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ABSTRACT

Globoid cell leukodystrophy (GLD) is a rare genetic lysosomal disorder due to deficiency in the 

(3-galactocerebrosidase (GALC) enzyme. GLD affects mainly children; the prognosis is severe, 

leading to death few years after the diagnosis. Demyelination is believed to occur as a 

consequence of Psychosine accumulation and neuroinflammation. Clinical observations in GLD 

babies suggest that GALC deficiency might affect myelination before overt storage and 

inflammation, but this issue has been poorly addressed in pre-clinical studies. Similarly, little is 

known regarding the effect of GALC deficiency on neural stem cell (NSC) in the neurogenic 

niches during CNS development. The goal of this study was to extensively characterize the role of 

GALC in regulating the function of NSC niches during the disease progression in Twitcher (Twi) 

mice, a relevant GLD model. By morphological and functional analysis we showed altered 

cellular organization and loss of proliferating neuroblasts in the subventricular zone (SVZ) niche 

of Twi mice as a function of disease progression. These data were confirmed by in vitro 

experiments showing decreased numbers of primary neurospheres generated from Twi 

NSC/progenitors. Both defects were rescued to normal levels in symptomatic Twi mice 

chronically treated with anti-inflammatory drugs. These results, as well as the up-regulation of 

several inflammatory molecules observed in Twi brains starting from the early symptomatic stage, 

suggested a major contribution by neuroinflammation at the late stages of the disease. However, 

these data did not rule out a direct contribution of GALC deficiency nor do they exclude a role of 

GALC in maintaining a functional niche during CNS development. Indeed, our results indicate 

decreased proliferation and maturation of NSC/progenitors derived from asymptomatic Twi mice, 

suggesting that GALC deficiency might lead to neurogenic impairment independently from CNS 

inflammation. These results improve our understanding of the pathogenic mechanisms of GLD with 

important implications for therapy.
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1. INTRODUCTION

1.1 Globoid Cell Leukodystrophy

1.1.1 Introduction to Lysosomal Storage Disorders

Lysosomes are membrane-bound organelles that contain a range of acid hydrolases such as 

proteases, glycosidases, sulphatases, phosphatases and lipases. Lysosomal storage diseases 

(LSDs) are monogenic diseases caused by mutation in genes coding for lysosomal proteins. This 

leads to progressive, accumulation of unmetabolised substrates, functional impairment, cell 

toxicity and, eventually, cell death. Although monogenic diseases are simple in terms of causative 

gene defect, the biochemical and cellular cascade of events that ensue is highly complex 

(Futerman and van Meer, 2004). LSDs are typically inherited as autosomal recessive traits and 

occur at a collectively frequency of ~ 1:8,000 live births. Over 50 LSDs are known; they can be 

caused by defects in soluble lysosomal enzymes, in non-enzymatic lysosomal proteins (soluble or 

membrane bound), or in non-lysosomal proteins that affect lysosomal function. The degree of 

residual function of the defective protein influences the age of symptom onset. Patients null or 

almost null for a given protein, present symptoms in utero or in early infancy, whereas milder 

mutations lead to juvenile or adult onset disease (Futerman and van Meer, 2004). About 75%, of 

LSDs involve storage in both the central nervous system (CNS) and visceral tissue. CNS 

pathology is a common hallmark of LSDs, and LSDs are the commonest cause of paediatric 

neurodegenerative diseases.

Despite the distinctive types of storage material in different LSDs they share many common 

biochemical, cellular and clinical features. Thus, advances in understanding one particular disease 

can provide insight into other specific LSDs or into LSDs in general.
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1.1.2 Globoid Cell Leukodystrophy: clinical manifestation

Globoid Cell Leukodystrophy (GLD), or Krabbe disease, is an autosomal recessive LSD caused 

by deficiency of the lysosomal enzyme |3-galactocerebrosidase (GALC) which catalyses several 

glycolipids, including galactosylceramide (GalCer) and galactosylshpingosine (psychosine). It is a 

rare LSD, with an incidence of 1 in 100,000 live births worldwide. GLD was firstly described by 

Knud Krabbe in 1916 in children as a syndrome that began during infancy and was characterized 

by tonic spasms, nystagmus, muscular rigidity, progressive quadriplegia and early death (Krabbe, 

1916). It affects both the central nervous system (CNS) and the peripheral nervous system (PNS) 

and the typical neuropathological finding includes generalized brain atrophy with the central 

white matter being replaced by gliotic tissue. Post-mortem examination of affected individuals 

reveals loss of myelin, degeneration of long spinal tracts, gliosis and infiltration of characteristic 

globoid cells of macrophage-microglia origin. The prognosis is severe, leading to death a few 

years after diagnosis. Clinically, GLD is classified according to the patient’s age at onset. 

Different forms of GLD exist: early infantile (El), late infantile (LI), juvenile (J) and adult (AD). 

The most severe variant is the one with El presentation, which accounts for over 90% of patients, 

becoming manifest within six months of age in most cases (Wenger et al., 1997) and developing 

in four stages (Hagberg et al., 1969). Symptoms and signs are confined to the nervous system. No 

visceromegaly is present. Head size may be large or small; hydrocephalus has been observed. One 

infant, diagnosed with Krabbe disease in utero, had normal psychomotor development for the first 

two months of life but lost deep tendon reflexes by age five weeks, had markedly reduced nerve 

conduction velocities at age seven weeks, and developed neck muscle weakness at age three 

months. These findings suggest that careful examination could reveal clinical manifestations of 

Krabbe disease in an affected infant earlier than the reported age of onset (Wenger, 2000). Indeed, 

Escolar and collaborators detected significant differences in the cortico spinal tract (CST) of 

asymptomatic neonates affected by early onset KD by diffusion tensor imaging (DTI) with 

quantitative tractography. CST is one of the earliest white matter pathways to undergo maturation, 

beginning prenatally and early abnormalities may explain the plateau in motor development seen
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in Krabbe babies treated with umbilical cord blood transplant (UCBT), even in the presence of 

improved overall brain myelination (Escolar et al., 2009; Kamate and Hattiholi, 2010). The LI 

variant is much less common and begins between 19 months and four years of age (Loonen et al., 

1985). These patients have only moderate mental retardation during the first years, but gradually 

develop ataxia and spasticity. Peripheral neuropathy is severe. Disease progression is slower than 

in El manifestation, with visual loss, mental regression, seizures and deafness. The prognosis is 

severe, leading to death 5-7 years after diagnosis. The late-onset variants are the J (onset at 4 to 19 

years) and the AD forms (>20 years). These individuals can be clinically normal until almost any 

age when symptoms of weakness, vision loss, and intellectual regression become evident. The 

clinical course of older individuals is variable. These patients are characterized by a slowly 

progressive tetraplegia, sensor-motor demyelinating neuropathy and preserved mental function; 

survival into the seventh decade is possible (Jardim et al., 1999; Kolodny et al., 1991).

1.1.3 Diagnosis

1.1.3.1 LSDs

The LSDs are clinically highly diverse and can affect most organs, either in isolation or as part of

a multisystem disorder. Ganglioside expression is particularly high in the nervous system and the

gangliosidoses are neurodegenerative diseases. Keratan and dermatan sulphate are expressed at

high levels in skeletal tissue and the mucopolysaccharidoses, which involve defects of their

degradation pathways, are characterized by dysostosis multiplex (severe abnormalities in

development of skeletal cartilage and bone). There is also considerable variation within each

disorder, ranging from severe, infantile-onset forms to attenuated adult-onset disease, sometimes

with distinct clinical features (Winchester et al., 2000). In some cases it is possible to have

genotype-phenotype correlation, and there are some ‘severe’ genotypes which, in homozygotes or

compound heterozygotes, are inevitably associated with neuronopathic disease (Cox, 2001).

However, genotype/phenotype relationships are much less defined for the majority of mutations
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which give rise to attenuated disease, and it is common for sibling pairs and even twins to 

demonstrate highly divergent clinical features as regards age of onset and degree of skeletal 

involvement (Lachmann et al., 2004). Similar inconsistencies exist for other LSDs and the 

difficulties in predicting phenotype from genotype have major implications in diseases where 

newborn screening is currently being considered.

Recently great relevance has been given to newborn manifestation. Indeed early diagnosis and 

intervention is essential to maximizing the potential benefit from some therapy and may prevent 

irreversible organ damage. Thus physician’s awareness of these early presentations has important 

clinical implications. The interval between birth and the onset of the clinical symptoms can range 

from hours to month. Symptoms range to neurologic to respiratory, endocrine and cardiovascular 

manifestation; moreover dysmorphology (of different type: head, limbs, oral, gastrointestinal, 

bones and joints, skin etc.) could also be present (Staretz-Chacham et al., 2009).

Because usually there is an overlap of clinical features in many of LSDs, it is difficult to establish 

a diagnosis sorely on the basis of clinical presentation (Fig. 1). Urine screens that test for elevated 

levels of secreted substrate material are used routinely to examine the pattern of 

glycosaminoglycans and oligosaccharides in patients suspected of MPS or disorders that present 

with oligosacchariduria. When there is a strong index of suspicion, urine analysis is followed by 

enzyme activity assay, usually performed on leukocytes and plasma; in case of deficiency of 

secondary proteins it followed also the rate of radiolabelled substrate turnover in cultured cells. 

Molecular analysis is usually performed in a second step of screening, however is crucial for 

prenatal screening or population screening for high-risk ethnic group (Staretz-Chacham et al., 

2009).
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Figure 1. Algorithm of the clinical evaluation recommended for an infant with a suspected 
LSD (Starez-Chacaman, 2009).

1.1.3.2 GLD

Most cases of Krabbe Disease are diagnosed in infants; however a minority of patients are 

diagnosed in childhood and as adults. Currently the enzymatic test is performed to confirm the
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diagnosis. GALC activity is measured in serum, leukocytes or fibroblasts, using a radiolabelled 

substrate (3H-GalCer). While normal values range between 0,9-4,4 nmol/h/mg (Callahan and 

Skomorowski, 2006), in GLD patients the average of measured GALC activity is 0,07 nmol/h/mg 

(Farina et al., 2000). The reduction of GALC activity can be further confirmed by repeating the 

same test on cerebrospinal fluid.

Magnetic resonance imaging (MRI) can also be useful to evaluate the white matter: infants with 

El and LI GLD have abnormal T1 and T2 intensity, indicating a loss of myelin in the posterior 

limb of the internal capsule. During KD progression, grey matter atrophy and abnormality of 

cerebellar white matter and pyramidal tracts develop (Farley et al., 1992; Loes et al., 1999). 

Finally all white matter structures become abnormal. These regions show an abundant infiltration 

of GCs and macrophages and severe demyelination post-mortem. JU and AD GLD can present 

with relatively mild changes in the posterior corpus callosum and parietooccipital white matter 

(Sabatelli et al., 2002; Satoh et al., 1997). Electrophysiological studies and electroencephalograms 

(EEG) are helpful in evaluating nerve conduction and monitoring disease progression. The 

severity of the abnormalities detected by electrophysiological testing (slow nerve conduction) 

usually correlates with the severity of the abnormalities on MRI scans. EEG is typically normal at 

the early stages of the disease, but generalized slowing and multifocal epileptic spikes are 

observed in the later stages (Husain et al., 2004).

Molecular analysis is the unique way to assess specific mutation in GALC gene or detect the case 

of Saposine A deficiency. In SapA -/- patients, the reduced GALC activity is indeed not due to a 

defect in the GALC gene, but to the loss of function of Sap A, which is essential for GALC 

function. Seventy-eight variants of the more common GALC sequence have been identified to 

date (The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff -  

update: February 2011). Many patients have two different mutations in the two alleles of the gene, 

thus resulting in a wide range of clinical feature that makes difficult propose genotype-phenotype 

correlation.
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1 .1 3 3  Prenatal diagnosis and newborn screening fo r  GLD

Prenatal diagnosis is extremely accurate using a direct chorionic villus sample, cultured 

trophoblasts and cultured amniotic fluid cells, providing rapid and accurate results early in 

gestation. Unfortunately no reliable carrier detection exists for individuals who do not have a 

family history of KD. While each parent carries one normal and one mutated GALC allele, the 

measured GALC enzyme activity can range widely in carriers because of polymorphisms in the 

normal copy of the gene. Although some parents have quite low GALC enzyme activity measured 

in vitro, none has had clinical disease. The carrier frequency in the general population is about 

one in 150 (Wenger, 2000). Newborn screening is currently performed in high-throughput way in 

the state of New York and Illinois and Missouri are developing plans to begin the same. The 

quantification of GALC activity is measured by tandem mass spectrometry on dried blood spots. 

Samples with less than 10% of normal activity values are considered positive and DNA analysis 

for GALC mutations starts. In order to avoid false positive screening, GALC deficiency is 

confirmed by a second assay performed on blood. When the diagnosis is confirmed, the infant is 

referred for consideration of a cord blood (CB) transplant. Currently, the transplant centre with 

the most experience of neonatal GLD is Duke University Medical Centre (North Carolina). Last 

year has been released a systematic evidence review regarding the benefits and harms of newborn 

screening for GLD. The authors identified several critical gaps in the knowledge: 1) the inability 

to determine shortly after a positive screen which children would benefit from urgent 

transplantation and 2) the lack of long-term follow-up data for those children who have received 

transplants, especially neurodevelopmental outcomes (Kemper et al., 2010). Recently the use of 

DTI with quantitative tractography was used to identify in neonates early changes in major motor 

tracts before clinical symptoms develop (Escolar et al., 2009). The importance of prenatal or 

newborn screening is great, considering the fact that accumulation of the toxic substrate Psy in 

tissues has been noted as early as 21 weeks’ gestation in a fetus (Ida et al., 1994).
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1.1.4 GALC: the gene and the enzyme

The GALC gene was mapped in 1990 by restriction fragment length polymorphism (RFLP) 

studies: it lies at 14q31 and spans 17 exons over a 60 kb interval (Luzi et al., 1995). The 5’ UTR 

region, considered as the promoter region, contains 13 GGC sequences and binding sites for SP1, 

YY1, E2F and AP3 transcription factors (Sakai et al., 1998). CAAT sequences or TATA box, 

present in the promoter regions of other lysosomal enzymes, are absent in the GALC promoter. 

GALC is also expressed at a low level in the nervous system, where the first substrate of GALC, 

GalCer is present in high concentration (Luzi et al., 1997). The GALC cDNA, encodes a 669 

residue protein of about 80 kDa with a 26 amino acid leader sequence (Wenger et al., 1997). In 

the lysosome, this pro-enzyme is further cleaved to a 50 kDa amino terminal and a 30 kDa 

carboxy terminal subunits. These subunits associate to form the functional enzymatic complex 

(Nagano et al., 1998). The rearrangement of glycosylation chain and the event of proteolysis take 

place after the release of the precursor from endoplasmic reticulum (ER) in Golgi apparatus and in 

the acidic lysosomal environment, respectively. The subunits aggregate into a multimeric high 

molecular weight hydrophobic complex of 600-700 KDa, wich is believed to be the active form 

(Ben-Yoseph et al., 1980). GALC works within the lysosome at low pH (between 4 and 4.4), 

together with activators such as Saposine A and C (Harzer et al., 2001). The main substrates of 

GALC are GalCer and Psychosine (Psy): GalCer is hydrolysed to ceramide (Cer), while Psy is 

hydrolysed to Sphingosine (Sph). Other substrates of GALC are Monogalactosyldiglyceride 

(MGD) and Lactosylceramide (LacCer)(Wenger et al., 2000)(Fig. 2).
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Figure 2. Simplified scheme of the sphingolipid metabolism.
The cartoon illustrates the activity of GALC enzyme within the sphingolipid pathway.
ARSA, arylsulfatase A; CST, cerebroside sulfotransferase; GALC, galactosylceramidase; GalT-I, LacCer 
synthase; GalT-III, GalCer synthase; GlcT, GlcCer synthase; SAP, saposin; SAT1, GM3 synthase; Neu3, 
sialidase; Sphk-1/2 sphingosine kinasel/2; SIPase sphingosine phosphatase; SGT sphingosine- 
galactosyltransferase; SMase sphingomyelinase.

The most relevant of these substrates is GalCer, produced from Cer by Ceramide- 

Galactosyltransferase (CGT) in the endoplasmic reticulum and from suifatide by Arylsulfatase A 

(ARSA) in the lysosome. GalCer and sulfatides represent one third of the whole lipidic myelin 

mass (Norton, 1984). Moreover, GalCer is implicated in the transduction of signals for 

oligodendrocytes differentiation and in axon-glia interaction at paranode level (Marcus and 

Popko, 2002). Although GalCer is the first substrate of GALC, it does not accumulate in GALC 

deficient tissues, likely due to the activity of a different galactocerebrosidase. GALC deficiency is 

actually responsible for Psy accumulation up to at least 100 fold normal levels in human infants 

and animal models. This toxic storage has been shown to kill oligodendrocytes by an apoptotic 

mechanism, resulting in a greatly diminished amount of myelin and astrocytic gliosis and the
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production of the characteristic globoid cells (for details, see paragraph 1.1.5.2).

1.1.5 Pathogenesis

1.1.5.1 Mutations

More than 70 mutations have been identified in the GALC gene. The most common disease- 

causing mutation in European origin individuals is a 30 kb deletion starting from exon 10 and 

proceeding until the end of the gene, found in 40-50% of the cases. Other relevant mutations 

comprises missense mutations (i.e. 1538C>T and 1652A>C) found in about 5-8% of patients and 

deletions, 1424delA and 809G>A, found in about 2-5% and in the 1-2% of patients, respectively. 

For the remaining 32-47% of the affected population, mutations are more heterogeneous. It 

appears that most of disease-causing missense mutations result in the production of unstable 

GALC protein that is rapidly degraded. Deletions, instead, result either in frame shifts and 

premature stop codons or in lack of a significant portion of the gene. Especially for late onset 

forms, it is difficult to make genotype-phenotype correlations, even if some mutations in 

homozygosis or coupled with deletions in the other allele seem to be correlated with (or more 

represented) in the infantile forms of KD (Wenger et al., 2000).

1.1.5.2 Psychosine

The unique biochemical feature of GLD is a lack of abnormal accumulation of galactosylceramide 

in the brain, contrary to what is expected from the enzymatic defect. This paradoxical 

phenomenon has been firstly explained by the exclusive presence of galacosylceramide in myelin 

sheath and the rapid lost during the progression of the disease of myeling forming cells. However 

there is the abnormal accumulation of a related toxic metabolite, Psychosine (Psy) or 

galacosylsphingosine and it is a key element in the pathogenesis of the disease. GalCer might be
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converted to Psy by N-Deacilase, but the existence of this alternative pathway has never been 

demonstrated (Miyatake and Suzuki, 1972). Psy is also obtained through galactosylation of 

sphingosine by UDPGalactose: sphingosine 1 -p-Galactosyltransferase (Suzuki, 1998). In 

physiological conditions, GALC converts Psy to sphingosine and hydrolyses GalCer to Cer; in the 

absence of GALC, GalCer could be hydrolysed by Galactosylceramidase II. This enzyme, 

deficient in GMi Gangliosidosis, has a low affinity for Psy, which is not metabolized and 

accumulates in the white matter and, to a lesser extent, in other tissues (Kobayashi et al., 1985). 

Actually, however the biosynthesis of Psy is not clearly understood.

Psy accumulation in myelin forming cells, such as oligodendrocytes and Schwann induces cell 

death, however despite the toxic effect has been extensively studied, it is not fully understood. Psy 

specifically inhibits cytocrome C oxidase in mitocondria and alters mitochondrial membranes 

(Tapasi et al., 1998). Moreover it is able to trigger apoptosis by initiation of caspase 9 and effector 

caspase 3 activation (Haq et al., 2003; Jatana et al., 2002). Further studies have shown that Psy- 

induced cell death also involves the activation of secretory phospholipase A2 (sPLA2), which 

generates lysophosphatidylcholine and arachidonic acid. sPLA2 activation also leads to oxygen- 

reactive species (ROS) production and oxidative stress (Giri et al., 2006). In addition, Psy down- 

regulates survival pathways including nuclear factor-kB and PI3K-Akt. Several studies have 

reported the expression of pro-inflammatory cytokines and chemokines in cell cultures from GLD 

patients and Twitcher mice, a murine model of GLD. Moreover, expression of iNOS and glial 

fibrillary acidic protein (GFAP) in activated astrocytes in the CNS of GLD patients indicates the 

involvement of an inflammatory process in the pathogenesis of GLD. In astrocytes, Psy maintains 

the production of inflammatory mediators by inducing the nuclear translocation of the 

transcriptional factor C/EPB, which, in turn, stimulates the production of IL-6, IL-lp and TNF-a 

(Giri et al., 2006). The inflammatory condition could be both cause and consequence of Psy 

action. In fact, it is demonstrated that Psy may act as a pro-inflammatory stimulus. Even if the 

mechanism of action is not completely clear, a link has been demonstrated between the 

accumulation of Psy and the production of cytokines that promote inflammation, like TNF-a



(Formichi et al., 2007; Pasqui et al., 2007). Psy also induces alterations at the level of 

peroxisomes, involved in the biosynthesis of plasmalogens (important constituents of myelin), in 

p-oxidation of fatty acids and in detoxification from H2O2 . (Haq et al., 2006). Interestingly, a 

modification of lipid raft structure due to Psy accumulation has been described in 

oligodendrocytes and neurons derived from GLD animal models and from human tissues (White 

et al., 2009). Psy accumulation and disruption of lipid rafts resulted in inhibition of PKC activity, 

contributing to the metabolic perturbation that characterizes GLD (White et al., 2009). Psy also 

accumulates into microglia, leading to the formation of globoid cells (GCs). GCs have been 

observed in CNS lesions of GLD patients by histology: these cells of the monocytic lineage, are 

positive to PAS-staining and display microglia-specific markers, such as vimentin and ferritin 

(Itoh et al., 2002). The origin of GC seems to be caused by the effect of Psy on the cell cycle 

regulation: Psy inhibits cytokinesis without inhibiting cell division (Im et al., 2001; Kanazawa et 

al., 2000), leading to the formation of giant GC, filled with nonmetabolized material. As a direct 

consequence, the cellular debris cannot be cleared, thus further worsening neuroinflammation. 

Psy action as “neurotoxin” seems to represent the critical biochemical pathogenic mechanism 

responsible of cell death in the brains of GLD patients and animal models.

1.1.6 Animal models of GLD

Spontaneous mutations resulting in GALC deficiency occur in several mammalian species, such 

as mice, dogs, and non-human primates. Firstly, a canine model of GLD was discovered (West 

Highland White terriers) (Kurtz and Fletcher, 1970; Victoria et al., 1996), presenting 

characteristic pathological features such as weakness, tremor, deficiency of GALC activity and 

Psy accumulation in brain. Secondly, the murine model of GLD, known as Twitcher (Twi) was 

identified at the Jackson Laboratory (Kobayashi et al., 1980). These Twi mice on the C57BL/6J 

strain, appear normal at birth, but start to develop clinical signs, such as ataxia, twitching and hind 

leg weakness at around 3 weeks of age. Neurological deterioration both in CNS and in PNS is
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very fast, leading to a progressive hind leg paralysis, concomitant with weight loosing that lead to 

death at about 40 days of age. Twi mice present no GALC activity and Psy accumulation in CNS 

and PNS, with the appearance of multinucleated globoid cells (Tanaka et al., 1989). The disease- 

causing mutation in this model is a non-sense mutation, caused by a naturally occurring G>A 

transition at cDNA position 1017 in the GALC gene on both alleles. It results in the formation of 

a premature termination codon (PTC) (W339X) that abolishes enzymatic activity (Sakai et al., 

1996). The truncated form of GALC expected to be produced in these animals is not detected, 

because of degradation of GALC mRNA due to non-sense mediated mRNA decay (NMD) (Lee et 

al., 2006). Other mouse models are available, including a transgenic mouse, the trs, obtained by 

homologous recombination (Luzi et al., 2001). The missense mutation responsible for the disease 

results in a substitution of a Cysteine with a Histidine. While this mutation in humans decreases 

GALC activity to only 80% of normal values, in the mouse it results in a more severe reduction of 

GALC activity (10 to 20% of normal values). Trs mice present a phenotype similar to the one 

observed in Twi mice, but with a delayed onset of about 10 days: twitching and tremors start 

around day 30 and the life span is about 50 days. A model resembling the phenotype observed in 

human late-onset forms of GLD, obtained by Cre/lox knock out of Saposine A (Sap A), an 

activator essential for GALC functionality. SapA-/-mice develop a slowly progressive hind leg 

paralysis, with clinical onset at about 70 days and survival up to 5 months (Matsuda et al., 2001).

