
MAMoC-Android: Multisite Adaptive Computation
Offloading for Android Applications

Dawand Sulaiman and Adam Barker
School of Computer Science

University of St Andrews
St Andrews, UK

Email: {djs21, adam.barker}@st-andrews.ac.uk

Abstract—Computational offloading has been widely used to
improve the performance of mobile applications and conserve the
energy of mobile devices. Prior studies have primarily focused
on a form of offloading where only a single server is considered
as the offloading site. However, mobile devices now have access
to a range of nearby mobile and fixed devices and multiple
cloud providers. This paper proposes a method for multisite
computation offloading in dynamic mobile cloud environments,
in order to save energy and improve application execution time.
Our proposed dynamic offloading decision algorithm takes into
consideration the offloading score and records of past offloading
executions to select the best candidate(s) for offloading. Multisite
offloading execution achieves a greater reduction with respect to
the completion time and energy consumption of mobiles when
compared to local execution or a single-site offloading execution
on a public cloud instance.

I. INTRODUCTION

Mobile devices have become an essential part of modern life
in this new era of mobile computing and Internet of Things.
The number of connected devices is estimated to reach 50
billion by the year 2020 [1], [2]. We are facing a contradiction
between inadequate processing capacity of mobile devices
and the users’ ever-growing need for better performance and
longer battery life. A wide range of applications are now
executed on mobile devices, many of which demand high
computational power. Backed by the unbounded resources of
cloud computing, Mobile Cloud Computing (MCC) can meet
the demands of even the most computationally and resource-
intensive applications. Although, MCC has helped many appli-
cation developers to overcome the limited resources of mobile
devices, it has also created a new set of challenges, such as
the possibility of high network latency and low bandwidth
availability between the mobile device and the cloud.

Mobile cloud computation offloading has become a promis-
ing method to reduce execution time and save battery life of
mobile devices. The process involves augmenting execution
through migrating heavy computation from mobile devices to
resourceful cloud servers and then receive the results from
them via wireless networks. The constraints of the mobile
devices in terms of execution power and battery life makes
the idea of offloading attractive. Unfortunately, offloading to
public cloud infrastructure is not always guaranteed to be
time efficient and energy conserving [3]. When the network
bandwidth is fairly limited, it may be too slow to transmit data

between mobile devices and remote servers; when the network
status is highly unstable, maintaining a connection to a cloud
might consume more energy than local computation.

This paper presents Multisite Adaptive Mobile Cloud
(MAMoC)-Android, a mobile client framework which allows
an Android mobile device within the shared environment
to offload its tasks (classes or methods) to other external
platforms including nearby mobile devices running Android
OS, fixed edge devices (also called cloudlets[4]) such as
laptops and desktops or public cloud instances such as AWS
and Microsoft Azure. The objectives of our proposed solution
include performance enhancement in terms of computational
time by offloading resource intensive computations to more
powerful external resources, energy efficiency by reducing
the computational overhead on the mobile device, context
awareness by making smart offloading decisions considering
the associated cost of computation and offloading delay, code
reusability by following a highly modular approach, and high
adoptability by keeping the adoption of the application model
easy for the application providers.

The main contributions of this work are:

1) We present an enabling mechanism for context-adaptive
computation offloading to support resource-constrained
mobile devices with multiple destination clouds.

2) A dynamic offloading decision making algorithm taking
into consideration calculated offloading scores of the
mobile device and connected nodes and past local and
remote executions.

3) The design and development of an Android offloading-
enabled framework that can be adopted by developers
to build Mobile Edge Cloud (MEC) [5] applications.
Moreover, we have established a lightweight runtime
environment which is under 200MB in size to serve the
offloading requests from the mobile applications.

