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Abstract

Electronic services are emerging as the de-facto enabler of interaction interoperability
across organization boundaries. Cross-organizational interactions are often “choreographed”,
i.e. specified by a messaging protocol from a global point of view independent of the local
view of each interacting organization. Local requirements motivating an interaction as well as
the global contextual requirements governing the interaction inevitably evolve over time,
requiring adaptation of the corresponding interaction protocol. Adaptation of an interaction
protocol must ensure the satisfaction of both sets of interaction requirements while
maintaining consistency between the global view and the local views of an interaction
specification. Such adaptation is not possible with the current state-of-the-art representations
of choreographed interactions, as they capture only operational messaging specifications
detached from both local organizational requirements as well as global contextual

requirements.

This thesis presents three novel contributions that tackle adaptation of choreographed
interaction protocols: an automated technique for deriving an interaction protocol from
requirements, a formalization of consistency between local and global views, and a
framework for guiding the adaptation of a choreographed interaction. A choreographed
interaction is specified using models of organizational requiremeﬁts motivating the
interaction. We employ the formal semantics embedded in requirements models to
automatically derive an interaction protocol. We propose a framework for relating the global
and local views of interaction specification and maintaining consistency between them. We
develop a metamodel for interaction specification, from which we enumerate adaptation
operations. We build a catalogue that provides guidance on performing each operation and
propagating changes between the global and local views. These contributions are evaluated

using examples from the literature as well as a real-world case study.
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Chapter 1. Introduction

During the past five decades, software engineering has undergone fundamental shifts in
accepted wisdom both for products and process (Larman & Basili, 2003). On the product side,
enterprise software applications evolved from being monolithic, standalone, closed systems to
being distributed, heterogeneous, open-ended systems. Shared, rather than single, ownership of
applications has become the norm rather than the exception (Nitto et al., 2008). On the process
side, the assumption that requirements should be fixed in early stages of the development process
was ousted by the belief that change in requirements at later stages is inevitable (Edmonds,
1974). Interoperability between heterogeneous systems and adaptability of software products
emerged as two of the primary challenges in developing modern era enterprise software.

Software development processes and supporting technologies needed to evolve to meet these

challenges.

In the past decade, Service-oriented computing (SOC) (Georgakopoulos & Papazoglou, 2008)
emerged as a promising approach for enabling cross-organizational interoperability. SOC
promotes hiding the heterogeneity of diverse software systems behind service interfaces. Service
interfaces define the structure and semantics of electronic messages that clients exchange with
services to access business functions. Standards-based languages for describing service
interfaces abstract the specifics of an organization’s IT infrastructure, thereby enabling

interoperability in distributed information systems (Alonso et al., 2004).

It is widely recognized that interaction between distributed components to perform a certain
task is the most important characteristic of a distributed system (Wooldridge, 2002). For cross-
organizational interactions, abstracting computational infrastructure and business functions is but
a first step towards establishing interoperability. Enterprises may employ proprietary business
processes that impose constraints on how their business is conducted. An organization’s business

process may require carrying out its business activities in a certain sequence or mandate that



certain data flows take place. The specifics of business processes employed by organizations

wishing to interact may render their businesses mutually incompatible.

Not only do services provide interoperability at the interface level, but they also provide
means for bridging incompatible business processes. A number of languages have been proposed
(Papazoglou et al., 2006) for specifying standards-based cross-organizational interactions. Using
these languages message exchange sequences expected to take place in the course of interaction
between organizations can be specified, thereby establishing an interoperable interaction
protocol. An interaction protocol can be published and made available to organizations wishing
to interact. Organizations can thus assess interoperability of their businesses with reference to an

interaction protocol and adapt their processes, if necessary, to be compatible with it.

Whereas each organization participating in an interaction is a stakeholder with a “local” view
that embodies its goals, business processes, and operational constraints, cross-organizational
interaction protocols are typically specified from a “global” point of view. The global view
allows a neutral observer, such as a regulatory agency overseeing an interaction, to assess the
adherence of participants to the interaction protocol. By definition, the global view is concerned
with observable exchanges and abstracts away from the internals of business processes of
interaction participants. Choreography Description Languages (CDLs) emerged as a means for
specifying interaction protocols from the point of view of a neutral stakeholder (Austin et al.,
2004) who wishes to monitor the observable behavior of interacting participants (i.e. the global

view). An interaction described using a CDL is said to be “choreographed”.

While choreographed interaction protocols deal with the interoperability challenge, they do
not address the adaptability challenge. It is inevitable that the business needs driving an
organization to participate in aﬁ interaction will change or get augmented with new needs. It is
also likely that the context of an interaction, most notably the business regulations governing the
interaction, will change. In both cases, the protocol of the interaction has to be adapted to satisfy
the emerging business needs. A number of challenges have to be faced when adapting cross-

organizational interaction protocols.



The first challenge is how to make decisions about possible alternative ways for adapting an
interaction protocol. The difficulty here is mainly due to deficiencies in state-of-the-art CDLs.
These languages typically describe operational aspects of an interaction such as control flow and
messaging-sequence specification. The goals of the interacting organizations and their business
needs are not directly represented in CDLs. It is thus hard to reason about whether an interaction
protocol, or an adaptation of it, satisfies an organization’s business needs. Furthermore, these
languages describe only the electronic part of an interaction, whereas physical activities that are
an integral part of it (e.g. receiving a shipment) are not specified in an interaction protocol. It is
thus impossible to ensure that an adaptation of the protocol satisfies the business needs of the
stakeholders by referring only to the CDL representation of an interaction, especially with the

lack of formality associated with these languages (van der Aalst, 2003).

Secondly, whereas an interaction protocol is described from a global point of view, emergent
business needs in an organization’s business process are local to only that organization. To
translate these emergent needs into adaptations of an interaction protocol there is a need to
determine how local business needs affect the global view of an interaction. Conversely, changes
in business regulations are reflected in adaptations to an interaction protocol which then need to
be translated into adaptations of the business processes of interacting organizations. This again
calls for relating the global view of an interaction to the local views of interacting organizations.
This change propagation process is not unconditional; each participant has to ensure that

adaptations to the interaction protocol do not conflict with their business needs.

Thirdly, assuming that adequate solutions are found for the two aforementioned challenges,
we are left with yet another challenge which is determining “how” to go about adapting an
interaction protocol. The richness of interaction possibilities and the complexity of interaction
protocols may yield a large space for adaptation alternatives. Without adequate guidance, the
adaptation process may go through many ad-hoc trial and error iterations thereby costing
valuable time and money. This calls for a structured adaptation process that facilitates exploring
the solution space and guides the stakeholders in making decisions about adaptation alternatives

in a systematic manner.



Tackling these challenges is of great importance. Software of the future must be able to cope
with a dynamic world where business needs and business context constantly change.
Organizations must have the agility that allows them to capture market opportunities and deal
with changes in business regulations (Earl F. Ecklund et al., 1996). Two thirds of the cost of
software development is spent in modifications that happen after initial development (Swanson
& Lientz, 1980; Vilet, 2001) so dealing with these challenges successfully should contribute to
non-trivial cost reduction. Furthermore, dealing with these challenges at the level of

requirements specification is much more cost-effective (Boehm, 1981).

In this thesis we tackle these three challenges. We propose an approach whereby we guide the
collaboration between participants in an interaction, under the supervision of a regulatory
agency, on adapting an interaction specification. We propose representing a choreographed
interaction at the level of organizational requirements motivating the interaction. We construct a
requirements-driven adaptation process that allows reasoning about an interaction from the point
of view of each participant to ensure that adaptations satisfy requirements of participants. We
propose a technique through which an adapted interaction protocol is obtained from
organizational requirements systematically, thereby ensuring correct realization of the

requirements.

1.1 Research Questions
From the above motivation we arrive at the following research question:

How do stakeholders perform systematic requirements-driven adaptation of a
choreographed interaction specification to accommodate emergent business needs

and regulations?
We elaborate the research question into the following list of concrete questions:

1. What representations of a cross-organizational interaction are amenable to systematic
adaptation? A main consideration here is to find a representation that allows reasoning

about satisfaction of business requirements motivating an interaction. Such a

4



representation has to support reasoning from the viewpoint of each interaction
participant. A secondary consideration is the formality of the requirements
representation. The availability of a formal grounding provides precise semantics for
relating interaction specification viewpoints. On the other hand, a representation that
relies solely on a formal language will be hard to use for practitioners who lack the

necessary background (Dwyer et al., 1999).

. How do participants in an interaction reconcile their business needs when adapting an
interaction protocol? The challenge here is twofold. First, business needs of interacting
participants are often competing, and the specification of an interaction has to satisfy
needs of all participants. Second, a choreographed interaction protocol is constructed
from yet another point of view, the global point of view, and hence there is a need to

relate the point of view of each participant with the global point of view.

What guidance is required for systematic adaptation of an interaction protocol? A
systematic adaptation process has to provide guidance on three axes. The first requires
providing a ‘catalogue of adaptation operations that, when applied to an interaction
specification, produce a valid adapted interaction specification. Second, a wide range
of alternatives for adapting an interaction protocol may exist. An adaptation process
has to provide guidance to the interaction participants on navigating the space of
adaptation alternatives and evaluating them, each from their local point of view. Third,
an adaptation process must help in propagating changes back and forth between the

global and local views.

How can an adapted interaction protocol be obtained systematically from adapted
business requirements? On the one hand, requirements models support business-level
(or problem-level) reasoning about an interaction. On the other hand, an interaction
protocol is an operational representation consumable by machines enacting the
protocol. Means for maintaining consistency between these two representations are
called for. The challenge is thus in exploiting constraints embedded in requirements

models to derive a messaging protocol that realizes the requirements.



1.2 Overview of the Approach

Figure 1.1 depicts an overview of our approach for adapting choreographed interaction
specifications. We advocate the representation of a choreographed interaction using requirements
models that capture intentions of participants, as described in chapter 4. Requirements models
capture local business goals of each participant as well as cross-organizational dependencies
motivating them to interact and global contextual constraints on the interaction. The relations
that combine the global and local constituents of an interaction into a consistent specification are
detailed in chapter 5. In chapter 6, we formalize constraints embedded in requirements models
and utilize them to construct a technique for deriving a messaging protocol from requirements
models. As new local business needs and global constraints arise, interaction participants
collaborate on adapting the requirements models to incorporate these needs, equipped with

techniques we provide in chapter 7.

Emergent { " Chapter 5 \:;
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Figure 1.1 Overview of our approach for adapting cross-organizational interaction protocols



1.3 Summary of Contributions

The approach proposed in this thesis presents three novel contributions (Figure 1.2):

1. A formalization of the relation between the global view of an interaction specification

and the local view of each interaction participant that allows for determining the impact

of change in one view on another.

2. A framework for guiding interaction participants in the exploration of the space of

alternatives for adapting an interaction specification, application of adaptation

operations, and systematic change propagation.

3. An automated technique for deriving a choreographed messaging protocol from a

business-level specification of interaction.
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Figure 1.2 Overview of our contributions to requirements-driven adaptation of an interaction

1.4 Research Methodology

Our research was motivated by a general interest in supporting flexible service-oriented

interactions. We adopted a methodology commonly used in engineering research (Potter, 2006),

which has also been applied in SOC (Kohlborn et al., 2009), and conducted our research by

carrying out the following activities:



e Review literature related to service-oriented interactions, especially that which tackles

adaptation of interaction protocols.
o Identify open questions that are not fully addressed by existing literature.
e Select a question of interest and identify involved challenges.
e Review literature that attempts to handle these challenges and identify gaps.
e Engineer a solution that builds on success of previous attempts and fills the gaps.

e Validate the solution by applying to case studies and gauge its utility using qualitative

criteria extracted from the adaptation literature.

Our research naturally went through iterations, where in each iteration we narrowed down the
research questions and refined our solution approach to widen its scope of utility (Cryer, 2000).
Feedback that we received on our peer-reviewed publications provided useful literature pointers
that helped guide the research direction, which in turn helped with the refinement of our
approach. Validation using a case study is common in specification (and adaptation) research
(Feather et al., 1997). For validation of our approach, we considered the following case study

techniques:

e Construct an exemplar case study.
e Pickan existing case study from the literature.

e Establish a real-world case study.

Constructing an exemplar case study involves coming up with a small enough example to
demonstrate the usefulness of the approach. The example is significantly simplified but still
exhibits some interesting aspects that are not immediately obvious by inspection (Wing, 1988).
We use an example from the healthcare domain to demonstrate our approach throughout this
thesis. The simplicity of the example facilitates going through it without a lot of explanation,

which would distract from demonstrating our approach. Without enough care, a constructed
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example can be deemed contrived or trivial. To mitigate this risk we shared our example in four
peer reviewed publications in three different research communities. The main drawback of a
constructed example is that it can be tailored with a bias towards demonstrating strengths of an

approach and hiding its weaknesses.

Picking an existing example from the literature provides some mitigation of the bias risk.
Using a common “yardstick” exemplar to test a family of approaches is a widely used technique
(Lewerentz & Lindner, 1995). We chose to tackle an exemplar that is frequently recurring in the
interaction specification and adaptation literature. The example, which is drawn from the vehicle
insurance domain, provided a more complex case for testing our approach than our constructed

example and provided further evidence of its utility.

The ultimate test of an approach is to apply it to a real-world scenario. A use case drawn from
the real-world exhibits more detail and randomness to stress-test an approach than examples
appearing only in the literature. A real-world example also serves to verify the “External
Validity”, i.e. that the problem we are tackling is indeed a real one (Yin, 1994). To benefit from
the work we have done on the vehicle insurance example, we chose to pick the real-world study
from the same domain. We analyzed government regulations for vehicle insurance in several
areas in North America, extracted requirements stated in these documents, and applied our
approach to them. This helped further prove the utility of the approach, and more importantly,

identify aspects that needed improvement.

To support repeatability of our experiments, we implemented a tool for deriving interaction
protocols from requirements models, applied it to our constructed example as well as the real

world example, and made it publicly available.

It may be argued that analysis of results in our case-study-based evaluation may still be
skewed towards our own evaluation criteria. To mitigate this risk, we “benchmarked” our
approach using popular evaluation criteria suitable for the field. We evaluated our approach
against sets of criteria drawn from the interaction specification and adaptation literature, which

helped characterize our approach and position it within the literature.



1.5 Organization of this Dissertation

Chapter 2 covers the necessary background on SOC and motivates our work towards
requirements-driven adaptation of service-oriented interactions. Chapter 3 surveys research
related to adapting service-oriented interaction protocols and identifies gaps. Chapter 4
describes the representation we adopt for cross-organizational interaction using models of
organizational requirements. Chapter 5 modularizes the specification of a choreographed
interaction into four viewpoints and puts forward a framework for relating them. Both chapters 6
and 7 build on our framework for relating interaction specification viewpoints. Chapter 6 details
our technique for deriving messaging specification from the organizational requirements
motivating an interaction. Chapter 7 presents our framework for guiding collaborative adaptation
of an interaction specification. Chapter 8 validates our approach using case studies and evaluates
it using criteria from the adaptation literature. Chapter 9 concludes and discusses future work. In
reference to section 1.1, research question 1 is addressed in chapter 4, question 2 is addressed in

chapter 5, question 3 is addressed in chapter 7, while question 4 is addressed in chapter 6.
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Chapter 2. Background and Motivation

This chapter covers general concepts of SOC with a focus on service interactions. First, we
discuss the emergence of SOC and the vision it provides for building flexible software-intensive
systems.-We zoom in on service-oriented cross-organizational interactions and state-of-the-art in
interaction specification. Next, we discuss requirements specification for choreographed
interactions and argue for the need for adapting interaction specification to accommodate
emergent requirements. We motivate our work by identifying the challenges of adapting
interaction specifications. We explain concepts we introduce with an example that we use

throughout the thesis

2.1 Service-Oriented Computing

Today’s organizations face rapidly changing market landscape and increasing global
competitive pressure (Josuttis, 2007). The expansion of the Internet opened unprecedented
business opportunities for businesses to collaborate electronically in a federated manner to
provide business value. Connecting to customers, suppliers, and partners electronically became
the top IT management issue (CSC, 2000). To succeed in this environment, an organization
needs flexible IT infrastructure that can evolve quickly to meet new business demands
(Papazoglou et al., 2005). Traditional IT infrastructures where applications are managed and
owned by a single enterprise are being replaced by networks of applications whose ownership is
distributed across many enterprises (Curbera et al., 2003). In this climate, integration and
interoperability became key elements of a flexible IT infrastructure (Papazoglou et al., 2005).
The diversity of enterprise IT infrastructure and enterprise applications pose significant
interoperability challenges that traditional software development approaches were not designed
to face. SOC emerged to take on challenges of autonomy and heterogeneity. SOC promises
loose-coupling, implementation neutrality, and flexible configurability by employing standards-

based services as the basic building block for enterprise software (Huhns & Singh, 2005).
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2.1.1 Standards-Based Services

Services are platform-independent abstractions around heterogeneous components and
infrastructure (Huhns & Singh, 2005). Services provide machine-processable interfaces that
allow accessing of business functionality over a network by exchanging messages (Booth et al.,
2004). At the heart of SOC is information hiding (Parnas, 1972) where the heterogeneity of
enterprise platforms and applications are hidden behind message-oriented service interfaces.
Service interface are specified using standards-based languages thereby providing

implementation-neutrality.

The expansion of the Internet and wide adoption of Web and XML (Bray et al., 2004)
technologies provided an adequate foundation for fulfilling the SOC promise through “Web
services”. A Web service is a realization of a service whose description and transport utilize open

Internet standards (Papazoglou & Georgakopoulos, 2003).

Web service technologies enable interoperability via standards-based specification of service
interfaces, message formats, and communication protocols (Cerami, 2002; Curbera et al., 2003).
The Web Service Description Language (WSDL) emerged as a standard for describing
operations provided by a service interface (Christensen et al.,, 2001). Communicating with
service operations is achieved via XML messages, typically sent and received over the widely
standardized HTTP protocol. XML messages contents are encoded using standardized formats
such as the Simple Object Access Protocol, or SOAP, (W3C-SOAP, 2007). Ultimately, message
and service semantics shall also be described in standard formats to enable semantic-level

interoperability (Martin et al., 2004).

2.1.2 Service-Oriented Architectures

Service-Oriented Architecture (SOA) is a set of principles that guide the design of service-
oriented systems. SOA promotes loose coupling, coarse-grained service interfaces, and self-
containment of services (Kaye, 2003; Erl, 2004). Coarse-grained service interfaces encapsulate
IT infrastructure and expose business-level operations that have a business-relevant meaning

(Acharya et al., 2005). SOA promises to exploit this alignment between services and business at
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runtime by enabling dynamic service binding. This dynamism is facilitated by interposing a
registry as a discovery agent (Kaye, 2003). Intermediating a registry, a “Service Bus” (Josuttis,
2007), or other intermediaries facilitates loose coupling between service providers and
consumers. Self-contained service descriptions are published to a service registry. Clients
discover services that match their needs by looking them up in a registry. Clients bind
dynamically to services at invocation time, thereby providing flexibility in choosing a service

provider, possibly on a per-invocation basis (K.H.Bennett et al., 2001).

2.1.3 Service Composition and Coordination

Composing “large pieces” of software out of existing pieces is a recurring challenge in
software engineering (Garlan et al., 1995). This challenge is compounded when the composed
pieces exhibit interfaces that are specified in different languages with disparate syntax and
semantics (DeLine, 1999). By employing standards-based service interfaces, e.g. using WSDL,
SOC avoids the interface mismatch problems and supports integrating services into complex
systems (Burdett & Kavantzas, 2004). The literature has typically distinguished between two

flavors of service composition specification (Peltz, 2003):
e Orchestration: Service composition as a centrally controlled executable process flow.

e Choreography: Decentralized, peer-based specification of the observable interaction

protocol between a set of collaborating services.

2.1.3.1 Orchestration

Orchestration refers to how services are composed into an executable process that specifies
data and control flow between them from one entity’s point of view, i.e. an orchestrator.
Orchestration is suitable for specifying an organizational "business process”, i.e. a specification
that weaves business activities of an organization or an organizational unit into a workflow. A
business process can itself be exposed as a composite service thereby enabling complex
compositions (Khalaf et al., 2003). A slew of composition standards emerged over the past

decade (van der Aalst, 2003), culminating in the adoption of the Business Process Execution
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Language for Web Services (BPEL4WS), or BPEL for short, (Andrews et al., 2003) as the de

facto standard for service orchestration both in literature and industry.

2.1.3.2 Choreography

Choreography is concerned with specifying the external observable behavior between
multiple participants, i.e. services and clients. External observable behavior is defined as the
presence or absence of messages exchanged between participants (Austin et al.,, 2004).
Choreography specifies what messages can be exchanged, conditions under which participants
can exchange messages, and allowed exchange sequences (Booth et al.,, 2004). As such,
choreography is concerned with specifying an "interaction protocol" between participants. As
opposed to orchestration where services are composed from the local point view of one entity,
choreography is concerned with messaging specification from a "global" point of view, i.e. a
neutral-observer point of view. Choreography is suitable for describing multi-participant
interactions that are overseen by a neutral entity, such as a regulatory agency. In what follows we

zoom in on choreographed interactions and their specification.

2.2 Choreographed Service-Oriented Interactions

An interaction between multiple participants is said to be “choreographed” if the protocol
governing the interaction is described from a neutral point of view. A choreographed interaction
protocol specifies allowed messages and message sequences between a set of “roles”
representing abstract participants. To support interoperability, interaction protocols are specified
in an implementation-independent standard form. A protocol specification is a publishable
document to be made available for participants wishing to play a role in an interaction. Actual
participants enact the protocol by implementing services and clients that abide by its

specification.

Choreography plays a central role in coordinating business within a “business community”,
i.e., a collection of organizations that share a common market sector. Interactions between

organizations in a community are regulated by a neutral entity. For example, a port authority
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may regulate the interaction between shipping agencies, terminal operators, customs brokers,

transport operators, and other business operators within a port (Baglietto et al., 2002).

2.2.1 Specifying Choreographed Interactions

Two styles of choreography description languages emerged: “Interaction style” and
“Interconnection style”. In interaction style, elementary messaging interactions, i.e.
sending/receiving a message, are the basic building blocks. An interaction protocol specifies
behavioral dependencies between these interactions, and compositions thereof, using control
flow constructs. In the realm of Web service standards, the leading interaction-style
choreography specification language is the Web Service Choreography Description Language
(WS-CDL) which we willl present in section 2.2.3.

In interconnection style, control flow is defined per participant, i.e. from a local point of view,
and the local flows are combined together using message links (Decker et al., 2008). The
graphical notation of Business Process Modeling Notation (BPMN) (White, 2004) is gaining
popularity in interconnection-style choreography specification (Decker & Barros, 2008). Local
behavior of each participant is represented as a swimlane encapsulating their business activities
and sequencing between them. Connections between participants are captured via “message
links” that connect activities in different swimlanes. BPMN is useful for capturing inter-
connection between related business processes, but it does not provide a specification of a global
messaging protocol. In fact, local participant behaviors may be incompatible and a messaging
protocol may be unattainable (Decker & Barros, 2008). For these reasons, we adopt interaction-

style representation of choreography, which we now present an example of.

2.2.2 Running Example - Medical Choreographed Interaction

Throughout the rest of this thesis we use a choreographed interaction from the medical
domain as a running example. The interaction involves three roles: Patient, Medical Provider
(MP), and Doctor (Figure 2.1). Messaging between these roles is choreographed as follows. A
Patient who needs to visit a Doctor is required to get an authorization from her MP first. When

the Patient has received authorization for treatment from the MP, she can request an appointment
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from a Doctor. After getting an appointment confirmation the Patient visits the Doctor to get
examined. The Doctor later sends a prescription to the Patient, bills the MP, and gets back an
electronic payment. The neutral observer in this interaction is the state’s health department that

oversees interaction between participants and handles disputes.

1',‘3?9.u.e.s.tflft.h.?r.'7ft_ig‘ ;L 17 . 7. '.'.’?}’I‘?e"‘ Message Sending

_____________________ < == m ey
2Authorze | Wiedical  ©Ivoice |
treatment Provider :

\

3. Request appointment

4. Confirm appointment
o 5. Prescribe medication
Patient Doctor

Figure 2.1 Choreographed messaging for the running medical example

The messaging protocol regulates an abstract interaction between the three roles. At runtime,
any number of participants can play a role in any number of instances of the interaction. For-
example, many patients are expected to request authorization from an MP and request
appointments from many different doctors. The protocol constrains messaging that may take
place between participants at runtime. For example, the protocol specifies that a patient may not
request an appointment unless she has obtained an authorization from her MP. In a
choreographed interaction, participants interact in such a way that none of them observes all
messages being exchanged, yet interactions taking place between some participants affect the
way other participants interact (Zaha et al., 2006b), which justifies the need for a global view. A
Doctor’s decision to accept an appointment request depends indirectly on the exchange between

the Patient and the MP for authorizing treatment.

2.2.3 Web Service Choreography Description Language (WS-CDL)

In the sphere of Web services standard languages, WS-CDL is the leading standard for
specifying choreographed interactions (Barros et al, 2006). WS-CDL is an “XML-based
language that describes peer-to-peer collaborations of Web services participants by defining,
from a global viewpoint, their common and complementary observable behavior, where ordered

message exchanges result in accomplishing a common business goal” (Kavantzas et al., 2005).
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WS-CDL specifies a choreographed interaction as a composition of activities. The elementary
activity is message send/receive. Composite activities are specified using “Sequence” and
“Parallel” control-flow constructs. A “Choice” activity provides conditional choice between
mutually exclusive paths. Conditional repetition is supported through a “Workunit” activity
(Barros et al., 2005a). An abridged version of the WS-CDL specification of the medical

interaction is shown in Figure 2.2.

<sequence>
<interaction name="AuthorizationRequest"> <participate fromRole="Patient" toRole="MP"/>  </interaction>
<interaction name="TreatmentAuthorization"> <participate fromRole="MP" toRole="Patient"/>  </interaction>
<interaction name="AppointmentRequest"> <participate fromRole="Patient" toRole="Doctor"/> </interaction>
<interaction name="AppointmentConfirmation"> <participate fromRole="Doctor" toRole="Patient"/> </interaction>
<parallel>

<interaction name="Presription"> <participate fromRole="Doctor" toRole="Patient"/> </interaction>
<sequence>

<interaction name="Invoice"> <participate fromRole="Doctor" toRole="MP"/> </interaction>

<interaction name="Payment"> <participate fromRole="MP" toRole="Doctor"/> </interaction>
</sequence>

</parallel>

</sequence>

Figure 2.2 Partial WS-CDL specification of the medical interaction protocol
2.2.4 Formal Groundings of Choreography

The primitive constructs of choreography languages have been guided by previous work on
coordination languages (Arbab, 1996) and the semantics of distributed process specification
languages. Process calculi, such as CSP (Hoare, 1985), describe in a formal way the collective
behavior of a set of distributed communicating processes. Each process exhibits a number of
legal states. In each state, a process is allowed to communicate certain data with other processes
over a communication channel. Communication between two processes occurs via “shared
events”, i.e. events observable to both processes, such as exchanging a message. Once the
communication occurs, a process may transition to another state. For example, after sending an
authorization request the process corresponding to the Patient role enters a “waiting for
authorization” state in which it is not allowed to send messages. Once a treatment authorization
message is received the process enters another state in which it is allowed to send an
appointment request. At any point in time, the state of a choreographed interaction is defined as

the combined state of all participant processes.

17



Since a choreographed interaction may be modeled as a set of communicating distributed
processes, choreography description languages have been influenced by the literature on process
calculi. One process calculus in particular, the PI calculus (Milner, 1999), influenced the design
of WS-CDL (Carbone et al., 2007). A distinguishing aspect of the PI calculus is treating the
channel itself as data, allowing a process to send a channel to another process. In effect, this
allows treating services (or participants) as data. For example, if desired, an MP can specify the
Doctor which a Patient has to communicate with. However, a global view of an interaction is less

pronounced in PI calculus than in WS-CDL (Decker et al., 2006a).

Other formalisms used for representing interactions include Petri Nets (Petri, 1962), albeit
they do not provide an explicit global view (Su et al., 2008), and event calculus (Kowalski &
Sergot, 1986) which is missing the representation of roles (Khaled & Spanoudakis, 2004).

