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A bstract

This MPhil thesis explores two themes associated with the dynamics of inertial particles in turbulent 

fluids. Firstly, we consider an optimal partial covering of fractal sets in a two-dimensional space 

using ellipses which become increasingly anisotropic as their size is reduced. If the semi-minor axis 

is e and the semi-major axis is <5, we set 6 = ea , where 0 <  a  <  1 is an exponent characterizing 

the anisotropy of the ellipses. The optimization involves varying the angle of the principal axis to 

maximize the measure covered by each ellipse. For point set fractals, in most cases we find that the 

number of points Af which can be covered by an ellipse centred on any given point has expectation 

value (Af) ~  d3, where j3 is a generalized of the fractal dimension . /3(a) is investigated numerically 

for various sets, showing that it may be different for sets which have the same fractal dimension. 

Secondly, we examine an analytically solvable limit of a model for the alignment of microscopic rods 

in a random velocity field with isotropic statistics. The vorticity varies very slowly and the isotropic 

random flow is equivalent to a pure strain with statistics which are axisymmetric about the direction 

of the vorticity. We analyse the alignment in a weakly fluctuating uniaxial strain field, as a function 

of the product of the strain relaxation time rs and the angular velocity uo about the vorticity axis. We 

find that when tsuj »  1 , the rods are predominantly either perpendicular or parallel to the vorticity. 

We also review the current literature on the dynamics of inertial particles in turbulent flows.
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Chapter 1

Introduction and Background

The central focus of this MPhil is to explore and contribute to current understanding of inertial 

particles in turbulent flows.

Shall I say, I have gone at dusk through narrow streets 

And watched the smoke that rises from the pipes 

Of lonely men in shirt-sleeves, leaning out of windows?...

T. S. Eliot [1]

1.1 M otivation

The problem of understanding the behaviour of particles suspended in fluid flows is not new. Since 

ancient times, humans have surely pondered the swirls, whorls and arabesques th a t are formed as 

smoke rises from fire; or the dynamics of billowing clouds as they drift across the sky. Indeed, there 

are manifold other physical instances in which microscopic particles are carried along by a moving 

fluid (advection), (figure 1.1 shows yet another example). In more recent times, the time scale of rain 

initiation is cited as being a prominent example of a problem that pertains to particles suspended in 

turbulent flows (see for example [2, 3, 4]). However, many other applications exist, from modelling 

blood flow [5] to planet formation [6 ] as well as countless industrial and manufacturing processes. 

This thesis, however, concerns only the mathematical properties of such flows. In particular we focus 

on two distinct questions: what are the isotropy properties of the distributions th a t particles take 

when suspended in quasi-turbulent flows, and how does particle geometry affect the mean orientation 

of particles in such flows. The work undertaken for this thesis has been published in two papers, both 

in the Journal of Physics A [7, 8 ]. All work was conducted under the supervision of Professor Michael 

Wilkinson of the Open University, while the write up stage was supervised by Professor Uwe Grimm 

of the Open University. Professor Michael Morgan of Seattle University was a collaborator for the
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Figure 1.1: This photograph shows the structure of minute bubbles on the surface of the sea shortly 
after a wave has broken.

work [7] which forms chapter 3.

The structure of the thesis is as follows: Chapter 1 concerns introductory themes, and motivates 

the work conducted. Chapter 2 consists of a survey of the current field. Chapters 3 and 4 contain 

the content of the published papers. We give a brief outline of the themes of these papers before 

proceeding to a more general introduction to the field.

Chapter 3 concerns the development of a new measure of anisotropy, the utility of which will be 

expounded. We consider an optimal partial covering of fractal sets in a two-dimensional space using 

ellipses which become increasingly anisotropic as their size is reduced. If the semi-minor axis is e and 

the semi-major axis is <5, we set <5 =  eQ, where 0 < a < 1 is an exponent characterizing the anisotropy of 

the ellipses. The optimization involves varying the angle of the principal axis to maximize the measure 

covered by each ellipse. For point set fractals, in most cases we find that the number of points AT 

which can be covered by an ellipse centred on any given point has expectation value (J\f) ~  efj, where 

(3 is a generalization of the fractal dimension (see 1.3.1). We coin the portmanteau spectal dimension 

for the function /3, because of links to specular light scattering from fractal sets. (3(a) is investigated 

numerically for various sets, showing that it may be different for sets which have the same fractal 

dimension.

Chapter 4 examines an analytically solvable limit of a model for the alignment of microscopic rods 

in a random velocity held with isotropic statistics. The vorticity varies very slowly and the isotropic 

random how is equivalent to a pure strain with statistics which are axisymmetric about the direction
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of the vorticity. We analyse the alignment in a weakly fluctuating uniaxial strain field, as a function 

of the product of the strain relaxation time ts and the angular velocity u  about the vorticity axis. We 

find that when tscj »  1 , the rods are predominantly either perpendicular or parallel to the vorticity. 

Finally, closing remarks are made in chapter 5.

1.2 P relim inaries

Inertial particles have non-zero mass and are transported when suspended in a moving fluid flow along 

paths which, in general, differ from particles of zero mass (tracers). Fluid flow is described by the 

Navier-Stokes equations (NS) which in the absence of external forces such as gravity is

9u  „  Vp __o
—  + u - V u  = ---------1- v V  u  (1.1)
ot p

where u  is the fluid flow velocity, p  the pressure, v  the kinematic viscosity and p the density. In

compressibility of the flow adds the further condition that V • u  =  0. Turbulent flow is characterised 

by the dimensionless Reynolds number Re. Typically, high Re  flows result in chaotic and irregular 

motion of the fluid. Turbulent flow is contrasted with laminar flow (typically small Re) in which flow 

is regular and smooth. Re is defined

Re  =  ^  (1.2)

where v is the mean fluid velocity, L  the typical length scale of the system and v  the kinematic 

viscosity. This relationship means that fast flowing fluids will typically have high Reynolds number 

and hence tend to be turbulent (although certain features can prevent this from being the case). The 

Reynolds number of a golf ball moving at around 35 m /s is approximately 1 x 105, and the flow is 

turbulent. However, there is no complete theorem which tells us whether a flow of a given Re  will be 

turbulent or not, indeed a complete understanding of turbulent flows remains one of the last unsolved 

of classical physics. Despite this, substantial progress has been made, perhaps most notably through 

the work of Andrey Kolmogorov in the middle part of the 2 0 th  century.

1.2.1 Kolmogorov 1941

One of the most important aspects of turbulent flow is the ’cascade’, neatly summed up by Richardson 

in his poem,

‘Big whirls have little whirls that feed on their velocity, and little whirls have lesser 

whirls, and so on to viscosity. ’ Richardson, (1922)

Cascades arise when energy is transferred from one scale to another due to a difference between the 

scale at which energy enters a systems and the scale at which dissipation occurs. A car moving at high 

speed through air has a typical length scale of around a couple of meters and yet viscous friction (the
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dissipative scale) is found at lengths of millimetres. The interval between the input and output energy

in space clumps together under gravity and the size of the average clump of m atter increases with 

time. In this case the process is termed an ‘inverse cascade’ because the process involves flux from 

small to large scales. Inverse cascades also occur in two dimensional turbulence but such processes 

shall not be considered further here, for more information see [9].

Figure 1.2: A schematic diagram of flow past a cylinder (viewed from above). Stream lines are 
visualised for increasing Reynolds number, a) shows smooth laminar at low Reynolds number, b) As 
the Reynolds number increases the symmetry of the flow is broken and instabilities manifest themselves 
as periodic structure c) the so Von Karman vortex street is established in which the periodic structure 
develops into vortices, d) the Reynolds number is so high that the flow becomes statistically isotropic 
(within the plume) in line with Kolmogorov’s theory.

In 1941 Kolmogorov (K41) postulated that for fully developed turbulence (the limit of very high 

Reynolds number) the turbulence is statistically isotropic. An additional assumption to  K41 theory 

is that of universality, tha t sufficiently far from boundaries all turbulent flows are statistically the 

same, and independent of the means by which the turbulence was generated. This is equivalent to the 

statement that any symmetries of the flow that are broken at intermediate Re  (see figure 1.2) will be 

restored, in a statistical sense, at the limit of very large Re. Experiment has largely supported this 

hypothesis [1 0 ].

is known as the inertial interval. Cascades need not always happen in this manner. Accreting m atter
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1.2.2 Computational Fluid Dynam ics

Simulating turbulence using computers is a highly complex task. Broadly there are two approaches 

one can adopt. Firstly, direct numerical simulation (DNS) seeks to directly solve the NS equations by 

means of a discretisation of space-time. The second approach, called synthetic turbulence exploits the 

statistical properties of turbulence and generates a random field which seeks to mimic the physically 

significant aspects of turbulent flows.

D N S

DNS methods are numerous and well developed. The general scheme involves [11] simplifying the 

differential operators of the NS equations by a discrete approximation to it. The following table 

(adapted from [11]) briefly outlines the various approaches that may be adopted. Generally speaking 

DNS requires a large amount of computing time compared to synthetic turbulence methods.

Method Abbreviation Description

Finite-Difference Meth

ods

FDM Replace differential operators by 

combinations of translation opera

tors that can be derived from Tay

lor series.

Finite-Volume Methods FVM Integral formulations replace Tay

lor series (which may not con

verge). Flux between discrete cells 

key.

Finite-Element Method FEM Approximates PDE (of NS equa

tions) with a system of ordinary 

differential equations

Spectral Methods SM Uses truncated series of orthog

onal basis functions. Fourier, 

Chebyshev or Legendre series 

common. High accuracy

Synthetic Turbulence

Synthetic turbulence simulations differ from DNS in the sense that they do no seek to reproduce 

all of the flow structure directly, but rather use statistical methods to produce the most important 

aspects of a flow (self similarity for example, as well as the form of probability density functions 

associated with the flow) Much work has been conducted on producing synthetic flows th a t capture 

the appropriate aspects of the flow (for an overview see [12]). Flows are created by generating random 

fields with statistics that match, in as many aspects as possible, those of turbulent flows.
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1.2.3 Clustering

The problem of understanding how inertial particles suspended in turbulent flows behave has received 

much attention and is of great importance to many physical systems. The distribution of tracer 

particles in turbulence is homogeneous, they will move ergodically following the flow and sample all 

positions within the flow with equal likelihood. However, when inertia is introduced into the particles 

their path will change, and inhomogeneity can arise. In order to understand this result, the relevant 

equations of motion are considered. Maxey and Riley [13] give us the following equation of motion 

for a particle moving in a fluid. The effect of fluid displaced by the particle is neglected for simplicity, 

r  is the position of a particle and 7  is the rate at which the particles relax towards the fluid velocity, 

and where w (r,t) is a randomly fluctuating velocity field satisfying the incompressibility condition 

V  • u  =  0

f  =  v  , v = —j[v  — u(r(t) ,  t)] (1.3)

Particles in the fluid flow cluster if the damping time-scale 7 - 1  is comparable to a time-scale charac

terising the velocity field. The importance of inertial effects can be characterised by a dimensionless 

parameter 77, this characterisation will be used in the discussions below. It is defined in terms of the 

correlation function of the velocity gradient experienced by a particle with trajectory r ( t ):

Two physical process have been identified which lead to inhomogeneity and clustering in the particle’s 

distribution. These process are known as preferential concentration and the sling effect (which is due 

to caustic formation; see section 2.3).

p>Pf

Pf

Fluid element (tracer)

Figure 1.3: Particles with greater density p than the fluid are advected out of vortices (the sling effect) 
and those with a lower density concentrated within vortices (preferential concentration)

Clustering in random flows was first described in one dimension by Deutsch [14]. Around a similar 

time Maxey and Riley [13] identified ’preferential concentration’ as a mechanism by which light 

particles are concentrated within regions of high vorticity and heavy particles in regions of high



strain. However, certain flows exhibit clustering where preferential concentration is absent, notably 

Kraichnan flows [15]. As Olla points out, ‘the concepts of strain and vorticity do not exist in one 

dimension. This casts some doubts on whether preferential concentration (or some generalized version 

of it) is an essential ingredient for inertial particle clustering in random flows’ [16]. As such no complete 

picture has been arrived at which describes all relevant mechanisms of particle clustering, despite a 

great deal of progress having been made. The current state of the literature on particles in turbulent 

flows will be outlined in chapter 2 .

1.3 K ey  concepts

In this section we expound key concepts that shall be used in this thesis. The explanations given here 

are not intended to be exhaustive explanations, rather summaries intended to aid the comprehension 

of the following chapters.