The rest of this paper is organized as follows: in Section II
we present related work and what differentiates our work from
the current mobile computation offloading frameworks. The
design and implementation of our framework is presented in
Section III. Section IV presents the evaluation of the proposed
framework through running three demo applications. Finally,
conclusion and future works are discussed in Section V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/210589034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. RELATED WORK

The goal of offloading computation from a mobile device
to more powerful surrogates has been looked at for many
years now for performance gains and reducing energy con-
sumption of the mobile devices [6], [7], [8]. In a recent
comprehensive survey [9], authors focus on Mobile Cloud
Computing augmentation frameworks with a discussion of
pertinent research challenges in MCC augmentation such as
service heterogeneity and service context-awareness among
others. Other research efforts investigated frameworks which
allow the cloud to move closer to the user in the form
of cloudlets [4], [10]. Other approaches include a group of
nearby mobile devices to leverage lower end devices thus
the formation of a local mobile cloud [11] also referred as
Mobile Device Clouds [12] and Mobile Edge Clouds [13].
Authors at [14] proposed a context-aware offloading scheme
and considered all the cloud resource types (nearby mobile
devices, cloudlets, and public cloud) as candidate offloading
destinations.

Many early work in the area of Mobile Cloud Computing
only considered offloading decision between mobile devices
and public cloud services. Most existing MCC proposals
concentrate on single-site offloading [6] i.e., offloading ap-
plication’s parts from the mobile device to a single server.
However, as the number of surrounding devices and cloud
computing and storage increases, it is more common that an
application can be executed on multiple servers [15]. It is
shown that we can obtain better performance from multisite
offloading. Therefore, multisite offloading is considered as a
generally realistic model in this work.

Most of the research work in the area of mobile computation
offloading involves designing intelligent decision engines to
predict the execution time and energy consumption of an
Android mobile computation and decide whether to offload
to external resources based on the measurements [16][17].
There are also research attempts in reducing the overhead
of setting up the external servers to enable offloading for
mobile devices. Researchers of [18] use LXC containers
to reduce the offloading Virtual Machine sizes and startup
time of runtime environments. Unikernels are also used in
[19], it is demonstrated that the runtime is more lightweight
in bootup time, memory footprint, image size and energy
consumption compared with traditional runtime like Android
VM or Android container.

The differences between our framework and other frame-
works in the literature is in the fact that most of the offloading
systems in the literature are built with single-site offloading in
mind. We leverage the constrained mobile devices with a wide
range of external resource providers including nearby devices,
edge devices, and remote cloud servers. Moreover, we do not
require a specialized Android x-86 1 server to be run in the
server side. We can use any kind of general-purpose server that
is capable of installing Python and openJDK environments.

1http://www.android-x86.org/

Figure 1: MAMoC task offloading execution workflow

We have provided two lightweight Docker images 2 3 that
only take few seconds to build and run to receive requests
from mobile devices. Another advantage of using a general-
purpose server would be to allow serving other clients which
are not running Android OS such as iOS and Windows Phone
mobile users.

III. DESIGN & IMPLEMENTATION

Our objectives for MAMoC include improving the running
time of the compute-intensive tasks on the mobile devices as
well as saving energy consumption. MAMoC is designed to
allow mobile devices to discover other surrounding devices
over standard Local Area Network in infrastructural Wi-Fi
using an access point or peer-to-peer Wi-Fi. Figure 1 demon-
strates the offloading execution workflow in our system. When
an offloadable task is invoked in the mobile application, the
offloading decision engine has to decide whether to execute
it locally or offload it to remote resources, we will further
discuss the decision making process in Section III-A3. A more
detailed explanation of offloading procedure in our framework
will be described in Section III-B.

A. Components

1) Service Discovery: After the framework is initialized,
service discovery is performed. Each mobile device can
advertise services and discover what services other nearby
devices on the local network are offering. A browser object
in a host device searches for peers which have an advertiser
object. Android provides helper libraries for managing Device-
to-Device (D2D) communications. This can be done using
infrastructural Wi-Fi, where the devices are connected to the

2https://hub.docker.com/r/dawan/mamoc_server/
3https://hub.docker.com/r/dawan/mamoc_router/

same Access Point using Network Service Discovery (NSD)
4 or Wi-Fi Peer-to-peer 5 for direct D2D communications.