2.3 Specification of Requirements for Choreographed Interactions

The success of a software system depends on how well it fits needs of its stakeholders and its
environment (Nuseibeh & Easterbrook, 2000), and choreographed interactions are no exception.
Software requirements comprise the needs of stakeholders, and Requirements Engineering (RE)
is the process by which the requirements are determined. Successful RE involves “undérstanding
the needs of users, customers, owners, and other stakeholders; understanding the contexts in
which the to-be-developed software will be used; modeling, analyzing, negotiating, and
documenting the stakeholders’ requirements; validating that the documented requirements match

the negotiated requirements; and managing requirements evolution” (Cheng & Atlee, 2007).

Most importantly, RE is concerned with the real-world goals for, functions of, and constraints
on software systems as well as the relationship of these factors to precise specifications of
software behavior, and to their evolution over time (Zave, 1997). Thus, understanding and
analyzing real-world goals of stakeholders in a choreographed interaction is crucial to successful

adaptation of the interaction specification.
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2.3.1 Goals of Stakeholders in an Interaction

A "goal" is an objective statement of what a software system under consideration should
achieve (van Lamsweerde, 2001). Goal formulations are “optative” statements that refer to
intended properties to be ensured; as opposed to indicative properties of the world (Zave &
Jackson, 1997). For example, in the medical interaction, “get healed from ailment” is the goal of
a Patient and “generate profit from medical practice” is a goal of a Doctor. Goals are formulated
at different levels of abstraction ranging from high-level, strategic concerns to low-level
technical concerns. Elaboration of high-level goals into low-level goals and eventually
architectural and operational specification is referred to as “Goal Refinement”. Goal refinement
provides traceability from high-level strategic objectives to solution specification, thereby
providing linkage between organizational and business context to the software being constructed
(Yu, 1993). For example, the Doctor’s goal of profiting from practice is refined into sub-goals
pertaining to conducting treatment as well as managing finances. These goals are eventually
operationalized, in the particular scenario specified by the medical interaction, into activities for
scheduling appointments, examining patients, and billing. Refinement techniques provide
stakeholders with means to explore and evaluate choices between alternative means for
achieving their goals (van Lamsweerde, 2000). For example, during refinement, a Doctor may

consider to carry out billing activities electronically or via paper documents.

Goals have long been recognized as essential components in the RE process (Ross &
Schoman, 1977) and particularly for tackling the “why”, “what”, and “who” aspects of a

b

software system (van Lamsweerde, 2000):

e Why aspects: Goals capture the motivation behind an envisioned system. As such,
goals models provide rationale for requirements and facilitate explaining requirements

to stakeholders (Sommerville & Sawyer, 1997).

o What aspects: Goal models provide means for sharing knowledge among stakeholders

and help ensure that requirements specification for a system to-be-developed are
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complete (Yu 1987). Through refinement, goals are operationalized into

specifications of services to be implemented and constraints to be enforced.

e Who aspects: Goal models support reasoning about the assignment of responsibilities

for the resulting requirements to agents including humans, devices, and software.

In a service-oriented interaction, participants delegate the achievement of their goals to
software agents, i.e. services and service clients, that carry out the interaction on their behalf. To
ensure that stakeholders goals are met, it is key to understand and precisely specify the behavior

of these agents and the collaboration between them.

2.3.2 Requirements-Driven Multi-Agent Interactions

An agent is a “computer system situated in some environment, and that is capable of
autonomous action in order to meet its delegated goals” (Wooldridge & Jennings, 1995). Multi-
Agent Systems are systems built out of distributed, autonomous, coordinated agents. Agent
autonomy provide the flexibility required in open systems in which constituent components and
their interaction patterns constantly change (Zambonelli et al., 2003). Services and service clients
are typically implemented by agents (Booth et al., 2004) and cross-organizational interactions
can be viewed as a multi-agent system (Huhns et al., 2005). Agent-oriented methodologies
provide notations and techniques for specifying and reasoning about agent inter-dependencies,
agent interactions, and requirements that motivate these interactions. By representing a
choreographed interaction as the coordination between a set of agents, we can reason about

achievement of stakeholder goals and their relation to agent interactions.

Agent interactions are specified in terms of externally observable behavior of agents. In
addition to external behavior, each agent embodies internal business policies that govern its
operation. Agent specification must take into account consistency between external and internal
behavior. Additionally, agent specification has to address how agent behavior achieves its
delegated goals. A specification of all these concerns can become quite complex. Separating
these concerns using specification “viewpoints” serves to modularize and manage complexity of

an interaction specification.

20



2.3.3 Modularizing Interaction Specification Using Viewpoints

A “concern” is any interest in a system relevant to one or more of its stakeholders (ISO/IEC
42010). Separation of concerns was established in early software engineering history as a means
for managing complexity (Dijkstra, 1974). The principle of separation of concerns lead to the use
of multiple viewpoints for describing and reasoning about software systems (Lago et al., 2010).
A viewpoint typically embodies one aspect of a software system requiring its own notation and
reasoning techniques. The notion was popularized (O'Leary, 2009) by a proposal for using
viewpoints to model software architecture (Kruchten, 1995).

Choreographed interactions are poised to benefit from a multi-viewpoint specification for
managing complexity and modularizing an interaction specification. Whereas operational aspects
of an interaction are specified in terms of messaging, a specification of stakeholder goals is also
needed to support business-level reasoning (section 2.3.1). The need for two different
representations implies that the specification of these two aspects may be separated into different
viewpoints. Furthermore, viewpoints can help manage the complexity of interaction specification

by separating the specification of external and internal behavior of a participant.

Having separated concerns into viewpoints, it is typically necessary to integrate them into a
unified whole (Jackson, 1990). The behavior of a software agent constructed to act on behalf of
an interaction participant must comply with the expectations of other participants as well as with
that participant’s internal business policies. For example, an agent that implements appointment
scheduling at a Doctor’s office must provide appointments to Patients, in accordance with the
specification of the medical interaction, and at the same time take into account the schedule of
staff and hours of operation at the Doctor’s office. Viewpoints make possible the construction of
separate, yet consistent, specifications of these aspects. Techniques for combining viewpoints
aim to ensure consistency between them especially when they can evolve separately under the

ownership of multiple stakeholders (Nuseibeh et al., 1994).
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2.4 Adaptation of Choreographed Interactions

Maintenance is an inevitable part of the lifecycle of any software system. Two types of
changes amount to 75% of the total cost of maintenance; namely “perfective” and “adaptive”
(Swanson & Lientz, 1980). Perfective changes are triggered by new or modified stakeholder
requirements while adaptive changes refer to changes in the environment of the software system
(Swanson, 1976). For a choreographed interaction the two types are manifested in changes in
business needs driving participants to interact and changes in regulations governing the
interaction, respectively. Consequently, an interaction protocol has to be adapted to reflect these

changes.

Consider an emergent need to protect an MP from abuse of coverage, i.e. the need to ensure
that an MP covers treatment expenses only for eligible patients. To achieve this business goal an
MP requires a Doctor to collect a Patient’s Medical Plan ID (MPID) so that the MP may check
its validity. The MP will not hold itself liable for covering treatment expenses unless a Doctor
verifies Patient MPID before submitting an invoice. This requirement imposes a constraint on the
order in which a Doctor performs his activities. One might expect that a realization of this
requirement involves having a Doctor send a “Verify coverage” message to an MP at some point
in time before sending an invoice. It is hard to rationalize an adaptation to a messaging protocol
without relating the protocol to business goals it is meant to achieve. Additionally, since multiple
participants are involved in the interaction, it is necessary to determine the impact of any
adaptation of the protocol on their goals. If a participant finds a suggested adaptation
unacceptable from their point of view, they should be able to collaborate with the rest of
participants on finding acceptable alternatives. These challenges facing adaptation of an

interaction protocol are summarized into the following three categories.

2.4.1 First Challenge - Bridging Business Needs to Interaction Specification

Current standards for representing choreography, e.g. WS-CDL, specify operational aspects
of a choreographed interaction in terms of message exchanges along with control and data flow.

As such, these representations are detached from business-relevant aspects, mainly goals
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motivating an interaction between participants. Without connecting messaging exchanges to
business goals motivating the exchanges, it is hard to argue that an adaptation of an interaction

protocol satisfies these goals.

The problem is exacerbated by another deficiency in emerging standards. A messaging
protocol is only part of a wider view of an interaction. Activities performed by humans outside
of electronic messaging often are crucial to achieving business goals of an interaction. For
example, the medical interaction example is meaningless if a Doctor does not physically examine
a Patient, which can only be made possible if a Patient physically visits a Doctor's office. WS-

CDL does not facilitate including either of these activities in the specification of Figure 2.2.

Whereas WS-CDL is useful as a machine-readable standards-based language for specifying
messaging protocols, there is a need for a representation that explicitly captures business goals
motivating an interaction. Such a business-level representation would facilitate reasoning about
business goals and their fulfillment, in terms of a messaging protocol combined with physical
activities. The need for two different, yet complementary, representations of an interaction calls

for means to maintain consistency between them (Krishna et al., 2009).

Thus, the first challenge lies in finding a representation of a choreographed interaction
suitable for business-level reasoning and relating it to the specification of a messaging protocol

in a way that allows us to maintain consistency between the two representations.

2.4.2 Second Challenge - Reconciling the Needs of Multiple Stakeholders

The driver for evolving a choreographed interaction can be either local or global. Local
business needs of any participant may change thereby leading to a change in their business
process. Local changes may have consequences on the global messaging protocol, and therefore
there is a need to identify these consequences and propagate the changes (Bohner & Arnold,
1996).

On the other hand, a regulatory agency overseeing an interaction may decide to change rules

that govern an interaction. Changes in rules are reflected as changes in the messaging protocol,
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which may then have an impact on each of the participants’ local views. Therefore there is also a

need to propagate changes from the global to local views.

Whether the driver of change is local business needs or the global interaction context, effects
of the change need to be propagated to all affected views to maintain consistency between them.
That is, changes from one participant’s local model need to be translated into changes in the
global model which may then translate into changes in another participant’s local model, and so

on.

A further complication arises from the shared-ownership nature of a choreographed
interaction. A choreographed interaction is an anarchic system (Chandy & Rifkin, 1997) where
responsibility of design and implementation is shared among multiple entities, namely
representatives of the interacting roles as well as the global observer (e.g. regulatory agency).
Any change propagation mechanism has to enable the participants and the regulatory agency to

collaborate on the design of the adapted interaction protocol.

The second challenge thus lies in establishing relations between the global view and local
views to enable bidirectional change propagation and maintain consistency between them as well

as allow participants to collaborate on reaching an agreement on a messaging protocol.

2.4.3 Third Challenge - Providing Guidance for Disciplined Adaptation

Associating engineering methodologies with process/interaction modeling techniques is one
of the grand challenges facing SOC (Papazoglou et al., 2006). Assuming the two aforementioned
challenges are adequately addressed, we are left with the challenge of how to go about
performing an adaptation. Ad hoc adaptation is likely to result in erroneous results thereby
wasting time and money. Systematic and disciplined means for adapting all interaction

specification artifacts are thus necessary (Mens & D'Hondt, 2000).

Given an emergent business requirement and a specification of an interaction, we need to
guide architects on how to incorporate the new requirement into the specification in a systematic

manner. At the very least, we need to ensure that an adapted interaction specification is
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structurally and semantically valid, free from internal inconsistencies, and free from anomalies

such as deadlocks (Decker & Barros, 2008).

For non-trivial interactions, the space of alternatives for incorporating an emergent
requirement can be quite large. Automated means for assisting architects with exploring and
evaluating alternatives are thus called for. Additionally, to maintain consistency between views
we need systematic means to guide change propagation. This calls for means for assessing the
impact of a given change in one view on other views. Propagating changes to affected views then

guides progression of adaptation in a disciplined manner.

The third challenge thus lies in providing guidance for adapting an interaction specification
and propagating changes to all affected views to maintain the validity of an interaction

specification and its internal consistency.

2.4.4 Other Challenges

There are several challenges other than the three we have now detailed. Some of these
challenges are significant and warrant substantial research beyond the scope of our work. To
further scope the problem we are tackling, we briefly discuss the challenges that we will not

address in this thesis.

2.4.4.1 Enabling Runtime Adaptability

In this thesis, we focus on design-time adaptation of choreographed interactions. An
ambitious goal of software engineering and systems research is to enable “self-management”. A
self-managed system is one that can autonomously control its own configuration, resource
allocation, or security settings (Herrmann, 2005). A self-managed system is envisioned to self-
adapt in response to changes in its environment (Martin-Flatin et al., 2006). This topic has been
tackled from several angles. It is argued that the main purpose of agent-oriented methodologies
is enabling this dynamic flexibility (Winikoff, 2009), where an agent adjusts its plans in response
to changes in its environment. Also, a major part of the promise of SOA/SOC is to enable
runtime configurability (Nitto et al., 2008). This research area is still emerging and many

significant challenges remain. Change management in a distributed environment (Kramer &
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Magee, 2007) is particularly relevant to change propagation in a choreographed interaction.
Agreement on a protocol for a choreographed interaction involvés negotiation between
stakeholders representing each role. Enabling services to negotiate autonomically on behalf of
stakeholders is a major challenge, especially considering the need to maintain a consistent view

between many participants (per role) participating in the protocol.

2.4.4.2 Dealing with Running Interaction Instances

When a new (i.e. adapted) protocol is enacted it replaces a protocol that may already be in
use. For a long-running interaction, instances of the interaction that follow the existing protocol
may already be in progress at the time when the new protocol is enacted. There is a question of

what to do with these instances

e Assume that no instances are running when a new protocol replaces an existing one.
e Terminate and abort all running instances '

e Let any running instances run to completion under the old protocol

¢ Dynamically migrate running instances to the new protocol

The latter alternative is the most complex as it requires making changes to the structure and
the state of a running instance correctly and efficiently (Rinderle et al., 2004). Although
interesting research questions arise, such as ensuring compliance of an adapted instance
(Reichert et al., 2009), these set of questions are orthogonal to the three challenges tackled in this

thesis.

2.4.4.3 Supporting Service-Level Agreement

A Service-Level Agreement (SLA) is a contract that associates financial and legal obligations
of interacting parties with observable qualities of service (Lamanna et al., 2003). Quality of
service (Qos) includes so called “non-functional requirements” such as reliability, availability,
and performance. QoS is generally specified as constraints on the characteristics of service
operation execution. Conventionally, QoS obligations are described separately from obligations
specified by a messaging protocol. Several languages for specifying QoS characteristics have
been proposed (Emmerich et al., 2003) emerging both from the industry, such as WSLA
(Ludwig et al., 2003), and from research, such as HQML (Gu et al., 2001). Attempts to provide
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semantics for QoS reinforce this separation. Notably, Skene et al. (2004) specify QoS
characteristics in terms of performance (e.g. average latency), reliability, backup frequency, and
granularity of monitoring data. QoS characteristics may evolve separately from a messaging
protocol; SLAs can be established and terminated while the services in question continue to exist
independently (Skene, 2007). Although, non-functional requirements have been used to
rationalize design decisions and drive the adaptation of a single-owner system (Chung et al.,
1995), their relation to functional aspects is not well-understood in the context of multi-

participant interactions (Desai et al., 2009).

2.5 Chapter Summary

This chapter covered background on SOC with a focus on choreographed interactions. We
presented a brief overview of SOC concepts, its origins, and its promise for interoperability. We
contrasted service orchestration, as a centrally controlled service workflow, and choreography, as
an enabler for inter-organizational interoperability. We zoomed in on choreographed interactions
and introduced state-of-the-art languages for choreography specification using our running
medical example. We discussed requirements for a choreographed interaction viewed as a set of
distributed agents interacting to achieve business goals. We concluded by scoping the problem of
adapting choreographed interactions and the challenges that have to be faced. The next chapter

surveys existing work that has attempted to tackle these challenges.
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Chapter 3. Related Work

We identified, in section 2.4, three categories of challenges facing adaptation of
choreographed interactions: namely bridging requirements specification to messaging
specification, relating and reconciling requirements of interaction stakeholders, and providing
guidance for a disciplined adaptation process. In this chapter we seek solutions for these
challenges in the literature from various areas of software engineering. This chapter summarizes
research that attempted to tackle the challenges we identified. We examine this work through
three lenses, one corresponding to each category of challenges. At the end of the chapter we
summarize gaps that we identified in existing literature with respect to each challenge and

indicate how we will address these gaps.

3.1 Bridging Representations across Levels of Abstraction

A messaging specification is a machine-readable specification of operational behavior in
terms of messages exchanged between participants. The need to capture stakeholders concerns
and specify the business problem calls for representing business concepts, problem context, and
stakeholders’ requirements. Requirements models are useful for communicating and reasoning
about stakeholders goals at a level suitable for architects and analysts. Requirements
specifications exhibit a higher level of abstraction than messaging specifications, they describe
what problem is being solved and why, rather than how it is being solved (Jackson, 2001). The
need for two disparate representations at different levels of abstraction calls for means to relate
them and keep them consistent. This section examines literature that attempts to capture
requirements motivating an interaction and relates them to a messaging specification, or more
generally relates representations of an interaction at different levels of abstraction. This area of
work has been conventionally divided into three sub-categories: moving from higher to lower
levels of abstraction, moving from lower to higher levels of abstraction, and integrating high and

low level representations together (D. Berry et al., 2003).
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3.1.1 From Requirements to Services

Conventional software engineering wisdom called for progressing from requirements to
implementation, i.e. from high to low levels of abstraction (Benington, 1987). SOC standards are
almost all about operational specification, and deriving such operational specifications from
higher-level specifications is a frequently recurring need (OMG-SOAML, 2009). We survey
research that attempts to obtain service interfaces and interaction specifications from high-level
specifications in systematic ways. We categorize these approaches by the type of high-level
representation they employ, namely: business-concept models, business rules, business goals,

business interconnections, or a combination of goals and interconnections.

3.1.1.1 Conceptual Modeling and Model-Driven Transformation

By focusing on operational aspects of an interaction, i.e. messaging, SOC standards are
missing representation of business concepts. Conceptual modeling languages, and in particular
UML (OMG-UML, 2004), provide notations and techniques for capturing business concepts and
their relations for a software system or a business domain. Representing service-oriented systems
at a conceptual level raises the level of abstraction to a level closer to the business problem from
the messaging specification. Furthermore, UML and associated technologies (OMG-MOF, 2010)
and (OMG-QVT, 2002) enable automated Metamodel-Driven (MD) transformation between
concepts at different levels of abstraction (Mellor et al., 2004). In particular, MD transformation
enable automated derivation of operational specifications from conceptual models (Skogan et al.,
2004). Service metamodeling can thus be used as a means for establishing relations between
business concepts and operational service specifications. Skene et al. (2003) propose a
metamodel that encompasses business level concepts as well as service-implementation-level
concepts. The metamodel aims to raise the level of abstraction for modeling service-based
systems. It distinguishes between "capabilities" of a business service and "offerings" of an
implementation-level service, thereby allowing representation of electronic service contribution
to business functions. However, the metamodel does not explicate service interactions and no

provision for obtaining interaction protocols from business-level models is provided.
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Automatic derivation of service interaction specification from conceptual models has been
later addressed by Skogan et al. (2004). Service compositions are captured in UML and
transformations from the UML representation to a number of currently popular XML-based
languages are proposed. UML is used as an implementation-neutral representation to shield
designers from having to learn peculiarities of an interaction specification language that might
get obsolete quickly. As Van der Aalst (2003) argues, none of the existing XML-based Web
interaction specification languages has emerged as a clear winner. Thus, until a de facto standard
is established, it is desirable to ease switching from one language to another. However, this
approach provides only notational, rather than conceptual, abstraction. The UML representation
of an interaction maps directly to messaging protocol concepts, rather raising the level of

abstraction by capturing business concepts.

Almeida et al. (2003) achieve a higher level of abstraction via a 3-layer approach to service
development. The goal of the approach is to liberate architects from constraints imposed by an
implementation platform. A “platform-independent service design” layer is introduced to
abstract an underlying service runtime platform, thereby allowing services to be designed for
multiple platforms. Although addition of this layer adds design flexibility, it does not help with
adaptation of service interactions. By enabling replacement of the runtime platform, in effect,
this approach facilitates evolution of the implementation platform rather than service

interactions.

These approaches share the benefit of being accessible to practitioners familiar with UML and
related technologies. However, their aim is to shield architects from platform and
implementation details, rather than capture stakeholders’ concerns. Hiding syntax and semantics
of service implementation languages in an intermediate conceptual representation layer, though
useful, does not solve the problems of capturing problem-level constraints governing an

interaction and translating them into an operational interaction specification.

3.1.1.2 Business Rules

Business rules provide means for capturing contextual, structural, and behavioral constraints

governing a service-oriented system. Behavior of participants in an interaction can be specified
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as a conjunction of constraints on occurrence (or absence) of events and their ordering (Dwyer et
al., 1999). Rules capture constraints on receipt of messages, their relative order, and upper/lower
bounds on the number of occurrences. Advocates of rule-based representation argue that flow-
oriented languages, such as WS-CDL, provide an over-constrained interaction specification by
prescribing a fixed sequence of messages. On the other hand, the declarative nature of rules
provides flexibility in specifying interactions (Pesic & van der Aalst, 2006). Representative of
these approaches is DecSerFlow where graphical constructs are used to represent constraints on
receipt and ordering of messages (van der Aalst & Pesic, 2006). A conjunction of DecSerFlow
constraints is translated into an automaton whose execution is used to validate execution traces
of corresponding service interactions. DecSerFlow does not distinguish between the global and
local views of an interaction and does not provide an explicit representation of the local
viewpoints of interaction participants. It is thus hard to reason about an interaction specification,

or adaptations thereof, from the point of view of a participant.

This deficiency is remedied by Berry & Milosevic (2005) where rules are incorporated into
the specification of a choreographed interaction while providing explicit separation between the
global and local views. In this approach, Business Contract Language (BCL) is used to express
business rules as Permissions, Obligations, and Prohibitions, and Choreography is specified
using a language called Finesse. Finesse specifies local behavior of autonomous participants as
well as bindings between their visible behaviors. A mapping is provided from BCL constructs to
Finesse thereby enabling the incorporation of business rules into choreography. The approach
facilitates monitoring execution of an interaction and enforcing business rules, but it does not
provide guidance on adapting interaction specification. Furthermore, the Finesse choreography
description is assumed to be designed separately from business goals that motivate participants

to interact.

The declarative nature of rules allows incremental specification of interaction thereby
facilitating adaptation via addition of rules (Li et al.,, 2005). Even though flow-oriented
specifications may over-constrain behavior (Pesic & van der Aalst, 2006), they are useful for

interoperability purposes. It is generally hard to derive a standards-based flow-oriented
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specification from a set of rules. More importantly, rule-based approaches are not concerned
with the origin of the rules, i.e. how business rules arise from stakeholder goals. These
approaches are more suited for monitoring interaction execution rather than reasoning about its

adaptation.

3.1.1.3 Business Goals

Goals play an important role in software development activities, especially in supporting
evolution. Relating goals to activities that realize these goals and services that realize these
activities facilitates reasoning about evolution of business needs (Vasconcelos et al., 2001).
Goal-oriented methodologies provide techniques for capturing, specifying, reasoning about,
refining, and operationalizing goals. These methodologies provide formal patterns for
systematically refining goals and eventually deriving architectural and operational specifications

which realize the goals (Darimont & van Lamsweerde, 1996).

Representative of these methodologies is Knowledge Acquisition in Automated Specification
(KAOS) (van Lamsweerde et al., 1991; Dardenne et al., 1993). KAOS provides a tool-supported
means (Bertrand et al., 1997) for deriving functional and architectural specification from goals.
Derived architectural specifications are refined to meet domain-specific architectural constraints
and non-functional goals (Lamsweerde, 2003). To the best of our knowledge, no attempts have
been made to derive service interactions from KAOS goals models, even though it can be argued
that deriving event-based transition systems is a step in that direction (De Landtsheer et al.,
2004; Letier et al., 2008). More importantly, KAOS adopts the notions of “system-to-be
developed” and “system goals” which targets a more centralized development process. On the
other hand, choreographed interaction specification requires participation of multiple
independent stakeholders with possibly competing sets of goals. Furthermore, although the
metamodel underlying the KAOS methodology (Dardenne et al., 1993) represents agents and
their goals, it lacks explicit representation of their inter-dependencies on one another for goal
fulfillment (Lamsweerde, 2004). Without explicating participant inter-dependencies it is hard to

reason about their interaction or derive a messaging protocol that realizes their goals.
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3.1.1.4 Business Interconnections

Explicating participant inter-connections is essential for reasoning about adaptation of inter-
enterprise interactions. Process calculi such as CSP and PI calculus (section 2.2.4) capture inter-
connections between participant processes via shared observable events. These languages are
useful for formally specifying and verifying an operational representation of interaction.
However, they are detachéd from the business meanings of inter-connections, and hence not
suitable for requirements-driven adaptation without linking to a complementary business-level
representation. Approaches that elevate representation of participant inter-connections to the
business-level are called for. Business-level inter-connections are captured via shared business

activities or business commitments.

Activity-based Interconnection

Representative of activity-based interaction approaches is the graphical Interaction Systems
Design Language (ISDL) and associated techniques. ISDL captures participant local behavior as
business activities and control flow between them. Participant behaviors are composed into an
interaction by interconnecting local models via “interaction activities”, e.g. send-receive a
message. In this respect, ISDL is similar to BPMN (section 2.2.1), albeit ISDL aims to specify an
interaction at multiple levels of abstraction (Dick Quartel et al., 2002). Business models as well
as service design and implementation models are mapped to ISDL (Dick Quartel et al., 2005)

and consistency between them is verified.

The ISDL-based service design method outlines a sequence of steps for proceeding from
business-level specification of an interaction to service design and implementation (Dick
Quartel et al., 2004). However, the method does not provide specific guidance on how to
perform the refinement of the business-level specification. Some consistency-preserving
refinement operations were proposed (Almeida et al., 2005) that allow systematic refinement of
activities and behavior interconnections, but only at an operational level. Through refinement, a
BPEL specification for local behaviors can be obtained (Dick Quartel et al., 2005), but it is not
clear, as in BPMN, how to obtain a choreographed messaging specification from the

interconnected participants’ models. This task gets harder considering that physical activities are
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not captured in an ISDL specification of an interaction. The starting representation of the method
is a business process, and origination of the process from business goals is not addressed, let
alone goals of multiple stakeholders. Additionally, propagating the impact of changes made in

one local view to others is not addressed.

Commitment-based Interconnection

Commitments are directed obligations (Tan & Thoen, 1998) from a debtor role to a creditor
role (Singh, 1999). A debtor is obliged to satisfy their commitments towards a creditor if pre-
conditions on the commitments hold. For example, the tuple CC(Buyer, Seller, Pay,
GoodsDelivered) denotes a commitment from a buyer role to pay for goods if the seller delivers
fhe goods. Commitments are manipulated through operations such as “Create”, “Discharge”,
“Release”, “Assign”, and “Delegate”. A commitment is discharged when a debtor satisfies the
commitment or released when the debtor is no longer required to fulfill it. Delegation and
assignment shift the role of the debtor or creditor to another role, respectively. Commitments
may be nested to represent responsibilities that are pre-conditioned on the satisfaction of other

commitments (Desai et al., 2007).

A commitment protocol declaratively captures rules that govern an interaction between a set
of roles from a global perspective (Desai et al., 2005). Protocol rules specify how interaction
messaging events trigger operations on commitments (Desai et al., 2009) and specify data
dependencies between messages. The rule-base nature of commitment protocols facilitates
adaptation via protocol composition (Desai et al., 2006). Given a protocol, behavioral skeletons
for interacting roles can be generated. Role skeletons can then be augmented by local business

policies to obtain executable business process for each role.

Commitments-based approaches clearly distinguish the global view of an interaction, i.e.
interaction protocol, from the local views of interacting roles. The global view is projected onto
each role to obtain a local view in a systematic manner (Desai et al., 2005). Protocol composition
provides flexibility for disciplined adaptation. An interaction may be modularized into reusable

fine-grained protocols that are composed together in an iterative way to form complex protocols.
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Alternate flows can also be incorporated into local views as events (Chakravarty & Singh, 2008).
Protocol specification and composition have formal groundings as well as a practical basis for

implementation (Desai et al., 2005) and (Desai & Singh, 2007).

Even though commitments elevate the representation of inter-connections from messaging to
business concepts, their relation to stakeholder goals has not been investigated. Commitments-
based approaches assume that interaction design starts with constructing a protocol. Rules
governing the sequencing of messaging are considered a matter of convention (Desai et al.,
2009) rather than an artifact derivable from the requirements motivating an interaction. By
supporting only outside-in development (from global-to-local), these approaches de-emphasize
local views. The possibility that adaptation to an interaction may be driven by changes in local
models is not considered. Furthermore, there is no provision for determining the impact of local

business policies on the sequence of protocol messages.