1.3.1 Fractal

The word ‘fractal’ was first coined by Mandelbrot in the 1970’s and is used to describe any structure 

which exhibits self similarity across a large number of distance scales. Formally a fractal has continuous 

scaling symmetry, but in physical systems such scaling cannot extend all the way down (figure 1.4 

shows a fractal with five generations). Any structure which exhibits self similarity tends to be called 

a fractal if self similarity extends over a few generations, and typically suggests th a t the underlying 

equations have an attractor (the limiting form) which would be a true fractal were it not for size 

limitations imposed by something that breaks the scaling symmetry such as cellular structure in 

plants, or molecular structure in snowflakes.

Cantor Set

The archetypal fractal is perhaps the Cantor set. It was first described by Gregor Cantor in 1883 

[17], long before Mandelbrot coined the generic term for self similar objects. The construction of the 

Cantor set is straightforward and very well known, but it shall be referred to in this thesis so it is 

worth covering. Consider the unit interval, remove the open central third and two intervals remain, 

spanning [0, | ]  and [ | ,  1]. The same process is then repeated to  these intervals and the central thirds 

of the remaining intervals removed. As this process is repeated more of the initial interval is removed, 

but some points remain. The remaining points are a fractal set of zero measure (which is considered 

in this thesis to be synonymous with mass) yet an infinite number of points. The first few steps of 

this process are illustrated in figure 1.4.

The fractal dimension of a set is a key concept which is employed in this thesis. The fractal 

dimension [18, 19] is a quantity that is ascribed to sets that are deemed to be fractal to capture their 

dimensional character, in the same manner that euclidean dimensions differentiates between planar
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Figure 1.4: The first few iterations involved in the construction of the Cantor set. The object has a
lo g  2limiting dimension of D = 3’

and solid figures by using integer number spatial dimensions. It is often (though not necessarily) the 

case that the fractal dimension of a fractal set will lie between whole numbers. There are multiple 

methods for determining the fractal dimension of a set, but for the purpose of clarity we start with 

the box counting dimension.

Box coun ting

L

Figure 1.5: Box counting for a photograph of a tree. Flere D0 «  1.8

The box counting dimension is perhaps the simplest of all the fractal dimensions to visualise. It is 

computed by the following method: First, cover the set in boxes of size L, noting how many boxes N  

contain some element of the set 1.5. Reduce L and repeat the process. The resultant box counting 

dimension is therefore defined thus, so long as the limit exists

Dn =  lim
log N

l->o log(l/L )
(1.5)

When applied to the simple Cantor set it is easy to see that the box counting dimension must be 

since it contains 2 copies of itself, each a third the size of the original object.
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M ultifractal

A multifractal (see [19] for examples) is any fractal which has more than one scaling length associated 

with it. Multifractals contrast the simple fractal (such as the Cantor set) discussed above as the 

density of points will vary from place to place within them giving them the appearance of a greyscale 

image. They can result from dynamic maps such as the Henon map (see [20] for details of the fractal 

dimension of this set) as well as the inertial particles in random flow model discussed in this thesis. 

The Renyi dimension Dq is a multicomponent dimension, using a subscript q which is sensitive to  the 

multi-scaling nature of multifractals and is defined as

Tz^iog J2Piq
D q = lim —-— (1.6) 

q L—> o log(l/L ) v ’

where q ^  1 and p gives the probability of finding a member of the set in a particular box. High 

density regions of the fractal are therefore weighted by the subscript q. For q = 0, D q is simply the 

box counting dimension. For simple mono-fractals with only scaling length associated with them all 

D q have the same value. However, for a multifractal D q will be a monotonically decreasing function

of q. The q =  1 case is known as the information dimension and will not be used in this thesis. In

this thesis we pay particular attention to the case where q =  2. This particular value is referred to as 

the correlation dimension and has multiple connections to other aspects of dynamical systems theory. 

It can be calculated using the Renyi form, or using an equivalent definition (see [21] for details of 

derivation)

D2 =  lim (1 .7 )
L—>0 log L  v '

where C(L) is the correlation integral, which is defined by

C(L) = lim X  (1.8)
N^-oo N 2

and g is number of pairs that are less than some distance L away from each other. For large L  

C (L ) ~  L D2. It is attributed the name correlation dimension because it captures the degree of 

correlation between adjacent points in the set.

1.3.2 Stochastic Physics

A key component of this thesis shall be the use of stochastic physics for the modelling of random flows. 

Here we review and introduce some concepts which will be essential for understanding the following 

chapters.
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Random  W alk

The random walk is perhaps the simplest stochastic process. The 1-dimensional random walk consists 

of a particle which starts at the origin. At each step of the process the walker either goes left or right 

(with equal probability) a distance of one unit. The probability that the walker will end up a distance 

d away from the origin after N  steps in the limit of large N is given by

M<*) = ^ ( ^ )  (1-9)

as is shown in [22]. Griinbaum [23] gives the expected distance travelled as

<d„) «  ^  (1 .1 0 )

which means that a random walker will escape to infinity, even if it has an equal chance going left 

or right. The continuous time and space limit of the random walk is known as a Wiener process. 

The correspondence between the random walk and Wiener process is analogous to the relationship 

between the binomial and normal distribution. The Wiener process provides a good model for random 

Brownian motion [24]

Langevin Equation

The Langevin equation for the motion of particle undergoing Brownian motion is

t> =  - 7  x +  (1 .1 1 )

where 7  is the drag force per unit mass and £(£) a random force with (£(£)} =  0  and (£([t)£(t')) =

2DS(t — t') where D is a diffusion constant.

O rnstein U hlenbeck Process

An Ornstein Uhlenbeck (OU) process acts in a similar manner as the Langevin equation, but has 

a damping term which forces motion back toward the mean. In contrast to the Wiener process 

which models the position of the Brownian particle the OU process can used to model the stochastic 

behaviour of the velocity of the Brownian particle. In this sense the OU process is applicable to 

so-called mean reverting behaviour, which is evident through the presence of the drift term.

x  =  —j x  +  77(f) ( 1 - 1 2 )

where (77(f)) = 0  and (r}(t)r](t')) =  2 DS(t — t')

12



Fokker-Planck equation

The Langevin equation is a special case of the more general equation

dz
—  = a (z , t )  + b(z,t)T(t) (1.13)

where a(z, t) and b(z, t) simply govern the relative importance of deterministic and stochastic terms 

and the stochastic force has the usual statistics (T(t)) =  0 and (T(t)T(t')) =  S(t — t'). Typically they 

can be determined from knowledge of the average behaviour of a physical system (see for example 

[25]). The equation that governs the evolution of probability density of a particular process governed 

by the OU process is the Fokker-Plank equation. This equation can be thought of as a generalisation 

of the diffusion equation with the addition of drift.

dP (x ,t)  _  d a P (x ,t ) l d 2b2P (x ,t)  . .
dt dx  2  dH  1 ' J

For a full derivation of (1.14) see [25].

1.3.3 Other Concepts

Baker map

It is worthwhile including a reference to a simple dynamical map. There are numerous complex maps 

in dynamical systems theory [26], but the Baker’s map provides an insightful example of the behaviour 

which is typical to many maps. The map is defined in the following manner

B ( x ,y ) =  <
(2x,y/2)  for 0  <  x < 1 / 2

(1.15)
(2x — 1 , 1 / 2  +  y / 2 ), for 1 / 2  <  x  <  1

and geometrically realised in figure 1.6 applied to a photograph. The reason why this particular map 

is called the Baker’s Map is evident, since the stretching and cutting of a kneading baker is evident. 

It demonstrates the mixing that occurs under the action of a dynamical map. The action of inertial 

particles in a random flow can be thought of as complex map, which mixes phase space in an analogous 

(but not reversible) manner.

Lyapunov E xponents

A Lyapunov exponent is a measure of the rate at which infinitesimally close regions of phase space 

diverge. For a one dimensional system, given an initial separation of SX o the Lyapunov exponent A 

is given by

|X (t)| «  eA1| « 0| (1.16)
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Figure 1.6: Baker’s map B applied three times to a photograph of the sunset. Mixing of the phase 
space is evident. (Photo credit: Ahmad N. Hejazy with permission)

For phases spaces of dimension 2 or greater the scalar A becomes a vector A. the largest component of 

which is termed the ‘Maximal Lyapunov exponent’ (MLE). The Cartesian product is a straightforward 

multiplication process applied to two sets X  and Y  which produces all ordered pairs (x,y)  where x  

and y are the members of sets X  and Y  respectively. For the sets we will consider, that is to say 

ones that are reasonably behaved, the dimension of sets produced by the Cartesian product is equal 

to the sum of the dimensions of the sets X  and Y  (for examples of sets which do not behave well, 

see [19] p.99). The fact that pairs are ordered means the product is necessarily non-commutative. 

The resultant set is two dimensional and is easier to visual in the example given in figure 1.7. The 

definition of the Cartesian product suggests that certain two dimensional sets may be decomposed as 

the Cartesian of two lower dimensional sets this shall prove useful in section 3

1.3.4 M ethods

We give a brief note of the methods used to produce the data in this thesis. Numerical work was done 

using FORTRAN and simulations run either locally or the Open University’s Cluster (IMPACT). 

More detailed descriptions of specific algorithms used is given in the appropriate sections. Analytic 

work that required it was using MAPLE 6. Figures were created using both GNUPLOT and Inkscape.

14
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Figure 1.7: The Cartesian product of two sets X  and Y ,  where X  and Y  are Cantor sets produces 
a two-dimensional fractal called the Cantor Dust
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Chapter 2

Literature Review

2.1 In troduction

The behaviour of water has been pondered for centuries by natural scientists. It has been argued 

[27] that the application of experimental methods to studying fluids began with al-Biruni and al- 

Khazini in medieval period. Further progress was made by Pascal, Newton and d ’Alembert and 

others, with classical mathematical studies of fluid mechanics culminating in the works of Stokes and 

Navier and the development of the Navier-Stokes (NS) equation (see equation 1.1) during the 1840’s 

using conservation considerations and first-order approximations. These equations are non-linear; a 

property that results in their general insolubility.

One of the earliest treatments of particles diffusing in fluid was given by Taylor [28]. However, studies 

concerning the behaviour of inertial particles that are suspended in turbulent or random (which 

approximate turbulence) came much later. The contemporary field typically takes as its starting 

point a review paper by J. K. Eaton and J. R. Fessler in 1994 [29]. This paper highlights the basic 

properties of preferential concentration and argues that mechanism is common to a wide range of 

instances of particle clustering in fluid flows. The central importance of the Stokes number St is 

identified. It also highlights some previous models of preferential concentration, but finds them to 

be inadequate. This observation seeds much of the following work in particle clustering in turbulent 

flows.

2.2 P articles in  S yn th etic  Turbulence

The first key paper of the early part of the 21st century is due to E. Balkovsky, G. Falkovich, and 

A. Fouxon in 2001 [30] which considers inertial particles that are suspended in a turbulent flow. It 

demonstrates that the distribution of the particles themselves can be conceived in terms of compress

ible flows, and highlights the importance that clustering has to a variety of physical and biological 

systems, most notably rain initiation in clouds.
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In 2003, J.Bec published a paper entitled ‘Fractal clustering of inertial particles in random flows’[31]. 

Two parameter are identified as being important for particle clustering, the Stokes number S t  and 

the P mass density ratio between fluid and particles. This paper is important for a number of reasons. 

Firstly, the fractal nature of the dynamical attractor upon which the particles sit is identified - this is 

important since it permits the use of Lyapunov exponent for its analysis. Secondly, the identification 

that maximal clustering occurs below S t  ~  1. Finally the importance of understanding the multi

fractal properties of the dynamical attractor is identified. This permits Bee’s follow up paper [32] 

in which a multi-fractal analysis is undertaken. It is important to remember that at this stage the 

particles considered are still collision-less ‘ghost’ particles. In this paper Bee highlights the distinc

tion between two and three dimensional flows. In two dimensions clustering is observed for a range 

of dynamical parameters (St  and j3), a behaviour which is absent in three dimensions (the dimension 

of the attractor always remains above two). Following numerical simulations Bee identifies deviations 

from self-similar scalingdn two dimensions.

Mehlig et al [33] in 2005 considered the trajectories of non-interacting particles suspended in a ran

domly moving fluid. The use of a random fluid to yield insight into turbulent flows is permissible 

largely due to Kolmogorov’s 1941 theory - provided particles are below the Kolmogorov length scale 

of a turbulent flow then the flow can be treated as random. This paper expresses the maximal Lya

punov exponent, which dictates whether or not clustering will occur, as the expectation value of a 

random variable evolving under a stochastic differential equation. An asymptotic expansion for this 

Lyapunov exponent is developed in terms of a dimensionless measure of the inertia of the particles e 

and a measure of the relative intensities of fluid velocity components. This allows the phase diagram 

of the system which has regions of ‘coalescence’ (regions where the particle density becomes very high) 

to be determined.