A non-human primate model of GLD (Rhesus monkeys) with pathological signs consistent with a 

diagnosis of GLD is also available. Affected monkeys present tremors of the head and limbs, 

deterioration of walking abilities and ataxia. With disease progression, the animals also display a 

decreased nerve conduction velocity, severe demyelination in both CNS and PNS, accumulation 

of globoid cells in the white matter and severe gliosis(Baskin et al., 1998; Borda et al., 2008).
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1.1.7 Treatment of LSDs

1.1.7.1 Rationale

In the last years, much progress has been achieved in the field of lysosomal storage disorders. In 

the past, no specific treatment was available for the affected patients; management mainly 

consisted of supportive care and treatment of complications. Nowadays, successful treatment are 

available mainly for those LSDs with no CNS involvement, e.g. Gaucher disease type I (Desnick,

2004). The treatments are based mainly on two concepts: 1) increasing residual enzymatic activity 

pharmacologically or 2) providing the enzyme ex-novo. This second approach relies on the 

widespread availability of the enzyme that can be achieved by the cross-correction mechanism 

typical of lysosomal enzymes. The notion that LSDs could be treated by replacing the effective 

enzyme with its normal counterpart was first suggested by de Duve in 1964 (de Duve, 1964,

2005). The discovery that newly synthetized lysosomal glycoproteins were targeted to the 

lysosome by the mannose 6- phosphate (M6P) receptor-mediated pathway provided the rationale 

for the treatment of non-neural LSD by ERT. This phenomenon was first observed on fibroblasts 

from patients affected by MPS I and II: the metabolic defect of these cells was corrected by 

providing “factors” secreted by wild type cells (Fratantoni et al., 1968) that was further 

characterized as functional enzymes (Hasidic et al., 1980). This phenomenon is unique of 

lysosomal enzymes, as MP6 groups are added exclusively to the N-linked oligosaccharides of 

these soluble enzymes as they pass through the cis Golgi network. After being modified, the 

lysosomal enzyme binds the M6P receptor in the trans Golgi network (TGN) and is sorted to the 

late endosomes to reach the lysosome. About 40% of the enzyme escapes this pathway and is 

secreted in the extra-cellular space: this enzyme can then bind the M6P-R on the membrane to the 

producer cell or surrounding cells and can be endocytosed and sorted to the lysosome (Sabatini, 

2001). Importantly, only 1-5% of normal intracellular activity was required to correct the 

metabolic defects in enzyme-deficient cells (Cantz and Kresse, 1974). These studies indicated the
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feasibility o f ERT and, in particular, that low levels o f exogenous enzyme could gain access to 

intracellular lysosomal sites and metabolize the accumulated substrate(s). Many therapeutic 

approaches for LSDs are based on cross-correction (Fig.3): in enzyme replacement therapy 

(ERT), the enzyme, administered through intra-venous injections, can reach the affected tissues 

with blood, while in tern cell transplant (SCT), the lysosomal enzyme is provided by normal cells 

o f donor origin.

G e n e tic a lly
M odified

Cell

E n z y m e-D efic ien t
Cell

Figure 3. Cross-correction of defective cells by wild type cells. The lysosomal enzyme is released in the 
extra-cellular space where it is up-taken by defective cells through the M6P-R and sorted to lysosomes 
(Sands and Davidson, 2006).

1.1.7.2 Enzyme Replacement Therapy

ERT consists o f the parenteral administration o f the recombinant or purified enzyme and 

represents a valuable approach for non neurophatic LSDs. ERT is currently used in clinical 

practice for Gaucher disease type 1 (Desnick, 2004), and Fabry disease (Barbey et al., 2004) and 

it is under investigation for a number o f LSDs, including, MPS I, II, IVB, VI and VII and Pompe 

disease (Rohrbach and Clarke, 2007). Enzyme replacement therapy for Gaucher didease type I, 

with glucocerebrosidase purified in large scale from human placentae, was introduced in 1991 

(Grabowski et al., 1998). The primary cellular site o f pathology in this disease is the macrophage/
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monocyte system and the bone marrow and reticuloendothelial organs of affected individuals 

become infiltrated with lipid-laden ‘foam’ cells, known as ‘Gaucher’ cells. Patients develop 

massive enlargement of their livers and spleens, pancytopenia, and severe skeletal disease causing 

bone pain and pathological fractures. ERT significantly alleviates hepatosplenomegaly and 

haematological manifestations (Desnick, 2004). In order to develop an efficacious ERT for LSDs, 

the differences between the affected tissues should be taken into consideration. Various cell types 

express different receptors for the uptake of lysosomal enzymes: the hepatocyte membrane 

contains galactose receptor; macrophages require mannose residues for uptake, whereas most 

cells bind exogenous enzymes via the M6P-R. Moreover, diversity in the membrane density of the 

M6P-R of different cells and tissues has been observed: the highest concentration of receptors was 

found in the heart and kidneys, the lowest in muscles and the brain (Wenk et al., 1991). Therefore, 

since successful ERT requires targeting of multiple cell types, the ideal drug may be the one that 

includes enzymes with various sugar residues and isoforms, to take advantage of the many 

cellular receptors involved in endocytosis. Recombinant enzymes are currently obtained from 

cultures of over-expressing Chinese Hamster Ovary (CHO) cells or human fibroblasts. The genes 

for almost all of the lysosomal enzymes have been cloned and theoretically their encoded proteins 

could be produced in large quantities.

A major limitation of ERT is the inability of the enzyme provided, to efficiently cross the blood 

brain barrier (BBB), with a consequent ineffectiveness of this treatment for LSDs with severe 

CNS involvement (Schiffmann, 2010). However, recent studies challenged this dogma and 

suggest that, in some disorders, the modified or the native enzyme may be able to do so. Recently 

it has been tried to conjugate of the enzyme with molecules recognized by a specific BBB carrier, 

such as IGF-2, the Fc fragment of antibodies, ApoB, or the TAT protein transduction domain 

(Boado, 2008). Other approaches being developed to improve the transport across the BBB aim to 

extend the circulating half-life of the administered enzyme, such as by removing M6P residues 

and thus inhibiting uptake via M6P receptor by peripheral organs (Boado, 2008). Preclinical 

results on a mouse model of Metachromatic leukodystrophy (Matzner et al., 2005) suggested the
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opening of a clinical trial for ERT; however, the outcome was not successful in humans and the 

clinical trial changed to a direct intratechal delivery approach (Shire HGT). Another limitation of 

ERT is the frequent occurrence of immune responses against the injected protein. In LSDs 

characterized by a complete absence of the enzyme, parenteral administration could result in the 

recognition of the protein as a non-self antigen, thus triggering a humoral response with IgG 

production. As a consequence, alteration of the pharmacokinetic, hypersensitivity and very 

occasionally, neutralization of the administered enzyme, were observed (Brooks et al., 2003). 

Recently the use of immunomodulatory gene therapy, i.e. the use of liver specific promoters to 

induce immune tolerance, has been proposed to overcome this issue (Koeberl and Kishnani,

2009). Finally, the high cost of the recombinant enzymes, the need for life-long treatment and the 

frequency of injections are significant issues for many patients and their families.

1.1.7.3 Enzyme Enhancement Therapy

In addition to ERT, current efforts are focused on the development of other strategies such as EET 

or Pharmacological Chaperon therapy (PCT). In most lysosomal disorders, certain missense 

mutations produce mutant proteins with a small amount of residual enzymatic activity (even less 

than 1%). These mutations result in milder phenotypes than those that have no residual enzyme 

function. The presence of residual activity presumably results from a small amount of the mutant 

glycopeptide that was properly folded, assembled, post-translationally modified, and trafficked to 

the lysosome. Such mutations are excellent candidates for EET. The hypothesized mode of action 

of these chaperones consists of reversible binding to the active site of a missense mutant enzyme, 

correcting protein misfolding and enhancing delivery to the lysosome. In the acidic lysosomal 

environment and in the presence of substrate, the chaperone would be released and the mutant 

enzyme would function better (Fan and Ishii, 2007). Recently, Suzuki and colleagues reported the 

rescue of (3-galactosidase activity in deficient human and murine cultured fibroblasts and in a 

transgenic mouse model of GMi-gangliosidosis, using the galactose derivative N-octyl-4-epi-(3-
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valienamine (NOEV), (Matsuda et al., 2003). The clinical efficacy of pharmacological chaperones 

has been investigated in the ‘cardiac variant’ of Fabry disease, obtaining evidence of 

improvement (Frustaci et al., 2001). Thus this type of treatment has shown to be promising, 

however these molecules work for some type of mutations and not for all of them.

1,1.7.4Substrate reduction therapy

Substrate reduction therapy (SRT) is design to reduce the synthesis of the accumulating 

glycosphingolipids and the presumed offending metabolite (Cox, 2005; Platt and Jeyakumar,

2008). The concept of SRT was proposed by Norman Radin as a potential treatment for type 1 

Gaucher disease, which is characterized by deficiency of glucocerebrosidase, leading to 

accumulation of glucocerebroside (Radin, 1996). The imino sugar Miglustat has been effective in 

treating mild to moderate systemic manifestation in patient with Gaucher disease (Pastores et al.,

2005). Miglustat showed promise in animal models of GMi and GM2 gangliosidosis and 

Niemann-Pick type C (Elliot-Smith et al., 2008; Jeyakumar et al., 1999; Zervas et al., 2001). 

Because SRT with Miglustat inhibits ceramide glucosyl transferase, neuronopathic Gaucher 

disease was theoretically the best candidate for this therapy (Platt and Jeyakumar, 2008), indeed 

there is evidence that Miglustat crosses the blood-brain barrier. However, a clinical trial did not 

show any effect of Miglustat on the neurological aspects of patients with type 3 (chronic 

neuropathic) Gaucher disease (Schiffmann et al., 2008). This failure may have been due to the 

limited potency of Miglustat or to the irreversible nature of the neurological deficit in this disease. 

Thus far, SRT has been shown to be somewhat effective only in patients with Niemann-Pick type 

C disease (Patterson et al., 2007). Even though the use of substrate synthesis inhibitors might 

influence the presence and distribution of sphingolipids, which play a number of important 

functions in cellular metabolism, it is likely that new molecules useful for SRT, with greater 

specificity and improved delivery to the brain, will be developed.
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1.1.7.5 Stem cell transplant

The transplant of stem cells of different origin (neural, hematopoietic and mesenchymal stem 

cells) based its feasibility on the secretion of a functional lysosomal enzyme from the donor cells 

(Lee et al., 2007a; Lee et al., 2008; Orchard et al., 2007; Orchard and Tolar, 2010).

1.1.7.5.1 Hematopoietic stem cell transplant (HSCT)

An increasing number of patients with LSDs are undergoing HSCT in attempt to slow the course 

of the disease, prevent the onset of clinical symptoms and improve some pathological findings. 

The most promising results are obtained when HSCT is performed in pre-symptomatic patients, 

identified in the uterus or at birth because of family history (Peters and Steward, 2003). The 

rationale of HSCT is to reconstitute a patient’s hematopoietic system with normal stem cells that 

are able to produce the missing enzyme. Hematopoietic Stem Cells (HSCs) are somatic stem cells 

that give rise to all blood cell lineages. Human HSCs can be isolated mechanically from the BM, 

where they reside, or from peripheral blood upon mobilization. An alternative HSC source is the 

cord blood. Initially, bone marrow was used as a source of stem cells but more recently, cord 

blood is the preferred cell source. The HSC pool is generally identified through the expression of 

the surface marker CD34, but selection using this marker provides a heterogeneous population of 

stem and committed progenitor cells. The most accurate definition of HSC is according to their 

function, measured as their ability to repopulate the hematopoietic system of a myeloablated host. 

Following systemic injection, HSCs circulate in the bloodstream, cross the vasculature and seed in 

the BM niche. This process is called homing and it is an active mechanism with many complex 

steps (Whetton and Graham, 1999).

Preclinical studies showed that donor-derived cells of the monocytic lineage infiltrate different 

tissues of the recipient, replacing the local macrophage population. These cells are not only the 

major effectors contributing to the clearance of the stored material throughout the tissues, but also 

act as reservoirs, synthesizing and secreting lysosomal enzymes which can be taken up by
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neighbouring cells (cross-correction)(Biffi et al., 2004). HSCT has been tried in a certain number 

of LSDs but it seems to be effective only in a few of them (i.e. MPS I, non-neuropathic Gaucher 

disease) (Aldenhoven et al., 2008; Hoogerbrugge et al., 1995). HSCT might in principle be 

effective in halting the neurodegeneration in LSD in which there is a severe CNS involvement. 

This efficacy is related to the fact that perivascular and parenchymal microglia in the brain derives 

from bone marrow precursors and after HSCT the brain starts to be repopulated by the microglia 

derived form the donor. The newly constituted microglia starts a mechanism of cross-correction, 

secreting the missing enzyme that can be internalized by neighbour cells (Biffi et al., 2008; Krivit 

et al., 1999b). This process might be accelerated or in the presence of a strong inflammation or 

neurodegeneration, because of the potential increase of BBB permeability (Rodriguez et al., 2007; 

Simard et al., 2006). The myeloablative-conditioning regimen applied before HSCT is essential to 

allow engraftment of exogenous HSC, and could play a fundamental role in the timing and extent 

of reconstitution. In fact, irradiation or administration of chemotherapic agents promotes 

microglia reconstitution by increasing the permeability of the BBB (Ajami et al., 2007). One of 

the intrinsic limitations of this approach is time required to achieve, full microglia replacement 

following HSCT. In mice, the time required to obtain extensive microglia reconstitution in the 

CNS is estimated around 1-6 months or more, according to the myeloablative regimen used and 

the underlying disease. In humans this is a very slow process and can need even years to be 

completed (Krivit et al., 1995). For this reason, even in the LSDs that better respond to HCT (e.g. 

Hurler), delivery of the missing enzymes to hardly accessible tissues (e.g. bone and, most 

importantly, CNS) is still suboptimal. In the rapidly progressive infantile forms with severe 

neurodegeneration this rather slow turnover might hamper the possibility to obtain therapeutic 

levels of enzyme in the time window of post-natal CNS development that is critical for 

myelination and neurogenesis, and for the correct development of CNS connections in the time 

window when the disease is more rapidly progressing. HSCT is associated with fairly high 

morbidity and mortality, which limits its use in conditions that are already life threatening. Major 

causes of morbidity and mortality are engraftment failure (i.e. inability of the transplanted HSC to



engraft and repopulate the recipient), regimen-related toxicity, graft versus-host disease (GvHD) 

and sepsis. Engraftment failure might be related to HSC or to the recipient. Several studies 

analysed the risk factors (such as HLA mismatch or T cell depletion) related to engraftment 

failure for example for MPS I-Hurler disease (Fleming et al., 1998). Due to these evidences 

HSCT does not constitute a valuable therapeutic option for many LSD patients. The use of CB 

HSCs greatly has influenced the outcome of HSCT in LSDs. When allogeneic HSCT is performed 

using BM HSCs, donors are usually siblings and often they are heterozygous/carrier for LSD. 

Transplantation of CB-derived HSCs, increases the number of available donors since a lower 

standard of histocompatibility between donor and recipient, is acceptable (Orchard and Tolar,

2010). The possibility to engineer autologous HSCs to over-express the relevant enzyme, thus 

combining stem cell transplantation with gene therapy could maximise the therapeutic benefits 

and simultaneously reduce the limitation and risks associated with allogeneic HSCT (see below).

1.1.7.5.2 Neural stem cell transplant

Transplanting neural stem/progenitor cells (described in paragraph 3.4) that intrinsically secrete 

missing or therapeutic gene products, may provide a strategy for long-term treatment o f central 

nervous system manifestations of a number of neurogenic diseases (Snyder and Wolfe, 1996). 

Multipotent neural progenitors or stem cells (or cells that mimic their behaviour) can engraft as 

integral members of normal structures throughout the host central nervous system without 

disturbing other neurobiological processes. The feasibility of this neural stem cell-based strategy 

has been demonstrated in several animal models of neurodegenerative diseases (Lindvall and 

Kokaia, 2006; Shihabuddin and Aubert, 2010; Windrem et al., 2004). While NSC were initially 

thought as good candidates for cell replacement strategy, it is becoming clear that the therapeutic 

benefit of NSCs is mediated by a number of indirect, by-stander mechanisms, which are 

alternative and/or complementary to the expected cell replacement. In particular, NSCs can 

promote survival and function of endogenous glial and neural progenitors, following a
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pathological insult. When transplanted in murine or non-human primate model of a chronic 

inflammatory neurodegenerative (Einstein et al., 2003; Pluchino and Martino, 2008a; Pluchino et 

al., 2003), ischemic (Bacigaluppi et al., 2008; Ballabio and Gieselmann, 2009), haemorrhagic 

(Lee et al., 2008) or traumatized (Park et al., 2002). CNS environment, NSCs can play an 

immunomodulatory and neuroprotective role that ameliorates pathological conditions (Jaderstad 

et al., 2010; Shihabuddin and Aubert, 2010).

Preclinical studies of NSCT have been made in several animal models of LSDs. In Sandhoff 

disease study, clinical improvement in the mice resulted from neonatal transplants using mouse or 

human neural stem cells. The transplantation delayed disease onset, preserve motor function, 

reduced pathology and prolonged survival. The limited cell replacement alone could not account 

for the improvement suggesting that the clinical benefit most likely resulted from multiple 

mechanisms (Lee et al., 2007a). Preclinical data about human NSC transplantation in a mouse 

model of infantile NCL, also known as Batten disease, showed that when transplanted in a mouse 

model of infantile NCL, human NSC engraft, migrate and continuously secrete the missing 

lysosomal enzyme. This results in a significant reduction storage build-up, protection of critical 

host neurons and delayed loss of motor function (Tamaki et al., 2009). On the basis of these pre­

clinical studies, Stems cell’s HuCNS-SC® product (an highly purified composition of human 

neural stem cells isolated from the human fetal brain that are prepared under controlled 

conditions) has been used in the first clinical trial based on the use of NSCT for a genetic 

neurodegenerative disorder. This clinical trial showed unclear results in terms of safety and 

efficacy (ClinicalTrials.gov identifier, NCT00337636). FDA allowed the phase II clinical trial to 

start.

A combined gene and NSC-based therapy approach might exploit the direct/by-stander effects 

provided by NSC with the possibility of producing high levels of the deficient enzyme. 

Genetically modified NSCs have been used in preclinical studies for MPS VII (Meng et al., 

2003), Niemann Pick A disease (Shihabuddin et al., 2004) and Sandhoff disease (Jeyakumar et al.,
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2009), with promising results in terms of reduction of storage, improve pathology and function, as 

better detailed below.

1.1.7.6 Gene therapy

LSDs are generally well-characterized single gene disorders, thus making them particularly 

attractive candidates for intervention by gene therapy. Moreover the possibility to modify a small 

number of cells that can produce and secrete supra-physiologic levels of the deficient enzyme 

coupled to cross-correction allow metabolic correction of a wide range of cell types. The potential 

efficacy of gene therapy approaches in LSDs is also related to the fact that even a low level of 

enzyme can be therapeutic. Furthermore the potential long-term expression of the therapeutic 

protein and the availability for patients with rare conditions are other benefits (Cheng and Smith, 

2003).

In vivo gene therapy refers to the injection of a gene transfer vector directly into a tissue or into 

the circulation. Systemic delivery involves mainly liver transduction, which becomes the principal 

source of the circulating enzyme. Intracerebral injection allows direct CNS correction and it is 

useful for LSDs with CNS involvement (Sands Davidson, 2006). Adeno-associated viral and 

retroviral vectors have been used extensively in various animal models of LSDs with brain 

involvement (Marshall et al., 2002; Salegio et al., 2010). Intracerebral gene delivery has been 

shown to achieve long-term protein expression and therapeutic benefits in several small and large 

animal models of LSD, including GMi- and GM2-gangliosidosis (Broekman et al., 2007; Cachon- 

Gonzalez et al., 2006), alpha-mannosidosis (Vite et al., 2005), mucopolisaccaridosis (Di 

Domenico et al., 2009), Niemann-Pick A (Passini et al., 2005) and neuronal ceroid lipofuscinosis 

(Cabrera-Salazar et al., 2007). Significant improvements have been done in vector design in order 

to have long-time expression of the transgene and to decrease the immunity response. Recently it 

is emerging the role of lentiviral gene transfer vectors as therapeutic tool thanks to their ability to 

transduce non-dividing cells efficiently and to mediate persistent in vivo expression (Deglon and
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Hantraye, 2005) (Di Domenico et al., 2009; Lattanzi et al., 2010).

Ex vivo gene therapy aims to modify cells genetically ex vivo and transplant them into an affected 

patient to create a reservoir of enzyme that can be secreted into the circulation and correct the 

disease at distant sites. The main types of somatic stem cells used in LSDs ex vivo gene therapy 

approaches are bone marrow stem cells (BMSCs), hematopoietic stem cells (HSCs), neural stem 

cells (NSCs) and mesenchymal stem cells (MSCs) (Shihabuddin and Aubert, 2010; Shihabuddin 

et al.). Several pre-clinical studies have demonstrated the efficacy of HSC gene therapy on murine 

models of LSDs (Biffi et al., 2008). In particular, the excellent results in terms of safety and 

efficacy of some pre-clinical studies using HSC gene therapy have allowed recently moving 

forward to clinical application. A clinical trial based on ex vivo gene therapy with lentivirus and 

HSCs, is on going for ALD patients and very promising results were obtained in two patients after 

30 months follow up (Cartier et al., 2009). Based on the good results obtained from ARSA 

overexpression in HSC in mouse model (Biffi et al., 2006), a phase I/II clinical trial using ex vivo 

HSC gene therapy in MLD patients is on going in San Raffaele Institute.

l .L  7.7 Combined therapy

Many neurodegenerative diseases, including LSDs, are characterized by CNS inflammation. 

Whether this is a secondary consequence of the storage, it represents a valuable target for 

adjunctive therapy (Jeyakumar et al., 2005). Proia and co-workers demonstrate the proof of 

principle by crossing Sandhoff disease mice (Hex-/-) with macrophage inflammatory protein l a  

(Mipla-/-)(Wu and Proia, 2004). On the same Sandhoff model other options were tested, such as 

NSAIDs (Jeyakumar et al., 2004) anti-oxidants (Jeyakumar et al., 2004), but also combination of 

HSCT and SRT (Jeyakumar et al., 2001), SRT and NSAIDs (Jeyakumar et al., 2004) with 

encouraging results. These studies clearly demonstrate the overlap between the pathology of 

LSDs and that of other neurodegenerative conditions, thus targeting the different aspects of the 

LSDs pathogenesis might be on benefit in the future therapy.
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1.1.7.8 Treatments fo r  GLD

ERT

Due to the neuropathic component of GLD, the possible benefits of ERT treatment are poor. Pre­

clinical studies on systemic GALC injection in Twi mice demonstrated only slight improvement 

in lifespan, although enzyme activity was detected (Lee et al., 2005). Similar results were 

obtained with intracerebrovetricular injections (Lee et al., 2007b).

EET

Very recently it has been reported the first study on the use of GALC pharmacological chaperons. 

The authors characterized three different homozygous mutations on mammalian cells and tested 

the effect of a-lobeline. Partial rescue of one out of three was proven (Lee et al., 2010). In vivo 

studies and the broadening of activity will be required before considering it as alternative therapy. 

SRT

SRT has been tested on Twi mice in combination with HSCT and resulted in a greater benefit than 

either treatment alone (Biswas and LeVine, 2002). The lack of any significant deleterious effects 

in the mice exposed to the drug may reflect the fact that the inhibition of substrate synthesis is a 

partial, rather than a full or complete block. However, the “genetic” substrate reduction in CGT-/- 

twi-/- double ko mice led to unexpected findings (Ezoe et al., 2000). In this mice GC are not 

present at any age, while a progressive neuronal pathology was observed in the brainstem and 

spinal cord after 45 days. This finding might suggest that either some unknown substrates of 

GALC are synthesized in the absence of CGT or some of the usual CGT products can be 

synthesized by other enzymatic mechanism.

HSC TRANSPLANT

HCT was initially tested on Twi mice. Transplanted mice displayed a sustained increase of GALC 

activity in the CNS, a stabilization of Psy storage and a reduction in both the number o f globoid 

cells and demyelination (Ichioka et al., 1987). Preliminary evidence has shown that HSCT could 

be effective for patients affected by the infantile form of GLD, if applied within the first months 

of life. When the disease is diagnosed early and when an HSC donor is available, HSCT can delay
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the onset of GLD and halt its progression. Pre-symptomatic and symptomatic children with the 

infantile form of GLD have been successfully transplanted with HSC from unrelated CB (Escolar 

ML, 2005). Preliminary results have shown a positive effect if patients have been transplanted 

very early in life before the onset of symptoms. In such patients, the progression of the disease has 

been slowed and their phenotype seems milder compared to untreated controls. However variable 

motor function, from nearly normal to an inability to walk without assistance, may be attributed to 

different rates of central myelination. The effects of cord blood transplantation on myelination 

may differ in the central and peripheral nervous (Escolar et al., 2005). In patients transplanted at a 

symptomatic stage, disease progression has been shown to be as fast as in non-transplanted 

children. Only partial results were also obtained when HSCT was performed in patients affected 

by the late-onset form (J and Ad) of GLD (Krivit et al., 1998; Lim et al., 2008). Moreover with 

this procedure the effect of irradiation on proliferating cells (i.e. neural progenitors) has to be 

taken into account. High doses necessary for transplant could be deleterious for this cell 

population.

NSC TRANSPLANT

Neural stem cells appear to be resistant to toxic metabolites, making them good candidates for 

therapies in metabolic disorders where the cellular environment is damaged (Taylor et al., 2006). 