3.1.1.5 Business Goals and Interconnections

While explicit specification of stakeholder goals enables requirements-driven adaptation of
participant local views, explicit specification of participant interconnections enables reasoning
about participant inter-dependencies for fulfilling their goals. Explicit specification of both goals
and interconnections enables requirements-driven adaptation of a choreographed interaction.
Agent-Oriented Methodologies provide notations for capturing business goals of interconnected
agents. Several methodologies were developed over the past couple of decades, the most
prominent of which are MaSE, GAIA, Tropos, and Prometheus (Dam & Winikoff, 2004).
Although these methodologies share many notational commonalities (Padgham et al., 2008),
Tropos (Bresciani et al., 2004) excels in providing the most explicit representation of agent inter-
dependencies for fulfilling business goals (Lamsweerde, 2004). In addition to supporting the
representation of goals of each agent (i.e. participant) and their refinement, Tropos supports the
representation of goal delegation between agents via "dependencies". Explicit representation of
dependencies facilitates reasoning about how an interaction between a set of participants is
motivated by the need to fulfill their goals (i.e. via delegation). Tropos offers a range of

modeling and analysis activities that support all phases of software development from early
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requirements analysis to detailed design' and implementation (Castro et al., 2002). The
methodology offers a framework for outlining system context, identifying roles, their goals and
dependencies, refining goals into sub-goals and eventually into activities. Dependencies between
roles are used to identify required capabilities of each participant in an interaction (Penserini et
al., 2006).

This wide lifecycle coverage of Tropos was extended to cover service-based implementation
where capabilities were used to derive service interfaces to be implemented by each participant
(Lau & Mylopoulos, 2004). The identified interfaces are static, that is, they do not specify an
interaction protocol. The detailed design and implementation phases of Tropos were later
extended to support service interactions (Penserini et al., 2007). During detailed design local
workflows of each participants are described using UML activity diagrams while message
exchanges are specified using UML sequence diagrams. In the implementation phase executable
agent behavior is generated from detailed design artifacts. Although these extensions provide
systematic means for obtaining an executable agent interaction from requirements, there are two
shortcomings. First, no guidance is provided for composing agent behavior to obtain a global
interaction protocol. Second, operational sequence diagrams are not derived from requirements
but rather treated as an independent design artifact. Thus, systematic requirements-driven

adaptation of interaction specification is not supported.

Koliadis et al. (2006b) propose a systematic approach for relating requirements, expressed in
a Tropos model, to interaction specification in BPMN. BPMN activities are annotated with their
immediate effects, i.e. post-conditions, using a constrained natural language. Effect annotations
are accumulated by systematically traversing a BPMN specification, thereby obtaining a
behavioral specification of every activity (Hinge et al., 2009). Consistency between a BPMN
specification and the corresponding Tropos model is checked using a set of rules (Koliadis et al.,
2006a). Using these rules along with effect annotations it can be determined whether the
specification of BPMN activities fulfills goals specified in a Tropos model. Changes in a Tropos
model are systematically propagated to the corresponding BPMN specification using another set

of rules thereby maintaining consistency between them (Koliadis et al., 2006b). This approach
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adequately addresses the need to specify local stakeholder requirements, capture dependencies
that motivate an interaction, and relate requirements models to operational ones. The approach
can benefit from extensions at both ends of the abstraction spectrum. First, even though
guidelines are provided for obtaining a BPMN model from an adapted Tropos model, no detailed
guidance is provided on evolving a Tropos model to accommodate emergent requirements.
Second, the approach does not provide an automated way for obtaining a choreographed

messaging specification from either a Tropos models or a BPMN model.

3.1.2 Integrating Services and Requirements

Moving from requirements to interaction specification, i.e. deriving the latter from the former,
is but one way to obtain service interactions that satisfy stakeholder requirements. It may be
argued that these top-down approaches entail the overhead of maintaining consistency between
two disparate representations. It may also be argued that tightly coupling representation of
requirements specification with that of a messaging specification allows systematic "co-
evolution” of both specifications. By integrating requirements with corresponding interaction
specifications the latter can be evolved by adapting requirements without the need for derivation.
This integration is achievable by either using requirements as annotations to interaction
specifications, or by using the same representational constructs for requirements and interaction

specifications to combine them into a single representation.

3.1.2.1 Using Requirements as Annotations of Interaction Specification

Identifying and representing variability is a well-investigated technique in the context of
domain analysis (Prieto-Diaz, 1990). Although "aspects" are mostly known for capturing cross-
cutting concerns in software artifacts (Kiczales, 1997), aspects can as well be used to represent
points of variability in a specification. Charfi & Mezini (2004a) apply the concept of “adaptation
via points of variability” (Curbera et al., 2005) to process descriptions. To infuse flexibility into a |
business process, business rules are integrated into a BPEL specification using an aspect-oriented
language called AO4BPEL (Charfi & Mezini, 2004b). This integration introduces control points
at which a process flow may be adapted by changing business rules. However, this approach

does not elevate the nature of the flow-oriented process to the level of business goals, as
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AO4BPEL rules are detached from the goals that motivated their existence. Requirements-driven
adaptation of flow-oriented rules can be as hard as that of the BPEL specification in the first
place. In other words, AO4BPEL aspects encode varying characteristics of design rather than
relations of variations to their causes (Liaskos et al., 2006). This approach is thus useful for
modularizing computations in a BPEL specification, rather than using requirements to reason

about adapting a business process.

A framework through which organizational requirements in Tropos are integrated into a
BPEL business process specification is proposed in (Kazhamiakin et al., 2004). Temporal logic
is used to specify behavior of Tropos model elements, e.g. activities. BPEL elements are
annotated with the temporal logic formulas of corresponding Tropos elements. By using a model
checker, a BPEL process is verified to satisfy requirements in the corresponding Tropos model.
For instance, it is possible to determine that an activity specified in a Tropos model has been.
fulfilled when the corresponding BPEL element has completed execution. This approach enables
verifying compliance between requirements and BPEL specifications, i.e. it only deals with
participant local views, it does not provide guidance on adapting the global view of an

interaction.

3.1.2.2 Combining Requirements and Interaction Specification

In contrast with using business rules as annotations in AO4BPEL, business rules have also
been used to combine requirements and interaction specification into a single representation. A
framework for integrating business objects, scenarios, business processes, and services is
proposed in (Mazzoleni & Srivastava, 2008). The framework uses business rules to encode facts
about all these entities, structural relations between them, and required impact propagation
between them in the event of change. Given an emergent change in a business object or a
business process, expressed as a rule, an inference engine determines all other entities impacted
by the change. The framework has some limited practical application, but its utility is bounded
since it only helps determine what entities may need to be adapted but does not provide any

guidance on /sow to adapt them.

38



- Another rule-based framework for integrating requirements and service interaction
specification is proposed in (Orriéns & Yang, 2006). The framework captures an interaction
specification at three levels of abstraction, namely: strategic, operational, and implementation.
All elements involved in the specification of an interaction at all levels of abstraction (roles,
resources, activities, events, messages, services, etc.) are represented using a few primitives:
entity, attribute, link, and mapping. A high degree of flexibility is attained by representing all
structural and behavioral aspects of an interaction as rules. However, constructing and
maintaining a set of rules that describe an interaction to any level of detail is left to be an

overwhelming manual task.

3.1.3 From Services to Requirements

Some of the methods that provide a path from requirements to service interaction
specification also provide a path from service interaction back to requirements. The motivation
of such approaches is to enable identifying and performing changes at an operational level, and
not only at a strategic level. Although our target is requirements-driven adaptation of service
interactions, we cover approaches that proceed in this “reverse” manner, from service interaction
to requirements, for completeness. Representative of these approaches is the approach that
relates Tropos models to BPMN specifications, previously presented in section 3.1.1.5 (Koliadis
et al., 2006a). In addition to guiding adaptation of a BPMN specification in response to changes
in the corresponding Tropos model, guidance is also provided for adapting a Tropos model when
the BPMN specification changes. This reverse engineering of requirements models may come in
useful in situations where operational specification for an interaction already exists whereas only

a partial requirements model is available.

This line of reasoning is taken a step further in (Jureta et al., 2007) by arguing that, due to the
openness of service-oriented systems, it is not feasible to fully specify requirements upfront.
Characteristics of interacting services may change over time in ways that were not predictable at
analysis and design time. "Client Requirements", that specify quality of service expected by
service clients, are allowed to vary dynamically. At runtime, each service request specifies

constraints on desired output including quality criteria for evaluating service output.
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Requirements specifications are updated at runtime to reflect characteristics of service requests
thereby keeping requirements consistent with the expectations of service clients. This approach
allows for a high degree of flexibility in specifying desired service qualities, but it deemphasizes
the importance of changes that arise in service orchestrations (i.e. local view) as well as service
coordination (i.e. global view). Requirements specifications for composition and coordination

play the role of system documentation rather than a driver for a service interaction design.

Similarly, it has been argued that it is important to update requirements dynamically to reflect
information learned about available services. Gehlert et al. (2008) envision an approach where a
requirements engineer specifies initial requirements using goal models, and refines goals into
activities. The refined models are compared with services in a service registry to find matching
services, a step which aligns existing services with requirements. A requirements engineer uses
matching services to enhance and augment initial requirements, thereby aligning requirements to
existing services. This approach assumes that services are annotated with goal models

representing a single local view, so it only addresses service orchestration.

3.2 Representing and Relating Interaction Specification Viewpoints

Choreography addresses the needs of a global stakeholder, e.g. regulatory agency, interested
in monitoring an interaction. Participants in an interaction, on the other hand, participate in an
interaction to satisfy needs relevant from their local point of view. Distinguishing between local
and global views is essential for serving needs of all stakeholders, and relating views together is

necessary for maintaining consistency between them.

The distinction between behavioral interfaces, of components or services, and coordination
logic that connects these interfaces together (i.e. choreography) has long been made. Connectors
(Allen & Garlan, 1997) were proposed as glue that bonds component interfaces together.
Connector specification was formalized using CSP (Hoare, 1985) thereby enabling automated
checking for compatibility between component interfaces. Adaptation was envisioned via
connector composition (Lopes et al., 2001) but many non-trivial research questions arise (Garlan,

1998). Connectors have traditionally specified inter-connection and interaction between software
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components in a machine-oriented form. The lack of an accompanying business-level
representation leaves the challenges of requirements-driven adaptation of an interaction
unanswered. In a service-oriented context the adaptation problem is more complex due to the

autonomy of participants as well as potentially de-centralized evolution.

Agent-oriented approaches provide frameworks for representing goals and activities of
autonomous interacting participants. The i* framework (Yu, 1995), in particular, distinguishes
between “Strategic Dependency” models, that capture a global view of agent inter-dependencies,
and “Strategic Rationale” models that embody local goal models of each agent. Tropos extends
the i* framework and provides some explication of relations between views (Traverso et al.,
2004). Agent local views are related via dependencies on each other for goal fulfillment, thereby

enabling change propagation between them (Koliadis et al., 2006a).

Even though Tropos provides a suitable framework for capturing the global and local views
and relating them, we inquired into other approaches that relate the global to local views. These

approaches can be categorized into four categories which we discuss in detail:

1. Global view as the primary specification: The global view is considered to be the
primary specification of an interaction. Local views are obtained from the global

model via automated generation,

2. Local views as the primary specification: Participants local views are considered to be

the primary specification of an interaction. The global view is obtained via composing

local views,

3. Global and local views as independent specifications: The global and local views are
considered to be complementary specifications of an interaction. The global model

and local models are created separately and checked for consistency, and

4. Global and local views in an integrated specification: The global and local views are
specified using the same set of representational constructs, thereby enabling their

combination into the same representation.
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3.2.1 Generating Local Views from Global View

This class of approaches assumes that the global model of an interaction is completely
specified prior to specifying local models, and hence, advocate automatic derivation of local
models from the global model. Mendling & Hafner (2005) present a generative approach which
takes advantage of the XML-based nature of Web service interaction standards. WS-CDL is used
to specify an interaction protocol that represents the global model. BPEL local models for
interaction participants are automatically obtained by applying an XSLT transformation (W3C-
XSL, 2007) to a WS-CDL document. The transformation is purely syntactical and its correctness
is left unproven. The informality and syntax ambiguity of WS-CDL (Barros et al., 2005a) is
contrasted by the precision and formalism of process calculi. Zhao et al. (2006) put forward a
transformation to project the global view expressed in a process calculus to obtain participant
local views. Correctness of the transform is proven and it guarantees consistent participant
behavior under both normal and exceptional conditions (Cai et al., 2009). However, business-

level specification of an interaction is not considered.

“Let’s dance” (Zaha et al., 2006a) is a language that employs a graphical notation for
specifying a service-oriented interaction. The graphical notation is intended to be
comprehensible by analysts and architects participating in interaction design. An interaction is
specified as a conjunction of constraints on pairs of messages. Precedence constraints are used to
specify partial ordering of messages, and inhibition constraints specify mutual exclusivity
between a pair of message sending events. An interaction is described from a global point of
view, from which local views are derived. Local views can then be translated into executable
BPEL descriptions (Zaha et al., 2008). The semantics of the language were formalized using PI
calculus and it was proven that an interaction described from a global point of view can be
realized when projected to local views of interacting roles (Decker et al., 2006b). The

representation is limited to messaging activities and physical activities are not addressed.

Physical activities are as much an integral part of an interaction as is electronic messaging,
and workflow languages allow incorporation of physical activities in the specification of service-

oriented interactions. Representative of these approaches is that presented by van der Aalst
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(2004) for designing inter-organizational workflows. A public workflow (i.e. choreography) is
represented using a variant of Petri Nets that specifies executed tasks (i.e. message sending or
physical activities) and causal relations between them. Tasks in a public workflow are partitioned
into a set of domains (i.e. local views) and a private workflow (i.e. orchestration) is generated for
each domain. Generated private workflows are consistent with the public workflow and the
public workflow is guaranteed to be deadlock-free. No guidance is provided by this approach on
how to incorporate into the private workflow business activities beyond those present in the

public workflow.

Although this class of approaches allows systematic derivation of local views that are
guaranteed to be consistent with a choreography specification, they only support “outside-in”
development. That is, autonomy of participants is de-emphasized and thus these approaches are
not suitable for reasoning about changes that arise in local views or propagating these changes to

the global view.

3.2.2 Generating Global View from Local Views

A choreographed interaction is established between participants that may already have
functioning processes (Decker & von Riegen, 2007). To accommodate this scenario, this class of
approaches attempts to build a composite (i.e. global) view of an interaction given an established
set of local views. Representative of these approaches is the Petri-Nets-based approach proposed
by Martens (2005). The local view of each participant is captured in a "workflow module". A
workflow module is a Petri Net with a set of input and output places designated as the public
interface of the local view. The notion of syntactic and semantic compatibility between workflow
modules is formalized and a technique for building a composite workflow module is proposed.
Although the suggested composition is systematic, a global view provided as a workflow module
does not distinguish between globally observable messaging and local participants workflows.
Similarly, Dijkman & Dumas (2004) use Petri Nets to represent interfaces exposed by interacting
roles, and a specification of choreography can be derived from the collective behavior specified

by these interfaces. These approaches are useful for determining whether or not it is possible to
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establish a choreographed interaction between a set of local views. However, they do not support

business-level reasoning about adaptation.

It has been further argued that the specification of a choreographed interaction should be
derived from the actual execution of running processes. Workflow mining addresses this need by
reversing the design process (van der Aalst et al., 2003b). Process execution logs are analyzed to
infer rules that govern execution. An algorithm is proposed in (van der Aalst & Weijters, 2005)
to obtain a specification of choreographed behavior of a set of processes. Mining approaches
may be useful in discovering the control flow rules in the absence of explicit process
specification. However, contextual rules, e.g. those globally imposed by a regulatory agency, are
not distinguishable from local business policies of participants. It is thus hard to reason about
global business rules or their adaptation. This is further complicated since there is no guarantee
that the analyzed processes are représentative of their business domain. It is thus not possible to

generalize extracted rules governing a set of processes to a wider context.

3.2.3 Using Separate Representations for the Global and Local Views

Allowing local views to evolve independently from the global view, and vice versa, requires
means for checking their consistency. A representative of consistency-checking approaches is
that presented by Foster et al. (2006) where an interaction is specified using Message Sequence
Charts (MSC), the global obligations are represented using WS-CDL, and the local views are
represented as BPEL processes. The local views are then combined into a composite view which
is then converted into a Labeled Transition System (LTS). The WS-CDL representation is also
converted into an LTS. The LTS representation of each of the global and the composite model
are formally checked for consistency against the MSC specification. Similarly, Busi et al. (2005)
formalize the notion of conformance between choreography, represented using WS-CDL and a
set of orchestrated processes, represented in BPEL. Both representations are converted to an LTS
and checked for consistency using bisimulation. A similar approach is presented by Baldoni et al.

(2005), albeit with the limitation of dealing with interaction between two roles at a time.

This class of approaches enables automated verification of implementation vs. messaging

design specifications, in the form of MSC. They also facilitate the verification of consistency
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between a set of BPEL processes and a WS-CDL choreography that specifies their collective
observable behavior. MSC message specifications are far detached from business requirements
that drove the design, thereby leaving requirements-driven evolution unaddressed. Furthermore,
MSC have expressive limitations regarding concurrency, synchronization, and representing
alternate scenarios (van der Aalst, 2004). To overcome the limitations of MSC, Petri Nets have
been adopted in other checking approaches for representation of an interaction. In addition to
choreography and orchestration two additional views may be separated: “interface behavior”,
which represents an interface exposed by one role to another, and “provider behavior” to
represent collective observable behavior of a role with all other interacting roles. The four views
have been represented using Petri Nets and related together to enable formal consistency
checking (Dijkman & Dumas, 2004).

Checking approaches do not support step-wise adaptation as they do not facilitate making
incremental changes to behavioral specification. Furthermore, these approaches do not provide
guidance on how to evolve one representation to match the other if inconsistencies are found.
Rindele et al. (2006) propose an approach to guide the evolution of one view given a change in
another by enabling propagating changes back and forth between the global and local views.
Observable behavior of each role is represented as a Finite State Automaton (FSA) while local
views are represented in BPEL. The BPEL syntax is then translated to an automaton and a
mapping is established between it and the FSA of the behavioral interface. A change to
add/remove a message is propagated using the established mapping from the local view to the
global view and vice versa (Wombacher, 2009). Although two-way change propagation is made
possible, no attention is paid to the business meaning of changes. That is, there is no assurance

that the changes to the local views will satisfy the goals they are supposed to achieve.

3.2.4 Combining the Global and Local Views

Whereas using two disparate representations for the global and local views requires
techniques for keeping them consistent, generating one from the other makes it hard to adapt the
generated view. Approaches that combine all views into a single representation, attempt to strike

a balance between guaranteeing consistency and ease of adaptation. These approaches use the
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same constructs to represent both types of views, thereby allowing combining views in one
model. When desired, the global and local views can be obtained as projections of the common

model.

Wieczorek et al. (2009) propose an approach that uses a common metamodel, based on a state
transition system, for the global and local views of message exchange. Using the same
representational constructs for both types of views eases change propagation between them.
Three projections of message exchange are considered: “Send”, “Receive”, and “Observe” that
correspond to the sequence of message sending events, message receiving events, and message
observation events on a communication channel, respectively. Each projection serves a different
need. For example, the “Receive” projection takes into account out-of-order delivery of
messages. The approach has utility in generating tests and verifying the compliance of local
implementations to the global model under varying characteristics of a communication channel.
Otherwise, the approach has many limitations, the foremost of which is that it is only applicable
to two interacting roles. Additionally, even though an interaction is specified at an operational
level, the approach provides no support for generating an implementation, which has to be done

manually.

To circumvent the need to derive one view from another or even derive an implementation
from requirements, Orriéns & Yang (2006) propose a common rule-based representation for all
views of an interaction at all levels of abstraction. Specifications of all interaction views and at
all levels of abstraction are captured using a handful of elements drawn from a common
metamodel. Although flexibility is attained by representing all aspects of an interaction as rules,
a flat rule-based representation makes it not suitable for business-level reasoning about
adaptation. It is unclear how to attribute a rule to a stakeholder's need or determine the impact of

a change in one rule on other stakeholders' needs.

3.3 Providing Guidance for Disciplined Adaptation

Providing guidance to support service-oriented development and adaptation is one of the

grand challenges of service-oriented systems engineering (Papazoglou et al., 2005). The most
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basic guidance is to enumerate potential adaptation operations applicable to certain metamodels
of interaction specification. Each adaptation operation encapsulates guidance on how to apply it
to an interaction specification. Multiple adaptation operations may be applicable in a given
situation, and thus guidance is also required for making choices between potential alternatives.
After applying an adaptation operation to an element of an interaction specification, it may be
necessary to apply further adaptation operations to other elements to keep different parts of the
specification consistent with each other. Guidance is thus required for driving the adaptation
process by propagating changes to all affected parts of an interaction specification. Even though
most approaches discussed so far provide some form of guidance, we discuss in this section

research efforts whose significant part of their focus is on:
1. Categorization of changes and providing catalogues of adaptation operations.
2. Evaluation and selection from among alternatives ways for performing an adaptation.

3. Automating the progression of the adaptation process.

3.3.1 Categorizing Types of Change and Adaptation Operations

During step-wise adaptation of an interaction specification, adaptation operations are
performed in each step. An adaptation operation transforms one valid interaction representation
to another. Providing a catalogue of adaptation operations applicable to a representation of an
interaction is an essential part of guidance. Similar to patterns catalogues (Gamma et al., 1994) a
catalogue of adaptation operaﬁons compiles knowledge about each operation such as: situations
when it is applicable, considerations when performing it, its consequences, and variations. We
review catalogues of adaptation operations categorized by artifacts targeted for adaptation:
specification of service interfaces, specification of participant behavior, and specification of

interaction between participants.

3.3.1.1 Operations for Adapting Service Interfaces

Developing guidance on how to reconcile mismatches between component interfaces has long

been a hard problem (Garlan et al., 1995). SOC provides a solution to mismatch in language and
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syntax via XML-based standards such as SOAP and WSDL (see section 2.1.1). And although
attempts to standardize on semantic descriptions, e.g. based on the Web Ontology Language
(OWL) and its variant for services (OWL-S), have not yet gained a lot of acceptance, some
success has been achieved in semantic-level adaptation. The Nile system (Trastour et al., 2003)
uses a predecessor of OWL to bestow conceptual semantics on XML-based representations of
service interface specification. The technique was demonstrated in the limited context of
RosettaNet'. SOC, however, does not provide a general solution for resolving mismatches in

operation signatures.

Benatallah et al. (2005) give a classification of operation signature and service-interface-
protocol mismatches. Signature mismatches cover cases where the expected and actual service
interfaces possess different operation signatures. Protocol mismatches capture cases where the
expected and actual service interfaces disagree on message ordering, extra/missing messages,
and message merge/split. To resolve these mismatches, service interface adaptor templates are
proposed as canned process fragments. Each template is instantiated to resolve a corresponding
mismatch when identified, manually, by an architect. A semi-automated technique for
identifying service interface mismatches was later introduced (Nezhad et al., 2007). An
automated tool analyses service interfaces, presents an architect with mismatches, including

potential deadlocks, and provides help on resolving them.

In addition to tackling message-ordering mismatches, Hiel & Weigand (2009) tackle
mismatches in the structure of XML messages and constraints on message content. Potential
mismatches are classified into harmless, solvable, and problematic. Operations for adding,
removing, and changing parts of message structure are encoded as edit operations. A sequence of
edit operations forms an "edit script", which when applied to a service interface produces an
adapted version of the interface. For solvable mismatches, an edit script that produces one
interface from another is generated automatically by comparing two service interfaces. This

approach is useful for adapting message formats in WSDL descriptions.

! www.rosettanet.org
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- Utility of this class of approaches is limited to guiding primitive adaptation to operational
service interface specifications, and only from the point of view of a service client. They do not
support business-level reasoning about adaptation nor do they support multi-participant

interactions where each autonomous participant has a separate local view.

3.3.1.2 Operations for Adapting Participant Behavior

Each participant in an interaction is an autonomous entity that owns a local process. Each
local process may evolve independently from the global interaction specification. Kongdenfha et
al. (2006) propose a set of mismatch templates for adapting BPEL processes. It is argued that
"adaptation logic" can be separated from business logic and that adaptation can be treated as a
cross-cutting concern using aspects. Each template contains a set of "advice" that define
adaptation logic as a process snippet along with "pointcuts” that specify where adaptation of each
advice may be applied. Pointcuts identify points in the XML description of a BPEL process
along with conditions under which the corresponding adaptation applies. Once an architect
identifies a mismatch a tool helps with the generation of adaptation logic from the corresponding
template and integrates the logic into a process (Kongdenfha et al., 2009). However, identifying
mismatches is labor-intensive since an architect has to manually go through the textual

specification of a BPEL process.

The approach presented by Weber et al. (2007) abstracts away from textual process
specification and addresses adaptation of abstract process structure. The approach uses patterns
to classify structural changes that a business process may undergo. These patterns codify changes
to process structure such as inserting, removing, replacing, or extracting a process fragment.
Each pattern encapsulates guidance in the form of considerations when applying the change
codified by the pattern. It is argued that these patterns provide a more modular approach to
adaptation than finer-grained manipulations of nodes and edges in a process flow, thereby
making the adaptation process less error-prone (Reichert et al., 2009). The categorization of
changes and the itemization of design considerations associated with each type of change can

potentially be useful when making individual changes to a local view. However, changes to a
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process do not take into consideration their effect on observable behavior of a participant, and no

means are provided for change propagation to the global view.

Realizing the need to maintain interoperability between interaction participants while catering
for the autonomous nature of participants brought about the approach proposed by Baldoni et al.
(2009). Participant behavior is specified as a labeled state machine. Each state is annotated
according to whether a participant is leading (i.e. making a choice in the process) or following
(i.e. responding to choices made by other participants). Interoperability between participant state
machines is formally defined based on the notions of leading and following, which abstracts
from message sending and receiving. Types of changes to adapt participant behavior are codified
as “edit operations”. Performing an edit operation on a state machine of a participant guarantees
that their local adapted behavior remains conformant with their observable behavior. Although
these operations guarantee correctness of the resulting adapted specification, the approach does
not provide guidance on which operation to apply in a given situation and does not support local

changes that require propagation to the global view.

3.3.1.3 Operations for Adapting Service Interactions

Adapting inter-dependencies between interaction participants and inter-participant messaging
are central to adapting choreographed interactions, and so are catalogues of relevant adaptation
operations. Barros et al. (2005b) propose a catalogue of inter-participant messaging patterns. The
catalogue classifies messaging interactions according to number of participants, number of
exchanged messages, and whether messaging is intermediated. The patterns were intended as a
reference against which features of interaction specification languages, e.g. WS-CDL, are
assessed. The behavioral semantics of each pattern as well as compositions of patterns were
formalized (Barros & Boerger, 2005). Formalization of pattern compositions potentially enables
adapting a messaging interaction via composing patterns. However, the patterns are purely

operational in nature and the approach does not support imparting them with business meaning.

As discussed in section 3.1.1.4 "commitments" provide a business-level representation of
participant inter-connections. Singh et al. (2009) introduce commitment-based patterns for

specifying participants inter-connections. Patterns such as "Revert Offer", "Penalize", and
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"Transfer Responsibility" abstract away from messaging specification, thereby providing
flexibility in specifying an interaction. Each pattern is expressed as a statechart that relates
business events to commitment lifecycle transitions, such as “satisfy”, “delegate”, and “dismiss”.
The patterns were experimented with in specifying a few commercial cases (Telang & Singh,
2010) but have not been tested in an adaptation scenario. The task of building a complete set of

patterns with respect to the commitment-based metamodel has not been discussed.

Based on the i* metamodel, a complete set of adaptation patterns is presented by Krishna et
al. (2009). The patterns are part of a technique for maintaining consistency between requirements
models, in i*, and behavioral specification in the Z language. An i* model is represented as a Z
schema and additionally every element in the model is represented as a Z schema of its own. A
two-way mapping is laid out between an i* model and the Z language. Sixteen categories of
changes to an i* model are identified: addition/deletion of Dependencies, Activities, Goals,
Resources, Softgoals, Means-end links, Activity-decomposition links and Actors (Krishna et al.,
2004). Rules are worked out for reflecting each category of change in the corresponding Z
schema of affected model elements. The approach allows refinement of a Z description with
further information beyond what is represented in the i* model, such as adding dependency
sequencing information. The resulting refined Z schema can still be adapted to reflect changes in
the original model. Also, changes in the refined schema can be mapped back to the
corresponding i* model thereby enabling bidirectional change propagation. Although, the
approach provides guidance on adapting a formal representation coupled with an i* model, it

does not provide guidance on how to update the i* model itself to accommodate an emergent

requirement.