Bee et al [34] treat the mechanisms of preferential concentration and the sling effect coherently in 

order to estimate collision rates between inertial particles. Like Bee’s previous work, preferential 

concentration is taken to be the convergence of trajectories toward a dynamically evolving attrac

tor in phase space. However, collisions are neglected, allowing a Lagrangian dynamics approach to 

be adopted, and the collision rate between particles estimated in terms of the probability th a t two 

particles are closer than some distance r. Once again, maximal clustering is found when the Stokes 

number is of order unity.

Bee et al [15] 2006 also went onto consider the asymptotic limit of very heavy particles in turbulence 

by using the method employed by Mehlig et al [33] in which the two-particle dynamics is reduced to 

a non-linear system of three stochastic differential equations with additive noise. In two dimensions 

and the large Stokes number limit the probability distribution function of the longitudinal velocity 

difference between two particles is found to  be given by a power law with exponent —3. This result 

is supported by numerical work.
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The small Stokes number limit has also been considered. Wilkinson et al [35] produced an analytic re

sult for the correlation dimension of the distribution of inertial particles in a random flow. The result 

is produced as a power series expansion in a small parameter which describes inertial effects. In 2007

2 t )
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€

Figure 2.1: Adapted from [35]. Correlation dimension of particle distribution as a function of e
which is a small parameter which describes inertial effects. Each circle marks the point of numerical 
calculation of the correlation dimension, using very similar computational methods as used in this 
thesis. The solid line is the analytic result derived in the paper, and the dashed line a low order 
approximate form. It is interesting to note that the analytic solution does not capture the turning 
point at around e =  1

Bee and Chetrite [36] published a new model for the ejection of heavy particles from vortices based 

on a space-time discretisation of the dynamics. The model depends on two parameters: the fraction 

of space-time which rotating structures of the carrier flow occupy and the rate at which particles are 

ejected from them. It also gives the form of the PDF for the mass contained in a space-time cell. 

The work of Fouxon [37] is important as it is explicitly calculates hydrodynamic forces between the 

inertial particles. Such interactions give a repulsion between particles and therefore smooths out the 

two particle correlation function, which in the case of ghost particles saturates. The effect is most 

pronounced around S t  =  1, where the attractor is densest.

Many papers invoke methods which utilise Lyapunov exponents to calculate physically significant 

properties of inertial particle distribution. Such concepts were exploited by Duncan et al in 2005 [38]. 

Here a divergent power series expansion is produced which was summed using Pade Borel summation 

(see the paper for details) to give an expression for the Lyapunov exponent in the limit of small viscous 

damping rate. They argue that ‘Two distinct mechanisms compete (clustering onto fractal sets versus 

clustering onto caustics in an otherwise homogeneous background) and dominate in different regions
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of the parameter space’.

In 2007 Wilkinson [39] analysed the clustering of inertial particles, which was termed ‘unmixing’ (to 

distinguish the clustered distribution of particles with inertia from the uniform scatter that results 

from inertia-less tracer particles) by calculating Lyapunov exponents.Pade Borel summation was used 

to show that the correlation dimension of resulting particle distribution agrees with previous results. 

The rate of caustic formation (see section 2.3) was also investigated. Wilkinson later [40] produced 

an expansion which showed that the first order correction in the Lyapunov exponent does not vanish, 

due to the observation that the particles do not sample the flow space ergodically.

2.3 C austics

Figure 2 .2 : Caustics formed by light reflected from the surface of moving water onto the underside of 
a bridge. Caustic formation in the distribution of particles suspended in a randomly moving fluid is 
analogous.

When light refracts through surface of a gently undulating body of water onto the bottom  a fila

mentary network of light patches is produced. This focusing effect corresponds to singularities in the 

electromagnetic field and was first identified by Berry [41]. In an analogous manner, when folding of 

the phase-space manifold occurs, caustics can form in the distribution of inertial particles in random 

flows. Wilkinson and Mehlig [42] gave the first description of caustic formation in the context of 

inertial particles by relating the evolution of the patterns to the Lyapunov exponents of the particle
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trajectories. Caustics were also invoked by Bee et al in 2009 [43] in a study of collision rates of parti-

v.
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Figure 2.3: Adapted from [42]. Caustic formation is described by Wilkinson and Mehlig in the 
following way. (a) Particles are assumed to be distributed on a phase-space manifold, shown here 
as a phase curve in a one dimensional section. The phase curve develops folds (at time t\),  which 
become flattened due to the effect of damping (at t2). (b) The particle density at time t\ diverges on 
caustics, which are the projections of the folds. The caustics are created in pairs, with a high density 
of particles between each pair, (c) The particle distribution is shown in red, and the corresponding 
caustic curves are plotted as blue lines.’

cles. The authors discuss the relative importance of preferential concentration and caustic formation 

by examining DNS data.

2.4 D N S

Many papers have been written which collect data by DNS simulation [44, 45, 46]. The results provide 

as close to experimental data as is currently available, since particle tracking schemes are still in their 

infancy. Given the relatively large degree of specialisation required to reproduce DNS results, and the 

large computing power required DNS does not play any direct role in this thesis.

2.5 O th e r  P a p e rs  o f n o te

2.5.1 In ertia l range

Several studies have been conducted regarding particles which are larger than the Kolmogorov length 

scale. In this region the flow of fully developed turbulence is self similar, a fact reflected in the studies 

undertaken. Unlike random fields (particles smaller than the Kolmogorov length scale) particles do 

not form fractal structures, but do still distribute in-homogeneously. [46, 15, 47]
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2.5.2 Compressible flows

Falkovich et al [48] investigated inertial particles which are suspended in a fluid which is driven by- 

telegraph noise. Telegraph noise is defined as a noise that switches randomly between two fixed 

values. Various appropriate limits are discussed by the authors and a phase diagram with a transition 

between aggregation and disorder identified. The paper also highlights the connections between 

inertial particles in random incompressible flows and non-inertial particles in compressible flows and 

suggests the link between the two phenomena is evident in the limit of small inertia, insofar as 

incompressible flows are approximated by tracers in a compressible field.

2.5.3 Segregation

Poly-disperse suspensions of inertial particles, i.e those for which a range of particles with different 

Stokes numbers are present, were examined in DNS simulations by Calzavarini et al [49]. They 

describe such flows in terms of ‘segregation’ between heavy and light particles by introducing indicator 

of segregation. From this indicator a length scale quantifying the degree of segregation of different 

types of particles is determined.

2.6 G ranular gases

A related but independent area of study is th a t of the hydrodynamics of granular gases. The field 

considers the thermodynamic properties of interacting hard sphere (granular) material that is suffi

ciently rare to be modelled as a gas. The particles typically interact inelastically, and as such ‘cooling’ 

occurs. This is because it is possible to attribute an equivalent of thermodynamic tem perature to 

such ensembles. A key author in this field has been Fouxon. Specifically, Fouxon and co-authors have 

written extensively on the formation of finite-time singularities (clustering) in such granular gases [50] 

[51].
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Chapter 3

Spectal dimension of fractal sets

As discussed in section 1.3.1 the development of a definition of the fractal dimension of a set yields 

a great deal of information about the structure of the set under consideration. However, the fractal 

dimension yields no information regarding the isotropy of a fractal set. Indeed, two sets may have 

very similar fractal dimension but local structure that varies greatly. Figures 3.1 and 3.2 illustrate two 

different fractal point sets in two dimensions which have very similar correlation dimension, D 2 ~  1.73 

and D 2 ~  1.71 respectively. However, as one examines the fine scale structure one notices that the 

points of the set shown in fig 3.1 accumulate on fine, anisotropic filaments whereas figure 3.2 is locally 

isotropic. This shows that information about the local isotropy of a set that is not present in the Renyi 

measure of fractal dimension itself. This chapter will consider one possible measure of the anisotropy 

of fractal sets. We develop a scheme which we demonstrate can distinguish between isotropic and 

non-isotropic sets. Moreover, the level of anisotropy is quantified in a dimension which we call the 

‘spectaV dimension.

The sets illustrated in figures 3.1 and 3.2 are both point set fractals which result from two distinct 

models for physical processes. Figure 3.1 illustrates a model of light but not massless, neutrally buoy

ant particles which are suspended in a turbulent fluid flow. The inertia of the particles is sufficiently 

large to ensure that the particles are not simply advected (transported by the flow). As discussed in 

chapters 1 and 2, such particles are known to cluster [13] and that the attractor upon which their 

distribution converges is a fractal [52, 39]. The particle distribution is statistically isotropic, in that 

at a given point in space the time-averaged particle position will be uniform. However, at any given 

instant (such as th a t shown in 3.1) the particles can be seen to cluster on filamentary lines. This makes 

the local structure of the flow highly anisotropic, even though the global distribution is rotationally 

invariant. This behaviour occurs in general in attractors in low-dimensional dissipative dynamical 

systems, where the attractor has a local structure which is the Cartesian product of a line and a 

one-dimensional Cantor set [26].

The second example, figure 3.2 results from a model first described in [53] known as diffusion-limited
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Figure 3.1: Distribution of particles with significant inertia moving in a two-dimensional incompress
ible velocity field (the equations of motion are specified in section 3.2). The particles tend to cluster 
and for the parameters used in this simulation (see section 3) the correlation dimension is D 2 ~  1.76

aggregation (DLA). The DLA structure results from a system defined on a discrete two-dimensional 

lattice in which random walkers approach from infinity toward a central seed particle. When contact 

between the incoming particle and the cluster occurs, the walker sticks and another particle comes in 

from infinity. The process is repeated until the structure emerges (in this case 106 steps). Unlike the 

set shown in 3.1 the local structure of the DLA set cannot be approximated as a Cartesian product. 

Furthermore, a magnified subset of the DLA set does not appear anisotropic. Therefore, it is clear 

th a t two sets with very similar correlation dimensions may have markedly different isotropy charac

teristics. This difference in isotropy characteristics will have implications as to how the sets interact 

with light, this shall be explored more fully below.

3.0.1 Procedure

The following approach is used to characterise the local structure of a point set. First, take an element 

of the set and consider an ellipse centred on this point with its semi-minor axis of length e and its 

semi-major axis of length 5 = ea , where 0 <  a  < 1 . It is assumed that S <C £ and e <C £, where 

£ is the characteristic lengthscale of the system below which fractal scaling is observable, and that 

e eo, where eo is the lengthscale where the fractal scaling is limited by the finite number of points 

sampling the fractal measure. We then choose the orientation of the ellipse so that it maximises the 

number of other points which are contained within it. We denote the number of points under this 

optimally-oriented ellipse by N .  We repeat this for ellipses centred on other randomly selected points 

in the set, and compute the average value (Af) of the number of points which can be covered. In most
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Figure 3.2: Distribution of particles determined by a diffusion-limited aggregation (DLA) process.
This distribution has (approximately) the same fractal dimension as figure 3.1 D 2 ~  1.71.

of the examples of point-set fractals which we investigated, the mean number of points in this ellipse 

is found to have a power law dependence:

(N(e,a))  ~ e ^ a> , 6  = ea (3.1)

where the exponent /3 depends upon a. In the case where a  =  1, the ellipse is a circle, so th a t this 

case reduces to a definition of the correlation dimension: D 2 =  /3(1) (see the introduction and also 

[54]). In general /3 must decrease monotonically as a  decreases since the area of the ellipse decreases. 

A diagram of the way in which size of the ellipses varies with a  and e can be seen in figure 3.3.

0

1
a

o

1

o  o
o o

Figure 3.3: The above diagram shows how the size and shape of the ellipses used to cover the sets
changes with a  and e
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3.0.2 Partial dimensions

A related approach to the characterisation of fractal sets was proposed by Grassberger and colleagues 

[54], who considered covering a set (which is embedded in a d-dimensional space) with d-dimensional 

ellipsoids, with principal axes e*, ordered so that ci > e2 >  . . .  >  Their work emphasises the case 

where the local structure of the fractal is a Cartesian product of sets, with dimensions i/*, ordered 

so that vi > V2 >  . . .  >  fd- We hypothesise that the most efficient covering will occur when the 

ellipse is aligned with the direction of maximum density. Accordingly, the number of points covered 

is expected to satisfy

(Af) ~  e"iei + ^ 2 + - + ^ d  (3-2)

Examining the dependence of Af  upon the e* allows the partial dimensions Vi to be determined.This 

approach is mentioned in several papers [54, 55, 56, 57], with the motivation to characterise a fractal 

set by means of its partial dimensions, i^, satisfying Y^i=i vi — ^ 2 - These works do not prescribe 

how (or whether) the ratio e*+i/e ; approaches zero as e\ —>• 0. In our work this limiting behaviour is 

specified by the parameter a. Our numerical investigations encompass both fractal sets th a t have a 

Cartesian product structure, and those which do not.