2) Profilers: This component collects real time information
of the devices including hardware, software, and networking
related context information. This allows the framework to have
sufficient information about the connected devices. This eases
the process of offloading decision making. Once a new mobile
device or a remote server join the framework, it goes through
a set of profiling mechanisms using the following profiling
subcomponents:

• Device Profiler: Profiling hardware status of mobile de-
vices is an essential step towards taking suitable offload-
ing decisions. We collect the number of CPU cores, The
current and maximum frequency of CPU, available and
total RAM. For the host device and the discovered nearby
devices, we monitor changes in battery of the device. We
check the state of the battery (charging or not charging)
and the level of battery (0-100).

• Network Profiler: The objective of this profiler is to
measure the quality of the network connection between
the mobile device and connected remote nodes. Unpre-
dictable communication link is the main bottleneck in
making adaptive computation offloading decisions, since
the offloading delay and energy consumption vary based
on the quality (bandwidth, latency) of the communication
link. Consequently, whether to offload or execute locally
decision may change due to inconsistent communication
link. On the mobile device, we continuously monitor
the network status changes in the mobile device using
ConnectivityManager 6. To aid the offloading decision
making, network profiler also measures the Round Trip
Time (RTT) between the host device and the connected
nodes. All the RTT values are recorded along with other
execution details in a private database in the mobile
device for future references.

3) Offloading Decision Engine: The engine is fed with the
metrics collected from profilers and it is used by the frame-
work to check whether to offload a task to other devices or ex-
ecute it locally. The engine also depends on the past offloaded
and local executions which are saved in a private database in
the mobile device. The decision is made according to the steps
shown in Algorithm 1. We have statically defined the values
for maxLocalExecutions and maxRemoteExecutions to be 5.
These values are used against the five most recent consecutive
local or remote executions. We calculate normalized offloading
scores for each of the connected nodes in our framework
using an Analytical Hierarchy Process (AHP) multi-criteria
method [20]. We use price, speed, bandwidth, availability, and
security as criteria for our alternatives (offloading sites). The
price is a cost criterion whereas the others are benefit criteria.
We assume the priory of importance is ranked as: bandwidth

4https://developer.android.com/training/connect-devices-wirelessly/nsd
5https://developer.android.com/training/connect-devices-wirelessly/nsd-

wifi-direct
6https://developer.android.com/reference/android/net/ConnectivityManager

> speed > availability > security > price in performing the
pair-wise comparisons. However, the priority of these five
criteria can be various in other situations. After calculating
the weights of each criterion (Bandwidth: 0.4072, Speed:
0.3885, Availability: 0.1083, Security: 0.05729, Price: 0.0384),
the final ranking of the offloading sites will be generated
using our evaluation matrix considering all the five criteria
simultaneously.

We have created an Android service to make offloading
decision based on run-time information collected by the
aforementioned profilers. We use a combination of network
connectivity information and historical data of task offloading
to make an offloading decision, Algorithm 1 demonstrates
the steps involved in offloading decision making. Every time
an offloadable task is initiated, the engine determines if it is
beneficial to offload it. Because of the uncertainties inherent
in the mobile environment, the offloading decision takes risk
into consideration. In case a bad decision has been made, it
will also adjust its strategy with new information available.