3.3.2 Facilitating Evaluation of Alternatives

More than one adaptation operation may be suitable for incorporating a given emergent
requirement into -an interaction specification. Moreover, applying an operation may involve
making choices among alternative ways of applying it. For a non-trivial interaction, the space of
alternative ways to perform a given adaptation can be large. Providing systematic means for

exploring this space and evaluating the suitability of each alternative is thus essential for
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facilitating adaptation. As discussed in section 2.4.4.1, supporting runtime adaptability is an open
research area which is outside the scope of this thesis. However, for completeness, we review
approaches that facilitate exploration and evaluation of alternatives both at design-time and

runtime.

3.3.2.1 Design-time Evaluation

At design-time, an interaction specification is adapted by applying adaptation operations to
some model of the interaction. An adapted model is compared to other models resulting from
alternative adaptations. Qualitative and/or quantitative techniques are required to aid with this
comparison. One such approach for adapting an i* specification of an interaction uses effect
annotations proposed by Koliadis et al. (2006a) and discussed in section 3.1.1.5. The notion of
“equilibrium” between a given i* model and a corresponding BPMN process is defined. The two
models are in equilibrium if all activities in the i* model are represented in the process model
and all goals in the i* can be fulfilled by at least one path in the process. A proximity relation
between models is defined to assess how similar two models are. When a change in a model
perturbs equilibrium, the proximity relation is used to help assess proposed adaptations and
select the alternative that involves minimal changes (Ghose & Koliadis, 2008). The approach
assumes the existence of a library of process fragments and proximity is measured with no

attention to business meaning of changes.

Relating a change to the business goals is meant to achieve is crucial to ensuring that the
change satisfies these goals. Giorgini et al. (2003) present a framework that enables reasoning
about options for goal “satisfiability”. Goal satisfiability is defined as the degree to which a goal
is satisfied on a scale from zero to one. In addition to AND-OR decomposition of goals, a goal
graph captures positive and negative contribution links between goals. Precise semantics are
given to goal links, both in qualitative and quantitative forms. An algorithm for propagating
contributions throughout a goal graph is laid out. Using this algorithm, a measure of satisfiability
of a goal can be computed given an assignment of satisfiability for the rest of the goals in a
graph. The framework is useful for systematically evaluating alternative goal refinements given

satisfiability assignment. However, it does not help find alternative ways to assign satisfiability
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to goals in order to fulfill a given goal. That is, it works bottom-up but not top-down.

Furthermore, it only supports reasoning about goals from a single point of view.

A choreographed interaction involves reasoning about goals from multiple points of views.
Bryl et al. (2006) propose a framework for exploring and evaluating alternative goal assignment
and refinement from multiple points of view. The evaluation process starts with a set of actors, a
set of initial goals organized in a goal graph, and a set of goal-to-actor assignments. An Al
planning tool is used to generate different assignments which lead to goal achievement. For each
goal, an actor may choose to fulfill the goal locally, if they have the capability to do so, or
choose to delegate it to another actor. Each alternative is evaluated using metrics derived from
game theory (Osborne & Rubinstein, 1994). The approach selects an alternative that achieves a
state of equilibrium among all actors, i.e., a state where the actors are contented with their goal
assignments. The approach can be a useful negotiation tool between participants at early stages

of specifying an interaction where goal assignment is a key concern.

3.3.2.2 Runtime Evaluation

Deferring evaluation of alternatives to runtime allows more flexibility in choosing between
adaptation alternatives. An interaction may then be adapted dynamically in response to changes
in execution conditions. Agent-oriented methodologies (see section 2.3.2) provide a foundation
for this flexibility via autonomous agents that are capable of adapting dynamically to their
environment. An agent-oriented approach for incorporating alternatives and logic to choose
between them into executable agent behavior is proposed by Penserini et al. (2007). At design
time, agent capabilities are encoded as activity diagrams which are translated into state
machines. At runtime, an agent responds to runtime events and consults its current state as well
as the state of the environment to select between capabilities. An agent chooses to activate
capabilities that would achieve its goals at the time of making a choice. Although this approach
infuses some flexibility into interaction specification, all alternative behaviors have to be

identified and specified at design time.

In addition to providing flexibility, runtime evaluation of alternatives can be used as a

mechanism for handling service failures. He et al. (2008) present a technique for evaluating
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alternatives for recovering or replacing a failed service. It is assumed that a certain cost is
associated with bringing about each alternative and a certain value is realized by bringing it
about. The value and the cost are computed to estimate the expected “profit” of each alternative.
A probabilistic model for computing the value of each alternative is adopted. Formulas are
worked out for computing cost associated with a composition of services via sequence, parallel
split, merge, choice, and other control flow constructs (van der Aalst et al., 2003a). For
successful runtime replacement of services, the approach assumes that the services semantics are
sufficiently elaborated in a shared registry. Whereas the approach may have utility for evaluating
QoS characteristics of alternatives from an operational service client point of view,

requirements-driven adaptation of multi-viewpoint interactions is outside its scope.

As discussed in section 2.4.4.2 several process instances may already be in the middle of
execution when the corresponding process specification is adapted. ADEPT2 is a framework for
evaluating alternatives for adapting running process instances to conform to a new process
specification (Reichert et al., 2009). Labeled Place-Transition Nets are used to represent control
flow of a process. A set of criteria is put forward for evaluating structural and behavioral
correctness of a process instance after dynamic adaptation. Although, ADEPT2 ensures
compliance of adapted instances with the new process model as well as freedom of deadlocks, it

does not tackle interaction of a process with other autonomous processes.

3.3.3 Guiding and Automating the Adaptation Process

Adaptation operations are gadgets for adapting an interaction specification. To achieve a
desired adaptation, it is typically necessary to apply several operations. Without guidance on
how and when to apply these gadgets an architect is left with trial and error based on intuition.
Methodologies and techniques for combining adaptation operations are thus called for. These
techniques typically provide guidance to perform macro or micro changes. Macro changes
involve successively composing specification fragments to achieve a desired adaptation. Micro
change involve stepwise incremental application of adaptation operations to a specification until

no further change is required.
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3.3.3.1 Adaptation via Service Composition

Availability of standards-based service interface descriptions enabled emergence of many
techniques for automated service composition via Al planning (Rao & Su, 2004). A
representative of these approaches is proposed by Ponnekanti & Fox (2002), which automates
composition of Web services to achieve a desired effect. Given a repository of component
services annotated with pre- and post-conditions and a desired final state, a tool produces a plan
for obtaining the desired state by combining component services. These approaches typically
assume that execution of component services does not have side-effects, which does not fit the

case of stateful multi-participants interactions.

Similarly, availability of a repository of composition elements enables rule-based adaptation
via composition. Composition elements include activities, flows, events, conditions, as well as
rules governing compositions thereof (Orriéns et al., 2003a). An architect interacts with an
automated composition assistant to specify a composition out of elements stored in a repository.
The desired result of composition is specified through rules that constrain structure and behavior
of the composition (Orriéns et al., 2003b; Orriéns & Yang, 2006). Use of a centralized repository

assumes single-stakeholder ownership and an orchestrated interaction rather than a peer-based

one.

Benatallah et al. (2002) present a peer-based composition approach to adaptation where each
peer exposes a service whose behavior is controlled via a “coordinator”. Behavior of a
coordinator is specified as a statechart annotated with post-conditions. A coordinator controls
state transitions of the associated service, according to its statechart, and notifies other
coordinators about its state transitions. Adaptation is achieved by generating state charts of a
composite service from those of individual services. Behavior of coordinators can be configured
dynamically with generated state charts. Similar to other composition approaches, this approach
relies on the existence of a repository or a service community (Benatallah et al., 2002) that

aggregates service offers with a unified interface.
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3.3.3.2 Adaptation via Step-wise Changes

As opposed to composing fragments to achieve a desired adaptation, “step-wise” approaches
prescribe steps for incremental adaptation of an interaction specification. These approaches apply
an adaptation operation to an interaction specification, and use change propagation techniques to
identify further operations to be applied. Amoeba (Desai et al., 2009) is a methodology for
specifying and evolving multi-participant interactions based on business protocols. A business
protocol specifies an interaction among the participants via commitments (see section 3.1.1.4).
The methodology provides step-wise guidance on specifying and adapting an interaction
specification. Guidance includes techniques for identifying roles and their interactions, capturing
contractual relations via commitments, specifying relations between messages and commitment
lifecycle, specifying constraints on message ordering, and composing business protocols. The
proposed steps provide a systematic way for propagating changes from the global view to local

views, but not the other way around.

Dam et al. (2006) provide guidance for bidirectional change propagation between the global
and local views of an interaction, based on an agent-oriented methodology called Prometheus
(Padgham & Winikoff, 2004). The approach proposes a UML metamodel for all entities and
relations that Prometheus uses to specify an agent-oriented system. The metamodel is annotated
with well-formedness rules that constrain the structure of valid models. Adaptation operations
for adding to, or removing elements from a model trigger “evolution events” which in turn
trigger “evolution action plans”. An evolution action plan checks for constraint violation, and in
case a violation is identified, further evolution events are generated to restore model validity. The
main benefit of this approach is maintaining structural consistency of a model during adaptation,
albeit with primitive tool support (Padgham et al., 2005). Although interaction protocols are part
of the Prometheus metamodel, no specific action plans are laid out to handle their adaptation in
response to changes in business needs. As such, derivation of a multi-participant interaction

protocol from goals and activities is not dealt with.
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3.4 Gaps Identified with Existing Approaches

Our review revealed two potentially viable paths to tackle the three challenges facing
requirements-driven adaptation of choreographed interactions: one path utilizes the Tropos
methodology and the other is based on commitment protocols. Both alternatives capture
participant inter-dependencies at the level of business requirements, distinguish the global and
local views and provide means for relating them, and offer some basis for guiding interaction
adaptation. However, commitments-based approaches have one severe limitation which is the
assumption of an outside-in mode of interaction specification, i.e. local models are only specified
after the global model has been specified. Granting local participant requirements second-class
citizenship makes it hard to drive adaptation using emergent local requirements. Furthermore,
linkage between commitments and business goals was not established except through combining
commitments with Tropos (Telang & Singh, 2009) which begs the question why not use Tropos
dependencies to capture participants inter-connections instead of commitments in the first place.
We thus chose to adopt Tropos as a starting point for tackling the three interaction adaptation
challenges. Nevertheless, in our review we have identified gaps to be filled within the Tropos
framework itself. We summarize these gaps with respect to each of the three challenges and

indicate how we will address them in subsequent chapters.

3.4.1 Bridging Representations across Levels of Abstraction

Tropos offers adequate support for representing stakeholder goals and successively refining
them into architectural specifications (Castro et al., 2002). Original refinement techniques were
extended to support later design phases (Penserini et al., 2007) including fine-grained
specification of participants inter-dependencies (Telang & Singh, 2009). However, the literature
is lacking a systematic way for obtaining the specification of a choreographed interaction
protocol from refined Tropos models. Instead of treating a messaging protocol as an artifact
derivable from refined Tropos models, existing approaches view messaging protocols as a matter
of “convention” (Desai et al., 2009) or an artifact that is designed separately from refined
requirements and architectural models (Penserini et al., 2007). The relation established between

Tropos models and orchestrated process specification (Kazhamiakin et al., 2004) hints that the
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operational specification of service interaction may be derived from refined Tropos models, but

no formalization is given for relating Tropos to choreographed messaging.

| This gap motivated our work in chapter 5 to investigate how requirements, represented in
Tropos, motivate choreographed messaging so as to enable derivation of the latter from the
former. A few observations are made by Mallya & Singh (2006) regarding how dependencies in
Tropos imply commitment protocols. Although these observations are valid and consistent with
our own observations, they fall short of providing a full scheme for deriving messaging protocols
from requirements models. Our work in chapter 6 formalizes and extensively elaborates these
observations and employs them to propose a technique for automated derivation of
choreographed messaging from Tropos models. Tropos was extended to support representing
precedence between activities (Fuxman et al., 2004), but it does not capture precedence between
dependencies as was noted by Krishna et al. (2009). To plug this gap we extend the Tropos
metamodel in chapter 5 with annotations that capture precedence constraints between
dependencies. We also annotate dependencies by their nature (i.e. physical or informational) in a
manner similar to that proposed by Krishna et al. (2009). We thereby make it possible to capture
properties of Tropos model elements without resorting to a complementary representation such

as the Z language (Krishna et al., 2004).

3.4.2 Representing and Relating Interaction Specification Viewpoints

The distinction between the global and local views of an interaction is well-understood in the
context of service-oriented interactions (Dijkman & Dumas, 2004). The bulk of literature relating
these views either enables automated generation of one set of views from another or offers
whole—éale checking of consistency between them (Foster, 2006). In particular, approaches that
consider local views as being projections of the global view (van der Aalst, 2004; Desai et al.,
2006; Zaha et al., 2006b) make it hard to support adaptations that are motivated by changes to a
local view. None of these approaches support incremental bidirectional change propagation
between views. An exception is the technique proposed by Wombacher (2009) which allows
two-way propagation of changes, albeit only for messaging specification which does not support

business-level reasoning about adaptation.
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Agent-oriented methodologies provide frameworks for capturing and relating the views of the
interaction at the business-level. The i* framework, and consequently Tropos, from among other
agent-oriented methodologies, is the one that explicitly captures agent dependencies on one
another for satisfying goals (Lamsweerde, 2004). However, Tropos was criticized for shifting the
emphasis from agent interactions to the structure of the “system-to-be” in later design phases
(Desai et al., 2009). This motivated us to establish a flavor of Tropos that maintains the focus on

interaction specification during later phases, which we detail in chapter 4.

Explicit representation of dependencies enables relating a global view and a set of local views
via their inter-dependencies. Techniques that we have reviewed (Traverso et al., 2004; Koliadis
et al., 2006b) hint at how this relation may be established, but only in a coarse-grained manner.
When adapting a model element, it is necessary to propagate changes to all affected model
elements in the same view and in other views to keep views consistent. The need to provide fine-
grained relations between views motivated our work in chapter 5 to crystallize separation of
views and formalize their relations using dependencies. Whereas commitment protocols capture
conditional obligations, Tropos dependencies are unconditional (Telang & Singh, 2009). To
remedy this deficiency, we extend Tropos with dependency annotations that capture pre-

conditions on dependency fulfillment.

3.4.3 Providing Guidance for Disciplined Adaptation

We surveyed a range of adaptation operation catalogues. The only provably complete
catalogue of operations with respect to Tropos models is that detailed by Krishna et al. (2009).
We adopt this set of operations as building blocks for our adaptation guidance technique in
chapter 7. Given our extension of Tropos to annotate dependencies with conditions, we had to
provide operations for adapting conditions on dependencies as well as on other elements in a

model.

Adaptation operations must guarantee that an adaptation of a valid model produces another
valid model. Agent;oriented approaches, such as Prometheus, employ a metamodel to encode
constraints governing construction and validation of interaction models (Dam et al., 2006). On

the other hand, the original Tropos metamodel (Giunchiglia et al., 2002) and its extensions (Susi
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et al., 2005) fall short of capturing detailed relations of participant local models, as per the focus
on the system-to-be in later design phases (Desai et al., 2009). To capture constraints on Tropos
models constructed in the flavor described in chapter 4, we formalize an extension of the Tropos

metamodel in chapter 7.

We ascertained that exploration of alternatives is well-covered in early development stages
dealing with high-levels of abstraction (Bryl et al., 2006). However, we found that exploration of
alternatives for adapting Tropos models at later stages is not well-covered. We thus provide
guidance on exploring alternatives in our adaptation process. On the other hand, evaluation of
alternatives seems to be a fairly well covered topic both during the early Tropos stages (Giorgini
et al., 2003) as well as later stages (Fuxman et al.,, 2004) so we designed our adaptation

framework to allow incorporating any off-the-shelf evaluation technique.

We established that existing methodologies for guiding combination of adaptation operations
either do not address the adaptation of interaction protocol (Dam et al., 2006), guide propagation
protocol changes in an outside-in direction only (Desai et al., 2009), or do not provide detailed
guidance on propagating changes between views (Koliadis et al., 2006b). This gap motivated the
bulk of our work in chapter 7 to provide detailed guidance on performing adaptation operations

and propagating changes between views.

3.5 Chapter Summary

This chapter reviewed research efforts that tackle adaptation of service-oriented interactions.
In our review we used three lenses, one for each challenge that faces the adaptation, namely:
relating representations of an interaction across levels of abstraction, relating the global and
local views of an interaction, and guiding the adaptation process. We identified some gaps in
existing research with respect to each challenge and we used these gaps to motivate our work in
the coming chapters. We found that the Tropos methodology provides a basis that we can build
our contributions upon. We present some details about the methodology and our proposed usage

of it in the next chapter.
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Chapter 4. Specifying Choreographed Interactions in Tropos

This chapter serves a dual purpose of introducing the basics of the Tropos methodology as
well as describing how we use it to specify a choreographed interaction. We give a brief
introduction to the methodology, discuss its main modeling concepts, and show how we use
them to represent a choreographed interaction. In particular, we introduce a diagrammatic
notation for capturing the global view, local views, and their interrelations. We also detail how
behavior of interaction participants is described using formal annotations of Tropos models.
Other than a minor notational extension to express ordering éonstraints using dependency
annotations, we do not claim a contribution to Tropos modeling notation or analysis activities in
this chapter. Nevertheless, we propose a usage of Tropos models suitable for representing
choreographed interactions, whereas typically Tropos has been used for modeling centrally-

coordinated interactions (Desai et al., 2009).

4.1 Introduction to Tropos

Tropos originated as a methodology for building agent-oriented software systems (Bresciani
et al., 2004). Tropos builds on the i* methodology (Yu, 1995), originally developed to support
reasoning about early requirements, i.e. requirements at a high-level of abstraction and at an
early stage of system development. Tropos carries over the benefits of the i* framework of
covering early requirements analysis phases. Modeling early requirements helps deepen the
understanding of the problem being solved and its context and rationalize the inter-dependencies
between agents, software and human. One motivation behind i* was to develop a rich conceptual
model for processes involving multiple participants (Yu, 1997). SOC can thus benefit from this

conceptual model in specifying multi-participant choreographed interactions.

In addition to supporting early requirements analysis, Tropos covers late requirements
analysis, architectural design, and implementation phases (Castro et al., 2002) thereby supporting

reasoning across all phases of development. A typical top-down application of Tropos for system
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analysis and design involves identifying stakeholders and representing them as roles, identifying
objectives of each stakeholder and representing them as goals, outlining the context of the
system to be developed, and relating it to roles via dependencies. Throughout the development
process, stakeholder goals are successively refined into sub-goals and eventually operationalized

* by activities performed by each role.

Tropos provides a graphical modeling notation backed by a formal metamodel (Giunchiglia et
al., 2002). It is also accompanied by formal reasoning techniques as well as automation tools
(Giorgini et al., 2008). The methodology has been applied in various contexts including security
modeling and analysis, goal-based risk analysis, and high-variability design. It has also been
applied in the context of SOC, albeit for design of service implementations (Lau & Mylopoulos,

2004) and analysis of orchestrated service systems (Kazhamiakin et al., 2004).

4.2 Diagrammatic Specification of Interactions in Tropos

Of particular relevance to representing choreographed interactions are two types of Tropos
diagrams: Role-Dependency (RD) diagrams and Goal-Activity (GA) diagrams. RD diagrams
originated in the i* framework for reasoning about how a system to-be-developed is situated in
its organizational environment. RD diagrams focus on intentional relationships between
organizational roles and allows analysis of opportunities and vulnerabilities associated with these
relationships. GA diagrams also originated in the i* framework for modeling stakeholder goals
and rationalizing alternative means for achieving them. GA diagrams enable reasoning about
how stakeholders goals are achieved by activities they perform and how they are impacted by

their environment.

RD and GA diagrams provide a conceptual framework suitable for representing the global and
local views of an interaction, respectively. Using the medical example introduced in chapter 2,
we describe how we use RD diagrams for representing the global point of view of an interaction
and GA diagrams for capturing the local view for each interaction participant. Additionally, we
describe a hybrid diagram type that derives from the “Strategic Rationale” model (Yu &
Mylopoulos, 1994) to combine the two points of view.
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4.2.1 Global View of an Interaction in Tropos

Whereas choreography specifies messaging between a set of roles from a global point view,
Tropos Role-Dependency (RD) diagrams capture interaction requirements from a global point of
view. RD models capture interacting roles, goals motivating them to interact, and inter-
dependencies driving the interaction between them. RD modeling activities involve identifying
interacting roles, identifying goals associated with each role, and rationalizing their inter-

dependencies for achieving their goals.

Figure 4.1 depicts an RD diagram for the medical example introduced in chapter 2. There are
three roles in the example, each of which represents an abstract participant: Patient, Medical
Provider (MP), and Doctor. Actual participants aim to achieve the goals associated with the role
they play in an interaction. Goals associated with a role are attached to the circle representing the
role. A goal is an objective which is achieved when a certain state of the world is reached or
prevented. For instance; “Get Treatment” captures a Patient’s goal, which is achieved when the

Patient has received the desired treatment.

Facilitate Treatment
»{ MP

Cover Specify Cost

A4

Treatment Costj
Get Ailment Pay for Depender
Information Treatment %
Dependency
Patient Get Treated
Get Treatment Profit from Practice Dependee

Figure 4.1 High-level Role-Dependency diagram for the medical interaction

Roles depend on each other for fulfilling their goals, hence the need to interact. A “goal
dependency” represents delegation of goal-fulfillment responsibility from a depender role to a
dependee role. For example, a Patient depends on the Doctor to “Get Treatment” and depends on
the MP to “Cover Treatment Cost”. In later phases goal dependencies between roles are refined
into “activity dependencies” and “resource dependencies” (Bresciani et al., 2004) that capture
their operational conditional obligations. A refinement of the RD diagram of Figure 4.1 is shown

in Figure 4.2. A refined RD diagram depicts inter-role delegation of responsibility to perform
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Figure 4.2 Refined Role-Dependency diagram for the medical interaction

activities and furnish resources. An activity is an abstraction of a course of action with well-
defined pre- and post-conditions. For instance, the Doctor depends on the Patient to perform
“Appear for Exam” activity. Resources are physical or informational entities. For example, the
Doctor depends on the MP for providing a “Payment”, which can be achieved either by

physically mailing a check or electronically via wire transfer.

Although Tropos allows specification of constraints on the progression of an interaction from
a local point of view, this feature is missing from a global point of view. As such, specification
of relations between dependencies is lacking (Telang & Singh, 2009). To fill this gap we propose
a notational extension for expressing precedence between dependencies. We propose using a
“precedence link” to denote a constraint on fulfillment of dependencies imposed by the global
context of an interaction. One such precedence constraint is specified in the diagram: a Patient is
required to obtain an “Authorization” prior to attempting to obtain an “Appointment”.
Dependency precedence annotations constrain the progression of an interaction by constraining
the order in which participants fulfill their obligations. The implication in the aforementioned
example is that participants are obliged to ensure that a patient never obtains an appointment

unless they have obtained an authorization first.

RD diagrams outline the context of an interaction; they specify interacting roles, goals they
desire to achieve, and inter-dependencies that allow them to achieve their goals. The global view
provided by RD diagrams abstracts away from internal details of #ow each role goes about

performing activities to achieve their goals, which is only revealed in the local view for the role.
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4.2.2 Local View of Interaction Participants in Tropos

To achieve goals associated with their role, each participant needs to pérform activities in the
course of an interaction. Goal-Activity (GA) diagrams capture the local point of view of a role in
terms of activities to be performed, constraints that govern execution of these activities, as well
as how they relate to achievement of goals. Through iterative refinement, high-level goals are
refined into finer-grained goals and eventually into activities whose execution achieves the goals.
Refinement serves to break down a “parent” goal into “sub-goals” and “sub-activities”. The local
view of a role is depicted inside an oval corresponding to that role. A participant playing the role
is responsible for performing all activities and achieving all goals inside the oval. Figure 4.3

shows a GA diagram for the Doctor role.

e me,m e e e e —a—--
-

( Profit from Practice )™ ™777"7""" ==l .
@ /@\ S . Refines
’ C Perform Internal Treatment ) ( Refer to Another Doctor ) \\ e
Perform
Treatment Manage Office

%

- S~

S eaaa—--"
jEi;

Precedes

1.0 Repetition

Figure 4.3 Goal-Activity diagram for the Doctor role

A Doctor has a choice between two alternatives to achieve “Profit from Practice” goal. This is
represented by refining the goal into “Perform Internal Treatment” and “Refer to Another
Doctor”, which is an example of “OR” refinement. On the other hand, the Doctor decides to
refine “Perform Internal Treatment” into three sub-goals “Perform Treatment”, “Collect
Payment”, and “Manage Office”. In this case, the achievement of the goal is contingent on

achieving all three sub-goals, which is an example of an “AND” refinement.

Eventually, a fine-grained goal is refined into activities whose execution leads to fulfillment

of the top-level goal. Business policies and data flow requirements may dictate a certain ordering
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between activities, which is represented using “Precedence” links. Precedence links constrain the
order of activity execution. For example, the Doctor requires a Patient to schedule an
appointment before they appear for an exam which is represented as a precedence link between

“Schedule Appointment” and “Admit Patient” activities.

An implicit 1-to-1 relation is assumed between each sub-activity or sub-goal and its parent
unless repetition is explicitly specified. The diagram in Figure 4.3 implies that “Perform
Treatment” activity may involve performing one or more “Perform Lab Test” activities. For

example, a Doctor may order an X-ray at the beginning of treatment and another one at the end.

4.2.3 Combined Local-Global Model for Detailed Interaction Specification

Whereas RD diagrams depict inter-dependencies between participants, they do not specify the
origin of inter-dependencies in participants’ local models. On the other hand, GA models specify
the local view of each role but they do not show its dependencies on other models. To fully
specify an interaction, a combination of both diagrams is needed. This type of “Combined Local-
Global” (CLG) diagram first appeared in Tropos literature in (Fuxman et al., 2003). Figure 4.4
shows the CLG diagram resulting from combining local models (with some details omitted for
the sake of clarity) of the three interacting participants in the medical interaction with the global
model of the interaction. Similar to messaging specification of an interaction, a CLG model

represents a prototypical interaction or a template for which many instances may be instantiated.

A consistent set of local models and a global model are required to construct a valid CLG.
That is, each dependency appearing in the global model must also appear in the CLG. Each
dependency appearing in the RD diagram of Figure 4.2 links a depending activity in a local view
of one role to a dependee activity in another. Attachment of dependency ends to activities in
participant local models indicates their recognition of responsibility assignment. As such, a CLG
captures an agreement between stakeholders on the specification of an interaction. The CLG
diagram in Figure 4.4 captures the same medical interaction specified using WS-CDL in Figure
2.2, but at a higher level of abstraction that ties the interaction to business activities and goals.

This level of abstraction does not specify the medium of execution of each activity; some
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activities may be performed physically or electronically. For instance, Figure 4.4 still does not

specify whether an MP mails a check or provides “Payment” electronically.
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Figure 4.4 Combined Local-Global model of the medical interaction

4.3 Temporal Specification of Interactions in Formal Tropos

Formal Tropos (FT) (Fuxman et al., 2001) is an extension of Tropos that endows the
diagrammatic specification with formal semantics. Using FT, elements of Tropos models are
annotated with Linear-time Temporal Logic (LTL) formulas. FT annotations of Tropos model
elements constrain participants’ behavior and specify valid temporal progression of an
interaction. FT supports several LTL operators for specifying behavior, those of which we use in
this thesis are defined in Table 4.1. FT enables model checking (Clarke et al., 1999) for asserting

properties of relatively large Tropos models (Fuxman, 2001).

Table 4.1 LTL Operators Applied to a Formula

Formula Requirement Expressed By Formula

Formula fis either true now or that it becomes eventually true in some future state
Gf Formula f should hold in the current state and always holds in all future states
of Formula fis either true now or that it was once true in some past state
Hf Formula fis true in the current state and was always true in all past states
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4.3.1 Formal Tropos Classes and Instance Lifecycle

In FT, each Tropos model element is represented as an FT “class”, of which many instances
may be created during an “execution” of a model. FT classes and instances are analogous to
classes and objects in object-oriented languages (Meyer, 1997). At any point in time, the state of
an execution is equivalent to the collective state of all instances. Execution progresses as

instances transition from one state to another.