3.0.3 S-Wave scattering

The physical motivation for considering the anisotropy structure has been alluded to, but we shall 

now examine this motivation more completely. It is known [58] that s-wave scattering of light from 

a fractal point set gives rise to  an algebraic relation between the scattering wavelength k  and the 

scattered intensity I,  such that

I(k)  ~  k ' D 2  . (3.3)

This relation arises from the fact that pair correlation scales as g{r—r') ~  \r—r f \D ~ 3 and the structure 

factor of electromagnetic radiation as f  f  drdr'g(r — r')etkr. Certain complications can occur if the 

fractal is highly ordered as Detmann [59] points out, but these will not be directly addressed in this 

thesis. If the particles have a strong tendency to accumulate along lines in two dimensions (like the 

example shown in figure 3.1), or on planes in higher dimensions, light may scatter specularly1 from 

these structures. Consider weak scattering of light with wavelength e which propagates as a beam of 

width 5. When the path length for light scattered from different particles is large compared to e, the 

scattering of light from Af  particles is incoherent, so that the contribution to the scattered intensity is

I  ~  Af. If, however, an ellipsoid of major axis 5 and minor axis e can be aligned to cover Af  particles,

then there will exist directions where the path length is less than one wavelength, so th a t this set 

of Af  particles scatters light coherently (see figure 3.4). In these directions where the condition for 

specular reflection is satisfied by the optimal covering ellipsoid, there is a greatly increased intensity

1of or relating to the properties of a mirror, from the Latin speculris.
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Figure 3.4: Scattering of a beam of light with wavenumber fc, width 5 and wavelength e: a cluster of 
Af  particles covered by an e-5 ellipse scatters light coherently when the condition for specular reflection 
is satisfied. The wavevector k'  satisfies the condition for specular reflection if the major axis of the 
ellipse is perpendicular to k  — k!. In this case the scattered intensity from the particles under the 
cover is increased by a factor of Af.

I  rKJ Af2. We coin the term spectal as a portmanteau of specular-fractal to indicate the degree 

to which anisotropy is present in a given fractal distribution. We investigate the dependence of the 

generalised dimension /3 upon the anisotropy exponent a. We show that the form of the function /3(a) 

can distinguish between different fractal sets which have the same value of the correlation dimension

T>2 =  /3 ( 1 ) .

3.1 Som e elem entary estim ates

3.1.1 Existence of the dimension

Before we proceed to numerical studies we consider some elementary estimates of the general form of 

(3(a), defined by equation (3.1), we address the issue of whether the spectal dimension exists. When 

a  =  1, the exponent /3 coincides exactly with the correlation dimension of the set (see section 1.3.1). 

For other values of a , we do not know of any general argument which proves th a t the dependence 

of the optimal covering Af  has a power law relation to the size e of the covering elements. For most 

of the point-set fractals which we examined we did find good numerical evidence that (Af) ~  e13 for 

small values of e (extending down towards values of e where the discrete sampling of the set becomes 

a limitation). Some interesting exceptions to this behaviour occurred in the case of inertial particles 

in a random flow, these will be discussed in section 3.2.
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Figure 3.5: In the case where the fractal set is a Cartesian product of two Cantor sets, with dimensions 
D x and D y in the x  and y directions, the optimal covering ellipse might be expected to have its major 
axis aligned with the direction corresponding to the denser set. In the case Dy > D x , so the major 
axis of the ellipse would be expected to align with the y-axis. Here we illustrate a sample of the actual 
optimal covers, which have a distribution of angles of their principal axes.

3.1.2 Upper and lower bounds

Next we give an upper bound on /3(a). Let us consider the expectation (TV") for the case where Af  

does not depend on the orientation of the ellipse. The total number of particles in a disc of radius 

5 is proportional to SDz, and if the set is locally isotropic then the coverage is independent of the

orientation angle of the major axis of the ellipse, and a fraction e/5 of these points lie within the

ellipse. If we recall that 5 =  ea we have (Af) ~  5'D2~1e ~  ei-<x+aD2 = €0+(a) for this isotropic fractal, 

so that

P+(a) = l  + (D2 - l ) a  . (3.4)

is an upper bound on the exponent /?. It is much harder to obtain a precise and non-trivial lower 

bound for /5(a), but the following argument suggests a possible form for a lower bound. Consider the 

case where the fractal measure samples a Cartesian product (see section 1.3.3) of two one-dimensional 

Cantor sets of dimension Dx and D y. We assume that Dy > Dx . Because the set is ‘denser’ in the 

direction of the y-axis, we expect that the optimal alignment of each ellipse is when its major axis 

is aligned with the y-axis (the same hypothesis was proposed in [54, 55]). The expected number of 

particles captured by a covering ellipse is then

(Af) ~  6 D*eD* = eaDy+D* (3.5)
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so that in the case where the fractal set is a Cartesian product, equation (3.5) implies that (3 = 

a D y +  D x. Now consider the smallest possible dimension which could be achieved according to this 

argument, if we allow the dimensions Dx, Dy of the component sets to vary so that D x +  D y = jD2. 

The greatest number of particles in the ellipse, and hence the smallest dimension, is obtained by 

setting Dy = 1 and Dx =  Z) 2 — 1. This gives a lower bound to the dimension for J92 >  1 of the 

following form

/0 _ (a) =  D 2 - l  +  a .  (3-6)

Since we do not consider sets of a dimension lower than 1 explicitly, this shall suffice.

The assumption that the covering ellipses align with the y-axis is not really correct, as evidenced by 

figure 3.5. It is plausible that the probability for an ellipses to be significantly mis-aligned decreases 

as e -> 0, but we were not able to obtain conclusive numerical evidence. We note th a t the argument 

leading to the proposed lower bound, /0-(a), is very similar to that presented in [54, 55] to motivate 

the concept of partial dimensions. Our numerical investigations, presented in section 3 below, will 

show that our proposed lower bound is a good starting point for discussion of /0 (a), but that the form 

of this function is non-universal.

3.2 N um erical investigations o f dynam ical fractals

The following section describes the numerical work done to calculate (3(a) curves for the various frac- 

tals we consider. In terms of numerical techniqnes._we_iised-EORTRAN-c.arry-ont-the-ca,lcnlations- 

The algorithms involved were of the ‘brute force’ approach, and did employ any novel techniques. 

A range of angles 6  (through which the covering ellipses were rotated) was used, and robust results 

obtained using 30 values of 0, at equal rotation increments. Each set tested had a least 1 million 

points, a random sample of approximately 1 0 % of these were chosen for each set and the average 

number of points contained for a given aspect of ellipse calculated, a  was incremented at either 0 .1  

or 0.05 depending on the rate of change of /0(a) for a given fractal (again robustness of the results 

was checked). For the deterministic Sierpinski fractals (see below) typically 7-10 generations of the 

fractal were used in the first instance, this was then increased to ensure that the results did not 

change for ‘deeper’ approximations to the underlying fractal. A maximum of 12 generations were 

employed. Each fractal took around 10 hours of computer time to analyse, but the cluster allowed 

for several instances to be computed simultaneously, dramatically speeding up the results. For the 

inertial particles model the simulation was run for sufficiently long to ensure that transient behaviour 

had died down. The longest calculation (of an extremely dense inertial particle set) took 14 days to 

complete.
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3.2.1 Particles in a random flow

Now we consider the numerical investigation of the fractals illustrated in figures 3.1 and 3.2 respec

tively. Figure 3.1 illustrates the distribution of independently moving inertial particles in a random 

velocity field. As mentioned in chapters 1 and 2 the equations of motion for the position of a given 

particle are [13]

r  = v  , v  = —y[u — u(r(£),£)] (3.7)

where 7  is the rate at which the particles relax towards the fluid velocity, and where u (r , t )  is a 

randomly fluctuating velocity field satisfying the condition for incompressibility; V  • u  =  0. Particles 

in the fluid flow cluster if the damping timescale 7 - 1  is comparable to a timescale characterising 

the velocity field. We used a random vector field with a very small correlation time, using the same 

definitions as in [35], where the importance of inertial effects is characterised by a dimensionless 

parameter, which was referred to as £ in that work, but which is denoted by 77 here. It is defined in 

terms of the correlation function of the velocity gradient experienced by a particle with trajectory 

r ( t ):

In figure 3.1, we showed a realisation of the long-time dynamics. The velocity is periodic on the unit 

square, and was generated from a stream function with correlation function 7/ > ( r , £ )  with statistics 

(■0 ( r , £ ) )  =  0 , (,ip(r,t)'ip(0,0)) =  A 2 exp(—|(r) |2 /2£2) exp(—t / r ) ,  with £ =  0 .2 , r  small and A  chosen 

such that rj = 0 .1 . The correlation dimension for this value of 7]  is D 2 ~  1.76 [35].

We examined whether the mean value of the optimal covering number, (A/’), shows a power law 

dependence upon e. The data shown in figure 3.6 show a good fit to a power law, for values of a  as 

low as 0.2. At very small values of a, the area of the ellipses decreases very rapidly as e —> 0, so that 

the values of (Af) become too small to give reliable results.

The program that was used in this thesis was written by Professor Michael Wilkinson. It works by 

calculating the velocity field which modifies initially stationary particles, as they are moved by the 

flow. The amount by which their motion is effected depends on a random number (generated using 

the same algorithm as mentioned above) which is added to the Fourier components of the particles 

velocity. The program was modified to output the particle positions at each timestep (or every 5 

timesteps) to allow the correlation dimension to be determined.

There were a small number of cases where we found that the covering data were not well fitted by 

a power law in e. These were confined to the inertial particles model, for small values of a  and for 

values of 77 where the value of D 2 is close to its minimum, which is D 2 ~  1.35 at 77 ~  0.7. Figure 

3.7 illustrates the case where the fit to a power law was the least good. We were unable to give an 

explanation for this phenomenon, but perhaps the effect is due to the presence of caustics, or other 

complex multifractal effects.
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Figure 3.6: The mean number of points in an optimal cover, (Af) as a function of e, for various values 
of a. The slope increases monotonically with a,  which ranges from a = 0.2 to a  =  1 in increments of 
0.1. These data, for the random flow model with 77 =  0.5, show excellent fits to a power law over a 
wide range of e. A comparable quality of fit was found in all of the other data.
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Figure 3.7: Same as figure 3.6, except 77 =  0.7, where D 2 ~  1.35. In this case the covering data are 
not a good fit to a power law in e for a < 0.3.
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Figure 3.8: (3(a) for inertial particles in a random velocity field, using a model defined in [35]. The 
curves are labelled according to the parameter 77 which quantifies the importance of particle inertia. 
The sold red line illustrates (3-(a) for 77 =  0.4 and 77 =  0.3, other /3_(a) lines are parallel to this one, 
passing through D 2 .

In figure 3.8 we show the (3(a) for this systems at several different values of the inertial parameter 77. 

Fractal attractors of dynamical systems typically have a local structure which is a Cartesian product 

of a Cantor set and a line due to the stretching and folding of the phase space (see 1.3.3). Following 

the discussion in section 3.1 we therefore expect that the exponent (3(a) should be given by equation

(3.6), that is (3(a) w /3_(ce). We find, however, that (3-(a) is not a very good approximation, and 

figure 3.8 shows that different (3(a) curves may be obtained for cases with the same fractal dimension.

3.2.2 DLA

We also investigated (3(a) for fractals generated by DLA, one realisation of which is illustrated in 

figure 3.2. The data for particle positions were simulated by Dr Michael Morgan of the University 

of Seattle. In the case of isotropic diffusion, the correlation dimension of the resulting cluster is 

Z>2 ~  1.71. The values of the slopes /3 extracted from least-squares fits similar to  those in figure 3.6 

are plotted in figure 3.9 as a function of a.

3.3 Sierpinski su b stitu tion  fractals

The examples that we considered in section 3.2 are both multi-fractal sets, and it is desirable to 

investigate (3(a) for a model which is a simple fractal, avoiding the complications th a t arise when 

dealing with multi-fractal sets [60]. Here we construct a class of generalisations of the Sierpinski 

carpet, which are simple fractals rather than multi-fractal measures. The construction th a t we use
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Figure 3.9: /3(a) for a diffusion limited aggregation (DLA) cluster. The curves function as a guide
for the eye.

is closely related to one proposed independently by Bedford [61] and McMullen [62]. We show that 

different elements from this class of sets can have different /3(a) functions despite having precisely the 

same value of D 2 =  /3(1)- 

We generate an approximation to a fractal set by a hierarchical process consisting of n  generations. 

We generate a set of M n points, where M  is an integer, as follows. The points lie in the unit square 

[0 , 1] <g> [0 , 1], and have coordinates of the form (X{,yi) =  ( i/A f, where Ah, N 2 are positive

integers satisfying Ah Ah >  M.

