. 63–70.



310 BIBLIOGRAPHY

[292] Kristina Toutanova et al. “Feature-rich part-of-speech tagging with a
cyclic dependency network”. In: Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1. Association for
Computational Linguistics. 2003, pp. 173–180.

[293] David A Van Dyk and Xiao-Li Meng. “The art of data augmentation”.
In: Journal of Computational and Graphical Statistics 10.1 (2001),
pp. 1–50.

[294] Moshe Y Vardi. “An automata-theoretic approach to linear temporal
logic”. In: Logics for concurrency. Springer, 1996, pp. 238–266.

[295] Moshe Y Vardi. “Why is modal logic so robustly decidable?” In:
Descriptive Complexity and Finite Models. Ed. by N. Immerman and
P. Kolaitis. 1997.

[296] Jos B Warmer and Anneke G Kleppe. The Object Constraint Language:
Precise modeling with UML. {Addison-Wesley Professional}, 1998.

[297] Jos Warmer and Anneke Kleppe. “The object constraint language
second edition: Getting your models ready for MDA”. In: Canada:
Person Education, Inc (2003).

[298] Sholom M Weiss, Ioannis Kapouleas, and JW Shavlik. “An empirical
comparison of pattern recognition, neural nets and machine learn-
ing classification methods”. In: Readings in machine learning (1990),
pp. 177–183.

[299] Sandra Williams, Richard Power, and Allan Third. “How easy is it to
learn a controlled natural language for building a knowledge base?”
In: International Workshop on Controlled Natural Language. Springer.
2014, pp. 20–32.

[300] Guido Wimmel and Jan Jürjens. “Specification-based test genera-
tion for security-critical systems using mutations”. In: International
Conference on Formal Engineering Methods. Springer. 2002, pp. 471–
482.

[301] Niklaus Wirth. “The programming language Pascal”. In: Acta infor-
matica 1.1 (1971), pp. 35–63.

[302] Ian H Witten et al. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2016.

[303] Janet Woodcock. Software engineering mathematics. CRC Press, 2014.

[304] Jim Woodcock et al. “Formal methods: Practice and experience”. In:
ACM computing surveys (CSUR) 41.4 (2009), p. 19.



BIBLIOGRAPHY 311

[305] Yonghui Wu et al. “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation”. In: arXiv
preprint arXiv:1609.08144 (2016).

[306] Wenpeng Yin, Sebastian Ebert, and Hinrich Schütze. “Attention-based
convolutional neural network for machine comprehension”. In: arXiv
preprint arXiv:1602.04341 (2016).

[307] Eric Yu and John Mylopoulos. “Why goal-oriented requirements engi-
neering”. In: Proceedings of the 4th International Workshop on Require-
ments Engineering: Foundations of Software Quality. Vol. 15. 1998,
pp. 15–22.

[308] Alan L Yuille et al. “Determining generative models of objects under
varying illumination: Shape and albedo from multiple images using
SVD and integrability”. In: International Journal of Computer Vision
35.3 (1999), pp. 203–222.

[309] Du Zhang and Jeffrey JP Tsai. “Machine learning and software engi-
neering”. In: Software Quality Journal 11.2 (2003), pp. 87–119.

[310] Min-Ling Zhang and Zhi-Hua Zhou. “ML-KNN: A lazy learning ap-
proach to multi-label learning”. In: Pattern recognition 40.7 (2007),
pp. 2038–2048.

[311] Will Y Zou et al. “Bilingual word embeddings for phrase-based machine
translation”. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. 2013, pp. 1393–1398.

[312] Didar Zowghi and Chad Coulin. “Requirements elicitation: A survey
of techniques, approaches, and tools”. In: Engineering and managing
software requirements. Springer, 2005, pp. 19–46.