Figure 4.5 shows an FT specification for the “Make Appointment” activity class and the
“Appointment” dependency class, parts of which can be automatically obtained from Tropos
diagrams by applying some heuristics (Fuxman et al., 2003). Each class has a list of attributes
which hold the state of instances of that class as well associations with other instances.
“Appointment” class has an attribute that specifies the type of “ailment” the patient suffers from
and an attribute that references the associated instance of “MakeAppointment” class. The special
attributes “depender” and “dependee” represent the two roles in a dependency class, while the
attribute “role” associates a model element with the local view in which it appears, e.g. associate
the “MakeAppointment” activity class with Patient. Finally, the special attributes “self” and
“super” are used to refer to an instance of the class being specified and its parent instance,
respectively. That is, “super” appearing in the specification of “Make Appointment” refers to its

parent activity, “Obtain Prescription” as per figure Figure 4.4.

Activity MakeAppointment Dependency Appointment
Role Patient Depender Patient
Creation condition —Fulfilled(super) Dependee Doctor
Fulfillment condition Attribute ailment: AilmentType
3 a:Appointment Attribute makeAppointment: MakeAppointment
(a.depender = role Invariant Fulfilled(self) > G Fulfilled(self)
A a.makeAppointment = self A Fulfilled(a)) Creation condition —Fulfilled(makeAppointment)
Fulfillment condition
3 sa:ScheduleAppointment
(sa.role = dependee A Fulfilled(sa))

Figure 4.5 Formal Tropos annotations for an activity and a dependency

LTL formulas specify constraints on states and transitions of instances, thereby constraining
model execution and specifying valid behavior of interacting roles. Whereas invariants specify
conditions that do not vary with time, creation and fulfillment conditions specify when an

instance is created (instantiated) and when it transitions to a “fulfilled” state. Creation and
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fulfillment conditions specify the lifecycle of model elements as bracketed by two critical events:

creation event and fulfillment event.

4.3.1.1 Creation Conditions and Creation Event

The creation event of a goal or of a dependency occurs at the moment at which a participant
begins to desire the goal, or need the dependency to be fulfilled. Conditions under which a
creation event may occur are called creation conditions. In Figure 4.5, an instance of
“Appointment” dependency will be created if there is an instance of “MakeAppointment”
activity that needs to be fulfilled. For an activity, the creation event occurs at the moment at
which the participant is required to start performing it. We use Cr(a) to denote the creation

condition of an instance o and use a to denote the creation event of o.

4.3.1.2 Fulfillment Conditions and Fulfillment Event

Fulfillment events occur when a goal is achieved, an activity is completed, or a resource is
made available. For a fulfillment event to occur the corresponding fulfillment conditions must
hold. In Figure 4.5, an instance of “MakeAppointment” activity is fulfilled when the associated
“Appointment” dependency has been fulfilled, i.e. when Patient has obtained an appointment,
whereas an instance of “Appointment” is fulfilled when the Doctor has completed the activity of
scheduling an appointment. We use Fi(a) to denote the fulfillment condition of an instance o and

use o to denote the fulfillment event of o.

4.3.1.3 Invariant Constraints

Invariant constraints of a class define conditions that should hold at any point in time for all
instances of that class. In Figure 4.5, the “Appointment” dependency class declares an invariant
specifying that once an instance of the dependency has been fulfilled it remains fulfilled, i.e. a

Doctor is not allowed to cancel an appointment once it has been scheduled.

4.3.2 Ordering of Interaction Events

Whereas a message-oriented specification of an interaction is composed of message sending

and receiving events, FT specifies progression of an interaction in terms of dependency/activity
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lifecycle events. Temporal specification of a CLG in FT encompasses constraints on ordering of
lifecycle events that occur during the interaction specified by the CLG, i.e. interaction events. To
facilitate reasoning about a CLG, we explicitly capture these constraints using a binary
precedence relation P over interaction events. We define P as follows: for two interaction events
e; and ey, P(ey, €,) designates that e, must not occur before e; occurs in any valid instantiation of

the interaction specified by the CLG. The relation P is transitive, i.e.

P(ey, €2) A P(ey, e3) = P(ey, €3)

An implication of P(ey, e;) is that if @, is a condition that triggers e; and @, is a condition that

triggers e, then @, must not occur before ®@;. That is:

P(el, ez) L4 (Dz -0 (I)l

The proof follows by contradiction: assume that @, held before @, held then e, would have
occurred before e;. In particular, for any Tropos model element X, since the creation event of X
must occur before its fulfillment event, its fulfillment condition implies that its creation condition

must have held at some point in the past. That is, P(Xcr, X#) is always true and so is the formula:
Fi(X) — O Cr(X)

We use an event precedence graph for visualizing pairs of the relation P. Figure 4.6 is an
example of an event precedence graph depicting two pairs of the relation P, namely P(e;, e,) and
P(ez, e3). Nodes in a precedence graph represent interaction events and edges represent
precedence between them. A multi-edge path between two nodes in a graph represents transitive
precedence between the corresponding events.

Figure 4.6 Event precedence graph for representing event precedence relation
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4.4 Chapter Summary

This chapter demonstrated how we represent a choreographed interaction in Tropos using the
medical interaction of Chapter 2 as an example. We introduced the Tropos methodology and its
diagrammatic notation. We described how Role-Dependency (RD) diagrams capture the global
view of an interaction in terms of roles and their dependencies. We described how the local view
of each role is captured using Goal-Activity (GA) diagrams. We have also shown, by combining
RD and GA diagrams, how to construct an overall specification of an interaction in the form of a
CLG. A CLG can be annotated with Formal Tropos (FT) to specify temporal progression of an
interaction by constraining interaction events. We defined a binary relation ‘P’ to facilitate
capturing constraints on ordering of interaction events. Temporal annotations introduced in this

chapter and their use in relating interaction events are crucial for the next 3 chapters.
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Chapter 5. Relating Interaction Specification Viewpoints

Each participant in a choreographed interaction aims to achieve business goals relevant to
their local viewpoint. Their local view embodies activities and business policies motivated by
their goals. On the other hand, a neutral observer requires a global viewpoint that abstracts away
from the particulars of each participant while enabling it to oversee an interaction. Specifying

and adapting a choreographed interaction requires relating these disparate viewpoints.

Specifying a choreographed interaction also involves artifacts at different levels of
abstraction. Requirements models of an interaction embody business goals behind an interaction.
Architects use these models to reason that an interaction adequately addresses business goals of
participants. On the other hand, an interaction protocol is inherently an operational
representation intended for consumption by machines. To ensure that these two representations

are consistent, we need to establish a relation between them.

This chapter reports on the first of our contributions: relating the artifacts involved in
specifying a choreographed interaction. First, we propose four viewpoints that aim to separate
concerns of stakeholders in an interaction. We argue that Tropos dependencies play a central role
in establishing relations between the viewpoints, and hence we analyze characteristics of
dependencies. We employ this analysis to relate local and global requirements as well as relate

global requirements to choreographed messaging.

5.1 Separating Stakeholder Concerns

Two types of stakeholders are concerned with the specification of a choreographed
interaction: the interacting participants and a global observer. Each participant is a stakeholder
interested in fulfilling business needs relevant from their point of view, while the global observer
is a stakeholder interested in facilitating an interaction from a neutral point of view. On the one
hand, each stakeholder has business-level concerns regarding the achievement of goals, seizing

business opportunities, and mitigation of risks. On the other hand, each stakeholder has
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operational concerns regarding coordination of activities and compliance with messaging

obligations. This separation of stakeholders and concerns results in four interaction specification
viewpoints.
5.1.1 Four Interaction Specification Viewpoints

Figure 5.1 depicts separation of concerns according to type of stakeholder and type of concern
into four viewpoints, each represented by a quadrant. Each viewpoint encapsulates a set of

concerns from the point of view of a stakeholder type as follows.

Stakeholder Type

/

Global Observer Interaction Participant
a Role-Dependency Modeling Goal-Activity Modeling
) g Q1 Q2
g g Roles, high-level goals, Goals, activities, and goal-activity
~ -§_ and organizational dependencies refinement for one role
g o O >A
o o Choreography v |l v Orchestration
& 5 Q3 g Q4
O § Messaging specification from Specification of services coordination and
g a neutral point-of-view messages sent/received by one role

Figure 5.1 Four interaction specification viewpoints.

5.1.1.1 QI1: Requirements from a Global Point of View

The global observer in an interaction is typically a regulatory agency aiming to facilitate the
interaction. The regulatory agency acts as a neutral stakeholder whose objectives are global, i.e.
not specific to any of the participants, but rather broadly benefits all potential participants. For
instance, the global objective could be promoting trade (Baglietto et al., 2002) or enabling
advancement across an industry sector. To achieve such objectives, a regulatory agency needs to
ensure viability of an interaction and encourage participants to join. This calls for means to
rationalize responsibilities of interacting roles, to ensure fairness of allocation, and to help
participants mitigate risks entailed in delegation of responsibilities. RD diagrams are a suitable
tool for supporting these activities (Yu, 1997) as they capture the interacting roles, their high-

level goals, delegation of goal-fulfillment responsibilities via dependencies, and risks that come
with these dependencies:
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e Rationalize goal-fulfillment responsibility: A Patient’s expectation that an MP will
“Cover Treatment Cost” is consistent with a Doctor’s reliance on the MP for “Pay for

Treatment” (Figure 4.1).

e Ensure fairness of responsibility allocation: Requiring a Patient to obtain treatment
authorization from an MP is justified as the latter is responsible for covering the cost

as specified in Figure 4.2.

e Mitigate risks involved in delegation: Although it is reasonable to assume that a
Doctor has the necessary expertise to fulfill the “Specify Treatment Cost” goal (Figure
4.1), it may entail the risk that an MP gets over-charged by the Doctor. Identifying

such risks drives further analysis to explore alternatives for mitigating them.

5.1.1.2 Q2: Requirements from a Local Point of View

The main concern of each participant is to ensure the achievement of goals motivating them to .
join an interaction. A participant needs to identify, represent, and analyze their business goals in
order to share knowledge and better-understand business problems (Yu & Mylopoulos, 1994).
Having decomposed their goals into more manageable finer-grained goals, a participant needs to
determine how to go about achieving them. This calls for means to explore solutions for
achieving goals and rationalize decisions made in choosing a solution. Specifying a solution
involves idehtifying business activities, electronic and physical, whose execution leads to goal

fulfillment, as well as detailing constraints that govern execution of these activities.

GA diagrams and their associated modeling techniques are suitable for addressing these
concerns. A GA diagram depicts successive refinement of high-level goals into finer-grained
goals and eventually into the activities assigned to one role. Through refinement, relations are
established between goals and activities thereby enabling reasoning about how activities

contribute to goal achievement.
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5.1.1.3 Q3: Messaging from a Global Point of View

To facilitate execution of an interaction, the global observer needs to ensure that participants
are able to interoperate, i.e. their expectations of each other are met. Ensuring interoperability
requires accurate description of obligations that a participant will be committing to when joining
an interaction. It is software agents, i.e. services and clients, which carry out the electronic part
of an interaction by exchanging messages on behalf of participants. Thus, messaging obligations
need to be specified as a machine-readable protocol that describes valid messaging sequences.
Since the global observer is only concerned with the observable (and not internal) behavior of
participants, a messaging protocol is specified from a global point of view. Furthermore, to
enable interaction between heterogeneous platforms these obligations need to be described using
standard platform-independent languages. Choreography description languages, such as WS-
CDL, are adequate for this purpose; specifying standards-based, platform-independent

messaging protocols from a neutral point of view.

5.1.1.4 Q4: Messaging from a Local Point of View

An interaction participant is likely to take part in many different types of interactions at the
same time. For example, in addition to participating in the example medical interaction, a Doctor
may participate in another interaction for conducting lab tests, a third for reporting their profits,
and so on. Although from a global point of view these interactions can be treated separately,v
from a local point of view they overlap. A participant is thus interested in coordinating all their
messaging activities. This serves the dual purpose of ensuring that execution of their activities
complies with their internal business policies as well as with their external obligations towards
all interactions. These concerns are addressed by orchestration languages, such as BPEL, which

are used to specify messaging flows from a local point of view.

5.1.2 Consistency between the Viewpoints

Having identified interaction specification viewpoints and proposed representations for each
of them, we need means for ensuring consistency between these representations. Given that there

are two sets of artifacts (requirements and messaging) and two types of stakeholder viewpoints
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(global and local) we need to establish four types of relations. This translates to relating pairs of

- adjacent quadrants in Figure 5.1:

1. (Q1-Q2) Consistency between local and global requirements is necessary for agreement
between stakeholders on responsibility allocation and on an overall specification of an
interaction. Relating the local and global viewpoints of interaction requirements enables
change propagation between viewpoints, thereby supporting collaborative adaptation.
Dependencies in a CLG tie together local models and the global model; we examine this

relation in depth in section 5.3.

2. (Q1-Q3) Consistency between global requirements and choreographed messaging is
necessary for ensuring that messaging specification satisfies the requirements. We
establish a relation between dependencies in a global model to units of messaging that
realize these dependencies, as we’ll detail in section 5.4. By combining this relation with
that between local and global requirements (Q1-Q2) we enable automatic derivation of

choreographed messaging from a CLG as detailed in chapter 6.

3. (Q2-Q4) Consistency between a participant’s local requirements and orchestrated
messaging enables the generation of a messaging specification that satisfies the
requirements, or verifying that a given messaging specification satisfies the requirements.
As has been detailed in section 3.1.2.1, Kazhamiakin et al. (2004) have proposed a
framework through which the lifecycle events of a participant’s business activities are
related to orchestrated messaging that realizes these activities. As this issue has been

addressed, we will not cover it further.

4. (Q3-Q4) Consistency between orchestrated and choreographed messaging enables
verifying compliance of internal processes of participants with a choreographed
interaction protocol. As detailed in section 3.2.3, Foster (2006) proposed a framework for
automated consistency checking between a set of BPEL processes with a WS-CDL

protocol. As this issue has been addressed, we will not cover it further.
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- Due to the central role that dependencies play in establishing the Q1-Q2 relation as well as the

Q1-Q3 relation, we devote the next section to examining dependency characteristics.

5.2 Analysis of Dependency Characteristics

To understand how dependencies play a role in relating interaction specification views Q1-Q2
and Q1-Q3, we examine their control and data flow implications. Additionally, to relate
dependency lifecycle events to messaging events we analyze characteristics of dependency

fulfillment. We also present a notation for capturing these characteristics.

5.2.1 Dependency Data and Control Flow Characteristics

Dependencies in a CLG represent delegation of responsibility between activities of interacting
participants. At runtime, data and control flow between activities realize the delegation and
fulfillment of responsibility. Control flow between participants governs the progression of an
interaction whereas data flow implies communication between them, e.g. via messaging.
Understanding these flows is essential for both relating participants’ views as well as relating
dependency lifecycle events to messaging events. The business meaning of a dependency

determines the type of flow it implies as exemplified by dependencies in Figure 4.2:

e “Appear for Exam” designates control flow. To fulfill the dependency a Patient has to
perform “Visit Doctor” activity by showing up at a Doctor’s office at which point she
transfers control of interaction progression to the Doctor, where the Doctor can start

performing “Examine Patient” activity.

e “Prescription” designates unidirectional flow of data from Doctor to Patient. To fulfill
the dependency a Doctor is required to provide specification of medications to a
Patient. From the Patient’s point of view the dependency is fulfilled when they have

received the specification of medications.

e “Authorization” designates both data and control flow. To fulfill the dependency an

MP is required to provide a treatment authorization, which includes data such as an
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authorization number, in doing so the MP also relinquishes control to a Patient who

may then proceed to request a Doctor appointment.

e “Appointment” designates bidirectional data flow. The two flows are realized in
Figure 2.1 and Figure 2.2 via the “Appointment Request” and “Appointment
Confirmation” message. To fulfill the dependency, a Doctor has to confirm an

appointment corresponding to an appointment slot that a Patient had requested.

To summarize, a dependency implies data or/and control flow between participants. Where a
dependency implies unidirectional flow, the flow is in the opposite direction of dependency
arrows, i.e. from the dependee to the depender, e.g. a Doctor providing “Prescription” to a
Patient. A unidirectional dependency is a special case of a dependency where no data flow from
the depender to the dependee is implied. A dependency is “bidirectional” if it implies a two-way
flow, one from depender to dependee followed by another in the reverse direction, e.g. an
“Appointment Request” followed by an “Appointment Confirmation”. For a bidirectional
dependency, we refer to flow from depender as "request" and flow from dependee as "response".
For a unidirectional dependency, we use the same term, “response”, to refer to flow from
dependee for consistency, even though there is no corresponding request. Where a request
corresponding to a (bidirectional) dependency D is realized via sending a message, “D-request”,
we denote the “request sent” event by Dy, and where the response is realized via receiving a

message, “D-response”, we denote the “response received” event by Dy,.

The business context and participant requirements dictate whether a dependency is
unidirectional or bidirectional. For example, a Patient is required to specify a requested
appointment slot, by sending an “Appointment Request” message, in order to get a response
from a Doctor, and hence the bidirectional flow of the “Appointment” dependency. On the other
hand, a Patient is not required to request a prescription as it is provided by the Doctor after
having examined the Patient, and hence the unidirectional flow of the “Prescription”
dependency. Bidirectional dependencies allow an architect to construct more modular CLGs,
where logically related data flows can be grouped. For instance, instead of representing an

invoice and the corresponding payment separately using two unidirectional dependencies
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(“Invoice” and “Payment” in Figure 4.4) an architect may choose to combine the two flows into

a single bidirectional “Payment” dependency and dispense with the two unidirectional

dependencies, which we do hereafter.

5.2.2 Dependency Fulfillment Characteristics

We examine the properties of dependency fulfillment which are essential for reasoning about
the relation between fulfillment events and messaging events. Each dependency in a Tropos
model is of a certain granularity and repetition. Also, each dependency can be associated with a

medium of fulfillment as well as pre-conditions on its fulfillment.

5.2.2.1 Fulfillment Granularity

Dependencies denote delegation of responsibility at different levels of abstraction. As shown
in the refined RD diagram of Figure 4.2, the goal dependencies of Figure 4.1 were refined into
elementary activity and resource dependencies. In general, in a global view, a goal dependency is
refined into activity/resource dependencies which in turn maybe refined into finer-grained
elementary activity/resource dependencies and a set of constraints on their fulfillment. Thus we
distinguish between coarse-grained and elementary dependencies, where the former are fulfilled

only if their elementary sub-dependencies are fulfilled.

5.2.2.2 Fulfillment Repetition

Fulfillment of non-repeating dependency requires exactly one instantiation of the
corresponding dependency class in any instance of an interaction. On the other hand, multiple
instantiations may be required for a dependency marked as “repeating” to be eventually fulfilled.
For instance, it can be specified that multiple instantiations of an “Appointment” dependency
may be necessary. That is, a Doctor may refuse an appointment slot requested by a Patient

causing the Patient to request a different one, and so on until they agree upon a slot.

5.2.2.3 Fulfillment Phenomenon

A dependency is fulfilled when its fulfillment condition becomes true. The depender in a
dependency detects this state transition by observing a designated phenomenon (Jackson, 1996).

Depending on the medium of the phenomenon, a dependency is classified as either “physical” or
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“informational”. Fulfillment of a physical dependency is associated with a physical phenomenon.
For example, a patient arriving at the Doctor’s office for examination is a physical occurrence
that indicates fulfillment of “Appear for Exam” dependency. On the other hand, fulfillment of an
informational dependency is contingent on the depender receiving some required “fulfillment
information”. In an electronic interaction, information becomes available to a depender when
they receive a message (sent by the dependee). For instance, the “Authorization” dependency is

fulfilled when a patient has received a message indicating that treatment has been authorized.

5.2.2.4 Fulfillment Precondition

The responsibility of fulfilling a dependency is conditional. A dependee is held responsible
for fulfilling a dependency only when a certain dependency-specific precondition holds.
Participants are autonomous and may deviate from the specified interaction protocol. Such a
deviation may occur if a depender causes a dependency to be instantiated when the precondition

does not hold. When the dependee learns about the instantiation she has two choices:

e Wait until the precondition becomes true then fulfill the dependency.
¢ Immediately “dismiss” the dependency indicating that it will never be fulfilled.

For example, assume a Patient is required to pay a monthly fee to their MP in return for
covering treatment cost. Additionally, assume that an MP requires as a pre-condition to fulfilling
an “Authorization” dependency that a Patient has already paid their fee for the current month. If
an MP is requested to provide authorization for a Patient who has not paid their fees, an MP may
either wait until the Patient has paid their dues and then authorize treatment or immediately
decline the request for authorization, i.e. dismiss the dependency. To represent the latter case, we
define the notion of dependency “dismissibility”, where a dependency D may be marked as
“dismissible” under a dismissibility condition Di(D). The semantics is that that the dependee will
never fulfill D if the condition Di(D) holds. In temporal logic, this is represented by including the

following invariant in the specification of the dependency FT class:

DiD) —» G —Fi(D)

Thus, in addition to the “fulfilled” state, a dismissible dependency has another terminal state,

the “dismissed” state (Figure 5.2).
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' Creation condition satisfied

Fulfillment condition satisfied @

As a corollary of dismissibility, the creation condition of a dismissible dependency should

dependency instance is useless. That is, the creation condition of a dismissible dependency

For instance, the creation of the “Authorization” dependency should imply that the Patient

has already paid their fees. Otherwise, if an instance of “Authorization” is created at a point in

Instantiated

Dismissibility condition satisfied

Dismissed

Figure 5.2 Representing dismissibility in dependency lifecycle

should imply that the dismissibility condition is not satisfied:

Cr(D) —» -Di(D)

time where the Patient had not paid their fees it will be immediately dismissed.

5.2.3 Notation for Capturing Dependency Characteristics

To specify properties of a dependency D we define the following notation:

Notation Denotes
BD(D) Predicate whose value is true iff D is bidirectional (section 5.2.1)
%[ D | Bi-directional dependency in a CLG.
Many(D) | Predicate whose value is true iff D is repeating (section 5.2.2.2)
[ D ]° | Physical dependency in a CLG
Di(D) Dismissibility condition of D (section 5.2.2.4)

As discussed in section 5.2.1, a depender observes messaging events associated with

messages that realize a dependency D which are denoted as follows:

Notation Denotes
D-Request | Request message associated with a bidirectional dependency D.
D-Response | Response message associated with a dependency D.
) Messaging event associated with sending “D-Request”.
D, Messaging event associated with receiving “D-Response”.

ensure that a dependency is not immediately dismissed after being instantiated, or otherwise the
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5.3 Relating the Global and Local Views of Interaction Requirements

A dependency arises when an activity in a depender’s local view delegates responsibility to
another participant, i.e. the dependee. On the dependee side, an activity is assigned (by the
dependee) the responsibility of fulfilling the dependency. Thus, a global view is consistent with a
set of local views only if every delegation of responsibility in a local view is represented as a
dependency that ties two activities: a depender activity and a dependee activity. This relation is
manifested in a CLG diagram (Figure 4.4). Furthermore, any dependency precedence constraints
must be consistent with constraints specified in local views. In Figure 4.4 precedence between
“Get Authorized” and “Make Appointment” activities is consistent with precedence between

“Authorization” and “Appointment” dependencies.

By relating each local view with the global view we also establish a relation between local
views. This relation is manifested in the FT of Figure 4.5 where “Make Appointment” activity is
not fulfilled until the “Appointment” dependency has been fulfilled, which is in turn only
fulfilled when the “Schedule Appointment” activity has been fulfilled. Thus, fulfillment of
“Schedule Appointment” is necessary for the fulfillment of “Make Appointment”, which ties
together the states of the two views. In general, for any dependency D whose depender is an
activity a and dependee is an activity [, o cannot be executed to completion until B has
completed and made information required to fulfill D available. Additionally, the dual flow

applies only for a bidirectional dependency, that is for a BD(D), B cannot execute to completion

Depender Local View Global View Dependee Local View

< a P ;llDll

Figure 5.3 Graph relating dependency lifecycle events to those of depender and dependee activities

82



until o has supplied information, e.g. requested appointment slot, required for D to perform its
work. These relations between dependency and activity lifecycle events tie the global and local

views as summarized in Figure 5.3.

5.4 Relating Requirements to Choreographed Messaging

Dependencies imply data and control flow between participants. In a message-oriented
interaction, these flows are realized via message exchanges. To structure our argument for
relating dependencies and messaging, we construct a classification of dependencies utilizing the
analysis in section 5.2. The classification allows us to formalize the temporal relation of

dependency lifecycle events to messaging events.

5.4.1 Messaging-Oriented Dependency Classification

Figure 5.4, depicts a classification of dependencies with respect to their relation to messaging
events. To narrow down the scope of the discussion on relating lifecycle events of a single

dependency to messaging events, we consider the following aspects of a dependency:

e Granularity: Coarse-grained dependencies in a global model are refined into elementary
dependencies in a CLG. Thus for the purpose of relating CLG dependencies to messaging
we only need to consider elementary dependencies. Coarser-grained dependencies are

indirectly related to messaging through refinement.

e Phenomenon: By definition, physical dependencies are fulfilled via means other than
electronic messaging. Thus, for the purpose of relating lifecycle events of a single
dependency to messaging events we only need to consider informational dependencies.
However, physical dependencies may affect the overall sequence of messaging, which we

consider in chapter 6.
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Granularity Repetition Dismissibility

Coarse-grained

Elementary - Many - Yes
Single - ) so

..... es

No

Figure 5.4 Classification of dependencies with respect to messaging

e Repetition: Several instances may be created of a repeating dependency D in a single
instance of an interaction. Aside from data values, e.g. appointment time, all instances of
D are structurally and behaviorally identical. Thus, to relate messaging events to a

dependency instance we only need to consider a single representative instance of D.

Therefore, for establishing a relation between lifecycle events of a dependency instance and
messaging events we only need to consider elementary informational dependencies, each of

which can be either unidirectional or bidirectional and may or may not be dismissible.

5.4.2 Relation between Dependency Lifecycle Events and Messaging

A dependency may undergo three types of state transitions (Figure 5.2). It is the depender
who observes the fulfillment or dismissal of a dependency, and thus the lifecycle of a
dependency terminates at the depender’s end. Let us consider the implications of each transition
for messaging from the point of view of the depender. Having excluded coarse-grained and
physical dependencies, the following statements apply only to instances of elementary

informational dependencies.

Fulfillment: To indicate that they have met a responsibility delegated to them via a dependency,
a dependee has to communicate dependency fulfillment to the depender, via a message, after
they have fulfilled that responsibility. Once the depender receives the designated message they
determine that the dependency has been fulfilled. Therefore:

Dependency fulfillment is detected when a designated message is received from the dependee.
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Creation: Whereas fulfillment of elementary informational dependencies is always associated
with a message, their creation may or may not be associated with one. A unidirectional
dependency does not require flow of data and/or control from the depender to the dependee (e.g.
“Prescription”), but a bidirectional dependency does (e.g. “Appointment™). This flow needs to be
realized at a point in the lifecycle of a dependency no earlier than creation and no later than
fulfillment. Therefore:

Creation of a bidirectional dependency is followed by sending a message to the dependee.

Dismissal: For a dismissible dependency, when a dependee decides to dismiss the dependency
she needs to communicate the dismissal to the depender via a message designated to indicate
dismissal. The depender learns about dismissal when they receive the designated message.

Therefore:

Dependency Dismissal is detected when a designated message is received from the dependee.

5.4.3 Messaging and Dependency Lifecycle Events in Formal Tropos

From the preceding discussion we conclude that an instance of a bidirectional elementary

informational dependency is realized by two messages:

e A request message sent by the depender after the dependency has been instantiated.
¢ A response message received by the depender which fulfills the dependency.