We define a ‘masking m atrix’ F with elements F^  as an Ah x N 2 matrix which has elements which 

are either 1 or 0, and we let M  be the number of non-zero elements of F. We construct the model 

set by the following recursive construction. First consider the ‘first generation’ set of M  points Xk, 

labelled by an index =  1 . . .  M , where a point is placed at ((i  — 1 )/Ah, ( j  — 1)/Ah) if Fij =  1- At the 

next generation each of these points is replaced by a set of M  points, based on a lattice with spacings 

Ah- 2  and N ^ 2 in the x  and y directions respectively, which are selected by the criterion th a t =  1 . 

In general, after n  generations each point Xk is replaced by M  points with positions #&/, where k' is 

an index of the (AhAh) n + 1  points, with positions

=  a=fe +  ( j - p L ,  A _ _ l )  . (3.9)

A point labelled by ( i , j )  added to the set if and only if F ^  =  1 .

As an example, consider the case where Ah =  AT2 =  3 and where F22  =  0 is the only element 

of F which is equal to zero, so that M  =  8 . Iterating this construction gives a version of the
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Figure 3.10: Examples of fractal sets generated by the construction defined in section 4. In all of
these examples, Ni = N 2 = 3. The Cantor set is then defined by listing the zero elements of the 
masking matrix: (a) F22 = 0, D q = In8 /ln3 , (b) F13 = 0, D q = In8/ln3, (d) F2 1 =  F22  =  F23 = 0, 
D q =  In6/ln3, (e) F \ 3 = F3\ =  F 33 =  0, D q =  In6 /ln3  . The lettering corresponds to figure 3.12

Sierpinski carpet set, illustrated in figure 3.10(a), with dimension D q =  In8 /ln3 . By varying the zero 

elements of the masking matrix, we can generate many other Cantor sets, some examples of which 

are illustrated in the other panels of figure 3.10. The resulting sets are clearly simple fractals (as 

opposed to multifractals, hence D q is the same for all values of g, hereafter we drop the subscript q). 

By making other choices of the masking matrix we can construct other Cantor sets with dimension

D = 2 In M  
\ n (N 1N 2) '

(3.10)

This construction allows us to create distinct fractal sets with exactly the same dimension, such as in 

panels (a) and (b) or panels (c) and (d) of figure 3.10. Moreover, by a suitable choice of the masking 

matrix, we can generate fractal sets which are Cartesian products (such as figure 3.10(d)), as well as 

those which are not (such as figures 3.10(a-c)). The routine specific to initialising the procedure in 

section 3.0.1 for determining j3{a) of these sets was not complex. To generate the fractals, two large 

arrays, for the x and y dimension, were generated (of 1 0  million blocks each), and each point tested 

for each generation of the fractal to see if it lies within the fractal specified by the masking matrix. 

The number of generations was picked to ensure that each fractal had at least a million points (this 

was discovered to be a robust number to do the calculations with), so for a single deletion fractal (A 

or B  in 3.12) 7 generations yields 8 8 =  2,097,152 points). Next, the ellipses were generated for a 

range of a  values and a random subset of points chosen (using an off-the-shelf FORTRAN random 

number generator). Each ellipse is rotated about the selected point a simple test to discover the 

optimal orientation carried out using IF statements. Tests to check that the ellipses do not intersect 

the outer boundary of the fractal are also undertaken for each selected point. Once the number of
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Figure 3.11: /9(a) for the generalised Sierpinski model for masking matrices of non-trivial cartesian 
product sets D ,I,and L with the respective estimates for their /3(a) curves.

points in each selected ellipse is determined this is added to an averaging array, which then provides 

the value from which the gradient, /3(a) is calculated. We investigated the function /3(a) for sets 

which are produced by this generalised Sierpinski construction. The results are illustrated in figure 

3.12, for seventeen sets produced using a 3 x 3 masking matrix. The key at the right hand side of 

the figure indicates the pattern of deletions in the masking matrix, ordered by the number of deleted 

points.

First we discuss those sets which are a Cartesian product. These include examples D, I, L, P  and 

Q in figure 3.12. The simplest example is set (d) in figure 3.10, which is also example D  in figure 3.12. 

For this set, equation (3.6) predicts th a t /3(a) = D — 1 +  a , which shows excellent agreement with 

figure 3.12. By setting Ni = N 2 =  3 and F12 = F21 = F23  = F32  = F2 2  =  0 we produce a set with 

dimension D  =  In4/ln3  =  21n2/ln3, which is a Cartesian product of two Cantor sets of dimension 

D x =  D y = D/2  = In2/ln3. This is example I in figure 3.12. Example L is closely related: this set 

is similar to example I, rotated by 7r /4. These data show quite poor agreement with the prediction 

from equation (3.5), from which we expect /3(a) =  D(1 +  a ) /2  (but good agreement with each other). 

This is probably because this is a degenerate case, where D x = D y, whereas the argument used to 

obtain (3.6) assumes that D y > Dx . The other two examples in figure 3.12 which are Cartesian 

products very simple: P  is a Cartesian product of a line and a point, and Q is the product of a 

Cantor set of dimension In2 /ln3  and a point. For these examples there is excellent agreement with 

the predictions of equations (3.5) and (3.6), which indicate straight lines of slope unity and In 2 /ln3  

respectively. We also investigated an example which is a Cartesian product of two Cantor sets with 

different dimensions, namely N\  =  4, N 2 = 3, with non-zero elements F u  = F \ 3 = F41  =  F 43 =  1

i ------------ 1------------ 1------------ 1------------1------------ 1------------ r
D +
I x 

L * 
predicted P(a) for D 

predicted P(a) for I and L ---------

• r  -

II
ED1
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Figure 3.12: /3(a) for the generalised Sierpinski model.The curves are labelled by a key giving the
zero elements of the masking matrix.

(which is the set illustrated in figure 3.5). This is the Cartesian product of two one-dimensional 

Cantor sets with dimensions Dx =  |  and D v =  In2/ln3. We find that for this set the generalised 

dimension is /3(a) =  D x + a D y , also in agreement with (3.5). We show /3(a) in 3.11 for the non-trivial 

cases, along with respective predicted form.

We also investigated (3(a) in cases where the set is not a Cartesian product. These differ from the 

data for the Cartesian product sets. They can be organised into sets which have apparently identical 

/3(a) curves. In most of the cases examined in figure 3.12, all of the sets which have the same value of 

M  (and hence of D 2 ) have /3(a) curves which are identical, to within numerical fluctuations. Examples 

of such groups are (M =  8  : A, B), (M =  5 : G, F), (M =  4 : J ,K ), (M =  3 : N, O). We show these 

cases in figures 3.13 and 3.14 for clarity. Note, however, that for M  =  4, set M  is not a Cartesian 

product and yet is clearly different from J and K. One notable feature of all of these examples is that 

the slope of /3(a) is close to unity at a  =  1. This feature is shared by the random flow and DLA data.

3.4 Sum m ary

This investigation is the first systematic study of fractals using a cover set which becomes more 

anisotropic as it is made smaller. We characterised the efficiency of covering by a generalised dimension
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Figure 3.14: /3(a) for the generalised Sierpinski model for masking matrices J ,K ,N  and O.
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(3(a). We found that different sets with the same correlation dimension D 2 can have different (3(a).

In the case where the fractal is locally a Cartesian product of a line and a Cantor set, a heuristic 

argument (similar to that given in [54] and subsequent papers) suggest that /3(a) should be given by

(3.6). We find that this expression works well for simple model sets of the type considered in section 

4. In the case of clustering of inertial particles, however, we find that equation (3.6) does not give a 

good approximation to (3(a).

In three or more dimensions there may also be a tendency for particles to accumulate on filamentary 

structures, as well as on planes. This could be characterised by defining the exponent (3 as a function 

of two parameters, a i ,  a 2 defining a covering ellipsoid with principal axes e, eax and e“2. Studies of 

this kind would constitute a larger study, but be essential for understanding the interaction of light 

with complex fractal structures.
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Chapter 4

A M odel For Alignment Between  

Microscopic Rods And Vorticity

We have seen in the previous chapter that complex fractal structures result from inertial particles in 

a random velocity field. In the following chapter we consider a different but related situation. Instead 

of considering particles which are modelled as points we take the suspended particles to  be elliptical, 

rod like particles. The outcome of the work is an exactly solvable analytic model for the alignment of 

the rods with the flow (the exact parameters of which shall be described in more detail below). The 

analytic model for the rod alignment is compared to numerical simulations, and very strong agreement 

established. Questions regarding the orientation of microscopic rods in random flows have relevance 

in several industrial applications, most notably in paper production.

4.1 In trodu ction

Microscopic rod-like bodies suspended in a fluid flow rotate in response to the velocity gradient of 

the flow. This degree to which particles align can influence the optical or rheological properties 

of the suspension. The equation of motion for the orientation of microscopic ellipsoidal particles 

was obtained by Jeffery [63]. The implications of this equation of motion for the orientation have 

been considered by numerous authors: for example [64] discusses the motion of general axisymmetric 

particles, [65] considers the role of Brownian motion, [6 6 ] discuss the alignment fields in (respectively) 

regular and chaotic flows, and [67, 6 8 ] are experimental contributions. There are, however, still aspects 

which are not thoroughly understood. One surprising observation based on DNS studies of Navier- 

Stokes turbulence is that in isotropic fully-developed turbulence, rod-like particles show significant 

alignment with the vorticity vector, but negligible alignment with the principal strain axis [69]. This 

was given a qualitative explanation in [69], but it is desirable to have a model for this surprising 

effect which can be analysed quantitatively. This chapter considers an exactly solvable model for the
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alignment of rods with vorticity. The formulation of this model was motivated by observations about 

the velocity gradient field of turbulence. It has been observed that the fluctuations of the vorticity 

vector decay much more slowly than fluctuations of the rate of strain: [69] shows evidence that the 

correlation functions of strain and vorticity both show approximately exponential decay, with decay 

times r s «  2.3t k  and rv ~  7.2t k  respectively, where tk  is the Kolmogorov timescale of the turbulence 

(see 4.1). Similar results were reported earlier by Girimaji and Pope [70] and Brunk, Koch and Lion 

[71]. This observation suggests that it may be helpful to consider the limit as rv —> oo, that is the 

limit where the vorticity is frozen, in order to explain the observed alignment. We use an Ornstein- 

Uhlenbeck process to model fluctuations of the velocity gradient, and consider the limit where the 

vorticity evolves very slowly. This model is solved exactly in the limit where the strain which occurs 

over the timescale rs is small. The alignment of the rod direction n and the direction of the vorticity 

vector eu can be described by computing the probability density function (PDF) of z =  n • ew. We 

find that in these limits the PDF of z, denoted by P (z), can be computed exactly. This analytically 

solvable model has a single dimensionless parameter, £ =  curs, where co is the angular velocity of 

rotation about the vorticity vector. We find that when £ ;§> 1, the probability density has two sharp 

peaks, one at z  =  ± 1  (indicating perfect alignment with vorticity), the other at z  =  0  (implying 

that the rods are perpendicular to the vorticity). In the limit as £ —>• oo, the peak at z  =  ±1 

is higher than at z =  0 , but it is also narrower, with both peaks containing a finite probability. 

Section 4.2 discusses the model which will be solved: the equations of motion for a microscopic rod 

are considered in section 4.2.1, and the Ornstein-Uhlenbeck model for the velocity gradient of an 

isotropic random flow is described in section 4.2.2. Section 4.3 discusses a transformation of the 

equation of motion in which the isotropic velocity gradient is replaced by a pure strain field which is 

axisymmetric about the direction of the vorticity vector, and it discusses the parametrisation of such 

axisymmetric random strain fields. Section 4.4 considers the general solution for alignment of rod-like 

particles in axisymmetric strain fields, before specialising to the solution of the model developed in 

section 4.3. Section 4.5 summarises our conclusions. The analysis in section 4.4 is closely related to 

recent work by Vincenzi [72], who analysed the alignment of ellipsoidal particles in an axisymmetric 

Krainchnan-Batchelor model.