Algorithm 1 Task Offloading Decision Algorithm

Input: taskName, localResults, remoteResults, nodes
Output: ExecutionLocation

1: selfNode = getSelfNode()
2: localScore = getSelfOffloadingScore()
3: nodeScores = getOffloadingScoresforNodes(nodes)
4: maxScore = getMaxOffloadingScore(nodeScores)
5: for result in localResults do
6: if result.taskName is taskName then
7: localExecutions.add(result)
8: end if
9: end for

10: if localExecutions > maxLocalExecutions then
11: if remoteResults is empty OR localScore < maxScore

then
12: return nodeScores.objectFor[maxScore]
13: end if
14: end if
15: for result in remoteResults do
16: if result.taskName is taskName then
17: remoteExecutions.add(result)
18: end if
19: end for
20: if remoteExecutions > maxRemoteExecutions then
21: if localResults is empty OR localScore > maxScore

then
22: return selfNode
23: end if
24: end if

B. Implementation

In MAMoC-enabled mobile applications, Each task is iden-
tified by a unique ID which will be looked up in the remote
server to check if it is previously been offloaded. All the
annotated (offloadable) tasks are indexed and saved in a

Table I: Comparing previous and current work

Aspect previous work[21] current work
Mobile OS iOS Android

Goal Time saving Time and energy saving
Server Simple Sophisticated

Client language Swift Java
Server language Swift Python

metafile during the launch of the application. This allows for
an easy retrieval of the source code of the task when it is
needed to be sent over to the remote server. This procedure
depends on the offloading service provider. If the offloading
execution location is a nearby mobile device, we will simply
use Java Reflect to execute the task in the connected mobile
device. However, if the location selected by the offloading
decision engine is an edge device or a public cloud instance,
we need to retrieve and send over the Java source code of the
offloaded task.

In our previous work [21], we used Swift programming
language to develop a multisite offloading framework for iOS
mobile devices. The differences between our previous and
current work are shown in Table I.

1) MAMoC Client: We have implemented our client
library in Android Studio and distributed it to Maven-
Central repository7, which can be added to any An-
droid development application or plugin using Android Stu-
dio’s Gradle mechanism. Once added to an application’s
build file, the developer has full access to our API pub-
lic methods (e.g. mamocFramework.start(), mamocFrame-
work.execute(ExecutionLocation.EDGE), and many others).

Application developers can use Java Pluggable Annotation
Processing API to annotate the heavy tasks with @Offloadable
annotation. This can be seen as a metadata added to the source
code and is assigned to any class or method that can be
offloaded to external candidate nodes without depending on
any native library components in the mobile OS. An example
class is KMP [22] class which is purely dependent on Java
calls and can be executed on any node with a JVM interpreter.
If the computation of text search problem is done in a method
which is invoked in an Android activity then the method
is annotated instead. The @Offloadable annotation has two
boolean optionals:

• parallelizable: The tasks of some embarrassingly parallel
programs can be run independently. There are no depen-
dencies between the subtasks of the task. An example is
a text search task which can be split across a number of
computing nodes without any data exchanges between
them. The offloading node can partition the task (the
text file in this instance) and send it over to external
resources. After the results are returned, they are merged
and presented as one result the same way it is presented
as if the execution were to happen locally.

• resourceDependent : The tasks which are dependent on
resources need to be available at the time of processing.

7https://search.maven.org/

Examples of resources used in mobile apps can be in
the form of text files (word search and sorting workloads
in word processing apps) , images (face detection and
recognition apps), audio files (translation apps). The
resource files in Android apps are statically added to
Assets folder or the assigned resources directory which
include XML files for layout design and global values.
Any @Offloadable class or method, which has set this
optional element to true, needs the data to be present at
the remote site before being processed.

2) MAMoC Server: Our server is written in Python with
Java code execution support using a JVM interpreter. The
two components of the server side include a router and a
custom server. For routing client requests, we use Crossbar
8 while Autobahn 9 is used for handling Remote Procedure
Calls and Publish/Subscribe events. Routers are the core
facilities of Crossbar, responsible for routing Web Appli-
cation Messaging Protocol (WAMP) 10 Remote Procedure
Calls (RPC) between callers and callees, as well as routing
WAMP Publish-Subscribe (PubSub) events between publishers
and subscribers. We allow a node to interact with the local
infrastructure available. This mechanism is implemented by
establishing a control channel for command streams and
monitoring services based on WebSocket. WAMP, our choice
of asynchronous transport and delivery system for message-
encapsulated commands, is a sub-protocol of WebSocket, in
its turn a standard HTTP-based protocol providing a full
duplex TCP communication channel over a single HTTP-
based persistent connection. We use psutil 11 for profiling the
remote servers for CPU power, available memory and network
information and publish it to the subscribed mobile devices.