In a previous study (Pellegatta et al., 2006) Twi mice were transplanted with cultured LV- 

transduced NSCs. Although the engrafted GALC-over-expressing cells did not survive well in the 

highly inflammatory Twi brain, they migrated appropriately to active sites of demyelination. The 

therapeutic effect of the treatment was modest, due to the clearance of transduced cells, likely due 

to the activated microglia. The hypothesis that the CNS of Twi mice could be a non-permissive 

environment for transplanted cells was also investigated by Snyder’s group. The inflammatory 

milieu of Twi CNS was not found to be a limiting factor for NSC engraftment, but, rather, it 

appeared to serve as a recruiting factor, drawing transplanted NSC towards damaged areas (Zhao 

et al., 2007). Moreover, they investigated the sensitivity of NSC to the toxic storage of Psy, 

present in the CNS of Twi mice. NSC showed an increased resistance to the detrimental effect of
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Psy, if compared with more differentiated cells, such as oligodendrocytic progenitor (Taylor et al.,

2006). Therefore, in order to develop an effective cell/gene therapy strategy for the treatment of 

GLD, different aspects should be carefully considered, including the level of enzyme expression 

required to achieve benefit, the characteristics of the transplanted cells and the permissiveness of 

the environment.

GENE THERAPY

In vivo gene therapy approaches have also been tried in animal models of GLD, based on in vitro 

studies showing the feasibility of gene correction in different neural cell types derived form the 

animal models (Luddi et al., 2001; Rafi et al., 1996) and from fibroblasts from GDL patients 

(Gama Sosa et al., 1996).

Intraventricular injection of Adenoviral vector carrying human GALC (hGALC) transgene 

performed at birth in Twi mice resulted in increased GALC activity and partial correction of the 

pathology in the brain, but without a significant improvement of the phenotype. Instead, 

pathology correction was not observed when Twi mice were treated at 15 days, suggesting that 

the timing of intervention its fundamental (Shen et al., 2001). Similarly intraventricular injection 

of AAV1, A W 2  or A W 2/5 did not achieve improvements in phenotype (Lin et al., 2005; Rafi et 

al., 2005). In general, intracranial injection of viral vectors expressing GALC resulted in 

physiological or even supra-physiological levels of enzyme activity in the brain. This resulted in 

slow-down of disease progression, significant reduction of tissue storage and decrease of activated 

microglia and astroglia (Lattanzi et al., 2010).

The major limitation of this approach is the lack of efficacy at the level of the PNS. For this 

reason, the combination with a systemic approach, such as ERT or HSCT, which could provide 

the enzyme to the PNS, might give better results.

Ex vivo gene therapy has been shown in several preclinical studies. A combined gene and cell- 

based therapy approach aims at enhancing the production of the deficient enzyme by prior 

transduction of cells with gene therapy vectors before transplantation into the host. However, in 

the case of GALC it has been recently demonstrated that forced expression of high levels of the
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enzyme affects HSC survival and the HSC niche by altering the delicate balance that regulates 

bioactive sphingolipids, posing additional problems of transgene expression regulation in the 

perspective of HSCT for KD (Visigalli et al., 2010). Nevertheless, few months ago the same 

group demonstrated that the insertion of a regulatory sequence for microRNA suppressed GALC 

expression in HSCs while maintaining robust expression in mature hematopoietic cells. This 

approach protected HSCs from GALC toxicity and allowed successful treatment of a mouse GLD 

model, providing a rationale to explore HSC-based gene therapy for GLD (Gentner et al., 2010). 

NSCs have been used also for ex vivo gene therapy. Pellegatta and co-workers transplanted Twi 

mice with cultured LV-transduced NSCs. Although the engrafted GALC-over-expressing cells did 

not survive well in the highly inflammatory Twi brain, they migrated appropriately to active sites 

of demyelination (Pellegatta et al., 2006). Other study however suggested that inflammation could 

be useful to guide transplanted cell (Zhao et al., 2007) and moreover that gene corrected NSC are 

less susceptible to Psy toxicity (Taylor et al., 2006).

COMBINED THERAPY

Anti-inflammatory therapy with NSAIDs was tested in trs mice, a transgenic model of GLD, 

showing increasing life-span of treated mice (Luzi et al., 2009), thus indicating a possible role for 

combined therapy in association with a source of enzyme. Other preclinical studies are ongoing or 

are been done in order to couple CNS and total body treatment, for example the combination of in 

vivo gene therapy with a systemic approach, such as ERT or HSCT. Combination of gene therapy 

in the CNS with HSCT was tried (Lin et al., 2007). Twi mice were injected with AAV vector 

expressing GALC in the CNS and underwent HSCT from wild type donors. Encouraging results 

were obtained, suggesting synergy between the two therapies. In a different study, bone marrow 

cells and GALC-LV vectors were administered intravenously without any preconditioning to 

newborn Twi (Galbiati et al., 2009). These types of treatment will allow multi-organ treatment 

with good bioavailability of the GALC enzyme in a relevant time window.
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1.2 Bioactive lipids

1.2.1 Overview

Lipids were canonically considered molecules involved in the formation and regulation o f cellular 

membranes. After 20 years o f research, now they are more considered: it was introduced the 

concept o f “bioactive lipids”, that means that these molecules can have a role also in cellular 

functions and they are no more only structural elements. The demonstration o f direct activation of 

protein kinase C by the lipid diacylglycerol (DAG) triggered the idea that a lipid could regulate 

cell signalling (Nishizuka, 1992). An important group o f bioactive lipids are the sphingolipids 

(Fig-4).
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Figure 4. Sphingolipids metabolism and interconnection of bioactive lipids. Cer is considered to be the 
central hub of sphingolipids metabolism and is synthesized de novo from the condensation of palmitate 
and serine to fonn 3-keto-dihydrosphingosine (not shown). I turn, 3-keto-dihydrosphingosine is reduced to 
dihydrosphingosine followed by acylation by CerS. Cer is generated from the action of desaturases. From 
here, Cer can be converted to other interconnected bioactive lipid species. The only exit pathway is 
mediated by SIP lyase, which metabolizes SIP. CDase, ceramidase CK, Cer kinase; DAG, diacylglycerol; 
GCase, glucosylceramidase; GCS glucosylceramide synthase; PC, phosphatidylcholine; SK sphingosine 
kinase; SMaes, sphingomyelinase; SMS, sphingomyelin synthase; SPPase, sphingosine phosphate 
phosphatase; SPT, serine palmitoyl transferase. (Hannun ad Obeid 2008).
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Sphingolipid metabolism has a unique metabolic entry point, which forms the first sphingolipid in 

the de novo pathway and a unique exit point, which breaks down Sphingosine- 1-Phospate (SIP) 

into non-sphingolipid molecules. The multiple metabolic steps in between constitute a highly 

complex network that connects the metabolism of many sphingolipids. In this network, ceramide 

(Cer) can be considered to be a metabolic hub because it occupies a central position in the 

sphingolipid biosynthesis and catabolism (Fig.4). Enzymes of lipid metabolism are intimately 

related to each other, generating interconnected network that regulates not only the levels of 

individual lipids, but also their metabolic interconversion. Interestingly, the cellular levels of these 

bioactive sphingolipids render this scenario very likely. For example, in most cell types, 

sphingomyelin (SM) (Cer precursor) is present in concentrations that are an order of magnitude 

higher than those of Cer; therefore, small changes in SM can result in profound changes in Cer. In 

addition, Cer is often detected in concentrations that are more than an order of magnitude higher 

than those of sphingosine. Therefore, immediate hydrolysis of only 3-10% of newly generated 

ceramide may double the levels of sphingosine. Similarly, phosphorylation of 1-3% sphingosine 

may double the levels of SIPs (Bielawski et al., 2006). Moreover, there are multiple pathways 

that can operate in parallel. In addition, bioactive sphingolipids exhibit hydrophobic properties; 

therefore their physiological environment is mostly restricted to membranes. Their subcellular 

localization and transport across and between membranes is indeed another element of complexity 

(Hannun and Obeid, 2008).

1.2.2 Sphingosine-l-phosphate

SIP is a key regulator of numerous physiological functions, including cell growth and survival, 

angiogenesis, cell motility and migration and lymphocyte trafficking (Maceyka et al., 2009; 

Spiegel and Milstien, 2003). SIP is formed intracellularly by two Sph kinases (SphKl and 

SphK2) starting from Sph and sphinganine; it is important to not that these two molecules are not 

produced de novo and are only formed by catabolism of sphingolipids. SIP can be degraded
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either by reversible dephosphorylation to Sph by phospahtases, including lysosomal phosphatses 

such as such as members of LPP family and two SIP specific phosphatases, SPP1 and SPP2 

(Maceyka et al., 2007), or degraded by irreversible cleavage to ethanolamine phosphate and 

hexadecenal by SIP lyase (Bandhuvula and Saba, 2007).

SIP is a ligand for a family of five G-protein-coupled receptors (SIPRs), termed S1P1-5. In many 

cases, activation of these SIPRs appears to involve “ inside-out” signalling whereby growth 

factors, cytokines, or cross linking of IgE receptors stimulates cytosolic SphK and induces its 

translocation to the plasma membrane where its substrate sphingosine resides (Spiegel and 

Milstien, 2003). This activation process produces SIP that may be secreted from specific types of 

cells, perhaps through the ABC transporter ABCC1 (Mitra et al., 2006) to stimulate SIPRs in an 

autocrine or paracrine manner. Whereas cell stresses, such as tumour necrosis factor-a, irradiation 

and anticancer drugs, induce accumulation of ceramide leading to apoptosis, many other stimuli, 

particularly growth and survival factors, activate SphKl, resulting in accumulation of SIP and 

consequent suppression of ceramide-mediated apoptosis (Cuvillier et al., 1996; Spiegel and 

Milstien, 2003). It has been suggested that the dynamic balance between intracellular SIP vs. 

sphingosine and ceramide, and the consequent regulation of opposing signalling pathways, is an 

important factor that determines whether cells survive or die (Cuvillier et al., 1996). This 

“ sphingolipid rheostat”  has important clinical implications for cancer treatment (Ogretmen and 

Hannun, 2004) and is evolutionarily conserved, as it also plays a role in regulation of stress 

responses of yeast (Saba and Hla, 2004).

Recently Wu and colleagues demonstrate a link between SIP  receptor signalling pathway and 

neuropathic LSDs, using a model of Sandoff and Tay-Sachs disease (Hexb null mice). In these 

disorders an absence of lysosomal ^-hexosaminidase A bloks the gangliosides degradation 

pathway, leading to substrate accumulation in neurons and triggering a sequence inducing 

neuronal cell death. The authors showed that genetic deletion of SphKl or SIP3 resulted in a 

milder disease course, with decreased glial proliferation and astrogliosis, thus suggesting a
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regulation of these two phenomena during the terminal stage of Sandhoff disease by SphKl/ SIP3 

axis (Wu et al., 2008).

1.2.2.1 Sph kinases

In mammals both SphKs have a broad and overlapping tissue distribution, with SphKl 

predominating in lung and spleen and SphK2 predominating in the heart, brain and liver (Kohama 

et al., 1998; Liu et al., 2000a). SpKl and SpK2 are primarily cytosolic, although their 

distributions are altered in different cell types and by various signals (Strub et al., 2010). 

Homozygous single knock out mice of either enzyme are viable and there are no obvious 

phenotype. However, double mutants with all the four alleles missing, died in utero due to 

defective brain and cardiovascular system development (Mizugishi et al., 2005). This suggest that 

SpKl and SpK2 are redundant in mammals for viability, but the functional redundancy may not 

apply to a variety of pathophysiological conditions, suggesting that isoenzyme-specific targeting 

of SphKs may be an effective means of disease control or prevention.

SphKl is activated by diverse stimuli, including hormones, growth factors, immunoglobulin 

receptor crosslinking, cytokines, chemokines and lysolipids, including SIP (Spiegel and Milstien,

2003). Indeed, many of the pro-growth and anti-apoptotic effects observed by exogenous 

additions of SIP can be reproduced by overexpression of SphKl. On the contrary, SphK2 

overexpression induced growth arrest, promotes apoptosis and chemosensitizes several cell types 

(Liu et al., 2003; Okada et al., 2005). The differential effects of the two SphKs on cell fate are due 

in part to their different roles in regulating Cer levels and in part to the different effects in 

transduction of signal from cell surface receptors (Strub et al., 2010).

1.2.2.2 Sph receptors

SIP is a ligand for five specific GPCRs SI Pi.5 , formerly called endothelial differentiation gene 

(EDG) receptors, which are differentially expressed in different tissues. The cell types specific
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expression of SIPRs as well as their differential coupling to different G proteins, explains the 

diverse signalling of SIP (Brinkmann, 2007). In many cases, the SIP produced activates cell 

surface SIPRs in a paracrine and/or autocrine manner, indeed many of the downstream effects of 

these stimuli require transactivation of one or more SIPRs, also called “inside-out” signalling 

(Alvarez et al., 2007).

SIPi is ubiquitously expressed, with high levels in brain, lung, spleen, cardiovascular system and 

kidney. Is it known that SIPi plays a key role in angiogenesis (Liu et al., 2000b), in maintaining 

endothelial barriers (McVerry and Garcia, 2005) and in immune cell function (Matloubian et al.,

2004).

SIP2 is also widely expressed in a variety of different cell types. It is required for proper 

development of the auditory and vestibular system (Kono et al., 2007), for mast cell degranulation 

(Jolly et al., 2004) and for increasing vascular permeability (Sanchez et al., 2007). SIP2 is 

generally considered to be a repellent receptor as its activation inhibits cell migration and appears 

to work in opposition to SIPi and SIP3 , which both enhance cell migration (Lepley et al., 2005). 

SIP3 is expressed in the cardiovascular system, lungs, kidney, intestines, spleen and cartilage. It is 

an important regulator for vascular permeability (Sanchez et al., 2007) and for the heart rate 

(Forrest et al., 2004).

SIP4 is primarily expressed in lymphoid tissues, including thymus, spleen, bone marrow, 

appendix and peripheral leukocytes. Its activation modulates the opening of intracellular calcium 

storages (Van Brooklyn et al., 2000).

SIP5 is highly expressed in oligodendrocytes, however it is not clear if  it plays a role in 

myelination (Jaillard et al., 2005).

1.2.3 Ceramide

Ceramide is considered to be the central hub of sphingolipid metabolism, and is synthesized de 

novo from the condensation of palmitate and serine to form 3-keto-dihydrosphingosine. In turn, 3-
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keto-dihydrosphinsine is reduced to dihydrosphingosine followed by acylation by (dihydro)- 

ceramide synthase (CerS). Cer is generated by the action of desaturases. From here, Cer can be 

converted to other interconnected bioactive lipid species (Fig.4). In addition, Cer can be also 

produced by turnover of complex sphingolipids, such as sphingomyelin, GalCer and GlcCer, and 

Cer IP (Zheng et al., 2006). Although there are many signalling pathways that are affected by Cer, 

several appear to be direct targets: Phosphoprotein Phosphatases 1 and 2A (PP1 and PP2A) 

(Pettus et al., 2002), protein kinase C (PKC)(Kajimoto et al., 2004), Cathepsin D (Heinrich et al., 

1999), stress-activated protein kinase (SAPK/JNK)(Huwiler et al., 2004). Moreover, the 

biophysical properties of Cer allow membranes to undergo structural changes that can be viewed 

as analogous to the activation or inactivation of a signalling target (Kolesnick et al., 2000).

1.2.4 Lactosylceramide

LacCer can be generated via different pathway: from ceramide generated by de novo pathway, 

from ceramide generated from other sphingolipids and from the catabolism of complex 

glycosphingolipids via the action of sialidases, galactosidase, sulfatase and fucosidase. 

Conversely LacCer plays a pivotal role as a precursor in the biosynthesis of the majority of 

glycosphingolipids. Briefly, Cer is converted in Glucosylceramide (GlcCer) by glucsylceramide 

synthase (GlcT), and then LacCer synthase (GalT-2) transfers a galactose moiety and GlcCer 

become LacCer. Moreover, it can be generated by catabolism of gangliosides via the action of 

sialidases. Until now four types of sialidases have been identified in human cells: lysosomal 

(NEU1), cytosolic (NEU2), plasma membrane (NEU3) and NEU4 (Chatteijee and Pandey, 2008). 

Among them the plasma membrane-bound sialidases have been shown to hydrolase gangliosides 

preferentially and are of great importance as they can rise the pool of LacCer and thus alter cell 

function (Miyagi et al., 2004). On the contrary, NeuAc LacCer a 2-3-sialyl transferase (SAT-1) 

catalyzes the formation of GM3 ganglioside from LacCer.
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LacCer plays a role in physiological processes such as smooth muscle cell proliferation (Bhunia et 

al., 1997), expression of adhesion molecules (Bhunia et al., 1998), angiogenesis (Rajesh et al., 

2005) and in (31-integrin clustering and endocytosis (Ebadi and Sharma, 2003). Moreover it has 

been reporter that LacCer is an important signalling component for the induction of pro- 

inflammatory mediators and astrogliosis (Pannu et al., 2005; Pannu et al., 2004).

1.2.5 Sphingolipids and brain development

Sphingolipids and especially glycosphingolipids (GLS) are essential for the organism. For 

example, GlcT knockout mice are embryonically lethal and showed no cellular differentiation 

beyond the primitive cell layers (Yamashita et al., 1999). The crucial role of GLS in the 

development and maintenance of the proper functions of the nervous system has been 

demonstrated by lots of work (Piccinini et al., 2010; Yu et al., 2009).

GLS patterns undergo deep qualitative and quantitative modifications during the development of 

the nervous system: in rodent (Ngamukote et al., 2007) and human brains (Svennerholm et al., 

1989) the total gangliosides contents increased several fold from the embryonic stages to the 

postnatal life. These increases were accompanied by a dramatic shift from simple gangliosides to 

more complex species. Along the adult life, a progressive loss of gangliosides with aging has been 

reported (Svennerholm et al., 1991). The expression of galactolipids such as GalCer and sulfatide, 

highly enriched in CNS and PNS, is also dramatically regulated during the development of the 

nervous system. During mid-embryonic stages of mouse brain development, GlcCer but not 

GalCer or sulfatide, is expressed (Svennerholm et al., 1989). Their synthesis starts in the 

embryonic development when oligodendrocytes enter terminal differentiation and is up-regulated 

during the postnatal extension of myelin sheaths (Pfeiffer et al., 1993). Moreover blockade of 

GLS biosynthesis by pharmacological inhibition of GlcT or CerS reduced axonal elongation and 

branching in cultured hippocampal and neocortical neurons (Harel and Futerman, 1993; Schwarz 

et al., 1995) and synapse formation and activity (Inokuchi et al., 1997).
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1.2.6 Sphingolipids in LSDs

Lysosomal diseases are most frequently classified according to the major storage compound. 

Thus, disorders in which the accumulation of glysosamminoglycan fragments prevails are 

classified as mucopolysaccharidoses, those dominate by lipid storage as lipidoses. However, it is 

important to underlie that in most lysosmal diseases more than one compound accumulates and in 

some disorders for various reasons the stored material can be rather heterogeneous. The cellular 

consequences of substrate accumulation are determined by type of storage material, the extent of 

storage, the type of storing cells, and the direct or indirect consequences that lysosomal storage 

has on basic cellular processes such as intracellular trafficking and autophagy.

Compounds accumulating in LSDs can affect signal transduction pathways at different levels. 

Storage compounds can function as ligand for receptors, modify receptor response, alter 

subcellular organization of receptors and alter activities of enzymes involved in signal 

transduction cascades (Ballabio and Gieselmann, 2009). In GLD, Psy plays lots of these action: it 

binds TDAG8  receptor inhibiting cytokinesis, promoting the formation of globoid cells 

(Kanazawa et al., 2000); it is a reversible inhibitor of PKC, interfering with its activation 

(Yamada et al., 1996); it interferes with insulin growth factor-1 (IGF-1) signalling pathway 

increasing apoptosis (Zaka et al., 2005); it activates phospholipase A2, triggering the production 

of lysophosphatidylcholine (a mediator of apoptosis) and arachidonic acid (that generates ROX 

and free radicals)(Giri et al., 2006); it reduces the activity of AMP activated protein kinase, 

influencing the cell energy status (Giri et al., 2008).

Many pathways involve the release of calcium ions from the ER to the cytosol, and increased 

cytosolic calcium triggers a variety of cellular responses. In Gaucher disease, for example, GluCer 

storing neurons display an increased calcium release from the ER in response to a glutamate 

stimulus. This results in enhanced glutamate induced neurotoxicity which might explain partly the 

neurodegeneration seen in this disease (Korkotian et al., 1999). Moreover the dysregulated 

calcium homeostasis in the ER could affect the proper protein folding, as in the case of GMi
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gangliosidosi, where accumulation of GMi gangliosides elicit the unfolded protein response 

(Tessitore et al., 2004).

Synthesis and degradation of the various lipids must be fine tuned to maintain membrane 

homeostasis, thus storage of a particular lipid is likely to affect the metabolism of other lipid. As 

examples, the synthesis of phospholipids is reduced in GM2 gangliosidosis as consequence of 

storage (Buccoliero et al., 2004), whereas in Gaucher disease, the GluCer storage activates 

enzymes of phospholipid synthesis (Bodennec et al., 2002).

In LSDs, the accumulation of membrane lipids affects also intracellular membrane flow and 

sorting. Since the endosomal and lysosomal pathway are functionally connected, it is not 

surprising that lysosomal storage affects intracellular sorting events. In cells of patients with 

LSDs, LacCer accumulates in the endosomal/lysosomal pathway, suggesting an alteration of the 

endosomal sorting common to all lipidosis. Indeed, in normal cells, LacCer is endocytosed and 

transported to the Golgi apparatus (Puri et al., 1999).

Finally, the lysosome plays a major role in an important degradation pathway, autophagy, which 

mediates the cellular turnover of proteins and organelles. Many studies established the presence of 

autophagosome accumulation in LSDs. This may be the result of either an induction of 

autophagy, or a defective autophagosome maturation (Cao et al., 2006; Fukuda et al., 2006; 

Settembre et al., 2008).

1.3 Neurogenesis, neurogenic niches and neural stem cells in the 

mammalian brain

Adult brain was supposed to be a stable and non-proliferative tissue for a long time. Evidence for 

postnatal neurogenesis was seen in the late ‘60s, from the first experiments performed by Das and 

Altman on proliferation of progenitors (Altman and Das, 1965a, b). However, from the late ‘90s it
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was becoming clear that pieces of the embryonic development are retained for adult neurogenesis. 

In fact, stem cell self-renewal and progenitor differentiation is regulated by the specialized 

microenvironment—or “niche”—in which these cells reside. Such niches are composed of soluble 

factors as well as membrane bound molecules and extracellular matrix. During brain 

development, most stem cells and their niches are spatially ephemeral and temporally transient. In 

contrast, in the adult, neural stem cells and their niches are retained in restricted regions with their 

local developmental processes occurring for the life of the animal.

In the adult mammals brain, neurogenic stem cells are present in two specific regions, the 

subventricular zone (SVZ) of the lateral ventricle wall and the dentate gyrus subgranular zone 

(SGZ) of the hippocampus. Throughout adult life, cells bom in the SVZ migrate long distance 

anteriorly through the rostral migratory stream (RMS) into the olfactory bulb (OB), where they 

differentiate into intemeurons. Neurons in the dentate gyms are bom locally in the underlying 

SGZ and migrate a short distance to integrate in the dentate gyms (Alvarez-Buylla and Garcia- 

Verdugo, 2002; Alvarez-Buylla and Lim, 2004; Alvarez-Buylla et al., 2002). Recently neurogenic 

niches have been described in the adult human brain.

In the following paragraphs we will discuss the concept of neurogenic niches and neural stem 

cells, focusing on the mammalian SVZ niche, which is the subject of our experimental work. 

However, the SGZ will be briefly discussed.

1.3.1 The neurogenic niches from the embryonic/ perinatal to the adult age

NSCs persist in compartments of the mature brain, providing a permanent source of newly 

generated cells that adapt their intrinsic cell program to the dynamic environment that underlies 

the transitions between pre-natal and post-natal and, ultimately, to the adult brain. NSC niches 

regulate neurogenesis during CNS development and provide, in adulthood, a sort of ‘immature’ 

environment in which the essential conditions for life-long neurogenesis are maintained. During 

early postnatal stages we observe the most relevant modifications in the structure and cell

49



composition of the niche microenvironments that ultimately result in the complex adult 

architecture (Bonfanti and Peretto, 2007; Gritti and Bonfanti, 2007) (Fig.5).

Figure 5. Niche development During 
embryonic development radial glia (light 
green) have a dual role, acting both as a 
scaffold for radial migration of neuronal 
precursors that leave the germinative layers 
(purple) and as stem cells capable of generating 
neurons and glia. After birth, radial glia 
transform into mature astrocytes (dark green) 
in the CNS parenchyma, and into astrocytes of 
the adult neurogenic sites, the forebrain 
subventricular zone (SVZ) and the 
hippocampal subgranular zone (SGZ). 
Abbreviations: E, ependyma; gtA, astrocytes of 
the glial tubes; hA, horizontal astrocytes; NSC, 
neural stem cells (type B cells, b); rA, radial 
astrocytes; RG, radial glia (Gritti and 
Bonfanti2007).