To demonstrate the correctness of this conclusion we apply it to “Appointment” dependency.
Figure 5.5 depicts the refinement of the “Appointment” dependency into two messages,
“Appointment Request” and “Appointment Response”, where each message is represented as a
resource dependency. Messages exchanged between participants are specified as message-
resource dependencies between “messaging activities” whose execution results in sending or

receiving a message.
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_______________ Message l
Activity MakeAppointment Task SendRequest Activity ReceiveResponse
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Fulfillment condition Super MakeAppointment Super MakeAppointment
3 sr: SendRequest Creation condition —Fulfilled(super) Fulfillment condition

(sr.super = self A Fulfilled(sr)) Fulfillment condition 3 ac:AppointmentResponse (Received(ar))
A 3 m: ReceiveResponse 3 ar:AppointmentRequest (Sent(ar))

(rr.super = self A Fulfilled(rr))

Figure 5.5 Refinement of activitis into messaging activities and dependency into messages

A message-receiving activity depends on a message-sending activity for providing a message
over a communication channel. The corresponding FT specification of activities at the
depender’s end uses the predicates Sent() and Received() to assert that a message has been sent or
received, respectively, by the depender (Kazhamiakin et al., 2004). Activities, “Make
Appointment” and “Schedule Appointment”, at the ends of “Appointment” dependency in Figure
4.4 have been refined into the messaging activities in Figure 5.5 as follows: In order to complete
“Make Appointment” a Patient performs “Send Request” to send an “Appointment Request”
message then later performs “Receive Response” to receive an “Appointment Response”
message. Similarly, for every appointment, a Doctor schedules she performs a “Receive

Request” followed by “Send Response”.
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In order to demonstrate that our proposal in the previous section of how to realize
~ dependencies via messaging is consistent with Tropos model semantics, we construct the event

precedence graph in Figure 5.6, which composes three sets of relations:

1. Relations between the depender’s business activity and its child messaging activities
as specified in Figure 5.5 (shown inside light grey shade, where o is “Make

Appointment”, as is “Send Request”, and ar is “Receive Response”).

2. Relation between depender activity lifecycle events and dependency lifecycle events

as depicted in Figure 5.3 (shown inside two-part dark grey shade).

3. Relation between dependencies and messaging that realizes these dependencies, at the
depender’s end, as we proposed in the previous section (shown inside medium grey
shade). Recall that D;s denotes message sending event, occurring after instantiation of

D, and D,; denotes message receiving event, leading to fulfillment of D. Both events

are observed by the depender in D.

Requirements Activities Cr ¢z

o
- Messaging Activities
— Dependencies
©
Q
5 ; Abbreviations
o Messaging

o Make Appointment
as Send Request
or Receive Response
D Appointment

Figure 5.6 Event graph relating dependency lifecycle events to messaging events

As evident from the absence of cycles in the figure, the three sets are consistent. That is, our
proposed realization of a bidirectional dependency as a pair of messaging events is consistent
with the intrinsic semantics of a Tropos model. The correctness of the two precedence pairs that

we suggest, that is P(Dg, Dys) and P(Dy, Dg), is demonstrated by these two observations drawn
from the figure:
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Correctness of precedence between dependency creation event and sending of a
request message, i.e. P(Der, Drs): Creation of a transitively precedes request-message
sending events (via the creation event of the message sending activity ass). That is, the
creation of “Make Appointment” precedes the creation of its child “Send Request”,
where the creation of the latter triggers sending a request message. Our proposal for
adding precedence from dependency creation to request-message sending event agrees
with this already existing transitive precedence (via the creation event of the

dependency). That is:

P(Olers 0Ser) A P(0Sers Dig) = P(dler, Di)

is consistent with

P(0ters Der) A P(Dery D) = P(Cter, D)

Correctness of precedence between receiving a response message and dependency
fulfillment event, i.e. P(Dy, Ds): Response-message receiving event transitively
precedes the fulfillment event of a (via the message receiving activity ar). That is,
receiving an “Appointment Response” message triggers the fulfillment of the
“Receive Response” activity, which in turn precedes the fulfillment of its parent,
“Make Appointment”. Our proposal for adding precedence from the response-message
receiving event to the dependency fulfillment event agrees with this already existing

transitive precedence (via the fulfillment event of the dependency). That is:

P(Drrs arﬁ) A P(arﬂa aﬁ) - P(Drr, aﬁ)

is consistent with

P(Dyr, Ds) A P(Dg, a5) —> P(Drr, 015)

Thus, our proposed realization of a bidirectional dependency via a pair of messages, a request

message sent by the depender upon creation of the dependency and a response message received

by the depender that triggers its fulfillment, is consistent with the inherent semantics of Tropos

models. This conclusion is pivotal to establishing the relation between requirements and

choreographed messaging, i.e. Q1-Q3 (Figure 5.1), which is the subject of the next chapter.
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5.5 Chapter Summary

This chapter elaborated on the first of our contributions: relating the viewpoints involved in
specifying a choreographed interaction. Two types of stakeholders were identified and their
concerns with respect both to interaction requirements and messaging specification were
discussed. This separation of concerns resulted in four views of interaction specification, namely
global requirements, local requirements, global messaging, and local messaging. To provide a
means for keeping the views consistent, we formulated relations between them. First, we detailed
how we relate the global requirements of an interaction to the local requirements of each
participant. This relation enables collaborative reasoning about adaptations to an interaction.
Second, we presented a classification of Tropos dependencies and argued how they are realized
in terms of messaging. In the next chapter, we combine the relation between dependencies and
messaging with constraints specified in local views to automate the derivation of a messaging

protocol from requirements models.
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Chapter 6. From Requirements to Choreography Specification

This chapter reports on our second contribution: a systematic technique for deriving a
messaging protocol from requirements models. To facilitate the derivation, we analyze
constraints implied by links and annotations of Tropos models. We devise a transform that
operates on Tropos models to generate a messaging protocol consistent with these constraints.
We specify messaging protocols using an Abstract Choreography Description Language
(ACDL), which we introduce next. To ground our approach in public standards, we define a
mapping from ACDL to WS-CDL.

6.1 Abstract Choreography Description Language (ACDL)

Per the review in chapter 2, WS-CDL is the leading CDL. However, to avoid distractions
introduced by the verbose XML syntax of WS-CDL, we use an Abstract Choreography
Description Language (ACDL) to specify a messaging protocol. ACDL also serves the purpose
of an intermediary language to avoid direct dependence of our approach on any particular CDL.
Nevertheless, the semantics of ACDL constructs are consistent with WS-CDL, which makes
translating an ACDL specification to a skeletal WS-CDL specification straightforward. Similar
to WS-CDL, ACDL specifies choreographed activities and control flow between them. We use
the term “execution” to refer to progression of the interaction corresponding to an ACDL
specification in the same sense as choreography “life-line” (Kavantzas et al., 2005). The ACDL

grammar specifies nine types of activities (Figure 6.1), whose semantics are defined as follows:

1. Message: Specifies message sending from one role to another along with a literal
describing the message. Messaging is synchronous, that is a Message activity is only

completed when the message has been received.

2. Sequence: Specifies sequential composition of activities, where an activity within a
sequence may not start unless the preceding activity has completed. A “Sequence” activity

is completed when the last activity in the sequence is completed.
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. Parallel: Specifies parallel composition of activities where individual branches within a
“Parallel” may proceed concurrently. A “Parallel” activity is only completed when all

branches are completed.

. Repetition: Specifies conditional repetition where an activity is executed any number of

times as long as a Boolean condition holds.

Conditional: Specifies conditional branching where exactly one of two activities is

executed depending on the value of a Boolean condition.

Choice: Specifies choice between mutually exclusive activities at the discretion of one of

the roles. A Choice completes when exactly one of the enclosing activities completes.

. Assignment: Specifies assignment of a value to a Boolean variable. No explicit variable

declaration is required, a variable is declared on first use.
No Operation: Specifies an activity that does not do any work.

Failure: Designates a failure of an interaction to complete and states a reason.

Choreography > Activity

Activity > Message | Sequence | Parallel | Repetition
| Conditional | Choice | Assignment | Failure | No Operation

Message 2> R; Send MessageName To R,

Sequence > Sequence { Activity * }

Parallel > Parallel { Activity * }

Repetition > While Condition Activity

Conditional = If Condition Activity Else Activity

Choice = Choice { Activity * }

Assignment -> VariableName = Value

No Operation - Noop

Failure - Fail Reason

Figure 6.1 Grammar of Abstract Choreography Description Language
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6.2 Ordering Semantics of Tropos Models

The semantics of a CLG, implicitly and explicitly, impose constraints on ordering of
interaction events. A few publications have made observations about constraints embedded in a
Tropos model (Fuxman et al., 2004; Koliadis et al., 2006a; Mallya & Singh, 2006). However,
none of them provided a complete formalization of these constraints and how to extract them
from a Tropos model, a task that we undertake in this section. We extract ordering constraints
associated with all constructs of a CLG, namely: dependency, refinement, precedence, and
repetition. We express these constraints precisely in linear temporal logic and, where applicable,
state their implications on the binary relation P over interaction events (see section 4.3.2), and
illustrate them using the medical example. These constraints are central to deriving a messaging

protocol from a Tropos model.

6.2.1 Dependency

In reference to section 5.3 and Figure 5.3, an instance of the “Make Appointment” activity is
not fulfilled unless the associated “Appointment” dependency has been fulfilled, which in turn is
not fulfilled until a Doctor has completed the associated “Schedule Appointment”. In general, an
activity a. is not fulfilled until any dependency in which it is the depender has been fulfilled, and
in turn the dependency is not fulfilled until the dependee activity, B, has been fulfilled. That is,
fulfillment of B must precede fulfillment of D which in turn must precede fulfillment of a.:

V D (D.depender = o A D.dependee =) — (Fi(a) > OFi(D) A FiD) > OFi(B))
ie.
P(Bs, Ds) A P(Dr, ts) D
Formula (6-1) applies to both unidirectional and bidirectional dependencies. Additionally, for
a bidirectional dependency D, B requires data provided by o through the flow represented by an
instance of D. Hence, fulfillment of B may only occur after D has been created which in turn may

only be created after o has been created. That is, a Doctor cannot fulfill “Schedule Appointment”

until Patient has requested an appointment slot, via an instance of the “Appointment”
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dependency, which in turn is only created when a Patient starts executing “Make Appointment”.

In general:

V D (D.depender = a A D.dependee = § A BD(D)) —
(Cr(@)—>O0Cr(a)) A (FiB)>0Cr®))

ie.

P(Ocrs Der) A P(Der, ﬁﬁ) (6-2)

Per section 5.4.3 and Figure 5.6, fulfillment of an elementary electronic dependency D is
realized by receiving a designated fulfillment message. An “Appointment” dependency is
fulfilled when a Patient receives “Appointment Response” message. In general, the “response

received” event Dy, of the fulfillment message precedes the fulfillment of the dependency:

P(Drrs Dfi) (6'3)

Additionally, creation of a bidirectional elementary electronic dependency D is realized via a
designated request message. Creation of an instance of the “Appointment” dependency triggers
sending an “Appointment Request” message. In general, the creation event of D precedes the

“request sent” event Dy of the creation message. That is, for a BD(D):
P(Der, Dry) A 6-4)
The event graph in Figure 5.6 depicts the two pairs in (6-3) and (6-4).
Considering dependency dismissibility, as per section 5.2.2.4, any dependency D is either

fulfilled or dismissed. Also its creation condition should imply that the dismissibility condition is

not satisfied:
DiD) » G-FiD) A Cr(D)— —DiD) (6-5)
6.2.2 Refinement

AND Refinement: An activity o is AND-refined into sub-activities §; through B, if and only if

fulfiliment of all sub-activities is required for fulfillment of a. That is:
Fi(ot) <> Fi(B) A ... AFi(B) A ... AFi(B,) (6-6)
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Since o is not fulfilled until all sub-activities have been fulfilled, the fulfillment event of o

may not occur before that of the sub-activities. Hence, Vi: I <i<n:
Fi(e) = O Fi (B)

ie.

PBisi > on) 6-7)

Also, by definition (Fuxman et al., 2004), o gets instantiated before any of B;. That is, the

creation event of each 3; may only occur after that of a:
Cr(B) » O Cr(o)

ie.

P(oters Bi er) (6-8)

OR Refinement: An activity o is OR-refined into sub-activities ; through 3, if and only if
the fulfillment of any of the sub-activities leads to the fulfillment of o.. That is:

Fi(o) & Fi(B) v ... VFI(B) v ... v Fi(B,) 69

Fulfillment event of a. may not occur before at least one of the sub-activities has been
fulfilled. That is, for some i where I <i<n:
Fi(a)— O Fi (B) (6-10)
Similar to AND refinement, children of an OR-refined activity are only instantiated after
their parent has been instantiated, that is formula (6-8) also applies to OR-refinement.
6.2.3 Precedence

A Patient may not start to perform “Visit Doctor” unless they have obtained an appointment
by fulfilling “Make Appointment”, which is denoted by a precedence link from the latter activity
to the former. In general, an activity o must precede B if the fulfillment of a yields information

necessary for the creation of B, i.e. for B to be created o must have been fulfilled:
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Cr(B) » O Fi(o)

ie.

P(aﬂ’ BCI')
(6-11)
As a corollary, since P(Ber,Ps):

P(as, Ber) = P(as, Br) (6-11.a)

From 6.11.a, and given transitivity of activity precedence, for any three activities a, B, and :

P(ais, Ber) A PBiis YXer) = P(0sis Yor) (6-11.b)

The same semantics apply for dependency precedence. Precedence between dependencies D

and E means that E may not be created prior to the fulfillment of D:

Cr(E) - O Fi(D)
ie.
P(Dg, Eo,) ©-12)

Similar to formulas 6-11.a and 6-11.b, the two following corollaries apply for any three

dependencies E, D, and F:

P(Dﬁg Ecr) - P(Dﬁ, Efi) (6-12.3)

P(Dyg, Ec;) AP(Eg, F,) > P(Dg, Foy) (6-12.b)
6.2.4 Repetition

We propose a formalization of repetition whose semantics are such that: multiple instances of
a repeating activity oo may be instantiated in the course of an instance of an interaction, but at
most one instance of o exists in any state of the interaction instance. Assume that “Make
Appointment” is repeating, i.e. a Patient may need to attempt to execute the activity multiple
times until they obtain an appointment. A Patient will not start executing an instance of the

activity until they determine that a currently executing instance has failed to obtain an
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appointment. In general, in any interaction instance, for a repeating activity o, a yet-to-be-
created instance o+ is never created until it is determined that the currently existing instance o;
will never be fulfilled. Recalling that the temporal logic operator ‘G’ means “never” and the

operator ‘F’ means “eventually”, the relation between instances of a. is expressed as:
G Fi(a) © F Cr(a,+) (6-13)

Additionally, once a Patient has succeeded in completing an instance of “Make
" Appointment”, they will not perform another instance of the activity in the same instance of the
interaction. In general, the fulfillment of o; means that no further instances of o will be created

in the same interaction instance:
Fi(a,) - G Cr (G.H 1) (6-14)

Specification of repetition propagates through links in a Tropos model. Each instantiation of
“Make Appointment” requires a corresponding instantiation of an instance of child activities
“Send Request” and “Receive Response” (Figure 5.5) to send a request message and receive a
response, respectively. In general, for two activities a and B, where a is parent of 3, and the

predicate Many() designating repetition as specified in section 5.2.3:

Many(a) — Many(B) (6-15)

To fulfill an instance of “Make Appointment” an instance of the “Appointment” dependency
must be created, so for every instantiation of the former an instance of the latter is also created,
from formula (6-2). Thus, the specification of repetition for an activity carries over to any

bidirectional dependencies in which it is the depender. That is
VD ((D.depender =0) ABD(D)) —  Many(a) < Many(D) (6-16)
Similarly, to fulfill an instance of “Appointment” a Doctor must instantiate an instance of
“Schedule Appointment”, so for every instantiation of the former an instance of the latter is also

created. Thus the specification of repetition for any dependency carries over to its dependee

activity. That is, for any dependency D:

VD (D.dependee=f) — Many(D) — Many(B) (6-17)
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6.3 Generating Messaging Protocol from Tropos Models

By definition, an activity abstracts work performed, by a participant, whose completion leads
to fulfillment of the activity. In ACDL this is realized by enclosing work done by the activity in a
Sequence whose completion corresponds to activity fulfillment. We have also shown in chapter 5
how dependencies are realized using messaging. Combining these two results with the ordering
semantics detailed in the previous section enables us to develop a technique for automatically

generating ACDL that realizes a Tropos model.

6.3.1 Constraint-Preserving Transformation of Tropos Models

We develop a transform TroposToACDL() that operates on a Tropos model and generates an
ACDL messaging protocol compliant with constraints embodied in the model. When applied to a
model fragment, TroposToACDL() produces an ACDL block whose execution coincides with
the lifecycle of the fragment. To prove the correctness of the transform, we establish a mapping
from interaction events, i.e. creation, fulfillment, and message sending events, implied by a
Tropos model fragment to execution points in an ACDL block (i.e. beginning and end of ACDL
activities). We demonstrate that any execution of the ACDL fragment respects ordering
constraints embedded in the corresponding Tropos model fragment as well as the semantics of
Tropos constructs, thereby proving that the ACDL fragment is a valid realization of the Tropos
model fragment. Figure 6.2 depicts the application of the transform to Tropos diagram
fragments. For each Tropos model fragment, we construct a corresponding event graph that
captures all interaction events implied by the fragment as well as all ordering constraints between
them, as formalized in section 6.2., dashed lines establish a mapping between interaction events
and execution points in the corresponding ACDL fragment. In reference to the figure we

demonstrate the correctness of the transform:

Activity: A Tropos activity a is realized by a Sequence block that matches its lifecycle. Creation
of an instance of o corresponds to entering the Sequence block and its fulfillment corresponds to
setting a variable denoting its fulfillment. Strict sequential execution of activities within a

Sequence guarantee that all work done by o is done only after its instantiation (i.e. after entering
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the Sequence) and completed prior to its fulfillment, i.e. prior to executing last activity in the

sequence which sets the fulfillment variable. Work done by a includes sending and receiving

messages as well as other non-messaging work.
TroposToACDL(Model Fragment)

Tropos Model Fragment

Activity /acr

\) Qlfjvmvmmcmmemememmens o.fulfilled = true
}

Sequence {

Sequence {
Perform work embodied by a

Unidirectional Dependency
-
Ber =omemomrmimemeimims
TroposToACDL(B)

[
If (B fulfilled)

\—
& e
# 0\\-«»—/& < . \
; o : 5 / \' ) \ Sequence {
L ’ H 2 —rmimcm i mim i rm
. s * g 1,»” C Drr Role, Send D-Response To Role;
(’ """""""""""""" D.fulfilled = true
‘ }

Y
3
3

1
Sequence {

Noop

Bidirectional Dependency
Role; Send D-Request To Role,

/
lil
/
H
. ' !\
. * BD ’/ \‘ \

_TroposToACDL(D as Unidirectional)

(COHH)
If (D.fulfilled)
o.fulfilled = true
}
AND Refinement Ker =rmememrmemrmimiminins Sequence {
: \ Parallel {
Olgrerermrmrmemememimimnee

\ TroposToACDL(a)

o —
KiBeremmoeme
T TroposToACDL(B)

é& / )
I —— y.-fulfilled = true
} :
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OR Refinement

Yo = mememmemememimemans Sequence {
“*\\ Choice {
<> \ oo, TropOSTOACDL(0)
KB
/ B TroposToACDL(B)
 eimmemmem s
° “ At least one \f\‘{{/ }
v
D T — x-fulfilled = true
}
Precedence Sequence {
TroposToACDL(a)
/aﬁ ......................
@ ............. ,@ C If (o fulfilled)
M TroposToACDL(B)
}
Repetition
. While (NOT a fulfilled) {
[0 F
l.oo
@ TroposToACDL(a)

Qj fimemrmemrmemsmemememeee

Figure 6.2 Transforming Tropos Diagrams into ACDL Messaging Protocol

Unidirectional Dependency: Fulfillment of the dependency D, from the point of view of the
depender, is recorded by setting a corresponding fulfillment variable. Nesting the activity that
sets the variable within the inner Sequence guarantees that D is only fulfilled after the fulfillment
response message has been sent by dependee and received by the depender (recall that messaging
is synchronous), which is consistent with formula (6-3). The outer Sequence along with the If
conditional guarantee that message sending and dependency fulfillment may only occur after B
has been fulfilled, which is consistent with the constraint P(Bs, D) as specified by formula (6-1).
Note that no messaging events correspond to the instantiation of a unidirectional dependency,

consistent with the discussion in section 5.2.1.

Bidirectional Dependency: Instantiation of activity o corresponds to the start of the Sequence

block and its fulfillment corresponds to the assignment of a fulfillment variable. Having creation
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of D correspond to a Noop after the beginning of the Sequence guarantees that the creation of a
precedes that of D, consistent with formula (6-2). Also, having the Noop precede sending of the
request message is consistent with formula (6-4). Recall that a bidirectional dependency
comprises a response part (like a unidirectional dependency) as well as a request part. An ACDL
block corresponding to the unidirectional portion of D (i.e. the response part) is added after the
request message, which guarantees that the request message precedes the response message, as
well as other ordering constraints already guaranteed by the nested block. Finally, following that
by the assignment of the fulfillment variable of o guarantees that the fulfillment of D precedes
that of o, consistent with (6-1).

AND Refinement: Instantiation of % corresponds to the start of the Sequence block. Since the
beginning of a “Sequence” must be executed before any nested activity, nesting the
TroposToOACDL() fragment for activities o and P inside an ACDL activity within the
“Sequence” guarantees that the creation of y, precedes creation of both o and B, consistent with
formula (6-8). The fulfillment event of y corresponds to setting a corresponding fulfillment
variable. The nested Parallel must have completed before the variable is set, which guarantees
that the fulfillment of both o and B must occur before that of , consistent with formula (6-7).
By nesting the blocks of o and B in a “Parallel”, they may execute concurrently, consistent with
the semantics of “AND” refinement. Since, the “Parallel” block does not complete execution
until both activities have completed 7 is not fulfilled until both o and B have been fulfilled,

consistent with formula (6-6).

OR Refinement: Similar to AND-refinement, instantiation of y corresponds to the start of the
Sequence block which guarantees that the creation of y precedes creation of both a and § nested
within, consistent with formula (6-8). The fulfillment event of y maps to setting a corresponding
fulfillment variable. The nested Choice must have completed before the variable is set, which
guarantees that the fulfillment of at least one of o and  must occur prior to that of i, consistent

with formula (6-9). Since, the “Choice” block does not complete execution until at least one of
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the enclosed activities have completed, y is not-fulfilled until either o or B has been fulfilled,

consistent with formula (6-10).

Precedence: An ACDL Sequence guarantees that an enclosed activity is not executed until the
preceding activity has completed. Preceding the block for B with the block for o and guarding

with the If guarantees that creation of B occurs only after a has been fulfilled, consistent with
formula (6-11).

Repetition: Recall that an activity nested in a While construct may execute multiple times. A
repeating activity is realized by a While block, where each execution of the ACDL activity
within the While construct corresponds to the lifecycle of an instance of a. Since only one
execution of the activity nested within the While is in progress at a time, an execution of the
nested ACDL instance corresponding to an instance of a does not start except if the previous
one, if any, has completed and failed to fulfill o, consistent with formula (6-13). Once a has
been fulfilled, the While block exits and no more execution of the nested activity will occur, thus
no more instances of a will be created, consistent with formula (6-14). Since prior to the While

block a has not been executed, a is initially not fulfilled, so the While block is guaranteed to

execute at least once.

6.3.2 Traversing a Tropos Model Graph

- A CLG can be expressed as a labeled graph where the nodes are activities and dependencies
while the edges are links between them. Recursive application of the transform to diagram
fragments as in Figure 6.2 implicitly defines a traversal of this graph. The traversal serves to
compose generated protocol fragments into a messaging protocol that realizes a CLG. Consider
an example application of the transform to an activity “A” involving outgoing dependency (i.e. a
dependency in which “A” is the depender), AND-refinement, incoming dependency (i.e. a
dependency in which “A” is the dependee), and precedence in Figure 6.3. As in Figure 6.2, we
create an event graph for the depicted CLG, associate interaction events with execution points in

the corresponding ACDL, and annotate the ACDL with the interaction events.
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Role; Send D2-Request To Role,
) TroposToACDL(D2 as unidirectional)
""" If (D2 fulfilled) {
Sequence {
TroposToACDL(AND-refinement of A into C1 and C2)

If (Afulfilled) {

‘\‘ Parallel {
‘ >Foroormme TroposToACDL(F)

Sequence {
Role; Send D1-Response To Roles
»>D1g-mrmreraeees D1.fulfilled = true

Figure 6.3 Traversing a CLG to generate ACDL

This example demonstrates that the composition of ACDL fragments can be automated.

Consider events required for fulfillment of activity A and events that depend on its fulfillment:

1. Events required for Ag: For activity A to be fulfilled, all its child activities as well as the
dependency D2 must have been fulfilled. This requires composition of the “Bidirectional
Dependency” and “AND Refinement” fragmenté from Figure 6.2. This is accomplished
by nesting the “AND Refinement” transform of A into C1 and C2 inside the Sequence that
follows the fulfillment of D2, as per the “Bidirectional Dependency” transform.

2. Events that require Ag: Fulfillment of A is required for the fulfillment of the dependency
D1 as well as for the activity F. According to the “Unidirectional Dependency” fragment
and the “Precedence” fragment this is accomplished by conditioning the D1-Response
Sequence and the execution of F on the fulfillment of A, respectively. This is manifested
by nesting both the D1-Response Sequence and the execution of F in a Parallel that is
conditioned on the fulfillment of A.

The correctness of the generated ACDL can be argued in the same manner as was done for the
constituent fragments, i.e. by demonstrating that the execution of the generated ACDL enforces

the ordering constraints between the interaction events. For example:
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e Creation of activity A precedes creation of bidirectional dependency D2 as well as
sending of the D2-request message by virtue of enclosing the latter within the

Sequence corresponding to A.

e Activity A is only fulfilled when both D2 has been fulfilled and all its sub-activities
have been fulfilled, by virtue of enclosing the response part of D2 within the outer

Sequence as well as enclosing the refinement into C1 and C2 in the middle Sequence.

e Precedence between A and F is realized by enclosing the block for F inside the middle
Sequence after A has been fulfilled.

e Similarly, D1 is not fulfilled except after A has been fulfilled by virtue of enclosing in

a nested Sequence within the middle Sequence.

We implemented an automated tool that traverses a Tropos model graph and generates an
ACDL protocol that realizes the model. Our tool composes ACDL fragments that realize Tropos
model fragments while attempting to exploit parallelism in a Tropos model. For example,
execution of activity F and sending of fulfillment response of dependency D1 are allowed to
execute concurrently by enclosing them in a “Parallel”. The tool is publicly available for

download at http://www.sourceforge.net/projects/chreq.

A choreographed interaction starts when an “initiator” activity starts executing (Ross-Talbot
& Fletcher, 2006). For example, in the medical interaction, “Get Authorized” is the initiator
activity. To generate an ACDL protocol from a CLG diagram, we apply our transform to the

initiator activity. Two issues arise with traversal of the CLG graph:
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Parallel {
Sequence {
Parallel {
"TroposToACDL(A1)
TroposToACDL(A2)

S, )
Ay C1.fuffilled = true
. }
~ Sequence {
P Parallel {
{ TroposToACDL(A3)
TroposToACDL(A4)
" }
C2fulfilled = true

}
While —(A2.fulfilled A A4 fulfilled)
NOOP
TroposToACDL(B)
}

Figure 6.4 Example of converting Tropos diagram graph into ACDL tree

1. An ACDL specification is strictly a tree, whereas a Tropos diagram is generally a graph.
Thus, the traversal algorithm is tasked with converting a graph into a tree. Where it is not
possible to represent a graph edge as a tree edge, alternate forms of the transform are
employed. Problematic edges of the graph are represented instead as ACDL conditions. A

notable example is an activity with two incoming precedence links as in Figure 6.4.

2. Combining the local models of participants may yield an interaction that cannot be
realized as a messaging protocol (Kazhamiakin & Pistore, 2006). The resulting combined
model may exhibit deadlocks, e.g. in the form of cyclical dependencies. A form of
topological sort (Cormen et al., 2002) is utilized to ensure that any node is only processed
when all its prerequisites have been processed. By using topological sort such anomalies

are detected and reported by our tool.

6.4 From ACDL to WS-CDL

To ground our approach in service-oriented standards, we provide a path for generating a
skeletal WS-CDL description from an ACDL protocol. Following the XML syntax of WS-CDL
(Kavantzas et al., 2005), a WS-CDL description is composed of three main parts:

e Package-level definitions: which are meta-level definitions for interacting role types,

relationship types between them, and structure of messages they exchange.
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e Choreography-level definitions: which are instance-level definitions of variable and

relationships between instances of role types.

e Messaging Specification: specifies valid messaging sequences for the choreographed

interaction between role instances.

6.4.1 Generating WS-CDL Package-Level Definitions
Package-level definitions in WS-CDL are all optional elements. However, to generate a

meaningful and useful choreography, we need to generate at least three elements:

1. Role Types: Choreographed role types correspond directly to roles on either end of ACDL
“Send” activities. Hence, we generate a “roleType” element for every role in an ACDL
“Send” activity, eliminating duplicates. Each role type must have at least one “behavior”

element, one such element is generated for each role to aggregate its observable behavior.