The server component is capable of transforming Android
offloadable classes to Java source code. Algorithm 2 shows
the necessary steps taken when a new request arrives.

Algorithm 2 Decompiled Android code transformation in the
server
Input: sourceCode, resourceName, parameters
Output: result, duration

1: start ← startTimer()
2: code ← removePackageName(sourceCode)
3: code ← removeAnnotations(code)
4: className ← findClassName(code)
5: code ← addMainMethod(code)
6: if resourceName is not empty then
7: code ← addResourceCode(code)
8: end if
9:

10: result ← executeCode(className, code, parameters)
11: duration ← endTimer() - start
12: return result, duration

8https://crossbar.io
9https://crossbar.io/autobahn/
10https://wampws.org
11https://pypi.org/project/psutil/

An array of method parameters are sent over and their types
are dynamically invoked to be called in the main method of
the class. As an example, we demonstrate KMP class which
is in one of our demo Android applications. Listing ?? shows
the original Android code.

When the task is executed on the Android app, it is first
checked whether the remote procedure is already registered
by fetching the list of registered procedures in our server by
calling wamp.registration.list. If the procedure exists, we only
send the parameters and resource names (if any). Otherwise,
the following event will be published which the server is
subscribed to:

publish("uk.ac.standrews.cs.mamoc.offloading", "Android",
"uk.ac.standrews.cs.mamoc.SearchText.KMP", Decompiled
KMP SourceCode, "large.txt", searchKeyword)

After the server receives it, the Java code in Listing ?? will
be generated.

The result of execution and duration in milliseconds are
then published to the device which have subscribed to
uk.ac.standrews.cs.mamoc.offloadingresult topic.

Listing 1: NQueens on Android
package uk.ac . standrews . cs .mamoc.NQueens;
@Offloadable
public class NQueens {

int n;
public NQueens(int N){

this .n = N;
}
public void run () {
...

}

Listing 2: NQueens on server side
public class NQueens {
public static void main(String [] args){
new NQueens(Integer. parseInt (args [0])) . run () ;

}
int n;
public NQueens(int N) {
....

}

The complete source code of MAMoC and a short
documentation for setting up the different components
in the framework is publicly available online at
https://github.com/dawand/MAMoC-Android. The server
component which can also be pulled from Docker hub is also
available at https://github.com/dawand/MAMoC-Server.

IV. RESULTS & DISCUSSION

The main goals of the framework are to allow mobile
application developers to achieve a transparent automated
offloading to multiple destination clouds (mobile clouds and
public clouds) and device dynamic changes over the lifecycle
of execution of an application. MAMoC has been designed
to improve the execution time of mobile apps through better
offload decision making. This results in reduced energy con-
sumption and improved responsiveness. This section evaluates

MAMoC, demonstrating that it achieves its design goals. Our
main experiments have been carried out through a real-world
testbed deployment with three mobile applications.

A. Experimental Setup and Testbed

Our main experiment considers a scenario where a mobile
app is associated with a nearby mobile device, an edge
device, and a public cloud instance to improve energy and
performance on the users’ devices. Testing was done on two
stock Android mobile devices. For a slightly older and a lower-
end device, we used a Nexus 7 tablet released in 2013 with a
Quad-core 1.5 GHz CPU and 2GB of RAM; for a higher-
end mobile device, we used a Google pixel phone with a
Quad-core CPU (2x2.15 GHz Kryo & 2x1.6 GHz Kryo) and
4GB of RAM. A laptop is used as an edge device running
the containers on Docker Engine for Mac 12. The server
component was deployed on a AWS c4.4xlarge instance type.
We chose the AWS region (London) with the minimum latency
(23 ms) from our school network to deploy the remote cloud
instance 13. The detailed specifications of our testbed devices
are shown in Table II.