1.3.1.1 The SVZ niche

Central nervous system development is an intricate process relying on a series of mechanisms 

precisely regulated in time and space. In rodents, the majority of the cells presents in the adult 

brain are produced and migrate to their respective destination within an approximately one-week 

period during embryogenesis. The embryonic CNS is a dynamic structure, constantly increasing 

in size due to histogenesis, while the stem/precursor cell populations, which are responsible for 

building the brain, are retained in two distinct and relatively small proliferative areas. The first is 

the ventricular zone (VZ) where epithelial cells with NSC properties appear approximately at 

embryonic day (E) 8  and from which originate all cells of the developing and mature CNS,
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including adult NSCs (Alvarez-Buylla et al., 2001). After a period of NSC/precursor expansion, 

as neurogenesis commences, a second progenitor population starts to be generated from 

asymmetrically dividing cells in the VZ and migrates basally. These cells, termed intermediate 

progenitors or basal progenitors, divide symmetrically to produce neurons and glia (Martinez- 

Cerdeno et al., 2006). The early NSC microenvironment consists of characteristic bipolar cells, 

termed neuroepithelial (NEP) cells, with one process (apical) attached to the ventricle and one 

longer process (basal) attached to the pial surface. NEP cells form the pseudo stratified VZ and 

are characterized by the periodic apico-basal translocation of their nucleus (interkinetic nuclear 

migration) which is regulated in such a way that mitosis occurs always at the ventricular surface, 

while S phase occurs at the basal-most area (Gotz and Huttner, 2005). The main structural 

constant of this early microenvironment is the ventricle, while the thickness of the 

neuroepithelium increases with time, accommodating the augmenting number of NEP cells and 

the occasionally generated neurons that quickly migrate towards the pial surface of the nervous 

tissue. Around midgestation, in rodents, NEP cells start to express glial markers and assume a 

more elongated morphology. Reflecting this transition, the emerging neural stem cell/progenitor 

type is now named a radial glial cell (RG) and retains the bipolar morphology and the interkinetic 

nuclear migration characteristic of NEP cells (Tramontin et al., 2003). As the thickness of the 

nervous tissue increases with the generation of large numbers of neurons, the basal process of the 

RG elongates in order to retain attachment to the pial surface (Rakic, 2003). The complexity of 

the mantle microenvironment increases as development proceeds, due to the generation of 

different neuronal cell types and the appearance of a dense network of blood vessels (Herken et 

al., 1989). A parallel increase in the VZ complexity is observed (Pinto and Gotz, 2007). Finally, 

to add to the complexity of the progenitor microenvironments, it should be noted that specific 

areas secreting growth factors or morphogens exist (named signalling centres) either within the 

VZ/SVZ or outside (Shimogori et al., 2004).

The SVZ is located next to the ependyma, a thin cell layer that lines the lateral ventricles of the 

brain (Fig. 6 ). Three types of precursor cells exist in the SVZ: type B SVZ-astrocytes, rapidly
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dividing transit amplifying (type C) cells and committed migrating neuroblasts (type A). The cell 

lineage is type B to C to A, with the type B believed to be the self-renewing primary precursor 

(Doetsch et al., 1999a; Doetsch et al., 1997) Interestingly, the potential of SVZ progenitor cells 

appears to be limited, as the fate of their progeny is determined by the positional information 

established during early development of the central nervous system (CNS)(Merkle et al., 2007). 

Neuroblasts form clusters all along the ventricular length and migrate in chains towards the dorsal 

and posterior tip of each lateral ventricle in order to continue their migration within the rostral 

migratory stream (RMS) up to the olfactory bulb glomeruli, where they mature into local 

intemeurons. In parallel, SVZ neural progenitors also generate oligodendrocyte precursors that 

migrate radially to the neighbouring white matter tracts of corpus callosum, septum and fimbria 

fornix and differentiate into myelinating oligodendrocytes (Gonzalez-Perez and Alvarez-Buylla, 

2011; Gonzalez-Perez et al., 2009). The identification of SVZ progenitors was mainly based on 

morphological analysis by electron microscopy (Doetsch et al., 1997), but type C and A cells can 

also be identified by bromodeoxyuridine (BrdU) and 3H-thymidine labelling and by specific 

molecular markers, such as Dlx2, doublecortin (DCX) and the polysialylated neural adhesion 

molecule (PSA-NCAM). Lineage tracing studies in adult mice have demonstrated that newborn 

neurons, astrocytes and sometimes oligodendrocytes can be derived from cells expressing a given 

molecular marker, such as Nestin, GFAP, GLAST and Sox2 (Breunig, 2007). However, these 

markers are expressed in heterogeneous populations of cells and it is not clear whether cells 

expressing these markers are the primary progenitors. Neither is it known whether a common 

progenitor exists in the adult brain for all three different types of progeny or if distinct progenitors 

are responsible for the generation of multiple neural cell types. NSCs have an astrocytic 

morphology and are situated adjacent to the multiciliated ependymal cells that line the lateral 

ventricles and are surrounded by other astroglial cells and type C and A cells. In addition, two 

multicellular structures are integrated into the SVZ: the astrocyte-constructed tubes in which 

neuroblast clusters migrate towards the rostral migratory stream and the numerous blood vessels 

with their endothelial cell/pericyte-derived walls and astrocyte endfeet on their surface.



Interestingly, the SVZ extracellular matrix (ECM) seems to be significantly different from that of 

the surrounding mature tissue. Recently it was described that extensions o f the vessel basal lamina 

intrude the SVZ and branch around NSCs and progenitors (Mercier et al., 2002). These laminin 

and collagen I-rich ECM structures can be observed under the electron microscope and have been 

named fractones. Other ECM molecules that have been shown to be present in the SVZ are matrix 

metalloproteinases, tenascin-C (Jaworski and Fager, 2000; Kazanis et al., 2007), 

chondroitin/dermatan sulfate proteoglycans (Akita et al., 2008), as well as the trisaccharide 

LeX/SSEA-l/CD15 that is expressed on NSCs and type C cells. The expression o f most o f these 

molecules is normally down-regulated during early post-natal life resulting in the formation o f the 

classic brain parenchymal ECM, characterized by the dominance o f proteoglycans like brevican, 

neurocan and versicans (Bandtlow and Zimmermann, 2000). Therefore, the distinct nature o f the 

SEZ niche is emphasized by the persistent presence o f ECM molecules that are expressed during 

embryonic development or after injury (Bandtlow and Zimmermann, 2000).

Figure 6. The SVZ

(A) Coronal section through the adult mouse brain. Light blue shows the lateral ventricle (LV) space filled 

with cerebrospinal fluid. Boxed area is shown enlarged in (B). (B) Architecture of the SVZ. B cells (dark 

blue) are the astrocytes that are the SVZ stem cell and also serve as niche cells. Some of the B cells contact 

the ventricle lumen and have a single cilium (shown). C cells (green) are rapidly dividing, transit- 

amplifying cells derived from the B cells. C cells give rise to A cells (red), neuroblasts that migrate to the 

olfactory bulb, where they become local intemeurons. A blood vessel (BV, pink) is shown with a 

perivascular macrophage (dotted fill); a basal lamina (BL, yellow) extends from the BV and interdigitates 

extensively with the SVZ cells. (C) SVZ lineage. (Alvarez-Buylla and Lim, 2004).
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13 ,1 ,2  The SG Z niche

Unlike in the SVZ, the hippocampal niche is not in direct contact with the ventricular cavities. In 

the SGZ, adult hippocampal progenitors are closely apposed to a dense layer of granule cells that 

includes both mature and newborn immature neurons, and develop locally into mature DG 

granule neurons (Gage, 2000). Within this microenvironment, there are also astrocytes, 

oligodendrocytes, and other types of neurons. Hippocampal astrocytes may play an important role 

in SGZ neurogenesis. They promote the neuronal differentiation of adult hippocampal progenitor 

cells and the integration of newborn neurons derived from adult hippocampal progenitors in vitro 

(Song et al., 2002). Blockade of the Wnt signalling pathway inhibits the neurogenic activity of 

astrocytes in vitro and SGZ neurogenesis in vivo, suggesting that hippocampal astrocytes may act 

through Wnt signalling (Lie et al., 2005).

At least two morphologically and antigenically distinct types of astrocytes (type B cells), exist in 

the adult SGZ (Seri et al., 2004): (1) horizontal astrocytes (GFAP+, Sox2+, S I00(3+), with the 

morphology of typical mature astrocytes, and (2) radial astrocytes (GAFP+, Sox2+, S 100(3-), 

which display a radial glia-like morphology. The latter extend a major radial projection into the 

granule cell layer and have extensive basal processes that form basket-like structures nestling 

clusters of neuroblasts (type A cells). Radial astrocytes give rise to small dark cells (type D cells; 

also referred to as type-2 cells in their higher proliferative state) (Steiner et al., 2006), which 

progress through three maturational stages as they translocate to the granule cell layer of the DG 

to become granule neurons (Seri et al., 2004). A recent study showed that type 2 Sox2+ cells can 

self-renew and that a single Sox2+ cell can give rise to a neuron and an astrocyte, providing the 

first in vivo evidence of stem cell properties of hippocampal neural progenitors (Suh et al., 2007). 

Because of the absence of tangential chain migration of neuroblasts, the architecture of the 

hippocampal neurogenic site is similar in postnatal and adult stages. By contrast, the location of 

cell proliferation differs, occurring in the hilus postnatally and in the SGZ in adults (Namba et al.,

2005).
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1.3.2 The niche microenvironment

The stem cell niche is defined as a microenvironment that facilitates the survival and self- 

renewing capacity of the stem cells, as well as (in the adult CNS) the production of actively 

dividing precursors leading to the generation of post-mitotic progeny (Morrison and Spradling, 

2008). Similar relations have been described between hematopoietic stem cells and neighbouring 

osteoblasts (Yin and Li, 2006). At present there is no direct evidence to suggest the unique 

importance of any single interaction between the NSC and the cellular or parenchymal 

components of the SVZ or SGZ microenvironment. However, ependymal cells exert a 

supporting/regulatory function in the niche, since they can modulate the transport of ions and 

other factors from the cerebrospinal fluid (CSF)(Bruni, 1998). They are also a local source of 

neurogenic factors like pigment epithelium-derived factor (PEDF)(Ramirez-Castillejo et al., 2006) 

and the pro-neurogenic BMP signalling modulator noggin (Peretto et al., 2004), and they form 

gap junctions with SVZ astrocytes (Zahs, 1998). These factors may be required for the 

maintenance of neural stem cells. Indeed, ependymal cells are absent from the SGZ, this being the 

most distinct structural difference between the two adult neurogenic niches, and there is evidence 

suggesting that the ependymal-free SGZ contains neuronal progenitors with restricted self- 

renewing capacity rather than NSCs (Bull and Bartlett, 2005). In addition, the constant movement 

of the ependymal cilia is thought to contribute to the generation of gradients of soluble factors in 

the CSF and to regulate the migration of NBs (Sawamoto et al., 2006). Therefore any migratory 

cues provided by ependymal cells would be absent in the SGZ. However, SGZ progenitors do not 

migrate long distances and can probably acquire the necessary directional cues from the radial 

processes of the SGZ astrocytes (Seri et al., 2004). Three other cell types may also regulate NSC 

behaviour. In vitro data support the conclusion that the interaction between NSCs and blood 

vessel endothelial cells might be important in neurogenesis (Shen et al., 2004). Actively dividing 

cells have been shown to be positioned near blood vessels in the SGZ (Palmer et al., 2000) and in 

the SVZ (Tavazoie et al., 2008) and endothelial cells are a source of factors that have been 

suggested to control neurogenesis, like PEDF, leukemia-inhibitory factor and brain-derived
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neurotropic factor. NSCs are also in close contact with their progeny: the induction of massive 

NSC mitotic activity in the SVZ after ablation of type C and A by intracerebrally infusing the 

anti-mitotic drug AraC (Doetsch et al., 1999b), indicates the existence of progenitor-dependent 

feedback loops controlling NSC proliferation, although the nature of this signalling remains 

elusive. Astroglia are the most abundant cell type in the SVZ but it is still unknown whether they 

can be segregated into distinct functional groups, such as astroglia with structural, supporting or 

neurogenic roles. Astroglia of the SGZ can be structurally separated into radial and horizontal 

astrocytes (Seri et al., 2004), while SVZ astroglia (or type-B cells) into two classes, type B1 and 

B2. B1 astrocytes reside adjacent to the ependymal cells and proliferate less than the smaller and 

basally located B2 astrocytes (Doetsch et al., 1997). Astrocytes are coupled with gap junctions 

and are able to networking and transport information from distant areas (Giaume and Venance, 

1998). Thus they act as sensors and modulators of the microenvironment that become reactive, 

after AraC-induced depletion of the SVZ progenitors even before the mitotic activation of NSCs 

(Kazanis et al., 2007). Finally, it is important to note that a potentially important interaction exists 

between the NSC and the ventricular environment, as NSCs of the SVZ extend a monocliated 

process in between the ependymal cells enabling them to “taste” the growth factor and 

morphogen-rich CSF (Alvarez-Buylla et al., 2001; Doetsch et al., 2002). The importance of cilia 

in several signalling mechanisms has been recently highlighted (Singla and Reiter, 2006) and 

previous experimental work has revealed that essential components of the Shh signalling pathway 

are positioned at the primary cilium (Rohatgi et al., 2007). In the adult CNS, the significance of 

primary cilia in neurogenesis was highlighted by the finding that when the cilium was genetically 

ablated, proliferation in the SGZ was largely compromised (Han et al., 2008).

1.3.3 Neurogenic niches in the human CNS

The organization of the adult human SVZ is significantly different than that of rodents (Fig.7). In 

adult rodents, SVZ astrocytes (type B) are located next to the ependymal layer and ensheats
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chains of migrating young neurons (Doetsch 1997b, Peretto 1997). In contrast, in the adult human 

brain SVZ astrocytes are not found adjacent to the ependyma and the presence of chains of 

migrating neuroblasts is strongly debated. Similarly, the same kind of features was also found in 

primates such as the common marmoset (Bunk et al., 2011). Human astrocytes are separated form 

the ependymal by a region largely devoid of cell bodies and very rich in process from astrocytes 

and ependymal cells, forming a ribbon that lines the lateral ventricles (Sanai et al., 2004). 

Although this organization appears unique to the adult human brain, some features may be 

comparable to that reported in other vertebrates (Rodriguez-Perez et al., 2003). The lateral 

ventricular wall consists of four identifiable layers throughout the length of the ventricle from the 

frontal horn to the temporal horn (Quinones-Hinojosa et al., 2006; Sanai et al., 2004). Layer I is a 

monocellular layer of ependymal cells. Layer II is a hypocellular layer consisting of minimal 

amounts of myelin and sporadic cells; this layer has a dense network of GFAP-positive processes. 

In comparison to layer II, layer III contains many more cell bodies, but the organization of this 

layer varies with localization. In this layer there are many cells with astrocytic characteristics. 

Further away from the ventricular surface, the astrocytic cellularity diminished and the 

appearance resembles that of underlying brain parenchyma, thus layer IV can be considered as a 

transitional zone. Moreover there are marked differences in the thickness of the hypocellular layer 

and the astrocytic ribbon along the rostrocaudal extent of the lateral wall (Sanai et al., 2004).

The RMS contains progenitor cells that migrate from SVZ to the olfactory bulbs (OB). This 

pathway is well described in rodents, rabbit and rhesus monkeys (Fasolo et al., 2002; Lois and 

Alvarez-Buylla, 1994; Pencea et al., 2001). It was firstly reported by Sanai and colleagues that 

there was no evidence of cells migrating in chains along the SVZ or olfactory peduncle to the 

bulb. Later on Curtis and colleagues reported the characterization of the human ventriculo- 

olfactory neurogenic system (VONS), containing the SVZ, the RMS, the olfactory tract and the 

OB, together with the presence of migrating progenitors (Curtis et al., 2007). Due to the difficulty 

of working on human brain tissues, the availability of samples and impossibility of using cell- 

tracking systems, these works relies mainly on histological analyses, and a strong debate between
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the two findings was opened. However, recently it was reported a characterization of human RMS 

with some new findings: the presence of a four-layer arrangement in some parts of RMS 

(resembling SVZ); the presence of cilia in the cavities that surround the RMS (VONS structure); 

PSANCAM possibly migrating cells (Kam et al., 2009). Moreover the authors suggest that 

because the human olfactory bulb is only approximately 0.064% of total human brain weight, 

whilst the rat OB is about 20% of its total brain weight, should be expected that there is a lower 

drive for olfactory neurogenesis in the human brain, which is reflected in the lower number of 

neuroblasts within the human RMS as compared to the rat.
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Figure 7. Proposed model of the human 
SVZ organization in the coronal plane..
Layer I, ependyma; Layer II, hypocellular 
gap; Layer III, ribbon of cells; Layer IV, 
transitional zone to the brain parenchyma. 
Astrocytes (blue cytoplasm and light-blue 
nucleus) with processes at the base of the SVZ 
mainly found in Layer III but some also in 
Layer II. Displaced ependymal cells (grey 
cytoplasm and light-grey nucleus) form 
clusters and are mainly found between Layers 
II and III. Neurons (red cytoplasm and light- 
red nucleus) are found mainly along the 
interface between Layers III and IV with 
processes sent to Layers II and III. In green 
are the synapses found in Layers II and III. 
(Quinones-Hinojosa, 2005).
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1.3.4 Neural Stem Cells

Due to their relative rarity and lack of definitive markers, stem cells have traditionally been 

characterized on the basis of functional criteria. A putative stem cell in culture, must demonstrate 

the ability to proliferate, self-renew over an extended period of time and generate a large number 

of progeny that can differentiate into the primary cell types of the tissue from which it is obtained 

(Potten and Loeffler, 1990).
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NSCs could be isolated from the adult brain, expanded and propagated by means of growth 

factors in floating cell clusters termed “neurospheres”, and differentiated in vitro (Fig. 8) 

(Reynolds and Weiss, 1992). In the presence of mitogens such as epidermal growth factor (EOF) 

and fibroblast growth factor 2 (FGF-2), at low cell density and without cell adhesion substrate, 

most differentiating or differentiated cells are expected to die, whereas the NSCs respond to the 

mitogens, divide and form floating aggregates (primary neurospheres) that can be dissociated and 

re-plated to generate secondary neurospheres. This procedure can be repeated several times to 

expand the NSC population. The original method was then modified and refined and it is named 

as “NeuroSphere Assay”(NSA) (Gritti et al., 1999; Gritti et al., 2002; Reynolds and Weiss, 1996). 

By performing population analysis in long-term neurosphere cultures it was observed an overall 

enrichment and expansion of the stem population. This is likely due to the increased proportions 

of symmetric proliferative divisions over symmetric differentiative and asymmetric divisions 

(Morrison and Kimble, 2006), a mechanism driven by the positive selection induced by the NSA 

culture conditions within the relatively small stem cell population (Galli et al., 2002; Gritti et al., 

2002). The three-dimensional structure and the cellular milieu of the neurosphere can be 

envisioned as the in vitro counterpart of the in vivo neurogenic compartment, a microenvironment 

that is relevant for stem cell maintenance, proliferation and differentiation. Notably, the cellular 

composition of niche environment is recapitulated also in terms of numerical proportions between 

the different cell types (few stem cells and a large population of committed progenitors). Due to 

this heterogeneity, in vitro markers for “sternness” have been searched. However, most of the 

molecules that have been suggested as potential specific NSC markers are likely expressed by 

subpopulations of immature neural precursors that could contain the stem cell population. The 

possibility of improving the neurosphere system and of finding alternative in vitro approaches, not 

only to enrich but also to select and clonally expand the bona fide  stem cell population without 

loosing the original prevalent neuronal fate, has been a recurrent issue in the stem cell field. The 

artificial bi-dimensional structure ensured by monolayer adherent cultures might be sufficient to 

prevent lineage restriction of radial glia-like precursors, favouring niche-independent symmetric



self-renewal and expansion of a rather homogeneous cell population (NS cells) (Conti et al., 2005; 

Pollard et al., 2006; Spiliotopoulos et al., 2009). Establishment of in vitro settings necessarily 

results in disruption of the three-dimensional tissue structure, loss of specific cell-to cell contacts 

and modification of the extracellular environment and signalling. Thus, although the versatility 

shown by NSC cultures in vitro can be envisaged as an advantage in terms of therapeutic 

potential, caution is always necessary when considering the potential in vivo translation.

jpfr-r̂  Subventrlcular zone (SVZ)

"S; ^

NEURONS
ASTROCYTES
OLIGODENDROCYTES

® a t
>  0 *  H O I . O  /  ■ ,
• * PRIMARY 'O.Jc-Y
•T®* e*  ̂ „ NEUROSPHERS

EGF+FGF2

/
„ MITOGEN REMOVAL

«to i,
o e 6 o tt 

E G F + F G F 2^  © © w

SECONDARY
NEUROSPHERES //■

TERTIARY...N.... „ v
NEUROSPHERES <• ^ ^

Stem cell lines

Figure 8. Neural stem cell derivation and long-term in vitro culturing and expansion. The cartoon 
illustrates the experimental protocol to establish neural stem cell (NSC) lines.

1.3.5 Neurogenesis and diseases

Most of the CNS insults lead to increased proliferation of progenitors in the neurogenic areas after 

a latent period and sometimes cause migration of newborn neurons to injury sites (Parent, 2003). 

Neurogenesis is induced, and the rate of proliferation of progenitor cells in the dentate gyrus can 

be profoundly accelerated by insults such as cerebral ischemia (Kokaia and Lindvall, 2003; Liu et 

al., 1998), seizures (Parent et al., 1997), and neurotoxic lesions (Gould and Tanapat, 1997).

60



Sustained neocortical neurogenesis has been documented also after hypoxic/ischemic injury 

(Yang et al., 2007). However, in cases of radiation injury, hippocampal neurogenesis was severely 

compromised (Monje and Palmer, 2003). Although the molecular mechanisms leading to 

increased neurogenesis following global or focal ischemia are not well understood, recently it has 

been reported that ischemic insults stimulate neurogenesis by the release of stem cell factor (SCF) 

and/or fibroblast growth factor-2 (FGF-2)(Jin et al., 2002).

In addition to acute insults to the brain, neurodegenerative disorders such as Alzheimer’s and 

Parkinson’s diseases are the other most common form of chronic neuropathology. The progressive 

neurodegeneration and subsequent atypical inflammatory response characterized by activation of 

microglia are a prominent feature in these diseases. The neurogenesis pattern in these disorders is 

also altered to a great extent. Interestingly, in the brains of human patients with Alzheimer’s 

disease, increased neurogenesis in the SGZ of the hippocampus has been observed (Jin et al.,

2004). This observation, though striking, perhaps represents the regenerative attempt by CNS to 

recover the neuronal loss and to restore the neuronal plasticity (Taupin, 2006). However, the 

neural progenitor pool is depleted in the other neurogenic area, SVZ, indicating that the pattern of 

neurogenesis in the two neurogenic areas of the brain is different with the disease pathology. 

Similar reports of enhanced NSCs regeneration and formation of immature neurons have been 

reported in MPTP mouse models of Parkinson’s disease (Shan et al., 2006). The other type of 

neurodegenerative diseases where protein aggregates are the main culprits such as triplet repeat 

disorders (Huntington’s disease) and Prion’s disease also leads to increased cell proliferation as 

well as enhanced adult neurogenesis (Curtis et al., 2003b; Steele et al., 2006). These findings 

indicate that the diseased brain has the capacity for regeneration to compensate for the neuronal 

loss and thus provide therapeutic avenues by stimulation of endogenous neurogenesis to 

counteract the neurodegeneration.
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1.3.5.1 Neuroinflammation

Inflammation is a complex cellular and molecular response to stress, injury or infection that 

attempts to defend against insults, to clear dead and damaged cells and to return the affected area 

to a normal state. Inflammation in the brain, however, is different from that in peripheral tissues in 

many ways such as initiation and sensitivity to inflammation. The brain is immune privileged 

because of its protection by the blood-brain barrier (BBB), which only allows certain molecules 

and cells to enter and exit. Because of the selective permeability of this barrier, only T cells, 

macrophages and dendritic cells can enter the CNS under normal physiological conditions 

(Hickey, 1999). Following damage or exposure to pathogen, an inflammatory process is initiated 

by the activation of resident microglia and astrocytes as well as infiltrating peripheral 

macrophages and lymphocytes. Activated microglia, astrocytes, macrophages and lymphocytes 

release a plethora of anti- and pro-inflammatory cytokines such as interferon gamma (IFN-y), 

tumour necrosis factor alpha (TNF-a), interleukin-1 beta (IL-1(3), interleukin-18 (IL-18) and 

interleukin-6 (IL-6); chemokines such as stromal cell-derived factor-1 alpha (SDF-la) and 

monocyte chemoattractant protein-1 (MCP-1); neurotransmitters (i.e. glutamate) and reactive 

oxygen species (i.e. nitric oxide). These factors disrupt the BBB and recruit monocytes and 

lymphocytes to cross through the BBB to the site of inflammation (Hickey, 1999; Taupin, 2008) 

in addition to recruiting resident microglia and stimulating astrogliosis. These newly recruited 

cells become activated and release more inflammatory factors, creating a positive feedback loop 

that results in neuronal damage and changes in neurogenesis (Das and Basu, 2008). This process 

inadvertently causes further bystander damage to neurons and causes both detrimental and 

positive consequences to neurogenesis. Indeed inflamed brain microenvironment sustains a non­

cell autonomous dysfunction of the endogenous CNS stem cell compartment and challenge the 

potential efficacy of proposed therapies aimed at mobilizing endogenous precursors in chronic 

inflammatory brain disorders (Pluchino et al., 2008).
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1.3.5.1.1 Microglia activation

Microglia, the resident macrophages of the CNS, comprise 5-20% of the total glia in the brain. In 

the resting state, ramified microglia have multiple processes that interdigitate surrounding cells. 