4.2 E quations o f m otion

4.2.1 Non-linear and linear equations of motion for rods

In 1922 Jeffrey obtained the equation of motion of microscopic rod-like particles in the velocity gradient 

that results from fluid flow by extending earlier work by Einstein. We consider microscopic objects 

advected in a fluid with velocity field u(r , t ) .  The objects are assumed to be neutrally buoyant, and 

smaller than any lengthscale characterising the fluid, but sufficiently large that their Brownian motion



need not be considered. A specific instance of this kind of physical situation would ice-crystals in 

clouds, they are too large for Brownian motion have an effect, but smaller than the typical length 

scale of turbulence in the upper atmosphere (see [2] for more information). The motion of the body 

is described by the position of its centre, r ( i) , and the direction of a unit vector aligned with its axis, 

n(t). The centre of the body is assumed to be advected by the fluid flow: r  = u (r , t ) .  The motion 

of the unit vector n  defining the axis of symmetry is determined by elements of the velocity gradient 

tensor, evaluated at the centre of the body:

* i ( < )  =  ^ ( r ( i ) , t )  (4.1)

where r ( t ) is the advected particle trajectory. As mentioned above, the equation of motion of the 

director vector of a microscopic rod-like body is [63]

^  =  A (t)n -  (n • A (t)n )n  . (4.2)

We assume the flow is incompressible, so that A h =  0. This tensor can be decomposed into a 

symmetric part S, which is termed the strain rate, and an antisymmetric part fi, which is the vorticity 

tensor:

a  = s + n , sT = s , nT = -n  . (4.3)

If the velocity gradient matrix were constant in time, the equation of motion (4.2) would imply th a t the 

vector n  would become aligned with the eigenvector corresponding to its largest eigenvalue. However, 

numerical simulations of equation (4.2) for velocity fields of fully developed turbulence show a different, 

and unexpected, phenomenon [69]. It is found that the direction vector n  has negligible correlation 

with the dominant strain eigenvector, but that it does have a quite pronounced correlation with the 

vorticity vector, uj. Our analysis of the alignment due to the motion (4.2) will use an observation due 

to  Szeri [73]: the non-linear equation (4.2) can be solved by considering a companion linear equation 

for a vector x(t),  which evolves under the action of a time-dependent matrix M (i):

x(t) = M(t)x(0)  , ^  =  A (t) M  (4.4)

where the initial conditions are M(0) =  I (the identity matrix) and a?(0) =  n(0). The solution to 

(4.2) is obtained by normalising the solution of (4.4):

n(i) =  • (45)

The advantage of this approach is that it is easier to  solve the linear equation (4.4) than  the non-linear 

equation (4.2).
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4.2.2 Ornstein-Uhlenbeck model for velocity gradients in isotropic flows

In this section we describe a simple stochastic model for the matrix A (t) in isotropic random flows. A 

version of this model was used by Vincenzi et a I [74], and its structure is suggested by the observations 

in [71]. The model was also considered in [69], which gave a detailed account of its implementation. 

It is known that the elements of S and £1 fluctuate randomly about zero, with different timescales 

r s and rv respectively. Their correlation functions are well approximated by exponential functions. 

This suggests modelling the elements of S and 12 by Ornstein-Uhlenbeck processes [75, 25]. The three 

independent components of the vorticity will be modelled by:

Clij = ------- 12ij +  y/2 Dvrjij (t) (4-6)
tv

where Dv is the diffusion constant associated with vorticity and Tjij (t) are independent white-noise 

signals, satisfying

(v(t)) = 0 , {v{t)v{t')) = S(t -  t ') . (4.7)

This model predicts that the correlation function of 12̂ - is exponential [75, 25]:

(f ty ( ti)f ty (i2)) =  Dvtv exp(—|U -  t 2 |/Ty) . (4.8)

The components of the strain-rate matrix are generated by a further six Ornstein-Uhlenbeck processes, 

with a different correlation time r s. The off-diagonal elements are generated by a process of the same

form as (4.6), with the diffusion coefficient in (4.7) replaced by Ds. The diagonal elements of the

strain-rate matrix must satisfy Su  =  0; which is the incompressibility condition, V  • u  =  0. 

This constraint is satisfied by the solution of the following Ornstein-Uhlenbeck equations (see 1.3.2)

Su —  Su  +  Dd
1 3

>»«(*) - » $ 3  %.>•(*) (4.9)

The elements 12̂ - and Sij generated by these processes are statistically independent, apart from the 

constraint that ]>T Su  =  0. The variances of the off-diagonal, diagonal and vorticity elements are 

respectively denoted (S%), (S%) and (U2), and are related to the relaxation times and diffusion rates 

by (So) = AjTs, (Sd) =  §-DdTs and (fl2) =  D vrv. The requirement th a t the statistics of the model 

are invariant under rotations (so that it describes a velocity gradient with isotropic statistics) gives 

Da = 2Ds, so that this model has four parameters: r s, r v, Ds and Dv . Note th a t the diffusion 

coefficients have dimension [D ] = T -3 , implying that the model has three independent dimensionless 

parameters. In the following we consider the limit as rv/ r s —»• oo, so that the vorticity is frozen, with 

angular velocity uo. We also assume that A>ts3 <C 1, so that the strain fluctuations are small. This 

leaves one dimensionless parameter, which we will take to be (  = u j ts.
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4.3 Transform ation to  an ax isym m etric  pure strain  m odel

4.3.1 The frozen vorticity limit

In this section we consider the alignment of rod-like particles in an isotropic flow, where there is a 

non-zero vorticity which is slowly varying. The approach is to  transform the equation of motion to 

a reference frame which rotates around the axis of vorticity. In this coordinate system, the strain 

field oscillates in directions which are perpendicular to the vorticity vector, in addition to having 

random temporal fluctuations. The effect of these oscillations is to reduce the effective intensity of 

the random strain field in directions perpendicular to the vorticity vector, so that an isotropic problem 

with vorticity is transformed to an axisymmetric model with a velocity gradient which is a pure strain. 

This reduction was also discussed in [69]. In order to isolate the effect of the vorticity in the equation 

of motion for the time dependent matrix, M , we introduce another time dependent matrix Mo which 

evolves under the vorticity alone:

M  =  (S +  0 ) M ,  M 0 =  f t M 0 . (4.10)

Note that Mo(f) is just a rotation matrix, describing rotation about an axis in the direction of the 

vorticity vector oo. The two time dependent matrices may be related by writing

M (f) =  M o(i)K (i) (4.11)

where K (£) is an evolution matrix which describes the effect of the shear. An elementary calculation

shows that K  has the equation of motion

K  =  cr(f)K (4.12)

where

cr =  Mq 1 SM,>-0 (4.13)

is obtained from S by applying a time-dependent rotation. Consider the form of the matrix a.  In 

the case where the vorticity vector is frozen, and equal to f 20, the matrix Mo is a rotation matrix: 

Mo =  exp(f2o t). W ithout loss of generality we can consider the case where the vorticity is aligned 

with the z-axis, with magnitude 0  =  2 oo, where oo is the rotational angular velocity, so th a t M 0 is a 

rotation matrix of the form

/
Mq =  exp(f2ot) =  R  (oot) =

cos cot — sin cot 0  

sin cot cos cot 0

0  0 1 J

( c — s 0

s c 0

0  0  1

(4.14)
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If the elements of S are Sij, the elements of a  are 

/
a  =

C2S n  +  S2S 22 +  2 csS 12 (c2 — 5 2 )S'i2 +  Cs(S22 — S n )  cSis — sS2 3 

(c2 — 5 2 )<S'i2 +  Cs(S22  — S u )  S2S u  +  C2 S 22 — 2 csS'i2 cS 2 3 +  sS \3

cS\3 — s S 23 cS2s +  sSi3 S33

\

Note that all of the off-diagonal components oscillate with angular frequency w or 2w. The diagonal 

component in the direction of the vorticity vector does not oscillate, but the other diagonal elements 

contain both oscillatory terms and non-oscillatory terms.

4.3.2 Limit of short correlation tim e for strain rate

Now consider the case where the strain rate S is sufficiently small that the strain which accumulates 

over its correlation time r s is very small. In this case the evolution of the matrix K  (defined by 

equation (4.12)) can be described by a diffusive process. Specifically, we consider the evolution of

(4.12) over a time period St which is large compared to the correlation time of the strain field r s, but 

still sufficiently small th a t the strain which accumulates over this time interval is small. We write

K (t +  St) =  (I +  SS(St,  t)) K(t ) (4.15)

where the are small and may be assumed to be random matrices, chosen independently at each 

timestep. We characterise the evolution (4 .12) by computing the statistics of the random strain 

increments S'S, which are in turn obtained from the random strain S(t) using (4 .12) and (4 .14). The 

advantage of considering the small elements S  is th a t they are small random increments which are 

applied independently at each timestep. This enables their effect to be analysed using a Fokker-Planck 

equation. First consider the relation between the elements of the matrices S S  and cr. By integrating

(4 .12) and using the definition (4 .15) we obtain

dt' cr(t') (I +  SS{t ’ - 1, t)) . (4 .16)

Iterating this expression, taking t = 0, and suppressing the initial time t in the arguments of S S  

we obtain
/*8t f*8t p ti

SS(St) = /  d t i t r ( t i ) +  /  dti  /  dt2 cr(ti)a(t2) + 0 ( a 3) . (4 -17)
Jo Jo Jo

Using the fact that the correlation time is assumed to satisfy St^> t s, we can write

n5t r< roo
SS(St) = dt cr(t) +  — /  dt (cr(t)cr(0)} +  0(S t3/ 2) . (4 -18)

Jo J J - 00

The first of term is a random variable with mean zero and size 0 ( S t 1̂ 2), giving rise to a diffusion term  

in a Fokker-Planck equation. The second term represents a drift at a velocity which is well-defined in
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the limit as St —> 0. The remaining terms may be neglected. In order to formulate the Fokker-Planck 

equation, we must determine the statistics of the increments ST,ij(St).

If (jjts 1, the effect of the oscillatory terms in equation (4.14) is negligible. Let us consider how 

to treat the problem when wrs is not small. To simplify the discussion, consider the quantity

f O Z

SF = dt f ( t )  cos(cot) (4-19)
J o

where S t/rs 1, and where f i t )  is a random function which satisfies

</(<)> =  0 ,  </(*)/(«')) =  C (t - t ' )  . (4.20)

The spectral intensity I(v )  of the fluctuations of f ( t )  is defined by

/ OO

d£ exp(m£) C{t) (4-21)
-OO

and we shall assume that C (—t) =  C(f), so that I{ —uf) =  I{oS). The expectation value of SF  is equal 

to zero. Its variance is

p S t rS t

(SF2) = /  d£i /  d£2 (/(£ i)/(£ 2))cos(o;£i)cos(w£2)
J 0 J 0
1 f ^  pst

= 2 /  dil /  d£2 ~  ^2)[cos(a;(il ~  12 )) +  cos(o;(£i +  £2))]

i r ° °
= - S t  / ds C (s) cos (cos) +  0 (S t2)

^ J — OO

=  \st[I(oj) +  J(-w )] +  0 (S t2) = i St I ( oj) + 0 (S t2) . (4.22)

The third steps assumes that ujSt >■ 1, as well as S t/r  1. Now consider the effect of the random 

strain model defined by (4.7)-(4.9) in the limit where the timescale t s of the fluctuations of Sij(t) is 

very small. We assume th a t the functional form of the spectral intensity of each component Sij is 

the same, but that their variances are different, so that the spectral intensity of Sij(t) is (S fj)I(v), 

implying that the intensity function is normalised so that 7(0) =  1. We represent the effect of 

the randomly fluctuating strain field described by (4.14) by an effective strain field with diffusive 

fluctuations. Note that St is assumed to satisfy (St/r »  1, despite being ‘small ’. By applying (4.22),
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variance of <5£n is

<*£ n )
p 5t  pot /■y. dtix dt2(/  r

— (1 +  cos 2w ti)S 'n(ti) +  —(1 — cos 2 u)t2)S 2 2 {ti) +  s\n 2 u)tiSi2 {ti)

i ( l  + cos2^2)-S'i 1(̂ 2) + 7̂ (1 -  cos 2ujt2) 822^2) + sin2wi2Si2(*2)
f°° 1 1

=  dt /  d r  -[2  +  cos 2wr] (S ii(r)Sn(O )) +  -[2  +  cos2wr] (5 22 (r)S'22 (0 ))
J —  OO ®

+  i  cos(2u t ) <5i2( t )5 i2(0)) +  i[2  -  cos(2u;t)](S,i i ( t )S ,22(0)) +  0 (5 t2)

=  | [ 2  +  7 ( 2 0 ; ) ] ^ )  +  |  [2 +  /(2 u ;)]< S 22> +  f / ( 2 w ) ( S ? 2 >

+ ^ [ 2 - I { 2uj)}(Sn S22) +  0 (5t2) (4.23)

Using the same approach, the full set of non-zero covariances of 8T,ij is

<6 £?i) =  (,5E22) =  j  [ ( 2  +  7(2w))(S21) +  (2 -  1(2w ))(S „S 22> +  27(2W)(S!22)]

(<5£„<5S22) =  j  [ ( 2  -  7(2w))(S?1) +  ( 2  +  /(2 u ))(S u Sa> -  27(2W)(S 22)]

(a£?2) =  j  [ /(2 c )(S 21> -  7(2W)(S „ S 22> +  27(2w)(S22)]

(«S23 > =  7(0) [(2S2,) +  2 (5 h  522)]

(S?3) =  <S23 ) = « 7 ( w)(S23>. (4.24)

Finally, we must consider the mean values of the increments SHij(St). As an example, consider the 

evaluation of (5£n). From the second term in the right hand side of (4.18), we have

Ci poo 3
( ^ n )  =  -9 /  dt

Z j . POO

=  -  d t  ^ ( S u W S n W )  +  82(Sn ( t)S22(0))
^  J  — OO

+  (c2 -  s2)(5'12(t)512(0)) +  c{S13(t)S13{0))

St 
4

Only the diagonal elements of <5£ have a non-zero contribution to the mean at O(St): we define

=  § [ ( !  +  7(2w))(S21) +  (7 -  7(2w))(511522) +  2I(2w){S212) + 27(u>)(S23>] . (4.25)
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velocity coefficients fij  as follows

( < ! £ „ >  =  M i *  =  j (1 +  I(2 u ))(S 2u ) +  (J -  /(2w ))(S „S 22) 

+  2J(2w)(Si2) +  2/(w )(5i3)

{SS 2 2 ) =

St 
4(«5£33) = M3* = j  (̂Sjfj) + 4<Su S22) + 4/H (Sf3)] . 