	Introduction
	Motivation
	Research Questions
	Objectives
	Contributions
	Evaluation and Results
	Content of the thesis

	Overview
	Requirements Specifications
	SpeCNL
	ConSpec

	TOMM
	Formalization
	Model Validation
	Model Generation
	Model Comparison

	T4TOMM
	Summary

	Context
	Background
	Software Applications
	Critical Systems
	Non-Critical Systems
	Software Engineering
	Software Development Processes
	Object-Oriented Programming
	Software Testing
	Software Validation
	Software Verification

	Requirements Engineering
	Types of Requirements
	Requirements Communication Cycle
	Requirements Elicitation
	Requirements Validation

	Software Modelling
	UML
	Class Diagrams
	OCL
	Model-Driven Development

	Formal Methods
	Formal Specifications
	Logics
	Model Verification
	SAT/SMT Solvers

	Data Augmentation for Machine Learning
	Machine Learning
	Neural Networks
	Data Augmentation


	Related Work
	Requirements Specification Document
	Formal Specification Languages
	Controlled Natural Languages
	SBVR
	ACE and FE

	Model Checking
	Model Validation
	Model Generation
	Model Comparison
	Model Extraction

	Previous Work by the authors
	Construct by Contract
	TOTOTL

	Summary

	Requirements Specification
	SpeCNL
	Parts of Speech
	Concepts
	Sentences

	ConSpec
	Clause Elements

	Requirements Refinement
	Activity identification
	Activity specification
	Clause Construction

	Summary

	TOMM: a framework for formal reasoning
	Formalization
	Requirements Formalization
	Elements
	Example

	Class Diagram Formalization
	Elements
	Example


	Class Model Inference
	Inference Calculus
	Reliability
	Example

	Class Model Validation
	Validation Calculus
	Reliability
	Example

	Class Model Equivalence
	Equivalence Calculus
	Reliability
	Example

	Summary

	T4TOMM: a proof-of-concept for TOMM
	Resources
	Natural Language Processing
	Satisfiability Modulo Theories
	SMT-LIB
	CVC4

	Image processing

	Meta-Models
	Specification
	Datatypes
	Automatic Formalization

	Class Diagram
	Datatypes
	Automatic Formalization


	Inference
	Validation
	Equivalence
	Class Model Extraction
	Image Segmentation
	Information Extraction

	Summary

	Evaluation
	ConSpec and SpeCNL
	Evaluation Methodology
	Evaluation Cases
	Ships Description
	Trains Description
	ATM Simulation
	ACME Library
	Simplified Library
	Steam Boiler
	Laws of Chess
	Whois Protocol
	Light Control System

	Summary of Evaluation for ConSpec and SpecCNL
	Areas of improvement for SpeCNL
	Areas of improvement for ConSpec
	Conclusion


	TOMM and T4TOMM
	Evaluation Methodology
	Evaluation of Model Generation
	Inferring model manually
	Inferring model with T4TOMM

	Evaluation of Model Validation
	Manual validation
	Checking invalid model using T4TOMM
	Checking sound model using T4TOMM
	Checking complete model using T4TOMM
	Checking valid model using T4TOMM

	Evaluation of Model Comparison
	Manual Comparison
	Comparing not equivalent models using T4TOMM
	Comparing models with left equivalence using T4TOMM
	Comparing models with right equivalence using T4TOMM
	Comparing equivalent models using T4TOMM

	Class Model Extractions with T4TOMM
	Extraction of complete diagram generated by us
	Extraction of complete existing diagram
	Results

	Summary of Evaluation for TOMM and T4TOMM
	Threats to validity


	Summary

	Conclusions
	Threats to Validity
	Future Work
	Final Remarks

	Appendices
	Appendix Library Example
	Requirements
	Contract Specification Document

	Appendix SMT-LIB models
	Inference example
	Soundness Model
	Completeness Model
	Equivalence rules

	Appendix Evaluation
	Model Inference
	Model Validation
	Invalid class model
	Sound class model
	Complete class model

	Model Comparison
	Not equivalent class models
	Left equivalent class models
	Right equivalent class models
	Equivalent class models

	Class Diagrams for Model Extraction
	Diagram generated by us containing only attributes
	Diagram generated by us containing only operations
	Coloured Diagram generated by us
	Existing diagram containing only attributes
	Existing diagram containing only classes
	Existing complete diagram containing attributes, and operations
	Existing complex diagram
	Existing diagram drawn by hand


	List of Figures
	List of Tables
	List of Grammars
	List of Texts
	List of ConSpec Specifications
	List of JSON Class Models
	List of Predicates
	List of SMTLib models
	List of Equations
	List of Acronyms
	Bibliography