Microglia are sentinels in the brain that change from resting to “activated” states injury (Becher et 

al., 2000) and activated microglia are a hallmark and driving force of brain inflammation. 

Microglial morphology changes from resting ramified to an intermediate semi-activated state 

(short thick processes, enlarged cells), and then to an amoeboid highly activated state 

(phagocytic).

Lipopolysaccharide (LPS)-induced microglial activation and associated inflammation enhances 

the integration of newly bom neurons into the adult rat hippocampal neural circuitry (Jakubs et 

al., 2008). On the other hand, LPS activation of microglia was shown to strongly impair basal 

hippocampal neurogenesis (Ekdahl et al., 2003) partially through the production of TNF-a (Liu et 

al., 2005). LPS-induced inflammation resulted in an 85% reduction of newborn neurons in the 

hippocampus; the degree of impaired neurogenesis correlated with the number activated microglia 

(Ekdahl et al., 2003), thus indicating that uncontrolled inflammation is detrimental to 

neurogenesis. Suppression of activated microglia by Minocycline treatment resulted in increased 

numbers of new neurons in the hippocampus, demonstrating the significance of activated 

microglia in the reduction of neurogenesis by inflammation (Ekdahl et al., 2003). Further, anti­

inflammatory treatment with Indomethacin restored neurogenesis that was diminished by 

irradiation-induced inflammation (Monje et al., 2003) and focal cerebral ischemia (Hoehn et al., 

2005). This microglial inhibition of neurogenesis is mediated by activated, but not resting, 

microglia (Monje and Palmer, 2003)(Monje 2003). Interestingly it was recently reported that the 

relative state of activation in the SVZ resident microglia seems to be different from non- 

neurogenic areas. This population is constitutively activated, possibly due to presence of 

diffusible molecules in the CSF, and importantly is resistant to further activation after massive 

cerebral cortex brain injury. Moreover SVZ microglia are induce to migrate toward lesions and 

the greater constitutive microglial proliferation in the SVZ may, in part, serve to provide such
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cells (Goings et al., 2006).

1.3.5.1.2 Astrocyte activation

Astrocytes constitute the majority of glial cells in the CNS, vastly outnumbering microglia, 

monocytes and lymphocytes and are classically identified as cell expressing the intermediate 

filament glial fibrillary acidic protein (GFAP). Astrocytes play a number of active roles in the 

brain, from clearing neurotransmitters from the synapse (Bergami et al., 2008) to regulate the 

function of oligodendrocytes (Ishibashi et al., 2006) and NSCs (Bundesen et al., 2003). In various 

CNS pathologies, astrocytes are likely to react promptly to the injury, leading to activation of 

astroglia or astrogliosis (Eng and Ghimikar, 1994). Activated astrocytes release a plethora of 

inflammatory factors, growth factors and regulate extracellular levels of excitatory amino acids, 

which have both negative and positive effects on neurogenesis (Blasko et al., 2004; Song et al., 

2002). Neuronal differentiation of adult rat NSCs increased tenfold when co-cultured with 

astrocytes, and both soluble and membrane-bound factors are responsible for this effect. In 

addition to directing the differentiation of NSCs to neurons, astrocyte co-culture also induced a 

twofold increase in NSCs proliferation (Song et al., 2002). The role of astrocytes in brain 

inflammation and its consequence on neuronal injury and neurogenesis during various CNS 

disorders has recently been intensely studied and continues to be thoroughly investigated.

1.3.5.1.3 NSCs and inflammation

The functional response of NSCs to inflammation indicates a precise relationship between the 

immune and the nervous system. One of the first evidence strongly supporting the concept that 

NSCs strongly interact with immune cells came from transplantation experiments aimed at using 

NSCs as therapeutic tool to counteract CNS inflammation (Pluchino et al., 2003; Pluchino et al.,

2005). NSCs express immune-relevant molecules, such as cell-adhesion molecules, integrins and 

chemokine receptors that enable them to functionally interact with an inflamed CNS
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microenvironment. For example NSCs express CXCR4 receptors, thus responding to the 

chemotactic signals by CXCL12 (Tran et al., 2004) and CCR2 receptor, whose ligand MCP-1 

(CCL2) is an important chemokine for leukocyte trafficking to the brain, highly expressed in 

neuroinflammatory conditions (Tran et al., 2007). More recently it was found that inflammatory 

signals provided by activated microglia and/or activated antigen specific T cells regulate 

neurogenesis and gliogenesis within germinal niches (Monje et al., 2003; Ziv et al., 2006). 

Furthermore it was shown that TLR2 and TLR4 which regulate the immune response through the 

recognition of pathogen-derived molecules or pathogen-associated molecular patterns, are 

expressed in NSCs and pay an important role in hippocampal neurogenesis (Rolls et al., 2007). 

Thus, NSCs can be considered also immune-relevant cells in the brain; moreover immune system 

is an important regulator of proliferation, migration and survival of NSCs. Yet, as findings in this 

field are relatively recent, there exist a number of cytokines and chemokines to be investigated. 

Furthermore, signalling pathways involved in all these processes are to be elucidated.
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2 AIM  OF THE W ORK

Globoid cell Leukodystrophy (GLD) is a rare autosomal recessive disorder caused by mutation in 

the lysosomal en2yme p-galactocerebrosidase (GALC). GALC is responsible for the degradation 

of specific galactolipids involved in the formation of myelin. Its absence results in accumulation 

of substrates and toxic metabolites that lead to the death of oligodendrocytes and Schwann cells. 

The most severe forms of GLD manifest early after birth with progressive brain damage and are 

fatal in few years. Demyelination is believed to occur as a consequence of Psychosine 

accumulation and neuroinflammation. However, the hypomyelination of the corticospinal tract 

described in asymptomatic neonates affected by Krabbe disease might explain the motor 

impairment present in some patients even before overt disruption of myelin. Most importantly, it 

might explain the clinical inefficacy of therapies on symptomatic patients as well as the poor 

improvement following early treatment in asymptomatic babies. These clinical observations, as 

well as the finding that neurodegeneration might be present in Twitcher mice, a relevant model of 

GLD, even in the absence of demyelination, strongly suggest GALC deficiency results in neural 

cell impairment long before the disruption of myelin driven by the overt CNS tissue storage and 

inflammation.

The goal of this study was to extensively characterize the role of GALC in regulating the function

of NSC niches during the disease progression in Twitcher mice in order to test an even more

challenging hypothesis, namely that GALC absence might result in functional impairment of

neural stem/progenitor cell function in neurogenic niches and, consequently, in neurogenic and

gliogenic processes occurring during pre-natal and early post-natal CNS development.

By morphological and functional analysis we showed altered cellular organization and loss of

proliferating neuroblasts in the subventricular zone niche of Twi mice as a function of disease

progression. These data were confirmed by in vitro experiments showing decreased numbers of

primary neurospheres generated from Twi NSC/progenitors. Both defects were rescued to normal

levels in post-natal day (PND) 40 Twi mice chronically treated with the anti-inflammatory drug
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Minocycline starting from PND10. These results, as well as the up-regulation of several 

inflammatory molecules observed in Twi brains starting from the early symptomatic stage 

(PND20), suggested a major contribution by neuroinflammation at the late stages of the disease. 

However, these data did not rule out a direct contribution of GALC deficiency nor they excluded 

a role of GALC in maintaining a functional niche during CNS development. Indeed, our results 

indicate decreased proliferation of NSC/progenitors derived from PND2 and PND10 Twi mice, 

suggesting that GALC deficiency might lead to neurogenic impairment independently from CNS 

inflammation. Finally, lipid quantification in tissues and cells revealed increased amount of 

LacCer and low abundance of SIP. Metabolically, this resulted in different expression and 

activity of several enzymes related to GALC with consequent alteration of intracellular responses. 

Results of our work improve our understanding of the pathogenic mechanisms of GLD with important 

implications for therapy. In fact, an altered niche environment during CNS development might 

result in subtle but irreversible damage in CNS organization and function; this, in turn, might 

hamper the therapeutic outcome of both gene and cell-based approach currently available or under 

development. In addition, the peculiar biochemical pattern that we showed in Twi-derived NSCs 

and brain tissues has to be considered in the perspective of gene therapy approaches, since 

supraphysiological enzyme level as well as enzyme deficiency, could alter this fine-tuned 

metabolic balance.
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3 M ATERIALS AND M ETHODS

3.1. In vivo studies

3.1.1 Mice strain

Twitcher (Twi) mice were obtained from Jackson laboratories. Congenic FVB/N.B6Galc-(Av///wz) 

(FVB/Twi) mice were generated in our animal research facility by breeding Twi heterozygous 

(+/-) C57BL6 mice with wild type (+/+) FVB mice. FVB/Twi mice show a slower progressive 

form of GLD than the canonical Twi mice. Tremors develop at around PND 21, progressing to 

severe resting tremor, weight loss, paralysis and wasting of hind legs. At PND 40, severe PNS and 

CNS demyelination is observed. Death occurs at around 40-45 days. Mice were screened as 

indicated in paragraph 1.2 and heterozygous offspring were intercrossed to obtain an inbred strain. 

Mouse colony was maintained in the animal facility of the Fondazione San Raffaele del Monte 

Tabor, Milano, Italy. All procedures were performed according to protocols approved by an 

internal Animal Care and Use Committee (IACUC #314, 420) and were reported to the Ministry 

of Health, as per Italian law.

3.1.2 Genotyping

For genotyping mice, DNA extraction from tails biopsies is performed. Tissues are digested with

Proteinase K (Roche) at the concentration of 1 mg/ml at 56°C over night (o/n) in lysis buffer

containing TRIS 10 mM pH 7.2, EDTA 25 mM, NaCl 10 mM, SDS 10%. After inhibition of

Proteinase 10’ at 96 °C, specific PCR is carried out. . The forward primer for the reaction was

designed on an intronic sequence 230 bp upstream the mutation (F: 5’-

CACTTATTTTCTCCAGTCAT). The reverse primer has a complementary sequence of the exon

downstream the mutation site and forms, in the mutant, a restriction site for the enzyme EcoRV

(R: 5’- TAGATGGCCCACTGTCTTCAGGTGATA). Details of the PCR reaction are shown
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below.

Buffer 5x (Promega) 5f.il 
Primer F lOpM (Primm) 0.5gl 
Primer R lOpM (Primm) O.Sjul 
dNTPs lOpM (Roche) 0.6fil 
Go Taq (Promega) 0.25 pi 
H20 14,65pl 
DNA 200ng

step 1: 95°C 10’ 1 cycle 
step2: 95°C 30” 38 cycles 

54°C 30”
72°C 30” 

step 3: 72°C 10’ 1 cycle

The amplified fragment (260 bp) is then digested in presence of EcoRV enzyme at 37°C for 1

hour. Only when the mutant allele is present, a fragment 234 bp long appears. Details of the

reaction are shown below.

Buffer B (Roche) 2.5 pi 
EcoRV (Roche) 0.7 pi 
H20 11.8 pi 
DNA (from PCR) 10 pi

PCR products were separated with electrophoresis in Metaphor 4% agarose gel. EcoRV digestion 

of WT DNA results in the generation of a band of 260 bp; heterozygous restriction pattern shows 

2 bands: one corresponding to the WT allele (260 bp) and the other corresponding to the mutant 

allele (234 bp); homozygous restriction pattern shows only the band corresponding to the mutant 

allele (234 bp).

3.1.3 In vivo drug administration

Mice were injected IP with the anti-inflammatory drugs Minocycline and Indomethacin (Sigma- 

Aldrich). Drugs were dissolved in saline solution and used immediately at 40 mg/kg and 10 

mg/kg, respectively. The treatments started at PND 10 and finished at PND40 or until mice looses 

up to 50% of their weight (to monitor survival).

BrdU was administered IP every two hours for 8 hours at 50 mg/kg BrdU powder (Sigma- 

Aldrich) was dissolved in sterile water and immediately used.
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3.1.4. Tissue collection and processing

A group of mice were killed by CO2 exposure and decapitated. For biochemical and molecular 

assays the two brain hemispheres were separated and the word “total brain” correspond to half 

hemisphere. Brains were isolated and either quickly frozen in liquid nitrogen or immediately 

processed to obtain tissue extracts. Another group of mice were anesthetized with Avertine (11 pi 

of stock solution, consisting of 1.25 g 2,2,2- Tribromoethanol 99% + 2.5 ml 2- Methyl-2- 

Buthanol 99% per 100 ml total volume/10 g body weight) and intracardially perfused via the 

descending aorta with 0.9% NaCl followed by 4% paraformaldehyde (PFA) in 0.1M PBS. Brains 

were collected and equilibrated for 24 hours in 4% PFA. Then they were included in 4% agarose. 

Serial coronal vibratome (6 series, 40 pm-thick) sections were processed for histology and 

immunofluorescence analysis as described below.

3.2 Immunofluorescence analysis

3.2.1 Tissues

After 3 washings with 0.1MPBS l x o f 5 ’ each, free-floating vibratome sections were incubated 

with blocking solution (10% Normal Goat Serum NGS + 0.3% Triton X-100 in 0.1M PBS) for lh  

at RT and then incubated overnight at 4°C with primary antibody diluted in blocking solution. 

After thorough 3 washings of 5’ each, antibody staining was revealed using species-specific 

fluorophore-conjugated secondary antibodies diluted in 10% NGS in 0.1M PBS. Tissue sections 

were counterstained with 6-diamidino-2-phenylindole (DAPI, Roche) or ToPro-3 (T3605, 

Invitrogen) for nuclei, washed in 0.1M PBS, collected and mounted on glass slides using 

Fluorsave (CALBIOCHEM). See Table 1 for primary and Table 2 for secondary antibodies used.

3.2.2 Cell cultures

Coverslips were incubated with blocking solution (10% Normal Goat Serum NGS + 0.1% Triton
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X-100 in 0.1M PBS, or without Triton, if permeabilisation is not necessary) for 30’ at RT, then 

incubated o/n at 4°C with primary antibody diluted in blocking solution. After 3 washing of 5’ 

each, antibody staining was revealed using species-specific fluorophore-conjugated secondary 

antibodies diluted in 1% NGS in 0.1M PBS. No detectable signal was observed in samples in 

which the primary antibodies were omitted. Coverslips were counterstained with 6-diamidino-2- 

phenylindole (DAPI, Roche) or ToPro-3 (T3605, Invitrogen) for nuclei, washed in 0.1M PBS, 

collected and mounted on glass slides using Fluorsave (CALBIOCHEM). See Table 1 for primary 

and Table 2 for secondary antibodies used

3.2.3 Wholemount staining

Brains were dissected under the stereomicroscope in order to reveal the SVZ and the lateral 

ventricle. Briefly, a coronally oriented cut was then made at the posterior most aspect of the 

interhemispheric fissure, allowing the caudal hippocampus to be visualized in cross-section. The 

hippocampus, which forms the medial wall of the lateral ventricle at this position, was then 

released from the overlying cortex and removed. Then, the lateral wall was completely exposed 

by removing any overhanging cortex dorsally and the thalamus ventrally. Wholemounts were 

immersion-fixed overnight in 4% PFA with 0.1% Triton-XlOO at 4°C. The following morning, 

PFA was aspirated from the 24-well plate and the wholemounts were washed 3 x 5 ’ each in 0.1M 

PBS with 0.1% Triton-XlOO. After washing, wholemounts were incubated for 1 hour at room 

temperature in blocking solution, containing 10% fetal bovine serum and 10 mg/ml BSA in 0.1 M 

PBS with Triton-XlOO, 2% or 0.5%. Next, the blocking solution was removed and primary 

antibodies diluted in the same blocking solution were added and incubated for 24 or 48 hours at 

4°C. Primary antibodies were washed off initially by 2 quick rinses in PBS with 0.1% Triton- 

XlOO. Then we did 3 additional washes for 20’ each at room temperature. Secondary antibodies 

were added in the same blocking solution used for primary antibodies and added to wholemounts 

to incubate for the same length of time as for primary antibodies at 4°C. For high-resolution
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confocal imaging, following immunostaining the wholemounts needed to be sub-dissected to 

preserve only the lateral wall of the lateral ventricle as a sliver of tissue 200-300 mm thick. This 

step was performed under the stereomicroscope and then the slice was mounted onto a slide and 

covered with a coverslip in a flat manner. See Table 1 for primary and Table 2 for secondary 

antibodies used

3.3 Immunohistochemistry

3.3.1 BrdU

Slides or free floating vibratome sections were fixed for 10 min in 3% H2O2 in methanol; after 

washing in 0.1 M PBS ( 3 x 5 ’ each), slides were incubated for 20’ at 54°C in a denaturing 

solution (60% Formamide, SSC 2X- 0,3M sodium chloride, 30mM sodium citrate). Then, section 

was rapidly washed with SSC 2X and incubated with 2N hydrochloric acid for 30’ at 37°C. Slides 

were equilibrated with 0.1M pH8.5 boric acid for 10’ and then blocked with the blocking solution. 

Primary BrdU antibody was then added and incubated o/n at 4°C. After 3X10’ washings with 0.1 

M PBS, slides were incubated with biotinylated secondary antibody in 0.1 M PBS, 1% NGS. 

After 3X10’ washings with 0.1 M PBS and 5’ incubation with lOOmM pH7.5 TrisHCl, slides 

were incubated 1 hour with the VECTASTAIN ABC kit (PK-6100Vector Laboratories). After 

3X10’ washings with lOOmM pH7.5 TrisHCl, reaction with the substrate 3-3 diamino-benzidine 

tetrahydrochloride (DAB, 167pg/ml in Tris-HCl lOOmM + H2 O2 1:3000) was performed. Slices 

were dehydrated and mounted with EUKITT. Samples were visualized with a Nikon Eclipse E600 

microscope. In case of double labelling, after the blocking passage was followed the protocol for 

tissue immunofluoresce.
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3.3.2 Lectin histochemistry.

Slides were fixed for 10 min in 3% H2O2 in methanol; after washing in 0.1M PBS (3 x 5’ each) 

we applied a blocking Kit (SP-2001, Vector Laboratories), followed by Avidin solution (15 min) 

and Biotin solution (15 min). Slides were subsequently incubated for 30’ with blocking solution 

(0.1M PBS 0.3% triton 10% NGS) and then with Biotynilated Ricinus Communis Agglutinin I 

(RCA I, B-1085 Vector Laboratories; 1:200 in blocking solution) for 30’. After thorough washing 

(3 x 5’) and 1 passage in 100 mM Tris-HCl (5’), staining was revealed using VECTASTAIN 

ABC kit (PK-6100Vector Laboratories). After washings in 100 mM Tris-HCl (3 x 5’), reaction 

with the substrate 3-3 diamino-benzidine tetrahydrochloride (DAB, 167jig/ml in lOOmM Tris­

HCl + H2 O2 1:3,000) was performed. Slices were dehydrated and mounted with EUKITT. 

Samples were visualized with a Nikon Eclipse E600 microscope. Images were acquired using a 

Nikon DMX 1,200 digital camera and ACT-1 acquisition software (Nikon). Pictures of defined 

areas in each slice were taken and the total immunopositive area in each picture (expressed in 

pixels) was calculated using the ImageJ software. Tissue slices from untreated WT mice were 

used to set the signal threshold.

3.4. Image acquisition

Samples (cell cultures and tissues) were visualized with Zeiss Axioskop2 microscope using 

double laser confocal microscopy with Zeiss Plan-Neofluar objective lens (Zeiss, Arese, Italy). 

Images were acquired using a Radiance 2100 camera (Bio-Rad, Segrate, Italy) and LaserSharp 

2000 acquisition software (Bio-Rad). Images were imported into Adobe Photoshop CS3 or Image 

J software and adjusted for brightness and contrast.

Wholemounts reconstructions were created by Adobe Photoshop CS3 software, with at least 12 

images at low power (10X) for slice. Regarding cell cultures, 9 fields were acquired blindly for 

each coverslip, at least 2 coverslip for experiment. Immunopositive areas were calculated as: (area 

positive for selected marker/area positive for nuclei)* 100.
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3.5. Electron microscopy

Mice were perfused with 2% glutaraldehyde +1% paraformaldehyde in 0.1M PBS. After 

dissection, brains were post fixed for 2 h and cutted with a vibratome (300 pm). Vibratome 

sections were fixed in osmium-ferrocyanide for 1 h, stained with 1% uranyl acetate, dehydrated 

and embedded in Araldite. Ultra-thin sections were examined under a Philips CM 10 transmission 

electron microscope.

3.6. RNA extraction

3.6.1 Cells

Total RNA from cells was extracted according to the manufacturer protocol of RNeasy mini kit 

(Qiagen). Briefly, pelleted cells were lysed with the provided buffer added of b-mercaptoethanol, 

mixed with 70% ethanol and loaded on column. Optional DNase digestion with RNase-free 

DNase (Qiagen) was performed.

3.6.2 Tissues

Total RNA from tissues was extracted according to the manufacturer protocol of TRIZOL 

Reagent (Invitrogen). Briefly, half brain was homogenised with 2 ml of Trizol, then the phase 

separation was performed adding chloroform. Then, RNA was precipitated with isopropyl alcohol 

and washed with 75% ethanol. The pellet was air-dried, dissolved in RNase-free water and stored 

at -80°C. Prior to use, an aliquot was quantified by spectrophotometer and cleaned from possible 

DNA contamination using DNase digestion with RNase-free DNase (Qiagen).
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3.7. RT-PCR

3.7.1 Reverse transcription

mRNA reverse transcription was performed according to the manufacturer protocol of QuantiTect 

reverse transcription kit (Qiagen). Briefly, lpg of RNA was mixed to gDNA Wipeout Buffer and 

RNase-free water, and incubated 2’ at 42°C. Then, the mix is cooled on ice and added of reverse- 

transcription master mix (transcriptase enzyme, buffer and primers mix). The whole solution is 

incubated 15’ at 42°C, 3’ at 95°C and then used immediately or stored at -20°C.

3.7.2 PCR

PCRs were performed using as template 2 pi of cDNA. Each sample was run in duplicate in a 

total volume of 25pl/reaction, containing 2.5 pi of PCR Buffer 10X, 0.5 pi of lOmM dNTPS, 1 pi 

of each lOmM primer, 0.2 pi of TAQ DNA Polymerase (all Qiagen) and 17.8 pi of sterile water. 

The amplification steps were: step 1: 94°C 3’ 1 cycle; step2: 94°C 30” , Ta 30”, 72°C 30” , n 

cycles; step 3: 72°C 10’ 1 cycle, were Ta (annealing temperature) was determined for each primer 

couple. The number of cycle was chosen in order to be in the exponential phase of amplification. 

Primers were designed using Primer-BLAST on line software, in order to span an exon-exon 

junction and with specificity only for the target sequence. The primers used are the following:

Gene Forward Reverse Ta n

ARSA TGGACTACGGTTCACAGATTTC T GGGAAGC ACGTTAGGTTCTG 62 °C 28

GlcT TGCATTTCATGTCCATCATCTAC GTCATCTGATTCACCATGGTTCA 62°C 28

GalT-I TCTACTTCATCTATGTGGCTCC AGAAGAGCTGATGGACTTCATC 62°C 28

GalT-III CTGC AGAGGT GGGTAAGT GG GCAGGT CATTTT GAGGC AGCC 62°C 28

CST TTTCCTATT GCT GCT GTACTCC TAGTCCTGCACCAGGCTTCG 62°C 30

SAT-1 GCTGGGTCACGCCCTCAACC GCGAACCCAAAAGGGCAGGC 64°C 27

NEU3 CGGAGCCGAAGCCATGGAGG CTCCC AC AC AGGGC AGGGGT 64°C 28
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PSAP TGTCCAAGACCCGAAGACATG CTTGTTGGACTCAAGCTGCTGTTTC 62°C 27

SPK1 GCC AGGG AGCT GGT GT GT GC T C ATT AGT C ACCTGCTCGT ACCC AG 64°C 28

SPK2 TTGCTGGACGAGT CGCGT GG CCT GG ACC AGCCTCC A AG AT C AC A 64°C 28

SPly GCCTGAGGAGACGCAGAGGC CGCAAT GAGCTGCCAGGGCT 64°C 27

SPph AT GCCAT GTC AGGC ACCGCC ACAAGAATCCAGCAATGACATCCAG 64°C 27

(B-Actin GGCATCGTGATGGACTCCG GCTGGAAGGT GGACAGCGA 60°C 21

3.8. Real time qRT-PCR

qPCR was performed in Optical 96-well Fast Thermal Cycling Plates (Applied Biosystem) on 

ABI PRISM 7900 Sequence Detector System (Applied Biosystem), using the following thermal 

cycling conditions, one cycle at 95°C for 10 min, 40 cycles at 95°C for 15 seconds and 60°C for 

30 seconds. After that, a melting curve was performed: the temperature is increased very slowly 

from a low temperature (60°C) to a high temperature (95°C). At low temperatures, all PCR 

products are double stranded, so SYBR Green I binds to them and fluorescence is high, whereas 

at high temperatures, PCR products are denaturated, resulting in rapid decrease of fluorescence. 