B. Demo Applications

We have developed three demo applications to measure
their completion time and energy consumption when executed
locally or offloaded to external resources.

• Text Search: It allows a user to enter a keyword and
select a file size from (small, medium, and large) to find
the occurrences of the word in the file. Knuth-Morris-
Pratt string searching algorithm [22] is used. This is
an example of an embarrassingly parallel task since it
can be independently run on multiple nodes hence the
parallelizable annotation optional value is set to true. The
external node that performs a full or partial search should
have access to the text file so we need to send the file
over hence the resourceDependent is also set to true. The
entered keyword in the mobile device by the user needs
to be sent over as a parameter to the remote resource.

• Quick sort: Quicksort Algorithm is used as the sorting
algorithm. The mobile device or the service provider
needs to fetch the content of the text file and apply the
sorting algorithm to the list of words. It does not have
any required parameters.

• N-Queens: The task is to enumerate the placements of
all N valid queens on an N x N chess board such
that no queen is in range of another. We have run 6
different N value tests from N = 8 to N = 13. It does
not depend on any resource so we only need to send
the required N (number of queens) parameter over in
offloading scenarios.

Text search and Quick sort examples are data dependent.
We have used three common files with different sizes. The
large text file consists of 1,095,649 words, the medium text

12https://github.com/docker/for-mac
13https://www.cloudping.info/

Table II: Experimental Environment Device Specifications

Node CPU (in GHz) RAM (in GB) OS Location
Nexus 7 1.3 (2-core) 1 Android 6.0 (Marshamallow) St Andrews, UK

Pixel 2.15 (4-core) 2 Android 9.0 (Pie) St Andrews, UK
Macbook Pro 2.5 (4-core) 16 Mac OS 10.13 St Andrews, UK

c5.4xlarge 3.0 (16-core) 64 Ubuntu Server 18.04 LTS London, UK

(a) Completion time of text search (b) Energy consumption of text search

Figure 2: Completion time and energy consumption for text search application

(a) Completion time of quick sort (b) Energy consumption of quick sort

Figure 3: Completion time and energy consumption for quick sort application

file contains 316,323 words, and the small text file contains
39,799 words.

C. Evaluation

We evaluate the gains in response time and energy obtained
by using MAMoC. We perform the evaluation by executing
the apps locally on the device and offloading them into all
available surrogates and measuring the associated response
time and energy consumption. We then let our proposed
offloading decision making algorithm select the surrogate for
offloading. We execute each local and remote execution 30
times and calculate an average.

1) Completion Time: Completion time of offloading task
to a remote server contains communication time in wireless

network and computation time in the server. As the increasing
of task size, the communication time and computation time are
getting larger. From Figure 2(a) we can observe that in terms
of total completion time, the local execution is preferable for a
small text file but not in the case of medium or large text files.
The minimum completion time for medium and large text file
scenarios was when the task was offloaded to nearby mobile
device due to low transmission overhead and high computation
capabilities. Even though, the mobile device candidate had the
highest offloading score, MAMoC checks if the task has been
executed previously from the database entries of that task and
its configurations. In this step, a simple heuristic is applied.
If the method has been executed for 5 times in a row in the
same location, e.g. edge, then MAMoC decides to run it on the

(a) Completion time of nqueens (b) Energy consumption of nqueens

Figure 4: Completion time and energy consumption for nqueens application

other site, e.g. locally. By doing this, we have a mechanism
to compare the executions and figure out if the task performs
better locally for small input values and if for big input values
it is more convenient to offload its execution on the remote site.
Similarly, in Quicksort example in Figure 3(a), we can note
that the edge device and public cloud instance have shorter
completion times . We see a similar pattern in the N-Queens
example in Figure 4(a).