4.3.3 Uniaxial random strain in three dimensions

(4.26)

In sections 4.3.1 and 4.3.2 we showed how an isotropic model with frozen vorticity and rapidly fluctu

ating strain can be represented by an axisymmetric model where the velocity gradient is a pure strain 

cr. In the limit where the strain which occurs over the correlation time ts is small, the effect of this 

strain is represented by a product of matrices I+5E , where the small increments S S  are independently 

distributed at each timestep of size St. They have diffusive fluctuations, so that =  0 {S t1̂ 2). The 

matrix cr is traceless, representing the fact that the velocity field is incompressible. The matrix 

need not, however, satisfy tr(5XJ) =  0, although it is clear that the leading order term  in (4.18) is 

traceless. In this section we discuss how to parametrise such axisymmetric strain fields.

We take this axis of rotational symmetry to be e 3 ; the general case is obtained from this one by 

applying rotation matrices. The strain is described by a 3 x 3 matrix S S , which we write in the form

SS =
SA SC SD 

SC SB SE  

y SD SE  -(<5A + SB ) j

\  (

+

V

fi\St 0 0

0 fi\St 0

0 0 P3 St

\

{4.27)

where SA, SB, SC, SD and SE  are random variables with mean value zero, and diffusive fluctuations: 

(<L4) =  0 and (SA2) =  2D a a ^ i (SASB) = 2D^BSt, etc. Applying a rotation about the e 3 axis by 

angle 0 to  the random component of S S  gives a transformed matrix, with elements SA ', S B ', SC ', 

SD' and SE ', given by

SA' = cos2 OS A  +  sin2 QSB +  2 cos 6 sin OSC 

SB' =  sin2 OS A  -f cos2 0 SB  — 2  cos 0 sin OSC 

SC' = (cos2 0 — sin2 0)SC +  cos 0 sin 0{SB — SA)

SD' — cos OSD +  sin OSE

SE' = cos OSE — sin OSD (4.28)

where c =  cos 0 and s = sin 0. The non-random diagonal component is invariant under rotation about 

6 3 . Note that SA' +  SB' = SA +  SB, so that the element JE 33 is invariant under rotation.
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We require that the statistics of the elements are invariant under the rotation angle 6. It is clear 

that SA and SB  must have the same variance, as must SD and SE. W ithout loss of generality, we can 

consider a model with {5A 2) = 2St. We therefore characterise the model by the following statistics, 

where a, (3, 7  are three constants:

(SA2) = (SB2) = 2St 

(5A8B) = 2aSt 

(SC2) = 2 (3 St

(SD2) = (SE2) = 2 jS t  . (4.29)

Other covariances, such as (SBSE), are equal to zero. The requirement that the statistics of the

rotated matrix are independent of 0 leads to  the equations

(SA'2) = 2[c4 +  s4 +  2c2 s2a  +  4 c2s2/3]St = 2 St 

(A! B ') =  2[—4 c2s2/3 +  2 c2s2 +  (c4 +  s4 )a]<5£ =  2 aSt 

(C 2) = 2 [(c4 +  s4 -  2 c2s2)/3 +  c2 s2 ( 2  -  2 a)\St = 2pSt . (4.30)

Rotational invariance therefore leads to an equation which must the satisfied by 01 and /3:

a + 2/3 = 1 (4.31)

so th a t the model for a uniaxial random strain has four independent parameters, which we can take 

to be a, 7 , ii\ and fi3 .

For a special choice of these parameters the model is isotropic. Clearly this requires p i =  /X3 . Also, 

requiring (SC2) = (SD2) = (SE2) gives 7  =  /?. Also, requiring ((SA +  SB)2) = (SA2) = (SB2) gives 

2 +  2a = 1. Solving these equations we find that the the covariances of the random terms are fixed 

in the isotropic case

1 3
a — ~ 2  ’ ^  =  7 = 4 ’ //3 =  ^ i -  (4-32)

Another notable limit of the model is the case where the matrix is diagonal: this model is /3 = 7  =  0 , 

implying a =  1 .
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4.4  A lignm ent in random  strain  fields

4.4.1 General solution in a diffusive axisym m etric strain

In section 4.3 we described the construction of a model for the alignment of microscopic rods with 

vorticity, in which the velocity gradient is represented as a strain field with diffusive fluctuations, 

axisymmetric about the direction of the vorticity. First we consider the alignment of rod-like particles 

under a succession of independent random shears I+ 4 E , which satisfy the conditions derived in section 

4.3.3 for the shear statistics to be uniaxial, before discussing the specific model for rod alignment in 

section 4.2. Using the approach summarised by equations (4.4) and (4.5), the direction vector n  of a 

rod-like particle evolves according to the linear equation

(I +  <5E)n(t) =  (1 +  5R)n{t +  St) (4.33)

where <5E is the infinitesimal strain in time St, previously introduced in equation (4.16), and SR  is 

the fractional change in length of the vector under the linear evolution equation. Write n (t +  St) — 

n (t) -f <5n +  0 (S n 2), where <5n • n  =  0 . Because of rotational symmetry about the £-axis, we can 

assume without loss of generality that the y component of n  is equal to zero. We therefore consider 

the following orthogonal basis of unit vectors

n  =  (sin 9 ,0, cos 9) =  (ic, 0, z) 

m  =  (— cos 9 ,0, sin 6) - (—z , 0, x)

k =  (0 ,1 ,0 ) . (4.34)

where 9 is the polar angle, and z  =  cos 9. Writing 5n =  <DTm +  <5Uk, we have

n (t +  St) =  n  +  <Wfm +  <7Fk — ^ ( ^ 2 +  £U2)n +  0 (^ n 3) . (4.35)

By taking the dot product of (4.33) in turn with n, m  and k, we find, respectively to leading order

SR  ~  n  • SE n  =  SSnn (4.36)

and

m  • <5n(l +  SR) ~  m  • 5E n  =  SSmn 

k -S n ( l  +  SR) ~  k -S H n  =  SEkn (4.37)
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Let us characterise the evolution of n  through the evolution of its projection onto the e 3 axis, namely

2  =  e 3 • n  . (4.38)

This is a convenient choice because 2  will have a uniform probability density function for an isotropic 

strain field. Using (4.35), we find that

2  +  Sz =  e 3 • n (t +  St) = cos 9 +  sin 95X  — ^ cos 6(5X2 +  S Y 2) . (4.39)

We define the drift velocity vz and diffusion coefficient Dz of 2  by

(Sz) = vz5t , (Sz2) = 2D zSt . (4.40)

Using (4.41) and (4.36), (4.37) we obtain

vzSt = x(SYrnn — SYinnSYimn) — ~(SS^nn +  +  0 (S t3^2) (4-41)

and

Dz5t = i ( l  -  z2)(SE2mn) + 0 ( S t . (4.42)

Now consider that statistics of the fluctuations of 2  for the uniaxial strain model. For the model 

defined in section 4.3.3, we have

<5Enn =  8 A x2 +  2  SD xz — (SA +  8B )z2 +  fi \x 2St +  iizz2St 

SYjmn = SD(x2 — 2 2) — (2  SA +  5B )xz  +  (nz — a*i )xz5t 

SYkn =  SCx +  SEz (4.43)

where x = y/1 — z2. We can combine these relations with (4.41) and (4.42) to  determine Dz and vz:

1 _
DzSt = — ^ — ([5D{ 1 -  22 2) -  (2 SA +  SB)xz)2)

vzSt =  — x([5A(l — 22 2) — SB z2 +  25Dxz\[5D(l — 2 z2) — (2 SA +  SB )xz ])

-  ^([5D( 1 -  2 2 2) -  (25A  +  5B)xz}2) -  ^([SCx +  SEz}2) +  A iix2zSt (4.44)

where A/i =  fis — Mi • At this point MAPLE was used to keep track of the calculation, and solve the

resultant equation. Using the statistics of the elements SA , SB, SC, SD and SE, and ordering the
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resulting expressions as polynomials in z  we obtain:

D z =  i ( l  — x 2) [ 7  +  (5 +  4a — 4 7 )z2 — (5 +  4a -  4 7 )z4]

( 7  5 5 . \  /  37 29 15 A \  o
”! = l,4 + 4“ ‘ 21 + A T  + y 7 " T “ + Y 7 _ A '‘j z

-f (  ~  + 6 a  — 6 7 )  z 5 . (4.45)

The steady-state probability density for z, namely P (z), satisfies

vz {z)P(z) = ^ - ( D z (z)P (z)) . (4.46)

In the isotropic case, we have a  =  —1/2 and 7  =  3/4. In this case we find

3 3
D z = - (1  — z2) , vz =  — - z  , (isotropic case) (4.47)

and the normalised solution is P (z ) =  |  for —1 < z <  1. In the general case, we find that (1 — z 2) is

a factor of vz — D'z , and the differential equation (4.46) is

1 d P  _  - z  [6(5 +  4a -  4j ) z 2 -  13 -  11a +  IO7  +  4A/x]
P  dz 4 [7  +  (5 +  4a — 4 7 )2 2 — (5 +  4a — 4 7 )z4]

it us useful to change the variable to u = z2. In terms of u, the differential equation (4.48) may be 

written
1 d P  6(5 +  4a — 4 q)u — 13 — 11a +  IO7  +  4A/z
P  du 8  [7  -f (5 +  4a — 4 7 )1 1  — (5 +  4a — 4 7 )u2] 

Representing the right-hand-side using partial fractions, we obtain

(4.49)

l d P -  c+ (4.50)
P  du u+ — u u — U— 

where u± are the roots of the denominator on the right-hand-side of (4.49)

^  = (451)

and where the coefficients are

(4A/i — 2a +  7  — 2)u± — 13 — 11a — 2 7  — 4An
c± =  -—  -------------------— — — --------------     . (4.52)

4(5 +  4a) v ’

The probability density expressed in terms of z is then

P (z ) = C  (z2 — u - ) c~ (z2 — u+)c+ (4.53)
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where C is a normalisation constant.