The fluorescence is measured continuously and a curve is created. Curves with peaks at a Tm 

lower than that of the specific PCR product indicates the formation of primer-dimers, non-specific 

product or smear. Each reaction well was checked to confirm specificity by using the melting 

curve. Each sample was run in triplicate in a total volume of 25pl/reaction, containing 12.5 pi 2X 

QuantiFast SYBR Green PCR Master Mix, 2 pi of template cDNA and 1 pM QuantiTect Primer 

Assays (all from Qiagen). Relative expression of mRNA for the target genes was performed by 

the comparative Ct (AACj) method using the pActin gene as control. The normalized Ct (ACt) 

was obtained by subtraction of the Cj for bActin from the Ct for the gene of interest. The 

difference between the ACt for Twi and wt samples gave rise to the AACt value that was used for 

the calculation of the relative mRNA expression using the formula 2-AACT. The relative mRNA 

levels were expressed as fold change in Twi over control.
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3.9. Multi Analyte Profile ELISA

We performed ProdentMAP assay on total brain tissue samples. Samples were processed and 

analysed according to RBM standard operating procedures. Tissue samples were collected, 

weighed, and added to 9X volume of lysis buffer (50 mM Tris-HCL with 2 mM EDTA, pH 7.4) 

Following homogenization, the tissue preparation is centrifuged for 2 minutes in a microfuge at 

13,0OOxg. All samples were stored at -80°C until tested. Briefly, using automated pipetting, an 

aliquot of each sample was introduced into one of the capture microsphere multiplexes of the 

RodentMAP, thoroughly mixed and incubated at room temperature for 1 hour. Multiplexed 

cocktails of biotinylated, reporter antibodies for each multiplex were then added robotically and 

after thorough mixing, were incubated for an additional hour at room temperature. Multiplexes 

were developed using an excess of streptavidin-phycoerythrin solution, which was thoroughly 

mixed into each multiplex and incubated for 1 hour at room temperature. Analysis was performed 

in a Luminex 100 instrument and the resulting data stream was interpreted using proprietary data 

analysis software developed at Rules-Based Medicine (RBM Plate Viewer version 1.1.1). For 

each multiplex, both calibrators and controls were included on each microtiter plate. Testing 

results were determined first for the high, medium and low controls for each multiplex to ensure 

proper assay performance.

3.10. Western blot

Cells and tissues were lysed with radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris- 

HC1, pH 7.4, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 2 mM EDTA) added with 

protease (Roche) and phosphatase (Sigma-Aldrich) inhibitors. Proteins were quantified by means 

of Bradford assay (BioRad) and normalized on an albumin standard curve. 40p.g of total protein 

from brain tissue lysate were re-suspended in sample buffer, heated for 5 minutes at 95°C and 

separated via SDS-PAGE under reducing conditions. Western blotting was performed with
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standard procedure and the PVDF membrane (Millipore) was hybridized using the antibodies 

indicated in table 1 and 2.

3.11. Neural stem cells

3.11.1 NSC isolation and culture

Neonatal (PND2), young (PND10) and adult (PND40) Twi mice and WT littermates were 

anaesthetized before being decapitated (using crushed ice and Avertin for neonates and adult 

mice, respectively). Brains were removed and transferred in a Petri dish containing 0.1M PBS + 

Glucose (0,6%) + Penicillin/Streptomicin (P/S) (1%). The olfactory bulbs were removed, a 

coronal slice comprising the periventricular subventricular zone (SVZ) of the forebrain lateral 

ventricles was cut and the periventricular tissue was carefully dissected using fine forceps (Gritti 

et al., 2002; Gritti et ah, 2009). Briefly, tissues underwent two rounds of mechanical dissociation 

and primary cells were plated in chemically defined serum-free medium (DMEM/F12 1:1 vohvol; 

control medium) containing basic fibroblast growth factor (FGF2) and epidermal growth factor 

(EGF) (Peprotech; 10 and 20 ng/mL, respectively; growth medium). The primary cell suspension 

is obtained pooling together tissues from 3-5 mice for each experiment.

In order to generate a NSC line, seven-day-old primary spheres were collected, mechanically 

dissociated to a single cell suspension, and plated in growth medium (3,500 cells/cm2). This 

procedure was repeated twice; bulk cultures were then generated by plating cells in growth 

medium at a density of 104 cells/cm2. NSCs lines up to the 5th passage were used in the 

experiment, where reported.

3.11.2 Primary spheres: NSA

Primary cells obtained as previously described, were plated in 24-well uncoated plates (Coming, 

0.5 ml/well) at a density of 5,000 cells/cm2 in growth medium, as previously described (Gritti et
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al., 2002). Under these conditions, neurospheres are derived from single cells and return an index 

of the number of in vivo neural stem/progenitor cells (Morshead et al., 1994). The number of 

primary neurospheres with a diameter ( 0 )  > 100 pm in each well was counted 7 days after 

plating. Data were expressed as absolute number of primary neurospheres obrtained by each brain 

or as cloning efficiency (number of primary neurospheres in each well/total number of plated cells 

x 100) from a total of n> 3 independent experiments.

3.11.3 Primary spheres: NCFCA

Primary cells isolated as above from PND40 Twi and WT mice (n=6/group) were plated using the 

mouse NeuroCult neural colony-forming cell assay kit (StemCell Technologies) as per the 

manufacturer's instructions, at a density of 6,5 x 105 cells per 35 mm cell culture dish with 2 mm 

grid (Nunc), as described (Louis et al., 2006). The cells were then incubated for 21 days in 

humidified 5% C02, and growth factors were added every 7 days. After 21 days in vitro, the 

colony diameters were measured using an eyepiece graticule on an inverted light microscope with 

phase contrast. Spheres were scored according to size.

3.11.4 Primary mixed neuronal/glial culture

Primary cells obtained as previously described from PND2 Twi and WT mice, were plated on 10- 

mm MATRIGEL 1:100 (BD) coated coverslip at 100,000 cells/cm2 density, in a chemically 

defined, growth factor free medium, in the presence of 2% Fetal calf serum (FCS) (Gritti et al., 

2009). These cells were cultured for 20 days, then fixed with 4% PFA and processed for 

immunofluorescence. The primary cell suspension is obtained pooling together tissues from 3-5 

mice for each experiment.
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3.12. Lipid analysis

3.12.1 Tissue homogenization

The murine brain tissue samples were weighted and homogenized in cold 70% methanol in water. 

The homogenate concentration was adjusted to a final concentration of 100 mg tissue/ml.

3.12.2 Lipidomics analyses

The lipid analyses of murine brain tissue samples were performed according to the standard 

operating procedures (SOP), the Lab Method Sheets (LMS), and data Processing Method Sheets 

(PMS) of Zora Biosciences Oy. For ceramide and cerebroside, UHPLC system with CTC HTC 

PAL autosampler (CTC Analytics AG) instrument was used, whereas for Sph and SIP was 

utilised Rheos Allegro pump (Flux Instruments) and 4000 Q TRAP MS. Data were analysed 

using Analyst VI.5 and MultiQuant V l.l software, with multiple reaction monitoring method.

For sphingolipid quantification, 10 pi of murine brain tissue homogenates in concentration of 100 

mg/ml (i.e., 1 mg) were used for lipid extraction (n=l). Briefly, lipids were extracted using a 

modified Folch lipid extraction. Samples were spiked with known amounts of non-endogenous 

Cer, LacCer, GlcCer, SPH, and SIP synthetic internal standards. After lipid extraction, samples 

were reconstituted in chloroform: methanol (1:2, v/v) and stored at -20°C prior to MS analysis. 

Molecular Cer, LacCer, Gal/GlcCer, SPH, and SIP were analysed on a hybrid triple 

quadrupole/linear ion trap mass spectrometer (4000 QTRAP) equipped with an ultra high pressure 

liquid chromatography (UHPLC) system (CTC HTC PAL autosampler and Rheos Allegro pump) 

using multiple reaction monitoring (MRM) -based method in positive ion mode
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3.13. Thin layer chromatography

3.13.1 Treatment of cell cultures with [l-3H]sphingosine

Cells were incubated with 3 x 10-8M [l-3H]sphingosine dissolved in cell-conditioned medium 

(5 ml/dish) for 2 h pulse followed by 48 h chase. After the pulse period, the medium was removed 

and replaced with cell-conditioned medium without radioactive sphingosine for the chase period. 

Under these conditions, free radioactive sphingosine was barely detectable in the cells and all cell 

sphingolipids, including ceramide, sphingomyelin, neutral glycolipids and gangliosides were 

metabolically radiolabelled. Tritium-labelled phosphatidylethanolamine was also obtained due to 

the recycling of radioactive ethanolamine formed in the catabolism of [1-3H]sphingosine. The 

radioactivity associated with cells was determined by liquid scintillation counting: it corresponded 

to 145 nCi/mg.

3.13.2 Lipid extraction

Cell dishes were washed twice with ice cold PBS containing 0.4 mM NasVCL and then scraped in 

PBS and collected in centrifuge tubes. The cell pellets were obtained by centrifugation at 4°C at 

l,600xg for 10 min and then resuspended in iced water to be snap frozen and lyophilised. Lipids 

from lyophilized cells were extracted with chloroform/methanol/water 2:1:0.1 by vol. This first 

extraction was performed by adding 1550 pi of the solvent system. The total lipid extracts were 

separated from the protein pellet by centrifugation at 13,400xg for 15 min. The cell pellets were 

subjected to a second lipid extraction by adding 250 pi of chloroform/methanol 2:1.

3.13.3 Phase partitioning

Aliquots of the total lipid extracts were further subjected to a two-phase partitioning, resulting in 

the separation of an aqueous phase containing gangliosides and in an organic phase containing all 

other lipids. Briefly: an amount of water, corresponding to the 20% of the total volume of lipid
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extracts, was added to each total lipid extract. The solutions were centrifuged at 2,300*g  for 

15 min, obtaining the separation of two phases. The aqueous phases were transferred in other 

tubes and a similar volume of methanol/water 1:1 was added to the organic phases. The samples 

were mixed and the two phases were separated again by centrifugation. The organic and aqueous 

phases were then dried under nitrogen flow and then resuspended in a known volume of 

chloroform/methanol 2:1. The two phases thus obtained, as the total lipid extracts were used for 

the TLC separation and analysis.

3.13.4 Alkaline treatment on the organic phases

Alkaline treatment allows removing glycerophospholipids from the organic phases, breaking their 

ester bonds, and maintaining unaltered the amide linkage of sphingolipids. This procedure allows 

removing several chromatographic interferences. Aliquots of organic phases were dried under 

nitrogen flow and the residue was resuspended with 100 pi 0.6 M NaOH in methanol and allowed 

to stand at 37°C for three h and overnight at room temperature. The reaction was blocked by 

adding 120 pi 0.5 M HC1 in methanol. Finally, after phase separation (by adding 1,050 pi of 

chloroform/methanol/water 70:18:17), the new organic phases were used for TLC analysis.

3.13.5 Mono-dimensional TLC

The lipid residue dissolved in chloroform-methanol, 2:1 by vol. was applied on a 3 mm lane at

1.5 cm from the plate bottom edge. Different samples were applied maintaining a 3-5 mm 

distance. The plate was immersed into the chromatographic solvent system (1 cm deep) and 

chromatographed in a closed tank allowing the solvent to reach the TLC top edge (TLC size, 

10 x 20 cm). Chromatography was carried out at room temperature in the range of 20-25°C. The 

aqueous phases were analysed using solvent systems composed by chloroform/methanol/0.2% 

aqueous CaCl2 50:42:11 by vol. The organic phases were separated using the solvent system 

chloroform/methanol/water in the ratio of 110:40:6 by vol.
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3.13.6 Radioimaging

Tritium metabolically radiolabelled glycosphingolipids and phosphatidylethanolamine were 

visualized by digital autoradiography performed with a Beta-Imager 2000 instrument (Biospace, 

Paris). Total 200-1,000 dpm were applied on the plate and the image was acquired for 24-48 h. 

Identification was accomplished by chromatographic comparison with standard radiolabelled 

gangliosides and phosphatidylethanolamine.

3.14 Sphingosine kinase activity assay

To measure SK activity, cell lysates (60 jug) were incubated (Olivera A. Anal Biochem 1994) in 

the presence of 50 pM D-ery/'/zro-sphingosine dissolved in 4 mg/ml BSA and 1 mM ATP. 

Reaction was initiated by addition of [32P] y-ATP (0.5 pCi, 1 mM) and 10 mM MgCk and 

terminated after 30 min incubation at 37 °C by addition of 20 pi 1 N HC1 and 900 pi of 

chloroform/methanol/HCl (100:200:1 v/v). 240 pi of chloroform and 240 pi of 1 M KC1 were 

added, and phases were separated by centrifugation. 500 pi of the lower phase were dried under a 

stream of nitrogen and dissolved in 100 pi of chloroform/methanol (2:1 by volume). [32P]S1P was 

separated by TLC using the solvent system 1-butanol/methanol/acetic acid/water (80:20:10:20, 

v/v) Radioactive lipids on HPTLC plates were detected and quantified by radioactivity imaging 

performed with a Beta-Imager 2000 instrument (Biospace, Paris, France) using an acquisition 

time of about 48 h. The radioactivity associated with individual lipids was determined with the 

specific (3-Vision software provided by Biospace. SK specific activity was expressed in 

pmol/min*mg protein in experiments performed at least in duplicate.

3.15. Statistics

In vitro and in vivo cell counts and data obtained following the quantification of immunopositive 

area by the ImageJ software were analysed with Excel or GraphPad Software and expressed as the
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mean ± std.error o f the mean (SE, with n>2>). Unpaired Student t-test or Mann Whitney test, 1 or 

2-Way ANOVA followed by Bonferroni post-test (statistical significance: /?<0.05) were used 

when appropriate. Non-parametric test were used in case of non Gaussian distribution of the data 

(evaluated by normality test). 1 way ANOVA was used to compare more than two sets of data and 

2 way ANOVA was used in case of evaluating the effect of two variables; both were corrected 

with Bonferroni posst-test that allowed comparisons between all the data sets.

Log rank test was used for Kaplan-Meier survival curves.
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3.16 TABLES

Table 1. Primary antibodies

PRIMARY AB DILUTION

Antigen Cells Tissues WB
Glial fibrillary acidic 
protein (GFAP)

Dako
Rabbit polyclonal

1:500 1:400

Glial fibrillary acidic 
protein (GFAP)

Chemicon
Mouse monoclonal IgGl

1:100,00
0

Ki67 Novocastra 
Mouse monoclonal 
Rabbit polyclonal

1:1,000 1:1,000

Neuronal Class III (3- 
Tubulin

Babco
Mouse monoclonal, IgG2a, clone 
TUJ1
Rabbit polyclonal

1:500 1:500

Oligodendrocyte 
marker 04

Chemicon (Millipore)
Mouse monoclonal IgM, clone 
81.

1:100 1:100

CD68 Serotec
RatlgG

1:200

Iba I Wako
Rabbit polyclonal

1:300 1:1,000

BrdU Serotec 
Rat IgG

1:500

Cleaved CASP3 Cell signaling technology 
Rabbit polyclonal

1:100 1:1,000

Doublecortin Santa Crus 
Goat polyclonal

1:200

p-ERK Cell signaling technology 
Rabbit polyclonal

1:1,000

ERK (p44/42) Cell signaling technology 
Mouse monoclonal

1:1,000
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Table 2. Secondary antibodies

Secondary AB DILUITION

Antigen Cells Tissue
s

WB

Alexa 488 
Alexa 546
Alexa 633-conjugate

Molecular probes 
Goat anti-mouse IgG; goat anti­
rabbit IgG; goat anti-rat IgG

1:1,00
0

1:1,00
0

Alexa 488
Alexa 594-conjugate

Molecular probes 
Donkey anti-goat IgG;

1:1,00
0

1:1,00
0

Biotin-conjugate Jackson lab 
Goat anti-rat

1:200

HRP-conjugate Santa Cruz
Goat anti-mouse IgG; goat anti­
rabbit IgG; donkey anti-goat 
IgG

1:1,000-
1:200,00
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4 RESULTS

4.1. Analysis of cell proliferation in the SVZ neurogenic niche

The neurological component of GLD is not fully understood and there are hints suggesting the 

presence of tissue damage before the overt demyelination (Escolar et al., 2009). During early 

postnatal stages we observe the most relevant modifications in the structure and cell composition 

of the SVZ niche microenvironment that ultimately result in its complex adult architecture (Gritti 

and Bonfanti, 2007). Recently, it was shown that variations in the expression levels of the 

lysosomal enzyme GALC perturb the homeostasis of the hematopoietic stem cell niche (Visigalli 

et al., 2010). Since the sphingolipid metabolism is particularly important in CNS tissues, 

especially during development, we thought to investigate the effect that GALC absence could 

elicit on neurogenic niches.

4.1.1 Impairment of cell proliferation in the SVZ neurogenic niche of Twi 

mice: in vivo studies

Proliferation of neuronal progenitors that eventually give rise to differentiated neurons within the 

adult central nervous system has been usually demonstrated using an exogenous cell tracer, 5'- 

bromo-2'-deoxyuridine (BrdU), in combination with endogenous neuronal markers. BrdU is a 

thymidine analog that incorporates into dividing cells during DNA synthesis, in the S-phase. Once 

incorporated into the new DNA, BrdU will remain in place and passed down to daughter cells 

following division (Nowakowski et al., 1989).

I first assessed by cumulative in vivo BrdU labelling whether the proliferation o f SVZ precursors 

was altered in Twi mice as compared to WT littermates, also evaluating the potential effect of 

age. I injected asymptomatic postnatal day (PND) 10 and symptomatic Twi mice (PND30 and 

PND40) with BrdU (40 mg/kg, i.p., 1 injection every 2 hours for a total of 4 injections). Two
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hours after the last injection mice were intracardially perfused, brains removed and processed for 

immunohistochemistry (IHC) using an antibody to BrdU, in order to visualize cells that 

incorporated the thymidine analogue. I decided to apply this multiple injection protocol in order to 

reach BrdU saturation and to label all the actively proliferative cells in the niche (Takahashi et al., 

1992). I counted the number of BrdU+ cells in 3 sections/brain (n=6) and expressed the results as 

the average number of BrdU+ cells/section. Qualitative (Fig.9A) and quantitative (Fig.9B) 

analysis showed a significant decrease in the total number of BrdU+ cells in Twi mice as 

compared to WT littermates as a function of disease progression (20% and 50% decrease at 

PND30 and PND40, respectively).

Both SVZ neuroblasts (type A cells) and transient amplifying cells (type C cells) proliferate in 

physiological conditions, while type B cells (astrocytes) are considered as quiescent/slowly- 

dividing cells. In order to assess the cell type composition within the population of proliferating 

cells, I performed double label immunofluorescence with lineage specific markers. Doublecortin 

(DCX) is a marker of developing, immature neurons and is required for normal neuronal 

migration in the developing cerebral cortex (Meyer et al., 2002), thus being a useful marker to 

identify young, immature neurons, as type A cells. Double labelling for BrdU and DCX 

performed at PND40 (Fig.9C) revealed a significative decrease in the number of proliferating 

cells expressing DCX in Twi mice as compared to WT littermates (Fig.9D).

4.1.2 Impairment of cell proliferation in the SVZ neurogenic niche of Twi 

mice: ex vivo studies

In order to characterize the functional behaviour of type C and type B cells, which are less easily 

detected in vivo due to the lack of univocal specific markers, I resorted to an ex vivo experimental 

paradigm, namely the NeuroSphere Assay (NS-A) (Reynolds and Rietze, 2005; Reynolds and 

Weiss, 1992)
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Figure 9. Impairment of cell proliferation in the SVZ of Twi mice
BrdU immunohistochemistry on brain coronal sections of PND40 WT and Twi mice. Decreased 
numbers of BrdU+ cells are present in the SVZ of Twi mice as compared to WT littermates. Note 
the presence of high numbers of BrdU+ cells in the brain parenchyma outside the SVZ in Twi 
mice. B) Quantification of the total number of BrdU+ cells per brain (n=6). *** p<0.001; ** 
p<0.01 (two-way ANOVA with Bonferroni post-test). C) Double labelling immunofluorescence 
for BrdU (red) and DCX (green) on brain coronal sections of PND40 WT and Twi mice. Double 
positive cells are less abundant in Twi brain as compared to WT (images were acquired by three- 
laser confocal microscope-Radiance 2100, BioRad; fluorescent signals from single optical 
sections were sequentially acquired and analysed by Adobe Photoshop CS software; 
magnification lOx). D) Quantification of the total number of BrdU+DCX+ in WT and Twi SVZ 
(n=6) * p<0.05 (Mann Whitney test). Numbers are expressed as mean ± SEM



This assay allows isolating and propagating bona fide neural stem and progenitor cells in 

chemical defined culture conditions. I isolated primary cells from the SVZ of PND40 Twi and 

WT mice and plated them at clonal density (5000 cells/cm2): the number of primary spheres 

counted 10 days after plating returned an index of the proportion of sphere-forming cells 

originally present in the tissue. I observed a significant decrease in the number of primary 

neurospheres derived from the Twi SVZ as compared to the WT counterpart (Fig.lOA). The 

population of sphere-forming cells detectable with this assay includes primarily stem and 

precursor cells (type B and type C) but also committed progenitors (type A), which can undergo 

some rounds of proliferation under these culture conditions. In order to discriminate between the 

different sphere-forming cells I next applied a modified NSA assay (Neurosphere Cell Colony 

Forming Assay; NCFCA) (Louis et al., 2008) in which primary spheres are categorized based on 

their size (an index of proliferative potential) in order to differentiate spheres generated by bona 

fide stem cells (larger size) from those generated by committed progenitors (smaller size). Results 

showed a trend for decreased numbers of primary neurospheres having a diameter >2mm (likely 

formed by true stem cells) in Twi as compared to WT cultures as well as a significant decrease in 

the population of small size primary spheres (<2mm) (likely formed by precursor cells and 

progenitors) (Fig. 10B, C).

Overall these data suggested that stem/progenitors cells in the SVZ of Twi mice are impaired in 

their proliferative and clonogenic ability
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Figure 10. Impairm ent of SVZ-derived stem/progenitors cell proliferation assessed by NSA 
in Twi mice. A) Primary cells isolated from the SVZ of Twi mice (PND40) (n= 23) generate 
significant less numbers of primary neurospheres as compared to their WT counterpart (n=18). 
*** p<0.0001 (Mann Whitney test). B) NCFC assay. The numbers of primary neurospheres are 
shown according to sphere size (n=8). Numbers related to the large size WT- and Twi-derived 
neurospheres are shown in the inset. *** p<0.001 (two-way ANOVA with Bonferroni post-test). 
C) Representative pictures of primary neurospheres of different size (grid=2x2mm).
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4.1.3 Alteration of neuroblasts’ chain arrangement in the lateral wall of the 

forebrain lateral ventricles

I next sought to determine whether the morphological and ultra structural features of the Twi SVZ 

were also impaired. Wholemount approaches have provided several key insights into the germinal 

activity of the adult SVZ, providing a comprehensive, en-face view of this germinal region 

(Doetsch and Alvarez-Buylla, 1996; Mirzadeh et al., 2010; Mirzadeh et al., 2008). I sought 

therefore to use this technique to analyse the SVZ walls of PND40 Twi and WT littermates, to 

determine if the lower number of proliferating neuroblasts are associated with their altered 

structure and/or organization. I noted irregular features in the SVZ wall of Twi mice compared to 

WT littermates. In particular, I detected sparse chains with respect to well-defined chains 

observed in WT littermates, especially in the dorsal area. Moreover I observed occasionally 

tangled chains in the rostral/ventral part of the Twi SVZ as compared to the WT counterpart 

(Fig. 11 A, B). Interestingly, I observed the presence of microglial cell and monocyte/macrophage 

infiltrates in the SVZ of Twi mice that are almost absent in WT littermates (Fig. 11C).

Figure 11. Alteration of neuroblast’s chain arrangement.
A) Whole mount reconstruction (10X) of the later wall of the ventricle isolated from WT and Twi 
mice. DCX immunofluorescence (green) highlights chains of neuroblasts, GAFP (blue) and 
mouse IgG (red) stain astrocytes and blood vessels, respectively. Note the dorsal (a), ventral (b, d) 
and caudal (c) pattern. B) Higher magnification images of the different regions: (a) chains in the 
dorsal area are less abundant in Twi compared to WT mice (green: DCX; red: GFAP; blue: Ki67); 
(b) in the ventral area, tangles of chains can be found in Twi mice; (c) sparse chains are visible in 
the caudal area in Twi mice; (d) single cells migrating in Twi compared to WT mice (green:DCX; 
red: mouse IgG; blue:Ki67). C) Whole mount of the Twi SVZ revealed the presence of huge 
amount of microglial cells (Iba-1) and monocyte infiltration (CD68) compared to WT SVZ. 
Higher magnification images reveal the presence of CD68+ cell in between the neuroblast chains 
(DCX+) in Twi samples. Images were acquired by three-laser confocal microscope-Radiance 
2100, BioRad; fluorescent signals from single optical sections were sequentially acquired and 
analysed by Adobe Photoshop CS software; magnification: A, lOx; a, 20X; b-d, 40X
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4.1.1 Ultrastructural analysis of the SVZ neurogenic niche reveals modification 

in the cell type composition

To further characterize the morphological alterations observed in SVZ wholemounts at PND40,1 

performed electron microscopy (EM) analysis on coronal forebrain sections distinguishing the 

SVZ around the lateral ventricles (SVZ-LV) from the SVZ that spans in the rostral extension 

(SVZ-RE) in age-matched Twi and WT mice, quantifying the proportion of the different cell 

types (type A, B and C).