2) Energy Consumption: There are essentially two method-
ologies for measuring the energy consumption of mobile
devices: hardware and software solutions [23]. Monsoon 14 is a
well-known power monitor used in many mobile computation
offloading systems. There are many software based mobile
device power modeling and analysis tools [24][25][26] that
are used in the mobile computation offloading literature.
Trepn Profiler 15 is an on device standalone profiling tool
which displays an overlay UI with real-time graphs for CPU
loads and battery data. App specific power consumption and
utilization can be saved in a CSV file in the mobile device.
The file can then be exported to a desktop computer for
offline analysis. We generated the figures presented in this
paper using this approach. One of the concerns of this profiler
is that it only works on Snapdragon chipset-based Android
devices powered with special component-wise sense resistors
and power management IC. In a survey on software energy
profilers [27], it is shown that Trepn profiler can achieve up
to 99% accuracy against the power measurement results with
the external devices.

Figures 2(b), 3(b), and 4(b) depict the energy consumption
variance with the task size. It is observed that our proposed
scheme outperforms local computing and full offloading to
the public cloud server. In the meantime, the offloading
method gets a better result especially when the task size
becomes larger. Therefore, for large computing tasks, our
method prefers to offload large partial computation tasks to the

14https://www.msoon.com/
15https://developer.qualcomm.com/software/trepn-power-profiler

more powerful surrogates to reduce mobile consumption. The
full offloading method is expected to have better performance
than local computing on energy consumption. Our approach
considers the trade-off between advantages of local computing
and full offloading methods, hence our scheme reduces energy
consumption in total.

It can also be noted that in some scenario executions,
MAMoC has a longer average completion time and energy
consumption than a particular offloading site. Nonetheless in
the long run, it can adapt to the dynamic environment changes
and make better decision making than always selecting local
execution or full offloading to a single site.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an adaptive multisite offload-
ing framework that takes into consideration dynamic context
changes in mobile cloud environment and offloads computa-
tion to multiple offloadees including nearby mobile devices,
edge devices, and remote cloud servers. We designed and
developed an Android library for mobile devices and a service
provider component. We evaluated the proposed framework,
and results showed that it can provide suitable offloading
decisions based on the current context of the local device
and past local and remote executions. We developed three
demo applications and conducted experiments on different
offloading scenarios and measure their completion time and
energy consumption.

Our future work includes adding support for offloading
intensive components of an application by performing dynamic
application partitioning both locally in the mobile device and
in the server side. In the client, the offloading framework
implements automatic annotation by using the profiler to
collect the necessary information and annotate the relevant
component in the application as an indication of availability
of partitioning. In the server, we will be using static analysis
tools and binary code instrumentation to generate a method
call graph of the application to identify the offloadable tasks.
Moreover, for our current evaluation of MAMoC, we statically

assign both maxLocalExecutions and maxRemoteExecutions
in our offloading decision making algorithm to 5. The maxi-
mum consecutive execution values could be updated dynami-
cally through learning mechanisms e.g. using techniques from
Reinforcement Learning.

VI. REFERENCES

[1] Cisco. (2015) Cisco global cloud index: Forecast and methodology,
2015?2020. [Online]. Available: http://bit.ly/25wqkDN

[2] Gartner. (2017) Gartner says 8.4 billion connected things will be
in use in 2017, up 31 percent from 2016. [Online]. Available:
http://www.gartner.com/newsroom/id/3598917

[3] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in 2013 Proceedings IEEE INFOCOM, April 2013, pp. 1285–1293.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct 2009.

[5] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R. Gandhi, and
P. Narasimhan, “The case for mobile edge-clouds,” in 2013 IEEE 10th
International Conference on Ubiquitous Intelligence and Computing and
2013 IEEE 10th International Conference on Autonomic and Trusted
Computing, Dec 2013, pp. 209–215.