4.4.2 Solution of rod alignment model

Now we apply the solution obtained in section 4.1 to the model for alignment of microscopic rods, 

as developed in sections 2 and 3. In section 2.2 we introduced the Ornstein-Uhlenbeck model for a 

random, isotropic velocity gradient field. The theory in section 3 made two assumptions. In section 

3 it was assumed that the vorticity varies slowly, and section 3.1 made a further assumption that the 

strain field is small. Let us consider the implications of these assumptions for the parameters of the 

model. The assumption that the vorticity varies slowly implies that rv is large compared to other 

timescales in the system of equations. The typical strain rate l^l =  y / (tr(S2)) and the correlation 

time r s should satisfy \S\rs <C 1. The solution of the Ornstein-Uhlenbeck process implies

(tr(S2)) =  10£>sts (4.54)

so that the criterion for the strain to be small is simply Dsr s3 1 . The angular velocity to is related 

to the magnitude of the vorticity by ft = 2cu. The magnitude of the vorticity is estimated by 

(fl2) =  t r ( ( 0 2)) =  3D vtv. The rotation rate oj has a Gaussian distribution, with variance

cr2 =  (oj2 ) =  ^-Dvrv . (4.55)

Because the Ornstein-Uhlenbeck model has an exponential decay of correlations, given by equation 

(4.8), spectral intensity of the strain fluctuations is a Lorentzian function:

=  1 + l A f  ' (4'56^

In order to apply the results in section 4.1 we must specify the covariances of the fluctuations of the 

axisymmetric effective strain tensor. If we normalise the variances so that (Sf-^) = 1, (S1 1 S 2 2 ) =
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(S f2) = P , (*S'i3) =  7 , the non-zero covariances and expectation values of 5Hij are

(SZ\1) =  (SI%2) = 6 t

(<5£h 5£22) =  ^

(SZ2U) = St 

(Z 23) = (Z23) = StI(u>)1 

{<5S | 3 )  =  2 5 t 7 ( 0 ) ( l  +  a )

7( 0 ) l 5  + f ) + / (2“ ) -  f  +  f

7(2")(H + §

(<5Sn) =  (<5E22) =  St m  ( i  + l )  + I{W) 2 + 7(2w) ( l  “  I  + 2

(££3 3) =  St  [1(0) (1 -f a) +  I(co)j] . (4.57)

We use the assumption that the original random strain field Sij is isotropic, so that the statistics of 

these elements satisfy (4.32). Using (4.57) we obtain

<«S?1> =  (,5Sl2> =  | [ l + 3 / ( 2 W)] 

<«E11«S22) = ^[1-3/(2u)]

<«E?2> =  j 3 I ( 2 w)

(SZ 2 3> =  (SZ 223) =  j 3 I ( u )  

(SZ=3 ) =  St 

{SZn) =  (<SS22) =  j  [1 +  31(u) + 6I(2w)] 

<<5£33) =  | [ 2  +  3I(W)] . (4.58)

Normalising these by dividing by (5£f1), the anisotropy of the strain field induced by the vorticity 

is characterised by modified forms for the parameters defined in (4.29) and a scaled value of the 

parameter A/r appearing in (4.45):

a =

P '  =

7 =

1 -  3 I ( 2 oj) 

1 +  3 I ( 2 oj) 

3 1  (2oj)

1 +  3 1  (2u)) 

3 1  ( oj)

1 +  3 I ( 2 oj)

A t 3 1 +  I ( w )  — 2I ( 2ui) 
^  2 1 +  3I ( 2u j )

(4.59)

Note that a' +  2/3' =  1, as expected from (4.31). Because 7(0) =  1, when the vorticity is zero, we 

have a !  =  —1/2, P '  =  7 '  =  3/4, so that we recover the statistics of an isotropic strain field. In the 

limit as oj —»• 0 0  we expect I ( 2o j )  <C I( oj )  -C 1, so that to leading order we may set a  =  1, ft =  0,
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Z = 1
z = 0

Figure 4.1: Schematic showing principle alignments of the rods with the flow, at the values of
z = 1 (aligned) and z — 0 (anti-aligned), that result from the solution of the analytic model under 
consideration.

A [i =  |  and regard 7  as a small parameter. Let us consider how to evaluate the probability density 

function of z =  n  • ew in the limit where lo t  1. The general expression for the probability density 

is equation (4.53). In this limiting case, we may approximate the coefficients a  and 7  by

3 3a  ~  1 , 7  ~  — — —  , A n  ~  -  . (4.60)
1 +  L02 T 2 2

poles u± of the probability density function and the coefficients c± in (4.53) are

7 7
u _ ~ - -  u + ~ l  +  -

c_ ~  -  c+ ~  —1 (4.61)

so that the probability density function is approximated by

P„C0 ~ c ( f  + 2 ) ' I/2 (1 + 2 -  z2) ’ ’ (4.62)

where C is a normalisation constant, and where the subscript oj is a reminder that this distribution is 

evaluated for a fixed value of oj.

We verified this relation by simulating the orientation of rod-like particles using equations (4.4) 

and (4.5), using the Ornstein-Uhlenbeck model for the velocity gradients, with the components of the 

vorticity frozen, so that the only non-zero elements are f^i2 =  — U21 =  w- The PDF of z  =  n  • e 3 is 

plotted in figure 4.2 for o jts =  2 and lots =  5, showing good agreement with the theoretical prediction, 

equation (4.62).

In figure 4.3 we plot the theoretical PD F of z  for three different values of the single dimensionless 

variable lots . For lots =  1 we plot both the exact expression obtained from using (4.59) in equations 

(4.51) -(4.53), as well as the approximate expression (4.62). For the larger values of o jt s  plots of 

the exact and approximate lie on top of each other. We observe that as o jts —> 0 0  the distribution 

becomes concentrated around z = ± 1  (rods perfectly aligned with the vorticity) and around z =  0  

(rods aligned perfectly perpendicular to the vorticity vector). The peak at z = ±1 is seen to be higher

When 7  <C 1, the 

approximated by
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£=1 theory 
£=1 numerical 

£=3 theory 
£=3 numerical 

£=5 theory 
£=5 numerical 

£=7 theory 
£=7 numerical

3.5

2.5

N
q T

1.5

0.5
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Figure 4.2: Comparison between PDF of z  =  n  • e 3 obtained by simulation of Jeffery’s equation of
motion for the random strain model, and the theoretical prediction. In these simulations the vorticity 
is frozen at =  1,3,5, 7. The correlation time of the strain fluctuations is r s =  1 . The numerical 
simulations used Ds =  10-2 .

but narrower. In figure 4.4 we plot (|z|) and (z2). Both of these statistics approach |  in the limit as 

£ —> oo, indicating that in this limit both peaks carry half of the probability.

In practice the magnitude of the vorticity, w, is not frozen but fluctuates slowly. It has a Gaussian 

distribution, with a variance cr2 =  (a;2) =  | Dvrv. Our final estimate for the probability density of z is, 

therefore, the result on integrating the normalised PD F given by (4.62) over a Gaussian distribution 

of U}\
2 f ° °

P{z) = - 7= -  /  dw exp(-cu2 / 2 <72 )Pw(z) . (4.63)
V27T0- Jo

This PDF depends upon a single dimensionless parameter £ =  ars. The functions obtained by 

numerical evaluation of the integral in (4.63) are plotted in figure 4.5 for three different values of 

£ =  ctts. We used the exact formulae for Pu (z), equations (4.51)-(4.53) and (4.59), because the 

integral includes the region where wrs is small.

4.5 D iscussion

We have determined the distribution of 2  =  n  • ew analytically for a model of microscopic rods in a 

random velocity field with isotropic statistics. The PDF shows a maximum at z =  1 corresponding 

to alignment parallel to the vorticity, similar to findings of DNS studies of Navier-Stokes turbulence

[69]-

We conclude by making a few remarks about the relationship between the regime which we have 

analysed and the velocity gradient statistics for Navier-Stokes turbulence.The model for the velocity
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£=1 exact 
C=1 approx.

£=3 exact 
£=3 approx. 
£=10 exact 

£=10 approx.
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Figure 4.3: Theoretical PDF of z = n e 3 for the model where the vorticity is frozen, with magnitude 
oj. The distribution (4.62) is plotted for three values of C, = o jts , namely £ = 1 , 3 , 1 0 .  By comparison 
we have also plotted the exact probability density obtained from equations (4.51)-(4.53) and (4.59). 
At C =  10 the different plots are indistinguishable.

gradient of an isotropic flow which was introduced in section 4.2.2 has four parameters, namely rv, r s, 

Dv and Ds, all of which have dimensions which depend only upon time. There are, therefore, three 

dimensionless parameters. In our analysis the vorticity was frozen, so th a t tv —> oo. The magnitude 

of the vorticity, which is of order oj ~  y/Dvrv was chosen so that (  =  u jts  is finite. The diffusion 

coefficient Ds was assumed to be very small, so that the fluctuations of the strain are very small and 

may be treated using a Fokker-Planck equation.In fact the form of the Navier-Stokes equation restricts 

the choice of parameters in the Ornstein-Uhlenbeck model for the velocity gradient: it is well known 

that t r ( f i2) + t r ( S 2) =  0 [76], which gives a further relation between Ds and Dv. The Navier-Stokes 

equation also implies that the rate of dissipation per unit mass is £ =  ^ tr(A TA), which enables the 

norm of the velocity gradient to be expressed in terms of the Kolmogorov time, tk  =  \Jv jE . These 

results imply the following relations, which determine the ratio of the diffusion coefficients D s and D v 

(see [69]):

20 t£ ts
Dv =

12 t£ tv
(4.64)

Numerical studies indicate that the exponential correlation function is a reasonable model for the 

statistics of fully developed turbulence, with the parameters r s and rv satisfying t s ~  2.3tk and 

rv ~  7.2tk (these are the values quoted in [69], which discusses earlier work on the velocity gradient 

correlation functions). This justifies the assumption that the vorticity is slowly varying, and the 

variance of the vorticity parameter is estimated to be a2 = (oo2) = | y/Dvrv = 1 /(2 tk ), implying th a t 

£ =  a t s ~  1.15 is the value which should be compared with the data on alignment in Navier Stokes 

turbulence, discussed in [69]. There is a qualitative but not quantitative agreement between the curve
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Figure 4.4: Moments (|;z|) and (z2) as a function of £ =  wrs.

in figure 4.5 for £ =  1 and the results of DNS simulations in figure 2 of [69]: both show a peak in 

the PDF at z = 1, but this peak is more pronounced in the DNS data. We conclude th a t our model 

should be understood as a laboratory for understanding alignment of microscopic rods with vorticity, 

rather than providing a quantitative description.
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Figure 4.5: Theoretical PDF of z =  n  • e 3 , averaging over the slowly varying vorticity parameter co, 
which is Gaussian distributed with variance a 2 =  | D y t v . The distribution (4.60) is plotted for four 
values of £ =  ars, namely £ =  1.15,3,5,7.
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Chapter 5

Final remarks

This thesis has addressed two distinct aspects of study concerning particles suspended in quasi- 

turbulent flows which draw on distinct methodology. The first paper [7] in chapter 3 described a new 

measure of anisotropy which can be used to distinguish sets which have identical fractal dimensions. 

Questions regarding the interaction of such sets with electromagnetic radiation remain open, and 

would constitute a good topic for PhD study. The specific direction of the such study would involve 

further exploration of two themes.

Firstly, there are questions regarding the interaction simple fractal sets with EM radiation which have 

been addressed in only a few cases. The paper of Detmann [59] constitutes one such study which 

involves taking the Fourier Transform of the spatial distribution of points of the cantor set which yields 

the structure factor, this in turn  yields the diffraction intensity. Such an approach was extended in 

two dimensions by Ferguson [77] and MacKay [78] in which the structure factor of the generalised 

Sierpinski set is calculated. However, such deterministic fractals are likely to be more manageable 

than the random fractal which results from inertial particles suspended in turbulent flow. Moreover, 

the situation is further complicated by the presence of caustics, which is one possible explanation 

for the divergence between theory and simulation in Wilkinson’s paper [35] in which the correlation 

dimension of the distribution of inertial particles is calculated analytically. The problem of evaluating 

the spectal dimension of such distribution is likely to much harder, and thus further understanding of 

not only the structure factor but also the correlation dimension of inertial particles is required before 

this more intractable problem is addressed. It is likely that it will be some years before general results 

are found if it is indeed possible that they can be found, especially as the field of fractal physics is at 

this stage quite mature and it receives little attention in general.

The content of chapter 4, published in [8 ] constituted a much less open ended topic, since it resulted 

in a soluble analytic model of ellipsoidal particles in random flow that showed good agreement with 

simulation but only qualitative agreement with DNS simulations of turbulence. However, in a broader 

sense, the topic remains a vibrant area of research. Vincenzi’s paper [72] gives a discussion of a very
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Figure 5.1: Clouds in coffee as a result of the turbulent mixing of colloidal particles contained in the 
milk with the coffee.

similar model, the work for which was carried out contemporaneously to our own, but considers further 

generalisations of the shape of particles used and the statistical properties of the flow. Chevillard and 

Meneveau [79] use Lagrangian particle tracking of generalised ellipsoidal particle in DNS of turbulence 

and indeed show the motion is distinct from the isotropic field considered in chapter 4. Experimental 

work being conducted by the group at the Chalmers University of Technology in Gothenburg [80] 

makes use of the microscopic channel and a shear flow to demonstrate tumbling regimes reminiscent of 

our work. Extension of this work would consist of progress being made in experimental techniques, as 

well as DNS of turbulence, in order to give more complete data for particle orientation and behaviour. 

In summary, we have seen that behaviour of particles in turbulent flows remains a cutting edge field 

of research in theoretical and experimental Physics alike. Despite making some progress in specific 

realms, as outlined above, general questions remain open, most famously the existence or otherwise 

of smooth solutions to the Navier-Stokes equations which remains one of the unsolved Clay Institutes 

Millennium Prize problems. It is testament to their complexity that the behaviour of natural, at first 

sight mundane, phenomena such as rain clouds, or even milk as it mixes with coffee 5 .1  are not fully 

understood. Indeed, it is important to remember that, contrary to expectation, extremely challenging 

Physics remains in everyday phenomena and is not solely contained in the quantum or cosmological 

regimes.

I ’ve looked at clouds from both sides now 

Prom up and down, and still somehow 

I t ’s cloud illusions I recall 

I really don’t  know clouds at all

Joni Mitchell [81]
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