I did not observe significant differences in the ultrastructural morphology and proportions of type 

A and type B cells in the SVZ-LV of Twi mice as compared to WT littermates (Fig.l2A). 

Interestingly, type C cells showed a moderate decrease in number (Fig. 12B). In contrast, Twi 

mice were characterized by a significant decrease in the number of neuroblasts at the SVZ-RE 

level (Fig. 12C), accompanied by loose chain organization (compare the grey areas in drawings of 

Fig. 12D). In addition, several unidentified cell types with ultrastructural morphology reminiscent 

of microglia were also observed in the entire SVZ of Twi mice (Fig. 12D), confirming the 

presence of cellular infiltrates in the SVZ, as shown with the wholemount technique.

Results from EM analysis support the idea that the SVZ progenitor cells; in particular, type A 

progenitors (neuroblasts) are less in number and less organized in Twi mice as compared to WT 

littermates. Considering the relatively normal morphology and cell type composition and the 

absence of cell accumulation of the SVZ-LV (not shown), our data suggest that the rate of 

neuroblast proliferation/death more than their migration could be impaired in the SVZ stem cell 

niche of Twi mice.
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Figure 12. Cell type composition of the SVZ by ultrastructural analysis
A) The Twi SVZ-LV contains similar numbers of type A and B cells but decreased numbers of 
type C cells (B) with respect to WT SVZ-RE. (C) Significant decrease in the number of 
neuroblasts in SVZ-RE in Twi compared to WT mice. (D) Electron microscopy of the SVZ rostral 
extension (SVZ-RE) in WT and Twi mice (red area in the cartoon). In the masks, neuroblasts are 
represented in grey, astrocytes in white and the asterisk indicates putative microglia/macrophages 
cells. Numbers are expressed as mean ± SEM (n=3) ** p<0.01 (Mann Whitney test).
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4.2. The impact of neuroinflammation on the SVZ neurogenic niche

It has been reported that an inflammatory environment could be detrimental for neurogenesis and 

NSC functions (Pluchino et al., 2008). Since extensive microglia activation and reactive 

astrogliosis characterizes the Twi brain at the late stages of disease progression (Luzi et al., 2009) 

(see also below) I next sought to assess whether the functional impairment of the SVZ 

stem/progenitor cell compartment observed at PND40 might be consequent to the severe 

neuroinflammation associated with the disease progression.

4.2.1 Inflammatory profile in the Twi brain during disease progression: gene 

expression

I evaluated the inflammatory profile in total brain tissues isolated from Twi mice and WT 

littermates at different postnatal ages (PND2, PND10, PND20, PND30 and PND40) 

corresponding at different stages of the disease (from asymptomatic to fully symptomatic). I 

performed quantitative RT-PCR for a panel of selected cytokines and chemokines expressed by 

activated microglia and astrocytes as well as by neurons (CCL2, CCL3, CCL5 IL la , IL lp, TNF- 

a, CXCL12 and CXCL10). These molecules are mainly pro-inflammatory cytokines and 

chemoattractants for monocyte/macrophages.

I showed an age dependent increase of mRNA expression of several of these molecules starting 

from the early symptomatic stage (PND20) (Fig. 13). In particular, I detected up-regulation of 

chemokines such as CCL2 (MCP-1) and CXCL10 (IP-10), which increase from 10- to 100-fold 

with respect to WT samples. Other pro-inflammatory cytokines, such as IL la , IL1|3 and TNF-a, 

reached a maximum of 10-fold increase. It is important to note that CCL2 is expressed not only in 

neuroinflammatory conditions, but it is also constitutively expressed in the brain both by glial 

cells and neurons (Banisadr et al., 2005). Recent reports suggest that CCL2 could act as a 

modulator of neuronal activity and neuroendocrine functions (Conductier et al., 2010). Moreover 

the presence of its receptors (CCR2) on neural progenitors supports the idea that chemokines
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might act locally as chemoattractan for these cells during the ontogeny of several brain structures 

(Tran et al., 2004). On the contrary, CXCL10 is generally not detectable and its expression is 

induced by other molecules, such as INF-y, IL1(3 and TNF-a (Muller et al., 2010).
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Figure 13. Inflammatory markers in total brain tissues of Twi mice as a function of age: 
mRNA levels
Total brain tissues of WT and Twi (n=3-5) mice were collected at different ages (PND2, PND10, 
PND20, PND30 and PND40). Sybr green RT-PCR was performed for several inflammatory 
markers. Values are expressed as fold increase to WT levels, using the housekeeping gene |3-actin. 
§ p<0.001; # p<0.01; * p<0.05 (two-way ANOVA with Bonferroni post-test).

4.2.2 Inflammatory profile in the Twi brain during disease progression: 

protein levels

I next sought to confirm whether changes in mRNA expression levels were found at the protein 

level. Even though the correlation between mRNA and protein expression is not always linear, I 

expected to detect increased protein levels for the molecules in which I saw the highest fold 

differences in mRNA expression when comparing Twi and WT samples. I performed Multi 

Analyte Profile (MAP), a multiplex ELISA assay based on Lumina technology that detects
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multiple molecules in the same brain tissue sample (Fig. 14). For the highly expressed chemokines 

I corroborate the results obtained by qRT-PCR. Indeed, expression of CXCL10 protein is more 

than one order of magnitude higher in Twi brains compared to WT (17 pg/ml and 870 pg/ml for 

WT and Twi samples, respectively). Similarly, expression of MCP-1 (CCL2) protein is about 

500-fold in Twi vs WT brain samples. For other molecules, such as IL-lp, IL -la  and TNF-a I 

detected minor increases in the protein levels with respect to mRNA expression. Interestingly, I 

observed a strong age-dependent increase in FGF-2 protein level in Twi samples, possibly 

indicating astrocyte iperthrophy and on-going astrogliosis, processes that are associated with 

microglia activation and inflammation in the Twi CNS.

4.2.3 Inflammatory profile in the Twi brain during disease progression: 

pathological features

In order to further investigate this issue, I performed Western blot analysis (Fig. 15) on tissues 

samples from mice of different ages (from PND2 to PND40) for markers of astrogliosis (GFAP), 

microglia activation (IBA-1) and apoptosis (Cleaved Caspase 3). I decided to include a marker of 

apoptosis because it is known that astrocytes and microglia activation can trigger and foster the 

inflammatory response, inducing also cell death. Results from this assay showed an up-regulation 

of all the markers analysed, not only at PND40 (as expected), but also in tissues from PND2 and 

PND10 mice, thus indicating that Twi brains are characterized by precocious astrogliosis and 

inflammation.

These results strongly indicate that up-regulation of inflammatory molecules, likely a 

consequence of astrogliosis, microglia activation and apoptosis, are present before, or in close 

correspondence to the appearance of symptoms. This suggested a possible role of this process in 

the pathogenesis of the disease.
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Figure 14. Inflammatory markers in the total brain tissue of Twi mice as a function of age: 
protein levels
Multi Analyte Profile (MAP) was performed on total brain tissue samples from WT and TWI 
mice (n=3) to detect the amount of several pro-inflammatory molecules. *** p<0.001; ** p<0.01 
(two-way ANOVA with Bonferroni post-test).
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Figure 15. Astrogliosis, microglia activation and apoptosis are present in early symptomatic 
Twi brains

4.2.4 Modulation of inflammation in Twi brains: anti-inflammatory treatments

As described previously (see paragraph 1.1.7.7) combined therapies are designed to target 

different aspects of the pathology in LSDs and anti-inflammatory drugs have been successfully 

used in several of these diseases (Jeyakumar et al., 2004). I sought to test whether these 

compounds could benefit the Twi mice, modulating the inflammatory status that is pronounced 

not only at the latest stages of the disease, where CNS is already compromised, but also at earlier 

time points. I chose to test the effect of Minocycline, a tetracycline analog, capable to cross the 

blood brain barrier and with reported neuroprotective and anti-apoptotic activity, mainly due to 

inhibition of activated microglia (Domercq and Matute, 2004). As an additional control I used 

Indomethacin, a well-known non-steroidal anti-inflammatory drug that acts by inhibiting
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cyclooxygenase. Twi and WT mice were administered the drugs daily starting from PND10 

(40mg/kg and lOmg/kg for Minocycline and Indomethacin, respectively; intraperitoneal 

injection). Age-matched saline-treated mice served as controls. Mice were euthanized after 10, 20 

and 30 days of treatment, at PND20, PND30 and PND40, respectively. Analysis of mRNA and 

protein levels were performed by qRT-PCR (Fig. 16 A, B) and MAP (Fig.9) on the same panel of 

molecules analysed previously (see paragraph 2.1). mRNA expression of several pro- 

inflammatory molecules was partially down regulated in Minocycline-treated Twi mice 

(Fig. 16 A).

This effect was more pronounced at the earliest time points (10 and 20 days post-treatment) as 

indicated by the results of CCL2, CXCL10 and IL l-a, suggesting that the anti-inflammatory 

treatment is able to detoxify the brain environment effectively when it is not yet strongly 

compromised. On the contrary, Indomethacin-treated Twi mice showed major mRNA down 

regulation at the latest time point, suggesting that this drug requires more time to exert its activity 

(Fig.l6B). Down-regulation of mRNA levels in drug-treated Twi mice did not closely correlate 

with down-regulation of protein levels (Fig.17). Only IL -la , CCL3 and FGF2 protein levels 

showed a moderate down-regulation.
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Figure 16. Modulation of the inflammatory profile of Twi mice treated with anti­
inflammatory drugs: mRNA levels
Tissues from total brain of WT and Twi mice (n=3-5) were collected 20 (P30) and 30 days (P40) 
after daily treatment with Minocycline (A) and Indomethacin (B) started at PND10. Sybr green 
RT-PCR was performed for several pro-inflammatory molecules shown. Values are expressed as 
fold increase to untreated Twi levels, using the housekeeping gene (3-actin as normalizer. *** 
p<0.001; ** p<0.01; * p<0.05 (two-way ANOVA with Bonferroni post-test).
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Figure 17. Modulation of the inflammatory profile of Twi mice treated with anti­
inflammatory drugs: protein levels
Multi Analyte Profile (MAP) ELISA was performed on total brain tissue sample from WT and 
TWI mice (n=3) to detect the protein expression of several pro-inflammatory molecules.
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4.2.5 Efficacy of the anti-inflammatory treatments on the pathological 

hallmarks

In order to evaluate whether the anti-inflammatory treatment could have an effect on the 

pathology hallmarks, I performed histochemistry and immunofluorescence on brain tissues of 

Minocycline-treated and untreated Twi and WT mice at PND30 and PND40 (Fig. 18). I first 

analysed the pattern of lectin (RCA-1) staining in the cerebellum (Cb), pons and spinal cord (SC), 

which are the areas mainly affected by infiltrated globoid cells and glycolipid storage (Figl8, A). 

Lectins bind glycolipids and are considered a useful tool to visualize globoid cells in CNS tissues 

from murine and dog models of GLD (Ahoy et al., 1986). Whereas at PND30 (not shown) I did 

not detect significant differences in lectin content (lectin immunopositive area) between 

Minocycline-treated and untreated Twi mice, at PND40 I observed a significant decrease of lectin 

positive area in the pons and SC of treated Twi mice, indicating clearance of tissue storage and 

globoid cells. Immunofluorescence analysis was then performed on selected rostro-caudal region 

(white and grey matter of the forebrain, Cb, pons and SC) using antibodies to CD68 (infiltrating 

macrophages) and Iba-1 (microglia). Quantification of the immunoreactivity for CD68 (Fig.l8B) 

at PND30 (not shown) and PND40 revealed decreased presence of CD68+ cells for all the areas 

considered in Minocycline-treated compared to untreated Twi mice. Iba-1 immunoreactivity 

(Fig.l8C) showed no significant differences at PND30 (not shown), while decreased Iba-1+ signal 

was found at PND40 in the forebrain of Minocycline-treated compared to untreated Twi mice. 

These results indicate that, despite the moderate decrease in the mRNA expression and protein 

levels of the several pro-inflammatory molecules tested, Minocycline treatment was sufficient to 

partially clear storage and ameliorate pathology in the Twi CNS.
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Figure 18. Anti-inflammatory treatment ameliorates storage and pathology.
Histochemistry using biotinylated lectins (RCA-1; glycolipid storage and globoid cells) and 
immunofluorescence analysis using CD68 anti-Ibal (macrophages and microglia) antibodies were 
performed on selected region-matched rostro-caudal tissue slices PND40 WT and Twi 
(Minocyclin-treated and untreated) mice. Fb WM: forebrain white matter; Fb GM: forebrain grey 
matter; Cb: cerebellum; SC: spinal cord.
(A) Lectin histochemistry at PND40; (B) CD68 and (C) Iba-1 immunoreactitvity in PND40 
forebrain. The total immunopositive area (expressed in pixels) was calculated using the ImageJ 
software using the WT parameters as threshold. 3-5 pictures were taken for each sections, at least 
7 sections for brain considered (n=3)*** p<0.001; ** p<0.01 * p<0.05 (one-way ANOVA with 
Bonferroni post-test)
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4.2.6 Effect of anti-inflammatory treatment on the SVZ-neurogenic niche

To assess the impact of the anti-inflammatory treatment on the neurogenic compartment and to 

possibly discriminate between a cell-autonomous versus non-cell autonomous (environmental) 

origin of the NSC functional impairment, the morphological and functional features of the SVZ 

neurogenic niche were reassessed in Twi mice treated with anti-inflammatory drugs.

I performed the in vitro NSA and in vivo BrdU analysis on Minocycline-treated Twi and WT mice 

and untreated controls at PND40 (Figl9A, B). I decided to focus these studies on PND40 mice 

because this age corresponds to the fully symptomatic stage of the disease and to the latest point 

of the anti-inflammatory treatment protocol. A group of mice received BrdU injections at the day 

of euthanasia, according to the protocol described above, in order to evaluate the effect of the 

anti-inflammatory treatment on in vivo proliferation (fig.l9A).

I found comparable numbers of BrdU+ cells in the SVZ of WT and Minocycline-treated Twi 

mice, thus indicating a rescue of cell proliferation due to the treatment. The ex vivo NSA assay 

(Fig.l9B) gave similar results. In fact, the number of primary neurospheres derived from 

Minocycline-treated Twi mice was comparable to that of derived from WT mice. The NSA 

performed on SVZ primary cells from Indomethacin-treated mice gave similar results (Fig.l9B). 

Importantly, no functional impairment was observed in the clonogenic ability o f primary cells 

derived from Minocycline-treated WT mice (Fig.l9B).

Ultrastructural analysis performed by EM did not show a clear increase in progenitor cell number 

and definitive rescue of SVZ morphology in Minocycline-treated Twi mice as compared to 

untreated Twi controls (Fig.20). Indeed, despite increased neuroblasts numbers in the SVZ-LV 

(Fig.20A) I observed no changes in the neuroblast proportions in the SVZ-RE (Fig.20B) and in 

the number of type C cells in the SVZ-LV (Fig.20C).
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Figure 19. Assessment of in vivo and in vitro proliferation of SVZ stem/progenitor cells after 
anti-inflammatory treatments. (A) Quantification of the total number of BrdU+ cells in the SVZ 
in WT and Twi (Minocycline-treated and UT) mice (n=6) *** p<0.001; * p<0.05 (one-way 
ANOVA with Bonferroni post-test). (B) Number of primary neurospheres generated from the 
SVZ of untreated and drug-treated WT and Twi mice. Primary cells from the SVZ of treated mice 
(n= 9 for Minocycline; n=6 for Indomethacin) produces comparable numbers of neurospheres 
compared to those generated by WT SVZ, both UT (n=18) and treated (n=6 for both drugs) *** 
p<0.001 (one-way ANOVA with Bonferroni post-test). Numbers are expressed as mean ± SEM.

Overall, these results suggest that anti-inflammatory treatment started at the asymptomatic stage is 

able to modulate the inflammatory status characterizing the Twi environment during the disease 

progression. The modulation provided by two different anti-inflammatory drugs, although far 

from rescuing the toxic Twi environment back to the non-inflammatory physiological 

environment, is sufficient to clear intracellular storage to ameliorate pathology, as detected at 

PND40, resulting in overall improved survival of treated Twi mice (Fig.21). Importantly, the anti­

inflammatory treatment results in partial recovery of the functional defect affecting 

stem/progenitor cells in the SVZ niche.
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Figure 20. Ultrastructural analysis of the SVZ-LV and SVZ-RE regions of Minocycline- 
treated mice.
Electron microscopy analysis on the SVZ of PND40 WT and Twi mice, treated with anti­
inflammatory drug. Quantification of the number of astrocytes and neuroblasts in the SVZ-LV 
(A) and SVZ-RE (B). (C) Percentage of type C cells in SVZ-LV. ** p<0.01; * p<0.05 (two-way 
anova with Bonferroni posttest). Numbers are expressed as mean ± SEM (n=3).
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Figure 21. Prolonged survival of Twi mice treated with anti-inflammatory drugs
Kaplan-Meier survival curves of Minocycline- and Indomethacin-treated Twi mice are 
significantly different from the survival curve of untreated (UT)/Saline-treated Twi mice.
Average survival:
UT: 49 days (n=49)
Minocycline treated: 56 days (n=25)
Indomethacin treated: 54 days (n=T6).
Log-rank test: Minocycline-treated vs UT: p<0.0001 
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4.3. Evaluation of the cell autonomous component affecting the SVZ 

neurogenic niche in Twi mice

The data shown so far underlie the relevance of the environmental contribution in determining the 

functional impairment in the SVZ niche, which is mainly evident at the latest stages of the 

pathology. Nevertheless, they do not conclusively rule out a direct contribution of the lysosomal 

enzyme GALC in maintaining a functional neurogenic niche during adulthood and, most 

important, during early post-natal CNS development.

In order to distinguish between the effect of the toxic environment and a potential cell- 

autonomous defect due to the genetic GALC deficiency, I assessed the function of the SVZ



compartment in neonatal/early postnatal Twi mice (PND2 and PND10). Indeed, despite no 

detectable up-regulation of inflammatory component was present in CNS tissues at these ages, 

WB data indeed suggested the presence of on-going astrogliosis and cell death. I therefore applied 

two ex vivo models (NSA and primary cultures) in order to evaluate the ability of self-renewal, 

proliferation, differentiation and maturation of the SVZ-derived stem/progenitor cell population.

4.3.1 Analysis of self-renewal, proliferation and differentiation

The NSA assay (Fig.22) showed a significant decrease in the number of primary spheres retrieved 

from the SVZ of Twi mice at PND2 and PND10 with respect to WT littermates, indicating 

impairment in clonogenic ability.
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Figure 22. Impaired clonogenic efficiency in stem/progenitor cells derived from the SVZ of 
asymptomatic mice.
NSA assay was performed to evaluate the clonogenic efficiency of primary cells obtained from 
PND2 and PND10 WT and Twi mice (number of spheres generated/cells plated xlOO) *** 
p<0,0001; ** p<0,001 (Mann Whitney test) (n=4 experiments, 14-16 mice). Values are expressed 
as mean ± SEM

In order to better assess the proliferative ability of SVZ-derived progenitors and their 

multipotency I established primary mixed cultures from the SVZ of PND2 WT and Twi mice 

(Gritti et al., 2009). I plated freshly isolated primary cells in adhesion, in a growth factor-free



medium containing 2% foetal bovine serum. Two weeks after plating the cell type composition 

was assessed using immunofluorescence analysis. I evaluate the lineage commitment and 

differentiation using Tuj-1, 04 and GFAP antibodies for neuronal, oligodendroglial and astroglial 

cells, respectively (Fig.23A). I measured the immunopositive area for the different markers and I 

expressed the results normalised on the total nuclear area. A significant decrease of 

immunopositive areas for Tuj-1 and 04  was observed in Twi-derived primary cultures compared 

to the WT counterpart (fig. 23B,C). In contrast, no difference was observed in GFAP 

immunoreactivity (Fig.23D). In order to avoid possible false readout due to heterogeneity in cell 

density, I compared the total nuclear area and the total number of nuclei (by direct cell counts) in 

the different cultures, showing no significant differences between WT- ad Twi-derived cultures. 

Moreover, I confirmed the data obtained by area measurement with the data obtained with direct 

cell counts of neuronal progenitors (Tuj-1+) (Fig.24A) and oligodendrocyte precursors (04+) (not 

shown)

4.3.2 Evaluation of proliferative/apoptotic markers

With the purpose of better understanding if the lower amount of neural and oligodendrocyte 

precursors is due to a defect in cell proliferation vs. cell death, I performed a time course analysis, 

counting the cells expressing the proliferation marker Ki67 and the apoptosis marker (Cleaved 

Caspase 3; CASP3). I did not observe any differences in the proliferative ability (not shown), 

whereas I detected an overall increase in cell death in Twi-derived primary cultures as compared 

to the WT counterpart (Fig. 24B). Interestingly, the majority of CASP3+ was comprised within 

the population of Tuj-1 + cells (Fig.24C, D). These data suggest that GALC deficiency affects the 

clonogenic and the proliferation ability of stem/precursor cells in the SVZ of asymptomatic mice. 

These progenitors showed altered differentiation capacity towards the neuronal and 

oligodedroglial lineage and are more susceptible to apoptotic cell death.
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Figure 23. Cell type composition in primary cultures established from the SVZ of PND2 
mice.
Analysis of multipotency and lineage commitment was performed by immunofluorescence, using 
antibodies to Tuj-1, GAFP and 04 for neurons, astrocytes and oligodendrocytes, respectively. (A) 
Representative images for the different lineage markers. (B-D) Immunopositive area (marker+ 
area/nuclei+ area xlOO) for the neuronal (B), astrocyte (C), oligodendroglial (D) antigens. Images 
were acquired by three-laser confocal microscope-Radiance 2100, BioRad; fluorescent signals 
from single optical sections were sequentially acquired and analysed by Adobe Photoshop CS 
software; magnification 20x. 9 fields for coverslip were taken and images were analysed for area 
measurements by ImageJ software (n=4 independent cultures, n=5-7 coverslip).
** p<0,008. * p<0,02 Mann Whitney test.
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Figure 24. Time course analysis of SVZ derived primary cultures.
Primary cultures were analysed at 8,10,13 and 15 days in vitro (DIV) for the presence of Tuj-1 
(neurons) and apoptotic cells (CASP3). (A) The number of Tuj-1+ cells increased as function of 
time in both WT and Twi-derived cultures, but the overall number of neurons is lower in mutant 
cultures at every time point considered. (B) The number of CASP3+ cells is higher in Twi with 
respect to WT cultures. C) The majority of CASP3+ cells is comprised within the Tuj-1+ 
population in Twi-derived cultures (n=2 independent cultures, counted at least 5000 cells/exp) 
*** p<0,01; * p<0,05 (two-way anova with Bonferroni posttest). Data are expressed as mean ± 
SEM. (D) Representative pictures of DIV13 primary cultures from the SVZ of Twi and WT mice. 
Images were acquired by three-laser confocal microscope-Radiance 2100, BioRad; fluorescent 
signals from single optical sections were sequentially acquired and analysed by Adobe Photoshop 
CS software; magnification 40x.
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4.4. Analysis of the GALC metabolic pathway

Several sphyngolipids such as Cer, SIP and other molecules involved in the galactosylceramide 

synthesis and degradation are considered “bioactive lipids”, strictly interconnected in a complex 

metabolic pathway. Unbalance of their mutual levels, which undergo tight regulation in 

physiological condition, might act directly or through activation of important signalling pathways 

to deregulate NSC functions. Thus, I sought to analyse whether GALC deficiency may result in 

unbalanced glycosphingolipid levels in our system.

4.4.1 Evaluation of lipid content in Twi brain

In order to evaluate the brain lipidic composition, I performed mass spectrometry to detect Cer, 

Cerebrosides (Glu/GalCer and LacCer), Sph and SIP in tissue samples from PND40 mice (total 

brain-TB and SVZ). As previously, I choose to perform this analysis on tissue samples from the 

fully symptomatic Twi mice, to verify end-point alterations and to match these results with in vivo 

and in vitro functional experiments.

The most abundant lipid species detected in both total (TB) and SVZ brain tissues were 

Gal/GlcCer (Fig.25A) Galactocerebrosides are typically found in neural tissue but with currently 

available mass spectrometry technique, these species cannot be separated from 

glucosylceramides. Levels of Gal/GlcCer and Cer s were similar in TB and SVZ samples of both 

WT and Twi mice (Fig.25A). In contrast LacCer levels were about 10-fold higher in samples 

obtained from Twi mice as compared to WT (Fig.25C). The LacCer (dl 8:1/18:0) was shown to be 

the most abundant LacCer species, with levels that were 20-fold higher in SVZ samples of Twi 

mice as compared to WT littermates (Fig.25D). SIP and sphinganines were detected in lower 

concentrations in TB and SVZ samples of Twi mice as compared to WT mouse brain (Fig. 25B). 