2. Relationship Types: A relationship type specifies that a pair of roles exchange messages.
By examining all “Send” activities, we enumerate pairs of roles that exchange messages.

For every unordered pair of roles, a “relationshipType” element is generated.

3. Information Types: Data types define the structure of message contents. An
“informationType” element is generated for every type of message in an ACDL protocol,

and is named after the message type.

6.4.2 Generating WS-CDL Choreography-Level Definitions
To obtain a WS-CDL “choreography” element, we generate the required elements:

1. Relationships: For every relationship type defined at the package level, a “relationship”

element that instantiates the corresponding type.
2. Variables: a “variableDefinitions” element that defines two types of variables:
a. Variables that instantiate each message in the “informationType” element.

b. For every CLG activity, a Boolean variable that denotes its fulfillment.
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6.4.3 Generating WS-CDL Messaging Specification

To generate a WS-CDL messaging specification from ACDL we define a transform

AcdlToWSCDL() that maps ACDL control flow and messaging constructs into equivalent WS-

CDL constructs (Table 6.1).

“Parallel”, “Sequence”, and “Choice” constructs are trivially

translated into corresponding WS-CDL constructs. For conditional activities and iteration, a WS-

CDL “workunit” is constructed using the condition of the ACDL construct. Finally, an ACDL

“Send” is translated into WS-CDL primitive activity, an “interaction”.

Table 6.1 Transforming ACDL constructs to WS-CDL constructs

ACDL Construct

AcdIToWSCDL Applied to ACDL Construct

Sequence Activity*

<sequence> AcdIToWSCDL(Activity*) </sequence>

Parallel Activity*

<parallel> AcdlToWSCDL(Activity*) </parallel>

While Condition Activity

<workunit guard="“XPath-equivalent of Condition”
repeat="XPath-equivalent of ‘Condition””
block=“true”>
AcdlToWSCDL(Activity)
</worKkunit>

If Condition Activity, Else Activity,

<workunit guard="XPath-equivalent of Condition” >
AcdlToWSCDL(Activity)

</workunit>

<workunit guard="“XPath-equivalent of negated Condition” >
AcdlToWSCDL(Activity,)

</workunit>

R, Send Message To R,

<interaction name="“Descriptive name for interaction”>
<participate '
relationshipType=“WS-CDL relation between R; and R,”
fromRoleTypeRef=“WS-CDL role for R;”
toRoleTypeRef=“WS-CDL role for R,”>
<exchange
name="Descriptive name for exchange”
informationType=“type of ‘Message’”
action="Direction of ‘Send’”>
<send variable=“variable for ‘Message’”’/>
<receive variable="“variable for ‘Message’”’/>
</exchange>
<interaction>

106



6.4.4 Example Generation of WS-CDL from ACDL-

To demonstrate the generation of WS-CDL from ACDL, we apply AcdlToWSCDL()
transform to the following ACDL fragment to WS-CDL:

Patient Send Appointment Request To Doctor
Doctor Send Appointment Response To Patient

The resulting WS-CDL is shown in Figure 6.5.

Package-level
A

Choreography
level

Messaging Specification
A

<package name="PatientDoctorChoreography">

<informationType name="AppointmentRequestType"/>
<informationType name="AppointmentResponseType"/>

<roleType name="Doctor">

<behavior name="DoctorForPatient"/>
</roleType>
<roleType name="Patient">

<behavior name="PatientOfDoctor"/>
</roleType>

<relationshipType name="PatientDoctorRelationship">
<roleType typeRef="tns:Doctor" behavior="tns:DoctorForPatient"/>
<roleType typeRef="tns:Patient" behavior="tns:"PatientOfDoctor"/>
</relationshipType>

<choreography name="PatientDoctorChoreography">
<relationship type="tns:PatientDoctorRelationship"/>

<variableDefinitions>
<variable name="AppointmentRequest" informationType="tns:AppointmentRequestType"/>
<variable name="AppointmentResponse" informationType="tns:AppointmentResponseType"/>
</variableDefinitions>

<sequence>
<interaction name"GetAppointment">
<participate relationshipType="tns:PatientDoctorRelationship"
fromRoleTypeRef="tns:Patient" toRoleTypeRef="tns:Doctor"/>
<exchange name="request" informationType="tns:AppointmentRequestType" action="request">
<send variable=cdl:getVariable('tns:appointmentRequest,",")"/>
<receive variable=cdl:getVariable('tns:appointmentRequest',",")"/>
</exchange>
</interaction>
<interaction name"GetAppointment">
<participate relationshipType="tns:PatientDoctorRelationship"
fromRoleTypeRef="tns:Patient" toRoleTypeRef="tns:Doctor"/>
<exchange name="response" informationType="tns:AppointmentResponseType" action="respond">
<send variable=cdl:getVariable('tns:appointmentResponse',",")"/>
<receive variable=cdl:getVariable('tns:appointmentResponse’,",")"/>
</exchange>
</interaction>
</sequence>

</choreography>
</package>

Figure 6.5 WS-CDL Generated from example ACDL snippet
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The verbosity of the resulting WS-CDL justifies using ACDL to present our work. Moreover,
the WS-CDL document is just a skeleton which needs to be augmented by adding further design

details. In particular, the following information is omitted from the document:

e Data type structure describing fields of each message.

e Message correlation tokens.

e References to service interfaces, e.g. operations declared in WSDL documents.
e XML Namespace declarations (Bray et al., 2009).

6.5 Chapter Summary

This chapter elaborated on our technique for systematic derivation of choreographed
messaging specification from Tropos models. To facilitate the derivation, we explicated ordering
semantics embedded in Tropos models. We devised a transform that operates on a Tropos model
to generate a messaging specification consistent with constraints captured in the model. Our
implementation of the transform traverses a Tropos model and generates a messaging protocol in
an Abstract CDL (ACDL). We demonstrated how skeletal choreography description in standard
CDLs, such as WS-CDL, can be generated from ACDL. Deriving choreographed messaging
from requirements models is central to our approach to adaptation. It enables us to perform

adaptations at the level of requirements models, which we detail in the next chapter.
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Chapter 7. Guidance for Disciplined Choreography Adaptation

This chapter reports on the third contribution of this thesis: providing guidance for disciplined
adaptation of a choreographed interaction specification. Prior to presenting our adaptation
framework, we detail the needs that any such framework should address. Next, we outline a
metamodel which we employ to guarantee that adaptation of a CLG produces a structurally valid
specification of an interaction. We build a catalogue of operations for adapting the global and
local views of a CLG and propagating changes systematically between them. The catalogue
provides fine-grained guidance on adapting elements of a CLG, navigating the space of
adaptation alternatives, and producing a set of consistent views. Finally, we weave these
techniques into a process flow that guides forging an agreement between stakeholders on an

adapted interaction specification.

7.1 Characteristics of an Interaction Adaptation Framework

From the discussion in sections 2.4 and 3.4, a framework for adapting a choreographed
interaction specification has to address the needs of several stakeholders each with a different
view on the interaction. First and foremost, an adaptation framework must maintain the structural
and semantic validity of the global and local views. Additionally, the framework must keep
views consistent, by propagating changes between them. By maintaining consistency between
views the framework enables stakeholders to reach an agreement on an adapted specification.

We elaborate these needs and what is entailed in satisfying each of them.

7.1.1 Adaptation of a Local View

Adaptation of a local view must yield a valid model that complies with structural and
semantic constraints on activities, their refinement, precedence, and lifecycle conditions. For
each type of change to a local view, guidance is required to ensure that adaptation produces a

valid view. The space of alternatives for performing a certain adaptation may be large. Searching
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this space for an adaptation that achieves participant’s business goals would benefit from

guidance on enumerating alternatives.

7.1.2 Adaptation of the Global View

Adaptation of the global view must yield a valid model that complies with structural and
semantic constraints on dependencies, their precedence, and lifecycle conditions. Similar to local
view adaptation, for each type of change to the global view, guidance is required to ensure that
adaptation produces a valid view. Also similarly, adaptation of the global view benefits from

guidance on searching the space of adaptation alternatives.

7.1.3 Change Propagation from a Local View to the Global View

Activities in a local view may delegate responsibility via dependencies to other participants.
This linkage implies that adaptation of a local view, e.g. adding activities, may impact the global
view. Additionally, per section 6.2, adapting constraints on activity execution may impact
lifecycle conditions of related dependencies. To keep the specification of observable behavior of
a participant consistent with that of their internal execution, it is necessary to propagate changes
from their local view to the global view. Therefore, for every type of change in a local view,

guidance is required on determining impact of the change on the global view.

7.1.4 Change Propagation form the Global View to a Local View

Change propagation between local views and the global view is bidirectional; changes to the
global view may impact local views. Changes in dependencies, their precedence, and lifecycle
conditions may impact activities in one or more local views. To keep the specification of internal
participant behavior consistent with the specification of observable behavior, it is necessary to
propagate changes from the global view to local views. Therefore, for every type of change in

the global view guidahce is required on determining impact of the change on each local view.

7.1.5 Agreement on Interaction Specification

By supporting bidirectional change propagation, from the global view to local views and vice

versa, an adaptation framework helps maintain a set of local views consistent with the global
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view that ties them together. A global view consistent with a set of local views constitutes a valid
interaction specification and designates agreement between stakeholders. An adaptation
framework should steer stakeholders towards forging such an agreement. Guidance is required
for determining whether such an agreement is possible and also for determining when an

agreement is reached.

7.2 Overview of Our Interaction Adaptation Framework

Having outlined the needs that any framework for interaction adaptation has to satisfy, we
outline how our proposed framework satisfies these needs. Our adaptation framework guarantees
the validity of an adapted interaction specification by employing a metamodel that constrains the
structure of valid models. Based on the metamodel, we build a catalogue of operations for
adapting the global and local views of an interaction specification. We outline these operations
as well as operations for change propagation between views. The metamodel and the operations

guide the obtainment of a valid interaction specification composed of a consistent set of views.

7.2.1 Metamodel for Interaction Specification

To ensure structural validity of an interaction specification, we need to detail constraints that
govern the structure of a valid CLG model. The Tropos metamodel (Giunchiglia et al., 2002)
does not fully support capturing the structure of a CLG diagram, which was introduced later
(Fuxman et al., 2004), neither do extensions of the Tropos metamodel (Susi et al., 2005). In
particular, although the original metamodel supports the specification of depender and dependee
roles in a dependency, it does not allow the specification of depender and dependee activities at
each end. We thus put forward a metamodel that captures structural constraints governing CLG
models (Figure 7.1). Using the UML metamodel syntax (Booch et al., 1999), each model
element is represented as a box with relations between them, as well as cardinality of the
relations, specified on connecting lines. A model is said to be structurally valid if it conforms to
constraints captured in the metamodel. For instance, the metamodel stipulates that a creation and
a fulfillment condition must be specified for any activity and that an activity is assigned to

exactly one role. Elements of the metamodel are annotated with semantic constraints, in OCL
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Figure 7.1 Metamodel for interaction specification

(OMG-OCL, 2010), to further constrain the structure of a valid model. For example, a valid
refinement of an activity requires that the parent and children activities belong to the local view

of the same role and that a parent may not be the child of itself.

Although metamodel conformance is necessary for a structurally valid model, it is not
sufficient for a meaningful one. A meaningful specification must be deadlock-free, i.e. it must
yield a cycle-free interaction event graph. In a complex model, a pan-view cycle involving a
combination of precedence links, dependencies, as well as refinement links may crop up. Our
automated tool, introduced in section 6.3.2, supports checking of the validity of a CLG model
and detecting cycles, thereby assisting with the adaptation process. More subtly, the constraints
~ formalized in chapter 6 which bestow meaning on model elements must hold in any meaningful
specification. For example, fulfillment conditions of child activities must be consistent with
fulfillment condition of their parent, as specified in section 6.2.2. Our catalogue of adaptation
operations guides the preservation of these semantic invariants throughout the adaptation

process.
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7.2.2 Catalogue of Operations for Adaptation and Change Propagation

Adaptation of a CLG model is achieved by performing “adaptation operations”. An adaptation
operation involves adding/removing an element to/from a Tropos model (Krishna et al., 2004).
By capturing model elements and their relations, the metamodel allows us to enumerate potential
adaptation operations. We construct a catalogue of operations (Figure 7.2) to guide step-by-step

adaptation of an interaction specification and guarantee the validity of the outcome.

7.4.1. Propagate Changes to Global View
- Propagate Adaptation of Activities ™~
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N Propagate Adaptation of Dependency Lifecycle /

7.4.2. Propagate Changes to Local View

Figure 7.2 Catalogue of Adaptation Operations and Change Propagation Operations
The catalog is not merely a listing of operations as it helps:

e Associate a business meaning with each operation. For example, adapting the creation

condition of a dependency constrains the depender’s ability to request its fulfillment.

e Enumerate options for achieving what is intended from each operation. For instance,
an operation whose intention is to ensure that “the execution of one activity completes
before another activity starts” can be performed either by adding a direct precedence
link from the first activity to the second or alternatively via indirect means. To ease
the navigation of the space of alternative ways for performing an operation, where

applicable, the catalogue guides the enumeration of alternatives.
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e List structural constraints that govern an operation and means to maintain
conformance of a model being adapted to the Tropos metamodel. For instance, to add

an activity, a fulfillment condition and creation condition must also be specified.

e Specify which semantic invariants (from section 6.2) are perturbed by each operation
and means to maintain satisfaction of these invariants. For instance, consistency of the
fulfillment conditions of child activities with that of their parent may be affected by
adapting the latter.

e Suggest further operations to propagate changes and restore consistency to the
interaction specification. For instance, adding precedence between dependencies (i.e.
in the global view) may require adapting the lifecycle conditions of associated

activities in a manner described by the catalog.

The last point is central to guiding orderly progression of the adaptation process. We employ
links in the metamodel as well as semantic invariants to drive consideration of further changes
that follow an adaptation operation, whether in the same view or another view. On the one hand,
adding an activity requires specifying its lifecycle conditions, and may also entail refining it into
other activities in the same local view. On the other hand, adding an activity to a local view may
also involve linking it to new or existing dependencies in the global view. Guidance on the
progression of the adaptation process is represented by the arrows in Figure 7.2 and is backed by

cross-referencing between operations in the catalog as detailed in sections 7.3 and 7.4.

The next section 7.3 catalogues the adaptation operations for the global and local view, and
section 7.4 catalogues operations for guiding change propagation between views. We illustrate
the guidance provided by the operations using the medical example introduced in section 2.2.2,
as well as suggested adaptation thereof. Recall that an MP needed to ensure that they cover
treatment expenses only for eligible patients. To achieve this need an MP requires a Doctor to
collect a Patient’s Medical Plan ID (MPID) and provide it to the MP to check its validity.
Dependencies, activities, and links used to incorporate this need into the CLG of the medical

example are depicted in Figure 7.3, as well as their relations to elements in the original CLG.
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Figure 7.3 Example adaptation of the medical example CLG to verify Patient eligibility
7.3 Guiding Adaptation Operations of Interaction Specification

Using the metamodel we catalogue adaptation operations of each view of an interaction
specification. Adaptation operations of local views manipulate activities, their refinement,
precedence, and their lifecycle conditions whereas those of the global view manipulate
dependencies, their precedence, and conditions. Structural constraints imposed by the metamodel
dictate what elements must be manipulated by each operation. Further to the structural guidance
inferred from the metamodel, we provide finer-grained guidance for each operation in order to
preserve semantic invariants. Where relevant, we also employ those semantics to guide the

enumeration of alternative ways of performing each operation.

7.3.1 Guiding Adaptation Operations of the Global View
7.3.1.1 Adapt Dependencies

Adapting dependencies involves adding or removing a dependency. Adding a dependency

requires specifying:

e A depender role, which needs the fulfillment of the dependency, and a dependee role, to
which the fulfillment responsibility is delegated.

e Identifying a depender activity and a dependee activity (sections 7.4.2.1 and 7.3.2.1).

115



e Creation conditions, which are satisfied when the depender desires the fulfillment of the
dependency, and fulfillment conditions, which are satisfied when the dependee has

fulfilled the delegated responsibility (section 7.3.1.3).
e Whether the dependency is physical or electronic.

e Whether the dependency is bidirectional. A dependency is bidirectional if the dependee

cannot fulfill their responsibility unless the depender has supplied some information.
¢ Dismissibility condition and repetition, if any (section 7.3.1.3).

Assume the need to protect an MP from abuse of treatment coverage by a Patient, introduced
in section 2.4, is realized by requiring a Doctor to request verification of Patient MPID from an
MP prior to billing. This realization involves delegation of “Verification” responsibility from a
Doctor to an MP, via a dependency in which Doctor is depender and MP is dependee. Having
identified the depender and dependee, the choice of the depender and dependee activities is a
concern of the local views and is thus left to the depender and dependee roles to decide,
respectively. The “Verification” dependency requires that a Doctor provides an MPID to be
verified to an MP, and is thus annotated as bidirectional. Assuming that the verification is to

occur via messaging, the dependency is marked as being electronic.

Removing a dependency from a CLG requires removing its links to the depender and
dependee activities as well as removing all precedence links, incoming and outgoing. Incoming
and outgoing precedence links of a dependency D may contribute to establishing a transitive
precedence relation between other dependencies. That is if a dependency E precedes D and also
D precedes F, then E transitively precedes F. Removing D and its precedence links requires
adding a precedence link between E and F to maintain their precedence relation (Figure 7.4), as

well as potentially other adaptation to precedence, as discussed in the next section.

added pragedence link
Remove D and its links I Ml l ﬁ ] >[$_|
I E |)I D |)rF | Preserve P(Ey, F.) by adding precedence from E'to F E X} A >< F

Figure 7.4 Preserving precedence after removing a dependency
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7.3.1.2 Adapt Dependency Precedence -

~ Contextual constraints may dictate an order in which roles are required to fulfill their
responsibilities towards each other. Dependency precedence helps capture these constraints by
specifying a partial order over interaction events, from a global point of view. A precedence
relation between two dependencies D and E specifies that creation of E must not occur prior to
fulfillment of D. Precedence between two dependencies can be established either directly or
transitively. In its direct form, a precedence relation between D and E can be established by
adding a precedence link from D to E. Alternatively, per formula (6-12) and its two corollaries,
precedence between D and E may be specified by adding a precedence link from D to any
dependency F that, either directly or transitively, precedes E (Figure 7.5). The set from which F

is chosen is enumerated by identifying all dependencies satisfying P(Fg, E.;).

Addi d fi DtoE
(0] [E1-[E] -—empmsesinon (B 1->{F1[E]

Figure 7.5 Adding precedence between two dependencies transitively via a third dependency

Consider the need to specify that a Patient is required to obtain an “Authorization” prior to
attempting to fulfill “Appear for Exam” dependency. Although this constraint is enforced
indirectly via precedence links in local models, it can be captured in the global model by adding
a direct precedence link from the “Authorization” dependency to the “Appear for Exam”
dependency. Alternatively, since “Authorization” already precedes “Appointment”, adding a
precedence link from “Appointment” to “Appear for Exam” establishes transitive precedence

from “Authorization” to “Appear for Exam”.

Conversely, eliminating a precedence link from D to E eliminates all direct and transitive
precedence implied by this link. Assume that E precedes a third dependency F, thereby
establishing transitive precedence from D to F. In case it is desired to maintain precedence from
D to F after removal of precedence between D and E, a new precedence relation between D and

F has to be established in the manner described above (Figure 7.6).

added precedence Ilnk

R d fi DtoE
| D |)|7E |)| F | Prese:'-)vr:e]cl’i‘v(tle)?,rl‘:;(:)5 be;na?:jedirnog".l prec%dence’ | D l><>“'| E |)| F I
link fromDto F

Figure 7.6 Preserving transitive precedence after removing a precedence link
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Dependency precedence is a partial ordering relation, i.e. it does not allow precedence cycles.
To respect this invariant, any adaptation of dependency precedence must not create cycles, i.c.
must not yield a transitive precedence where a dependency D precedes itself, which yields an

invalid pair P(Dg, D).

7.3.1.3 Adapt Dependency Lifecycle

Adapting a dependency lifecycle condition involves adapting its creation, fulfillment, and/or
dismissibility conditions as well as its repetition. Guidance on these operations applies whether

they are performed separately or as part of adding a new dependency.

Creation: Recall from 4.3.1.1 that a dependency is instantiated at the point where the depender
activity starts desiring its fulfillment. Adapting the creation condition can thus be used to restrict
the behavior of the depender in a dependency. For example, assume that an MP is allowed to
suspend the medical plan for a Patient who violates its terms. Suspending the plan involves
temporarily disallowing a Patient to schedule appointments with any Doctor. This constraint can
be enforced by adapting the creation condition of the “Appointment” dependency to assert that

the Patient’s medical plan is active (i.e. not suspended).

Adapting a creation condition is also a way for specifying information that a depender must
provide for a bidirectional dependency to be instantiated. The creation condition is constructed in
a way that asserts the availability of this information. For the “Verification” dependency (Figure
7.3), a Doctor is required to provide to an MP the MPID to be verified. This constraint can be
incorporated directly, by adapting the creation condition of “Verification” to include the
“availability of an MPID” as a necessary condition, or indirectly via dependency precedence by
adding a precedence link from the “MPID” dependency to the “Verification” dependency,

following the guidance provided in section 7.3.1.2.

Fulfillment: Adapting the fulfillment condition of a dependency changes the responsibility that a
dependee has to fulfill. Recall from section 5.2.1 that dependency fulfillment is contingent upon
availability of required fulfillment information. The fulfillment condition of a dependency is

constructed such that it asserts that the fulfillment information has been made available by the
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dependee. For example, assume that a Doctor is to be required to provide a Confirmation
Number (CN) to the Patient whenever she schedules an appointment. This can be enforced by
adapting the fulfillment condition of the “Appointment” dependency to assert that the CN is
available. Since a dependency is only fulfilled when the dependee activity has been fulfilled,
from (6-1), the constraint can alternatively be enforced by adapting the fulfillment condition of
the dependee activity to assert the availability of the CN (sections 7.3.2.4 and 7.4.1.2).

Since a precedence relation relates the creation condition of any dependency to its fulfillment,
adaptation of the creation condition may affect the fulfillment condition. For instance, stipulating
that a Patient may not request an appointment unless they have an active medical plan (at the
time of the request) also implies that, to obtain an appointment, a Patient must have had an active
plan (i.e. When they requested an appointment). In general, if the creation condition of a
dependency implies that a condition @ held at some point in the past, the fulfillment condition
must also imply that @ held at some point in the past. That is: (Cr(D) — O ®) - (Fi(D)—> O ®),

and any adaptation of the creation or fulfillment conditions must satisfy this invariant.

Dismissibility: Recall, from section 5.2.2.4 that the dismissibility condition of a dependency
specifies circumstances under which a dependee is allowed to dismiss the dependency, i.e.
choose to not fulfill it. Adapting a dismissibility condition guards interests of a dependee against
a depender who instantiates a dependency in a situation where the creation condition is not
satisfied. For instance, to enforce that no payment is made prior to the verification of a Patient
MPID, an MP may stipulate that the “Payment” dependency will be dismissed if the Patient
MPID has not been verified. This privilege given to the dependee must not conflict with their
obligation to fulfill dependencies created when the creation condition indeed held. That is, any
adaptation of the dismissibility condition must satisfy the invariant specified by (6-5).
Conversely, any adaptation of creation or fulfillment conditions must satisfy the same invariant.
Making a dependency dismissible is typically coupled with annotating it as being repeating, to

allow the depender to re-attempt fulfilling the dependency.

Repetition: Recall from section 5.2.2.2 that for a repeating dependency to be fulfilled, multiple

instantiations of the dependency may be required in one instance of an interaction. Adapting a
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dependency to be repeating thus allows a depender to re-attempt fulfillment of a dependency if
one or more instances fail, typically due to dismissal by the dependee. For example, annotating
the “Appointment” dependency as being repeating allows a Patient to re-request an appointment
if one or more earlier requests were dismissed by a Doctor, e.g. due to unavailability of

appointment slots.

7.3.2 Guiding Adaptation Operations of Local View
7.3.2.1 Adapt Activities

Adapting activities involves either adding or removing an activity. An activity represents
work done by a participant as part of an interaction. To represent an additional task that a
participant is required to perform, an activity is added to their local view. For instance, to ask the
MP to verify an MPID, a Doctor adapts their local view by adding a “Request Verification”
activity. Adding an activity requires at least specifying conditions under which it may start
performing its work, i.e. its creation conditions, and criteria for completing the work, i.e. its

fulfillment conditions (section 7.3.2.4).

Removing an activity o involves removing all its precedence links. To preserve transitive
dependencies that a was part of, it may be necessary to add new precedence links (in the same
manner as described in section 7.3.1.1). If the intention of removal is to omit all work done by a.,
then all its child activities are also removed. Otherwise, activity refinement in the local view of o

needs rework, which may involve reattaching orphaned children of o to another parent (section

7.3.2.2).

7.3.2.2 Adapt Refinement

To improve modularity of a local view, newly added activities or newly orphaned activities,
i.e. those whose parent was removed, should be logically grouped under a parent, new or
existing. Refinement serves to group together activities that share the same creation condition
and collective fulfillment condition. For any two activities a and § where f is a sub-activity of .,

adaptation of activity AND/OR refinement must respect these invariants:
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e Both activities belong to the same local view.

e o must not be a sub-activity of 3, directly or transitively.

e [ must not be a sub-activity of any other activity.

¢ A necessary creation condition of a is also a necessary for creation of B (6-8).

AND-refinement: AND-refinement of an activity o breaks down work done by a into finer-
grained parts whose completion completes the work of a, i.e. completion of all the parts is
equivalent to completion of the whole. Any adaptation of AND refinement must preserve the
invariant specified by (6-6) where o is completed if and only if all its children have completed.
Consider the work that a Doctor has to perform to verify a Patient’s information. A Doctér has to
collect information from a Patient AND verify it with the MP. This work is represented by two
activities in the Doctor’s local view: “Obtain MPID”, whose fulfillment stipulates that Patient
MPID has been obtained, i.e. Available(Patient MPID), and “Request Verification”, whose
fulfillment stipulates that Patient information has been verified, i.e. Verified(Patient. MPID). For
modularity, both activities are made sub-activities of a new activity “Verify Patient Info” (Figure
7.3), whose fulfillment is the conjunction of the fulfillment conditions of the two sub-activities
i.e., Available(Patient. MPID) A Verified(Patient. MPID). This mbdularity allows the stipulation

of a new creation condition on both activities by adapting the creation condition of their parent,
from formula (6-8).

OR-refinement: In addition to the four invariants that apply to both types of refinement, any
adaptation to an OR-refinement must preserve an additional invariant. As OR-refinement
represents alternatives for performing the work done by an activity o, completion of any of the
sub-activities must lead to fulfillment of the parent, per (6-9). Thus, fulfillment condition of each
sub-activity of an OR-refined activity must imply fulfillment of its parent, as per (6-10).

7.3.2.3 Adapt Activity Precedence

Local business policies may dictate an order in which a participant performs their activities.
Activity precedence helps capture these constraints by specifying a partial order over interaction
events from a participant’s local point of view. A precedence relation between two activities o

and P specifies that f may not start executing unless o has completed. Precedence between two
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activities can be established either directly or transitively. Adding a precedence link from a. to
establishes a direct precedence between them. Alternatively, precedence between o and 8 can be
specified by adding a precedence link from o to any activity y that, either difectly or transitively,
precedes P (Figure 7.7). The set of activities to which y belongs is enumerated by identifying all
activities satisfying P(ys, Ber).

Set of y, satisfying e,

Before @7@ ----- 2 P(ts, Bo)
Adding precedence from o to
)@ transitively via an activity ¥, @

Figure 7.7 Adding precedence between two activities transitively via a third activity

Consider the Doctor’s need to specify that completion of “Verify Patient Info” must precede
“Collect Payment”. This need can be specified directly by adding a precedence between the two
activities, or transitively, by adding a precedence from “Verify Patient Info” to “Examine

Patient” which already precedes “Collect Payment”.

Conversely, eliminating a precedence link from a to B eliminates all direct and transitive
precedence implied by this link. Assume that 3 precedes a third activity y, thereby establishing
transitive precedence from a to 7. If it is desired to maintain precedence from o to y after

removal of precedence link from o to B, a new precedence relation between o and 7 has to be

established in the same manner as discussed above.

Activity precedence is a partial ordering relation, i.e. it does not allow cycles. To respect this

invariant, any adaptation of activity precedence must not create cycles, i.e. must not yield a

transitive precedence where an activity o precedes itself, which yields an invalid pair P(og, Or).