[6] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer
with code offload,” in Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’10.
New York, NY, USA: ACM, 2010, pp. 49–62. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814441

[7] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings
of the Sixth Conference on Computer Systems, ser. EuroSys ’11.
New York, NY, USA: ACM, 2011, pp. 301–314. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966473

[8] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, April 2010.

[9] B. Zhou and R. Buyya, “Augmentation techniques for mobile cloud
computing: A taxonomy, survey, and future directions,” ACM Comput.
Surv., vol. 51, pp. 13:1–13:38, 2018.

[10] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proceedings of the Third
ACM Workshop on Mobile Cloud Computing and Services, ser. MCS
12. New York, NY, USA: ACM, 2012, pp. 29–36. [Online]. Available:
http://doi.acm.org/10.1145/2307849.2307858

[11] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
Enabling remote computing among intermittently connected mobile
devices,” in Proceedings of the Thirteenth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, ser.
MobiHoc ’12. New York, NY, USA: ACM, 2012, pp. 145–154.
[Online]. Available: http://doi.acm.org/10.1145/2248371.2248394

[12] A. Mtibaa, K. A. Harras, and A. Fahim, “Towards computational
offloading in mobile device clouds,” in 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science, vol. 1, Dec
2013, pp. 331–338.

[13] N. Fernando, S. W. Loke, and W. Rahayu, “Computing with nearby
mobile devices: a work sharing algorithm for mobile edge-clouds,” IEEE
Transactions on Cloud Computing, 2016.

[14] T.-Y. Lin, T.-A. Lin, C.-H. Hsu, and C.-T. King, “Context-aware decision
engine for mobile cloud offloading,” in 2013 IEEE Wireless Communi-
cations and Networking Conference Workshops (WCNCW), April 2013,
pp. 111–116.

[15] K. Sinha and M. Kulkarni, “Techniques for fine-grained, multi-site com-
putation offloading,” 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pp. 184–194, 2011.

[16] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and
E. Zegura, “Cosmos: Computation offloading as a service for mobile
devices,” in Proceedings of the 15th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, ser. MobiHoc ’14.
New York, NY, USA: ACM, 2014, pp. 287–296. [Online]. Available:
http://doi.acm.org/10.1145/2632951.2632958

[17] J. L. D. Neto, S. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and
S. Secci, “Uloof: A user level online offloading framework for mobile
edge computing,” IEEE Transactions on Mobile Computing, vol. 17,
no. 11, pp. 2660–2674, Nov 2018.

[18] S. Wu, C. Niu, J. Rao, H. Jin, and X. Dai, “Container-based cloud
platform for mobile computation offloading,” in 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), May 2017, pp.
123–132.

[19] S. Wu, C. Mei, H. Jin, and D. Wang, “Android unikernel: Gearing mobile
code offloading towards edge computing,” Future Generation Computer
Systems, 2018.

[20] N. Vafaei, R. A. Ribeiro, and L. M. Camarinha-Matos, “Normaliza-
tion techniques for multi-criteria decision making: Analytical hierarchy
process case study,” in Technological Innovation for Cyber-Physical
Systems. Cham: Springer International Publishing, 2016, pp. 261–269.

[21] D. Sulaiman and A. Barker, “Mamoc: Multisite adaptive offloading
framework for mobile cloud applications,” in 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
Dec 2017, pp. 17–24.

[22] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM journal on computing, vol. 6, no. 2, pp. 323–350, 1977.

[23] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 92–101.

[24] Google. Profile battery usage with batterystats and battery historian.
[Online]. Available: https://developer.android.com/studio/profile/battery-
historian

[25] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in 2010
IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), Oct 2010, pp. 105–114.

[26] D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. D. Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), Feb 2017,
pp. 103–114.

[27] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption of mobile
devices,” ACM Computing Surveys (CSUR), vol. 48, no. 3, p. 39, 2016.