Also, it should be noted that levels of SIP were close to the lower detection limit and the levels of 

sphinganine-1-phosphate remained under the limit of detection. The elevated LacCer levels might 

be due to the broad specificity of GALC, which can metabolise also this molecule. In this study,
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the sphingoid bases were generally detected in lower amounts in Twi mice, which could be 

explained by inhibition of the de novo sphingolipid synthesis due to the accumulating LacCer 

species.
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Figure 25. Mass-spectrometry analysis of brain lipid content
Total brain and SVZ tissues (n=2 pool of 4 mice/each) of PND40 WT and Twi mice were 
subjected to mass-spectrometry. (A) Quantification of the lipid species. (B) Decreased amount of 
SIP characterize Twi brains and SVZ tissues with respect to the WT counterparts. (C) Increased 
amount of LacCer in Twi brain and SVZ tissues compared to WT tissues. D) The increased 
LacCer amount is due prevalently to short-chain lipids. *** p<0,001; * p<0,05 (two-way anova, 
bonferroni post-test).
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4.4.2 Evaluation of lipid content in SVZ-derived NSC

To assess the lipid component in the ex vivo SVZ-derived cells I used a different assay that allows 

to visualize the lipid steady state composition. I performed a pulse of radiolabelled sphigosine 

(SPH) (2 hours) followed by a 48-hour chase on NSC cultures derived from the SVZ of PND2 

and PND40 WT and Twi mice. This labelling protocol is useful to check the distribution of SPH 

at steady state and to monitor its catabolic pathway. In the aqueous phase, where SIP and 

gangliosides are detected, I did not observe any changes between Twi and WT lipid pattern: 

unfortunately SIP is not detectable with this technique and gangliosides are expressed at low level 

in NSCs (Fig.26A). The organic phase revealed an increase in LacCer and Glu/GalCer in Twi 

samples of both ages, with respect to their WT counterparts (Fig.26B). Quantification of the 

radioactivity revealed that the increment in the Glu/GalCer is similar for both ages, whereas 

LacCer is higher in NSCs derived from PND40 mice (fig.26C).

Thus, the analysis of the lipid pattern in both tissue samples and SVZ-derived NSCs, suggests the 

presence of unbalanced sphingolipid levels, with substrate accumulation (LacCer) and SIP 

decrease. It is interesting to note that the lipid pattern is similar in total brain and SVZ tissue, 

indicating that the neurogenic SVZ niche share the biochemical feature of the surrounding 

environment.

4.4.3 Analysis of SIP pathway

The different amount of SIP in Twi samples compared to WT prompt us to evaluate more in 

depth the SIP pathway. To test whether there could be an impaired signalling response in Twi 

mice, I first tested the presence of SIPRs in Twi and WT brain tissue and NSCs. I performed RT- 

PCR on total brain tissues from PND10 and PND40 mice and on NSC cultures derived from the 

SVZ of PND40 Twi and WT mice. The transcripts for the five receptors were present in all the 

samples, although with different levels of expression (Fig.27A, B).

116



A ) GD3

FA

S1P Psy Gb3 Solf

G M 3
G M 2 1 1 1
G M 1 ■mite

G D 1 a

G D 1 b

S L ] m •
w

mm :

WT Twi WT Twi

PND2 PND40

M ix
LCer SM Cer PE Psy

FO
S1P

Gb3 GCer 

Solf

«*» m m m m

WT Twi WT Twi 

PND2 PND40

PND2 PND40
OP WT Twi WT Twi
Cer 25,9% 24,4% 28,2% 26,3%
Gal/GluCer 4,2% 8,1% 4,4% 8,6%
LacCer 2,0% 2,9% 1,7% 4,1%
Gb3 1,6% 1,9% 1,8% 1,5%
SM high 29,9% 26,4% 30,0% 30,9%
SM low 36,5% 36,4% 33,9% 28,6% .
Total 100,0% 100,0% 100,0% 100,0%

Figure 26. Analysis of the lipid content in NSCs.
Thin layer chromatography after pulse-chase of labelled SPH on SVZ NSCs derived from WT 
and Twi mice at PND2 and PND40. (A) Aqueous phase showed similar gangliosides pattern 
between WT- and Twi-derived NSCs. (B) Organic phase (OP) showed increased amount of 
LacCer and Glu/GalCer in Twi NSCs compared to WT NSCs. (C) Quantification of the TLC 
bands showed in the organic phase.
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While in brain tissues all the transcripts were similarly represented, regardless the post-natal age 

considered, S1P-R1 and S1P-R2 mRNA were most abundantly expressed in NSCs, reaching 

levels comparable to those found in CNS tissues. However, I did not detect any particular 

difference in expression levels between Twi and WT in all the samples analysed, possibly due the 

redundancy of these receptors (Fig.27A).

Nonetheless, I decided to test if there could be an alteration in the downstream signalling 

pathway. I performed western blot (WB) analysis on total brain tissue samples and NSCs from 

WT and Twi mice at PND10 and PND40 (Fig.27C). I detected a strong decrease in P-ERK in 

brain tissues derived from Twi mice, thus indicating a possible down-regulation in pathways in 

which ERK is involved, whereas no clear difference where detected in NSCs. These results in 

NSCs might be explained by the fact that the reduced pro-survival/pro-proliferative stimuli given 

by SIP might be overrun by the mitogen-enriched culture medium, which could trigger the 

activation of compensatory pathways.

4.4.4 Analysis of the expression of enzymes involved in GALC metabolic 

pathway

With the intent of evaluating the potential modulation of the enzymes involved in the GALC 

metabolic pathway, I performed gene expression analysis in total brain extracts and NSCs derived 

from the SVZ of PND40 WT and Twi mice (Fig.28A). I considered the following enzymes (see 

also Fig.2):

- ARSA (Aiylsulfatase A)

- CST (Cerebroside sulfotransferase; sulfatide synthase)

- Gal-TIII (Galactosyltransferase III; galactosyl-ceramide synthase)

- PSAP (Prosaposin)

- Glc-T (Glucosyltransferase; glucosylceramide synthase)

- Gal-TI (Galactosyltransferase I; lactosylceramide synthase)
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Figure 27. Signalling of SIP: SIP receptors and downstream pathway
(A) Semi quantitative RT-PCR was performed on tissue sample from PND10 and PND40 WT and 
Twi mice and on NSCs (B) derived form PND40 WT and Twi SVZ (n=3). No significant 
difference in SIPRs expression is observed between Twi and WT samples. mRNA relative 
expression is obtained using (3-actin gene as normaliser and expressed as arbitrary unit. (C) 
Western blot analysis for the protein phospho-ERK is normalised with its non-phosphorylated 
counterpart (n=3).
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- SphK 1 and 2 (Sphingosine kinase 1 and 2)

- SIP-Lyase

- SIP-Phosphatase

- NEU3 (Sialidase)

- SAT1 (Sialyl transferase)

Semi-quantitative RT-PCR showed increased expression levels of Galt-III and SphKl in Twi 

samples compared to WT. GalT-III is the synthase that works in the opposite direction of GALC. 

Thus, it is possibly affected directly by GALC deficiency. Low levels of SIP could induce instead 

up-regulation of SphKl expression.

To assess if increased gene expression had a functional correlation, I performed an enzyme 

activity assay for SphKl on SVZ-derived NSCs (Fig.28B). I observed increased activity in Twi- 

derived NSCs cells with respect to WT, thus indicating a strong correlation between mRNA 

expression and protein activity.

Alteration in lipid content, transcript expression and activity of enzyme involved in the GALC 

pathway not only in brain tissues, but also in ex vivo isolated NSCs (free of tissue-derived 

environmental inputs) strongly suggest that GALC absence might impact on critical cell processes 

in neural cells, including stem/progenitor cells in the neurogenic niches, at the very early stages of 

the disease, before the overt cellular storage. The build up of storage, however, triggers 

neuroinflammation during the progression of the disease, which likely contributes to worsen the 

functional cell impairment, resulting in the extensive tissue damage that is typical of the latest 

stages of the disease.
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Figure 28. Analysis of enzymes present in the metabolic pathway of GALC
A) Semi quantitative RT-PCR were performed on total brain tissues from WT and Twi PND40 
mice and on NSCs derived from SVZ of PND40 WT and Twi mice (n=3). SVZ derived Twi 
NSCs showed significant up-regulation of Gal-TIII and Sph-kinase I enzymes compared to WT 
derived NSCs. No significant differences are observed in tissue samples. Data are expressed as 
fold increase to WT values; normalisation was performed on (3-actin gene as reference. Data are 
expressed as mean ± SEM *** p<0.001; * p<0,05. two-way ANOVA with Bonferroni post-test.
(B) Sph kinase enzyme assay showed increased activity in NSCs derived from Twi mice. * 
p<0,05 (Mann Whitney test) (n=2).
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5 DISCUSSION

GLD is a severe genetic neurodegenerative Lysosomal Storage Disorder (LSD) with an urgent 

medical need. The only available treatment for GLD patients so far is allogeneic haematopoietic 

stem/progenitor cell transplantation (HCT) (Orchard and Tolar, 2010). This procedure is effective 

only if performed very early after birth or in asymptomatic patients (Escolar at al., 2005), and it is 

still accompanied by severe side effects. In addition, long-term follow-up data report that treated 

infants preserve cognitive function but still develop some degree of motor disability, which ranges 

from mild to severe (Escolar at al., 2005).

Recognition that defects in postnatal neurogenesis and neural stem cell compartments might be 

involved in the pathogenesis or maintenance of CNS disorders, including LSD (Curtis et al., 

2003a; Yang et al., 2006), gives reason for considering NSC-based approaches as a therapeutic 

perspective. Yet, our knowledge concerning the mechanisms regulating the physiology of these 

neurogenic regions and of the resident stem cell compartments remains incomplete, particularly as 

regards their behaviour in the brain during the onset and progression of a neurodegenerative 

condition. This lack of knowledge largely hampers the possibility to fully exploit NSC therapeutic 

potential in the context of exogenous transplantation, as well as in the more fascinating option of 

endogenous stem/progenitor cell recruitment. In fact, an altered niche microenvironment, might 

negatively affect neurogenic and gliogenic processes during pre-natal and early post-natal CNS 

development. In this thesis I investigated the functional, biochemical and molecular properties of 

the neurogenic subventricular zone region and of SVZ-derived neural stem cells of Twitcher 

mice, a relevant murine model of GLD that recapitulates the human pathology, during the onset 

and progression of the disease, in comparison with non-affected littermates (controls). I showed 

impairment in the organization and function of neurogenic niches not only in symptomatic Twi 

mice (confirming the role of inflammation in this process) but also in early post-natal
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(asymptomatic) animals, strongly suggesting a role of GALC in regulating neurogenesis and 

gliogenesis during CNS development. Our studies shed light on the basic biology of NSCs in 

health and disease, raising important points as regard the pathophysiology of leukodystrophies, 

possibly allowing understanding obstacles that need to be addressed for the future development of 

clinical gene/cell therapy.

Alterations in the neurogenic compartment of symptomatic Twi mice

Demyelination and tissue damage that characterizes the CNS environment in GLD patients and 

animal models is classically thought to be the consequence of tissue storage, psychosine 

accumulation and neuroinflammation (Suzuki, 1998, 2003). However, clinical observations 

indicate that functional impairment, demyelination and possibly neurodegeneration are present in 

GLD-affected newborns (Escolar et al., 2009). This suggests that GALC deficiency might result 

in impairment of neurogenesis, gliogenesis and myelination during pre-natal or early post-natal 

age CNS development, long before the disruption of myelination driven by the overt CNS tissue 

storage and inflammation, but this issue has been poorly addressed in pre-clinical studies so far. I 

took advantage of the Twi mouse model to test the challenging hypothesis that GALC deficiency 

might alter the neurogenic SVZ niche during the early CNS development, possibly affecting 

neurogenic and gliogenic processes and resulting in subtle but likely irreversible damage in CNS 

organization and function. Indeed, our in vivo and in vitro data support this hypothesis.

I report a significant decrease in cell proliferation within the SVZ neurogenic region as a function 

of disease progression. This impairment mainly affects the neuroblast compartment, which also 

appears to be highly impaired in its morphology and organization, as assessed by both classical 

ultrastructural analysis and by immunofluorescence on whole mounts of the lateral ventricle walls, 

a technique that allows appreciating the three-dimensional organization of the SVZ cell types, 

rendering a comprehensive, en-face view of this germinal region that is not possible using 

classical sectioning techniques for histological analysis (Doetsch and Alvarez-Buylla, 1996; 

Mirzadeh et al., 2010; Mirzadeh et al., 2008).
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While these observation indicate a reduced neurogenic ability in Twi mice compared to age 

matched WT mice at the late stage of the disease, they do not allow to appreciate the potential 

involvement of the stem/transit amplifying cell population (type B and C cells) to this process. 

Due to the lack of univocal phenotypic markers for these cell types I resorted to move to ex vivo 

functional assays that better allow monitoring the proliferation and self-renewal of these cell 

population. Decreased numbers of SVZ-derived primary neurospheres obtained from Twi mice 

compared to WT littermates using the standard NSA and the modified NCFC assay (which 

positively correlates the size of the newly formed spheres to the stem properties of the founder 

cells) indeed confirmed in vivo data, indicating that not only committed progenitors but also the 

more immature stem/progenitor cell populations were affected in their proliferative and self­

renewal capacity.

Inflammation contributes to the SVZfunctional impairment at the late stages o f the disease. 

GLD is characterized by a severe inflammatory component both in human patients and in Twi 

mouse (Luzi et al., 2009; Wenger, 2000). It is known that inflamed brain microenvironment 

triggers and sustains a non-cell autonomous dysfunction of the SVZ stem cell compartment 

(Mathieu et al., 2010; Russo et al., 2011). In particular, the chronic inflammation present in a 

murine model of Multiple Sclerosis (EAE mice) affects both the proliferation and the migration of 

neuronal progenitors (Pluchino and Martino, 2008b). This functional impairment is rescued 

following ex vivo isolation and long-term culturing of the SVZ-derived stem/progenitor cells in 

vitro using the NSA, thus indicating a strong non-cell autonomous cell component underlying the 

defect. This aspect might challenge the potential efficacy of proposed therapies aimed at 

mobilizing endogenous precursors in chronic inflammatory brain disorders. On the other hand, 

data in the literature showed that inflammatory signals could recruit specifically transplanted and 

possibly also endogenous cells in areas of tissue damage, thus contributing to therapeutic benefit 

(Einstein et al., 2003; Pluchino and Martino, 2008a). Thus, timely modulation of inflammation, 

also by enhancing/inhibiting recruitment of specific populations of inflammatory cells, appears to
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be a key issue to be considered in the developing of cell-based therapies for neurodegenerative 

diseases (Martino and Pluchino, 2006; Schwartz and Brick, 2008).

Previous results as well as results of this work indicate a strong up-regulation of pro-inflammatory 

molecules in the Twi brain as a function of disease progression. I clearly show that this up- 

regulation consistently starts between post-natal days 10 and 20, corresponding to pre/early 

symptomatic stages of the disease, indicating that inflammation might contribute to the 

development of the pathology besides being a consequence of the extensive tissue damage found 

at latest stages of the disease.

In this perspective a chronic anti-inflammatory treatment started at the asymptomatic stage could 

help to decrease the burst of inflammatory molecules and rescue function. I tested this hypothesis 

using Minocycline, a tetracycline analog able to cross the BBB and Indomethacin, a more classic 

anti-inflammatory drug. Indeed, treatment with both drugs resulted in down-regulation of several 

pro-inflammatory molecules. This action was likely underlying the moderate improvement that 

we saw when scoring the pathology hallmarks in the brain of treated Twi mice, such as monocyte 

infiltration, microglia activation and storage. Most important, the anti-inflammatory treatment was 

able to delay the onset of symptoms and to prolong lifespan (+5/7 days), in line with previous 

results reported in a milder murine model of GLD, the trs mice (Luzi et al., 2009). The extent of 

the therapeutic benefit provided by anti-inflammatory treatment was comparable to that provided 

by systemic and intrathecal administration of the recombinant enzyme (Lee et al., 2005; Lee et al., 

2007b). These results further indicate the potential relevance of the inflammatory compartment as 

complementary/additional therapeutic target for GLD and similar LSDs.

Importantly, our data demonstrate that the anti-inflammatory treatment is effective in rescuing 

SVZ-derived stem/progenitor cell functional impairment in fully symptomatic Twi mice, both in 

vivo (number of BrdU+ cells) and in vitro (clonogenic activity), further confirming the strong 

non-cell autonomous contribution of the inflammatory environment on the neurogenic 

compartment at the latest stages of the disease. Nevertheless, these data did not exclude a cell-
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autonomous contribution to the functional impairment, as also suggested by the very limited 

rescue in the SVZ ultrastructure and neuroblast number and morphology assessed by EM analysis.

Is there a cell autonomous component underlying NSC/progenitor functional impairment?

Several works describe functional defects in NSCs or progenitors derived from animal models of 

LSDs. Reduction in self-renewal activity by abnormal nitric oxide-mediated signalling was 

described in NSCs derived by NPC1 -deficient mice (Kim et al., 2008). Also, defects in 

cholesterol traffic and neuronal differentiation are reported in NSCs derived from the same animal 

model (Kim et al., 2007). Thus, these studies suggest that the neurogenic impairment that I 

detected in Twi mice could be an intrinsic feature of the pathology and not only a consequence of 

a toxic environment.

In order to exclude the contribution of inflammation I tested the functional features of NSCs 

derived from the SVZ of newborn and pre-symptomatic Twi mice (post-natal day 2 and 10). In 

vivo BrdU labelling showed similar numbers of proliferating cells in Twi and WT mice at this 

ages, likely reflecting the high proliferation rate of cells in the developing SVZ brain at these ages 

(Peretto et al., 2005) that might mask potential subtle differences. Indeed, moving to the ex vivo 

NSA model, I detected significant lower number of newly formed primary neurospheres obtained 

from Twi mice as compared to WT mice (at both ages), strongly indicating that the impairment in 

stem/progenitor cell proliferation/self-renewal is already present in cells in the early post-natal 

SVZ niche.

Multipotency and differentiation potential are the other functional features that characterize 

stem/progenitor cells in addition to self-renewal and proliferation. I decided to investigate these 

features using mixed neuronal/glial primary cultures established from SVZ. The advantage of 

these cultures over the neurosphere cultures is that they mirror the cell type composition of the 

tissue from which they are established (Gritti et al., 2009) and allow monitoring cell 

differentiation/maturation over time. Evaluation of the cell type composition performed after 

terminal differentiation (15 days after plating) using specific cell lineage markers indicated that
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SVZ-derived primary cultures from Twi mice are characterized by lower numbers of neurons and 

oligodendrocytes as compared to WT cultures. Defects in progenitor cell proliferation or survival, 

as well as delayed differentiation might be responsible for this result. Indeed, a time course 

analysis indicated that the lower number of neurons and oligodendrocytes in Twi cultures are due 

to increased apoptosis in the respective progenitor cell types. These observations indirectly 

support the results of western blot analysis showing increased expression of cleaved caspase 3 in 

brain tissues of Twi mice at the same ages.

Although this in vitro model is a simplified way to look at the SVZ maturation, still it allowed us 

highlighting impairment in primary SVZ cells due to cell intrinsic features, excluding major 

environmental influences related to inflammation. As reported in literature, oligodendrocytes are 

the most affected population by the pathology due to accumulation of Psy (Giri et al., 2008; Giri 

et al., 2006; Zaka and Wenger, 2004), and indeed I found decreased proportion of these cell type 

in our model. Interestingly, in line with the phenotype observed in our in vivo experiments, I 

observed also a strong decrease in cells of the neuronal lineage. Psy quantification in the different 

cell types would be useful to determine whether accumulation of this toxic substrate occur also at 

this early time point, inducing cell death of both population.

These results support our initial hypothesis that an altered niche microenvironment during early 

CNS development might negatively affect neurogenic and gliogenic processes. It would be 

interesting to evaluate whether loss of neuronal and oligodendroglial progenitors also occurs in 

non-neurogenic areas that are however characterized by post-natal cell proliferation, such as the 

cerebellum. This would further account for the functional impairment observed in patients before 

the peak of CNS tissue storage and inflammation (Escolar et al., 2009). This cell-autonomous 

defect could support the clinical inefficacy of therapies on symptomatic patients but could also 

explain the poor improvement of early treatment in asymptomatic babies, opening important 

issues regarding the time of treatment, with strong implication for therapies.
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Cell autonomous defect: role o f sphingolipids.

I measured up-regulation of markers of astrogliosis (GFAP) and activated microglia (Iba-1) in 

CNS tissues isolated from neonatal and early post-natal Twi mice, suggesting that the 

inflammatory machinery is activated in the Twi CNS environment at this early stages despite the 

absence of up-regulated pro-inflammatory markers. Storage in post-natal and fetal brain resulting 

from genetic deficiency has been previously described (Ida et al., 1994; Suzuki, 1998, 2003; 

White et al., 2009) and is likely to impact on critical cell functions before reaching the threshold 

required to trigger massive recruitment of the inflammatory machinery. Indeed, Psy accumulation 

before disease onset is low and below the threshold needed to kill oligodendrocyte but sufficient 

to affect the neural stem/progenitor cells compartment and possibly the structure of axons 

(Castelvetri et al., 2011; Olmstead, 1987).

GALC is a key enzyme in the catabolism of sphingolipids that are enriched in myelin sheets. The 

role of sphingolipids has been studied for many years in neurons and glia as well as in other 

tissues. Ceramide, the first product of GALC, can be considered as a metabolic hub, since it 

occupies a central position in the biosynthesis and catabolism of sphingolipids. Moreover, Cer and 

other molecules of this pathway, such as Sphingosine and Sphingosine-1-Phosphate, are 

considered “bioactive sphingolipids” since they act as signals regulating a vast number of cellular 

processes, including survival, proliferation, migration, differentiation and response to growth 

factors(Hannun and Obeid, 2008).

Interestingly, I detected increased amount of LacCer and Glu/GalCer in both tissues and cells 

derived from brain and SVZ tissues of Twi neonatal and postnatal mice compared to WT 

littermates, indicating that these molecules are likely substrates of GALC and that they are 

accumulating in Twi brains and neural stem/progenitor cells early in CNS development. LacCer is 

a signalling molecule implicated in several cellular processes, and changing in its levels could 

alter cellular response such as proliferation, adhesion and migration (Chatteijee and Pandey, 

2008). Interestingly, it is also an important second messenger in neuroinflammation (Won et al., 

2007). Moreover, I have to consider that besides accumulating in lysosomes, these lipids might
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accumulate in the plasma membrane of cells, altering the balance of lipid composition and 

possibly affecting critical microdomains, such as lipid rafts (White et al., 2009). This might 

results in detrimental effects, both in neurons, in which membrane plasticity influences axon 

elongation and synapse formation (Ibanez, 2004; Niethammer et al., 2002), and in 

oligodendrocytes during myelination (Kramer et al., 1999), both processes being tightly regulated 

during early CNS development.

In addition to the vast number of processes that sphingolipids are associated with, further levels of 

complexity arise from the metabolic interconnection of bioactive lipids. It has been suggested that 

the balance between survival and death of many cell types may be affected by the equilibrium 

between the intracellular levels of inter-convertible sphingolipids such as Cer and SIP. Enzymes 

that either produce or degrade these sphingolipids control this equilibrium. Our analysis revealed 

a decrease amount of SIP in Twi samples, with concomitant increase of expression and activity of 

Sph kinase. This suggests that the cells are trying to counteract the lipid unbalance due to GALC 

deficiency.

Therefore, complex biochemical and signalling alterations are likely to be consequent to GALC 

deficiency (and possibly also to GALC over-expression that can be obtained upon gene transfer) 

(Visigalli et al., 2010), giving reason of the fact that variations in GALC expression levels perturb 

the survival and function of relevant components of stem cell niches, including the SVZ.

Conclusions

Early abnormalities of the corticospinal tract, a major motor pathway, detected by DTI were

described in asymptomatic neonates affected by Krabbe disease and that may explain the motor

impairment present in some patients before massive disruption of myelination by the lack of

GALC. Most importantly, it might explain the clinical inefficacy of therapies on symptomatic

patients as well as the poor improvement following early treatment in asymptomatic babies. These

clinical observations, as well as the finding that neurodegeneration might be present in Twi mice

even in the absence of demyelination (Galbiati et al., 2009) strongly suggested GALC deficiency
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results in neural cell impairment before the clear onset of tissue storage and before the up- 

regulation of the classical pro-inflammatory signature that is typical of Twi CNS tissues. Results 

of our work support this concept. Also, they provide strong evidence supporting the more 

challenging hypothesis that the impairment in neurogenic and gliogenic processes occurring 

during early post-natal CNS development might be consequent to a functional impairment in 

neural stem cell/progenitor function in the neurogenic niches due to GALC absence. According to 

tables equating CNS development across species, the neonatal/early post-natal age (PND2- 

PND10) in mice correspond to the second trimester of fetal life in humans (Clancy et al., 2007). 

Thus, according to our data, GALC absence might impact on CNS functions very early in pre­

natal life.

The comprehension of the role of GALC absence in the early neurogenic processes shed lights on 

the basic mechanism of the pathology and contributes to understand the limitations suffered by 

the current available treatments (HSCT) (Escolar ML, 2005; Krivit et al., 1999a), helping to 

develop new effective CNS-directed therapies for GLD.
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