7.3.2.4 Adapt Activity Lifecycle

Adapting the lifecycle condition of an activity involves adapting its creation and fulfillment
conditions as well as its repetition. Guidance on these operations applies whether performed

separately or as part of adding a new activity.
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Creation: Recall from 4.3.1.1 an activity is instantiated at the point where a participant may start
performing it. Adapting the creation condition of an activity can thus be used to restrict the local
behavior of a participant to comply with some business policy. For example, creation condition
of “Examine Patient” may be adapted to require that Patient information must have been
verified, which obliges a Doctor to verify Patient information, with an MP, prior to examining a

Patient, i.e. Cr(Examine Patient) - O Verified(Patient. MPID).

Adapting the creation condition also serves to specify information required for an activity to
be instantiated. The creation condition has to be constructed to be true only when this
information is available, which can be specified directly by adapting its creation condition or,
alternatively, indirectly via precedence (section 7.3.2.3). The “Request Verification” activity
needs for its instantiation the Patient MPID to be verified. The availability of an MPID may be
specified directly in its creation condition: Cr(Request Verification) — Available(Patient. MPID),

or indirectly by adding a precedence link from the “Obtain MPID” activity to the “Request
Verification”, as in Figure 7.3.

Fulfillment: The fulfillment condition of an activity o is constructed such that it is true if and
only if a has completed its work, whether work is performed directly by a, its children, or
through delegation to another participant. For instance, the fulfillment condition of the Doctor’s
“Verify Patient Info” is Available(Patient. MPID) A Verified(Patient. MPID), which is achieved
via its children, “Obtain MPID” and “Request Verification”, which in turn complete their work
by delegating to other participants. Additional work that an activity must complete can thus be

specified either by adapting its fulfillment condition directly or that of its children, existing or

newly created via refinement (section 7.3.2.2).

Since a precedence relation relates the creation condition of an activity to its fulfillment,
adaptation of the creation condition may affect the fulfillment condition. Invariably, if the
creation condition of an activity o implies that a condition @ held in the past, the fulfillment
condition of a will also imply that ® held in the past: (Cr(ct) > O @) — (Fi(a)—>O ®). Consider
for example where a. is “Examine Patient” and @ is Verified(Patient. MPID): Since Patient MPID
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verification is required prior to executing “Examine Patient”, then after completion of “Examine

Patient” it is guaranteed that Patient MPID must have already been verified.

Repetition: For a repeating activity to be fulfilled, multiple instantiations of the activity may be
required in one instance of an interaction. Adapting an activity to be repeating allows a
participant to re-attempt its fulfillment if one or more instances fail. For example, annotating the

“Make Appointment” activity as being repeating allows a Patient to re-request an appointment.

Annotating an activity as repeating also requires propagating the change to its children, since
an instance of each child is instantiated for each instantiation of the parent, as per (6-15). The
specification of repetition may also need to propagate to preceding activities. Consider where a
Doctor provides to an MP incorrect Patient information, not only will they need to re-attempt

performing “Request Verification” but also may need to repeat its preceding “Obtain MPID”.

7.4 Guiding Change Propagation between Views

A valid specification of an interaction is composed of a set of consistent views (section 4.2.3).
To maintain consistency between the global and local views, it is necessary to propagate changes
between them. For every potential adaptation operation performed on the global/local view we
identify the impact on the local/global view. Where applicable, we illustrate the propagation of
changes arising from adaptations to the global and local views of the medical interaction that

were worked out in section 7.3

7.4.1 Change Propagation from a Local View to the Global View
7.4.1.1 Propagate Adaptation of Activities

Whereas removal of an activity straightforwardly entails removing any dependencies attached
to the activity, addition of an activity may involve making some decisions. A newly added
activity o to the local view of a participant P; may require delegation of responsibility to another
participant. After identifying the participants P, to which the responsibility is to be delegated,

delegation is represented by adding a new dependency D to the global view whose endpoints are
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in the local views of P; and P,. A dependency designates data and/or control flow between

participants (section 5 .2;1):

Data Flow: Reliance of activity a on P, for providing data is represented by making a.
the depender in the dependency D and making an activity in the local view of P, the
dependee. If a has to provide data to P, to fulfill the dependency D, then D is annotated
as bidirectional The fulfillment condition of D is contingent upon availability of the data
to be provided. “Obtain MPID”, when added to the Doctor’s local view, needs to delegate
responsibility to a Patient for providing their MPID. This requires adding an “MPID”
dependency, to the global view, to represent this delegation. Since “Obtain MPID” is the
recipient of information, it is made the depender in the dependency (Figure 7.8). The
fulfillment condition of the dependency is Available(Patient. MPID).

Data flow of response is in opposite direction to dependency arrows

Figure 7.8 Propagate addition of activity by adding a data flow dependency

Control Flow: A participant P; may require gaining control over interaction progression
at certain points in execution. To have an activity a gain control from a participant Py, P,
is made to depend on a through a bidirectional dependency D. D is not fulfilled until o
has been fulfilled, and fulfillment of D results in handing over control to P,. Assume that
adaptation to incorporate Patient MPID verification originated in the MP’s local view.
The MP adds a “Verify Eligibility” activity whose intent is to gain control from a Doctor
at a point in the interaction prior to billing. A “Verification” dependency is thus added in
which “Verify Eligibility” is the dependee and an activity in the Doctor’s local view is

the depender (Figure 7.9). Note that “Verification™ designates both control and data flow.
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Figure 7.9 Propagate addition of activity by adding a control flow dependency

7.4.1.2 Propagate Adaptation of Activity Lifecycle

Whether done as part of adding a new activity or separately, adapting the lifecycle conditions

and repetition of an activity oo may need to propagate to dependencies attached to a.

Creation Condition: According to formula (6-2), the creation of a depender activity o in a
dependency D must precede the creation of D, only if D is bidirectional. Adapting the creation
condition of oo must maintain the invariant P(c.,, D). For example, if the creation condition of
“Make Appointment” is adapted to require that “MPID must have been provided to Doctor”,
then the creation condition of the “Appointment” dependency may need to be adapted in order to

require the same condition.

Fulfillment Condition: According to formula (6-1), a dependency D is not fulfilled unless the
dependee activity B has been fulfilled. When the fulfillment condition of B is adapted, the
fulfillment condition of any dependencies in which B is the dependee must be adapted to
preserve the invariant P(Bg, Dg). This invariant is automatically preserved if Fi(D) is formulated

in terms of O Fi(B) explicitly as in the specification of “Appointment” in Figure 4.5.

Repetition: Creation of an instance of a bidirectional dependency is always associated with an
instance of its depender activity o, per formula (6-2). Each instantiation of o requires an
instantiation of D, per formula (6-16), and adapting o to be repeating requires adapting each

bidirectional dependency D in which a is the depender to be repeating as well.
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7.4.1.3 Propagate Adaptation of Activity Precedence

Consider two activities a and  that are both connected to incoming and outgoing
dependencies. Using formulas (6-1) and (6-2), we construct an event graph relating lifecycle
events of the activities to the associated dependencies. Figure 7.10 shows the effect of adding a

precedence link between the two activities on the lifecycle of associated dependencies.
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Ec,....'............(...) o
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G

Figure 7.10 Impact of change in activity precedence on the global view

The event graph shows that adding a precedence link from a to B, i.e. adding P(ag, Ber),
introduces transitive precedence between the fulfillment of the dependency D and the creation of
the bidirectional dependency F, i.e. adds P(Dg, F,), established through links inside the shaded

area.
P(Ds, os) A P(aisi; Ber) A PBers Fer) = P(Ds;, Fer)

Thus, in general, adding a precedence link from an activity o to an activity  is propagated to
the global view by adding a precedence link from every dependency D in which a is the
depender to every bidirectional dependency F in which B is the depender. For example, adding
precedence link from “Request Verification” to “Collect Payment” in the Doctor’s local view
propagates to the global view by adding precedence between “Verification” and “Payment”

dependencies as shown in Figure 7.11.
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Figure 7.11 Propagate addition of precedence from "Request Verification" to " Collect Payment"
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Additionally, since adding a precedence link from o to B constraints the creation of B, the

creation condition of F may need to be adapted, according to section 7.4.1.2.

As a corollary, from formulas (6-7), (6-8), and (6-10), the aforementioned conclusions also

apply for added precedence between any descendant of a and any descendant of f3.

7.4.2 Change Propagation form the Global View to a Local View
7.4.2.1 Propagate Adaptation of Dependencies

Removing a dependency from the global view requires removing its attachments to the
depender and dependee activities in local views. Adding a dependency requires propagating

changes both to the local view of the depender role as well as the dependee role:

Dependee role: A dependee in a newly added dependency D is required to fulfill D. The
dependee identifies an activity B which when fulfilled brings about the fulfillment condition of
D. According to (6-1), B is chosen from the set of activities that at least satisfy: Fi(D) — O Fi(B).
If this set is empty, the dependee creates a new activity whose purpose is to bring about the

desired condition. In either case, the identified activity is made the dependee in D.

Depender role: A depender in a newly added dependency needs to detect its fulfiliment. The
depender either identifies an activity o whose fulfillment relies on the Fi(D) or creates one that
does, and in both cases the identified activity is made the depender in D. From (6-1), o is chosen
from that set of activities that at least satisfy P(Dg, o). Additionally, from (6-2), if D is

bidirectional, o. must satisfy P(0tcr, D).

7.4.2.2 Propagate Adaptation of Dependency Precedence

Consider two dependencies D and E, using formulas (6-1) and (6-2), we construct an event
graph relating lifecycle events of the dependencies to their depender and dependee activities.
Figure 7.12 shows the effect of adding precedence link between two dependencies E and D on
the associated activities in the two possible cases, where dependencies are in the same direction,

case A, or opposing directions, case B.
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Case A: Dependencies are in the same direction
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Figure 7.12 Impact of change in dependency precedence on local views

For case A, the event graph shows that adding a precedence link from D to E, i.e. adding
P(Ds, Eer), introduces transitive precedence between the fulfillment of activity o, the dependee in
D, and the fulfillment of the activity B, the dependee in E, only if E is bidirectional. Precedence

pairs inside the shaded area establish precedence between o and B as follows:

P((X.ﬁ, Dﬁ) A P(Dﬁs Ecr) A P(Ecra Bﬂ) - P(aﬁa Bﬁ)

Thus, for any two dependencies D and E that have the same depender and dependee, where E
is bidirectional, a new precedence link from D to E is propagated to the local view of the
dependee in both dependencies by adding precedence from the fulfillment event of the dependee
activity in D to fulfillment event of the dependee activity in E. For instance, adding a precedence
link from the “Verification” dependencyA to the bidirectional “Payment” dependency propagates
to the MP’s view as a constraint that stipulates that the fulfillment of the “Pay Dues” activity
precedes that of “Verify Patient Info”. Precedence from the fulfillment of the latter to the
fulfillment of the former can be achieved by making the fulfillment of the latter precede the
creation of the former, i.e. by adding a precedence link between them (Figure 7.13).
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Figure 7.13 Propagating precedence between " Verification" and Payment to the local view of the MP

Case B in Figure 7.12 is tackled in a similar way where the shaded area in this case leads to
the conclusion that: for any two dependencies D and E where the depender in D is the dependee
in E and vice versa, adding a precedence link from D to E is propagated to the local view of the
depender in E by adding precedence between the fulfillment of the dependee activity in D and
the fulfillment of the depender activity in E.

7.4.2.3 Propagate Adaptation of Dependency Lifecycle

Adapting lifecycle conditions or repetition of a dependency D may require adapting lifecycle

conditions and the repetition of depender activity a or dependee activity [ as follows:

Creation: The creation event of D is related to lifecycle events of o and B only if D is
bidirectional. Adapting the creation condition of D requires adapting the Cr(a) to maintain (6-2).
For example, adapting the creation condition of the “Appointment” dependency to assert that
“Patient’s medical plan is active” requires the creation condition of “Make Appointment™ in the
Patient’s local view to be adapted to assert the same condition, effectively limiting the Patient’s

ability to request an appointment.

Fulfiliment: A depender activity is not fulfilled until its dependency has been fulfilled. Adapting
the fulfillment condition of a dependency D may thus require adapting the fulfillment condition
of o. to maintain the invariant in (6-1). This invariant is automatically preserved if Fi(c) is
formulated in terms of Fi(D) explicitly as in the specification of “Make Appointment” in Figure
4.5

Dismissibility: Adapting the dismissibility condition of a dependency may require adapting its

creation condition to maintain their mutual exclusivity as per formula (6-5). Adapting the
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creation condition of a bidirectional dependency requires adapting the creation condition of the

depender activity a as described above.

Repetition: Fulfillment of an instance of D requires an instance of f, thus annotating D as being

repeating requires annotating B as being repeating as well, per (6-17). For example, annotating
the “Appointment” dependency as being repeating propagates to the Doctor’s local view by
annotating “Schedule Appointment” as repeating. Additionally, each instantiation of a
bidirectional dependency corresponds to an instantiation of the depender activity. Annotating a
bidirectional dependency as being repeating thus propagates to the depender activity o, as per
(6-16). Thus, specification of repetition for the “Appointment” dependency also propagates to

the “Make Appointment” activity in the Patient’s local view.

7.5 Process for Adapting Interaction Specification

Sections 7.3 and 7.4 addressed the first four requirements for an adaptation framework stated
in section 7.1, namely: guiding operations for adapting the global and local views and operations
for change propagation between them. We weave these guidance techniques together into a
process flow that achieves the fifth requirement; facilitating agreement between stakeholders on
an interaction specification. The flow of the process is depicted in Figure 7.14, which is

unsurprisingly consistent with Figure 7.2.

/Propagate changes\
AT to the global view [ ======--____ .
( Adapt the global view > ( Adapt a local view ) i
e Propagate changes R N E
Global View to a local view o Local View 4| !
™~ 1 :

Local View ,

Figure 7.14 Process flow for adapting choreographed interaction specification
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The process is initiated when an emergent requirement is identified, which requires adapting
either the global view or one of the local views. Adapting their local view, a participant
enumerates alternatives for adapting the view using guidance provided in section 7.3.2. As
discussed in section 3.4.3, the participant evaluates alternatives from their point of view using
their preferred method, e.g. model checking as introduced in section 4.3. An alternative is
chosen, applied to the local view, and the impact of the change is propagated to the global view
using techniques described in section 7.4.1. Since the global view is not owned by any
participant, changes to the global view require approval from the global observer. Assuming the
global observer finds the required changes reasonable, the global view is adapted using
techniques described in section 7.3.1. Conversely, changes are propagated from the global view
to affected local views, using techniques described in section 7.4.2, thereby keeping all views
consistent. Allowing each stakeholder to reason about changes from their viewpoint enables
collaboration between them towards obtaining a set of consistent views, i.e. reaching an

agreement on an adapted interaction specification.

Bidirectional change propagation implies that the process is iterative. In iterations where a
change is made, impact of the change is identified and propagated to affected views, thereby
driving changes to be made in future iterations. The process terminates successfully if no more
changes are required, i.e. all views are consistent indicating that an agreement has been reached.
However, the process does not guarantee that an agreement will be reached eventually. The
global observer may deem a requested change to the global view unfair and hence disallow it. At
the same time a participant may be unable to find an acceptable alternative for adapting their
local view, e.g. to achieve consistency with the global view, at which point the process fails.
Such a conflict between participant views may be resolvable by seeking an alternative

assignment of goal fulfillment responsibility at higher levels of abstraction (Bryl et al., 2006).
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7.6 Chapter Summary

This chapter presented the third of our contributions: a framework for guiding the adaptation
of interaction specifications. We started by stating the requirements that our framework should
fulfill, which are guiding adaptation of global and local views, propagating changes between
them, and forging an agreement between participants. We presented a metamodel for interaction
specification based on a Tropos CLG diagram. In the course of adapting an interaction
specification, validity is guaranteed via compliance with the metamodel and semantic invariants
explicated in chapter 6. We detailed a catalogue of operations for adaptation of interaction
specification views and change propagation between them. For every operation, we provided
detailed guidance on exploration of alternatives and application of the operation in a way that
ensures that a valid interaction specification is produced. We proposed an adaptation process that
weaves together our guidance techniques to drive the forging of an agreement between
participants and the production of a consistent set of interaction specification views. The next

chapter demonstrates the utility of our adaptation process by applying it to a variety of case
studies.
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Chapter 8. Validation and Evaluation

This chapter validates and evaluates our adaptation framework and the ACDL generation
technique. We evaluate our adaptation framework using two case studies. The first case study
builds on the medical example introduced in Chapter 2 and revisited in Chapter 7. Resorting to a
constructed case study facilitates the demonstration of our contributions in isolation from noise
associated with a real world case study. The medical example is small enough to be
comprehended with little effort and yet it allows for an illustrative application of our approach.
The second case study brings together a well-studied example from the literature and real world
requirements for vehicle accident insurance and repair. Tackling this example serves a dual
purpose of benefiting from prior analysis that appeared in the literature and at the same time
evaluating our approach in a real-world setting. Throughout the two case studies, we apply
guidance provided in the catalogue of operations for adaptation and change propagation from
chapter 7. Except for occasionally making justifiable assumptions about stakeholder intentions,
we argue that we apply the operations in a systematic manner repeatable by an architect who
studies this thesis. We demonstrate how our framework guides stakeholders through the process
of adapting Tropos models that culminates in obtaining a messaging protocol using our
automated tool. We reflect on the outcome pointing out strengths of our approach and limitations
we have come across. Finally, we provide a comparative evaluation of our adaptation framework

based on criteria extracted from the interaction specification and adaptation literature.

8.1 Validating Our Approach Using a Constructed Example

To demonstrate the utility of our adaptation framework we apply it to the running medical
example. We identify two new requirements and apply our adaptation guidance to incorporate
each of these requirements into the medical interaction specification. Once an adapted interaction
CLG has been obtained, we use our tool to generate a messaging protocol from the adapted CLG.
We apply the adaptation process in the way described in section 7.5. When adapting a local

view, we put ourselves in the shoes of a local participant and take decisions in favor of their
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business needs, making justifiable assumptions where necessary. We apply guidance pertinent to
the local view adaptation operation being applied from section 7.3.2. Having made a change to a
local view, we propagate it to the global view using guidance on change propagation from
section 7.4.1. We put ourselves in the shoes of the global observer and judge the fairness of a
change, then we apply the change using guidance for the relevant operation from section 7.3.1.
Having made changes to the global view, we propagate changes to all affected local views using
guidance from section 7.4.2. We keep iterating until no further changes need propagation. The
starting point for both adaptations is the CLG model of Figure 4.4, which is repeated in Figure
8.1, after adding dependency annotations and replacing the unidirectional “Invoice” and

“Payment” dependencies with a single bidirectional “Payment” dependency, as discussed in
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Figure 8.1 Starting-point CLG of the medical interaction adaptation

8.1.1 First Adaptation: Verifying Patient’s Eligibility for Treatment

The MP discovers the following business need: prior to paying a Doctor the MP has to verify
that treatment was performed on an eligible patient, i.e. a patient that has valid coverage and an
applicable authorization. We apply our adaptation process to incorporate this requirement into

the CLG model of Figure 8.1, and then we generate the adapted ACDL.
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8.1.1.1 Applying the Adaptation Process

Starting from the emergent requirement, we detail the steps of applying our adaptation
process. The steps are numbered for ease of reference. We also annotate each step instances with
the type of the step being applied: Adapt Local view as AL, Propagate to Global view as PG,
Adapt Global view as AG, and Propagate to Local view as PL. Additionally, we reference the
section from Chapter 7 for the operation being applied in each step. After a set of logically
related adaptation steps we present a CLG fragment summarizing elements added in these steps
as well as elements existing in the original CLG that were modified (shown in grey). The process

proceeds as follows:

1 | An MP needs to verify eligibility of a Patient for treatment, and ensure this verification
takes place prior to reimbursing a Doctor. To fulfill this two-part need (® denotes the
condition that “Patient eligibility has been verified by MP” and ¥ denotes that “Patient
Medical Plan ID (MPID) is available” to a certain activity) :

(AL 7.3.2.1 Add Activity) The MP adds an activity for verifying Patient eligibility,
“Verify Eligibilit};”, to their local view. This new activity is responsible for verifying the
eligibility of a Patient for coverage, given her MPID. For the new activity to verify
eligibility it requires that the Patient’s MPID is available. Hence, its creation condition is

P, and since after it completes Patient MPID has been verified, its fulfillment condition is

D.

(AL 7.3.2.3 Add Activity Precedence) To ensure that no payment request from a Doctor is
processed until Patient eligibility verification is complete, i.e. until ® is true, an MP neéds
to constraint the execution order of their activities. Since the activity that brings about ®
is “Verify Eligibility” and the activity that processes payments is “Pay Dues”, the MP

adds a precedence link from the former to the latter.
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Two changes were made to the MP’s local view, each of which has an impact that needs

to propagate to the global view as follows:

(PG 7.4.1.1 Propagate Added Activity) The newly added “Verify Eligibility” activity
needs to satisfy W for its creation, i.e. it needs the MPID of the Patient in question to be
provided (by the Doctor receiving a Patient). Additionally, it needs to gain control of the
progression of the interaction (from the Doctor) to perform the eligibility check prior to
the Doctor requesting a payment. These two needs imply that the MP requires the doctor
to provide Patient MPID and relinquish control of interaction progression, which can be
achieved via a new dependency that serves both the data and control flow purposes. Thus,
the MP suggests adding a “Verification” dependency to the global view where “Verify
Eligibility” is dependee and choice of depender activity is delegated to Doctor. Its
fulfillment relies on the completion of “Verify Eligibility” and the dependency is
dismissed if the activity fails to verify Patient MPID.

(PG 7.4.1.3 Propagate Added Activity Precedence) Adding a precedence link from
“Verify Eligibility” to “Pay Dues” constraints the fulfillment of the latter such that “Pay
Dues” may not be fulfilled until Patient MPID has been verified, i.e. until ® becomes true.
Since the fulfillment of “Pay Dues” is necessary for the fulfillment of any dependency in
which it is the dependee, @ is suggested by the MP a necessary pre-condition for the
“Payment” dependency to be fulfilled.

Two changes to the global view were suggested by the MP: adding a “Verification”
dependency and adding ® as a pre-condition on the fulfillment of “Payment”.

(AG 7.3.1.1 Add Dependency) The suggested addition of a “Verification” dependency is

found to be reasonable and is approved by the regulatory agency. The new dependency is
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added to the global view where its creation condition is W and fulfillment condition is ®@.

(AG 7.3.1.3 Adapt Dependency Lifecycle) Also, the suggested change to make @ a pre-
condition on the fulfillment of “Payment” is applied by making ® a necessary fulfillment
condition of the dependency.

@ added to Fi{Payment)

Cr(Verification) = ¥
BD___Fi(verification) = ®

The addition of “Verification” dependency as well as the change in the fulfillment
condition of “Payment” dependency need to be propagate to the local view of the

depender in both dependencies, the Doctor.

(PL 7.4.2.1 Propagate Added Dependency) Since it is in their interest to ensure that they
get paid, Doctor deems the the added “Verification” dependency reasonable and accepts

the responsibility.

(PL 7.4.2.3 Propagate Adaptation of Dependency Lifecycle) Since “Collect Payment” is
not fulfilled until “Payment” has been fulfilled, the added fulfillment condition of the
dependency is also added to the fulfillment condition of the activity. That is, ®@ is made a
necessary fulfillment condition of the “Collect Payment” activity.

The Doctor explores alternatives for applying the two changes propagated from the global
view: first, choosing a depender activity for the “Verification” dependency and specifying
its lifecycle conditions, and second, enforcing the newly added condition @ on the
fulfillment of “Collect Payment”. Propagating the first change triggers further changes

and requires several steps:

(AL 7.3.2.1 Add Activity) Since no existing activity in the Doctor’s local view bears the

responsibility of requesting verification of Patient MPID, a new “Request Verification”
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activity is added and made the depender in “Verification”.

(AL 7.3.2.4 Adapt Activity Lifecycle) Doctor specifies lifecycle condition for the newly
added activity. By being the depender in “Verification”, the activity is fulfilled when the
Patient MPID has been verified, thus its fulfillment condition is ®. To request
verification, a Doctor must have the MPID of the Patient, hence W is made a necessary

creation condition of the activity consistent with the creation condition of the dependency.

(AL 7.3.2.4 Adapt Activity Lifecycle) Having added W as a creation condition of
“Request Verification”, Doctor attempts to identify an activity in their local view that can

bring this condition about.

(AL 7.3.2.1 Add Activity) No such activity is found, and so Doctor adds an “Obtain
MPID” to make the MPID available and bring about ¥. “Obtain MPID” is made to
precede “Request Verification” to enforce the creation condition of the latter. Logically,
the creation condition of “Obtain MPID” stipulates that it is created only when a Patient

has requested an appointment.

(AL 7.3.2.2 Adapt Refinement) For modularity, since both “Request Verification” and
“Obtain MPID” perform work pertaining to Patient information verification, they are
grouped together as children of a new activity “Verify Patient Info”. The AND-refinement
of the activities implies that the fulfillment condition of the newly added parent is the
conjunction of fulfillment conditions of its children, that is: ® A W. The creation condition

of the parent is the same as its children, which is that a patient has requested an

appointment.

To propagate the second change to their local view, Doctor explores alternatives for

enforcing the newly added fulfillment condition @ on “Collect Payment”.

(AL 7.3.2.4 Adapt Activity Lifecycle) Fulfillment of “Verify Patient Info” brings about @
A Y, ie. it brings about ®. Making “Verify Patient Info” precede “Collect Payment”
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would enforce that the latter is not fulfilled until @ becomes true. However, through
model checking or inspection, Doctor finds that this alternative allows a scenario where a
Patient is found to be not eligible, after being examined. This alternative is thus deemed

unsatisfactory as it allows an undesirable scenario where Doctor is denied payment.

(AL 7.3.2.3 Adapt Precedence) Instead of direct precedence, Doctor explores ways for
establishing transitive precedence between “Verify Patient Info” and “Collect Payment”.
Doctor decides to add precedence from “Verify Patient Info” to “Examine Patient”,

which already precedes “Collect Payment” to establish transitive precedence.
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(PG 7.4.1.1 Propagate Add Activity) The newly added “Obtain MPID” activity requires
Patient to provide information, thus the effect of adding the activity needs to propagate to
the global view. Doctor suggests adding an “MPID” dependency to the global view to
capture their reliance on Patient for providing her MPID. Since data flows from Patient to
Doctor, the Patient is made the dependee and the Doctor the depender. Doctor suggests
making the dependency bidirectional so that they control the time at which to request its
fulfillment. Thus, they suggest that an instance of the dependency is only created when
the depender activity “Obtain MPID” has been created.

(AG 7.3.1.1 Add Dependency) The regulatory agency deems it appropriate for a Doctor to
request a Patient’s MPID and thus allows adding the new dependency. A bidirectional
“MPID” dependency is added to the global view. The creation condition of the
dependency carries over from its depender activity “Obtain MPID”, which is that Patient
has requested an appointment. Fulfillment condition of the dependency is that MPID has

been provided, i.e. V.
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The added MPID dependency needs to propagate from the global view to the Patient’s

local view.

(PL 7.4.2.1 Propagate Add Dependency) Patient accepts the newly added “MPID”
dependency and thereby takes on the responsibility of providing her MPID to Doctor

upon request.

Patient adapts their local view to reflect the new responsibility for providing an “MPID”.

(AL 7.3.2.1 Add Activity) Patient adds a new “Provide MPID” activity and makes it the
dependee in the “MPID” dependency. Its creation condition is that the “MPID”
dependency has been created and its fulfillment is that the Patient has provided their
MPID.

(AL 7.3.2.2 Adapt Refinement ) Since “Obtain Prescription” is now contingent upon
providing her MPID, and since “Provide MPID” is also a necessary part of activities
leading to the obtainment of a prescription, “Provide MPID” is made a child of “Obtain

Prescription”.

Patient determines that the adapted model allows a Doctor to request her MPID after
“Visit Doctor” has been fulfilled, i.e. the Patient may be required to carry a physical form
of the MPID to the Doctor’s office. In this scenario, if they forget to carry the proof they
may get denied examination even after going through trouble of visiting Doctor’s office,

and hence the Patient finds this scenario undesirable.

(AL 7.3.2.3 Adapt Activity Precedence) To guarantee that they can only be asked to
provide their MPID before visiting the Doctor, Patient decides to make “Provide MPID”

precede “Visit Doctor”. However, Patient finds this option unsatisfactory as well since

Doctor may obtain MPID from Patient before they visit, but only ask MP to verify it after
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Patient has visited their office.

(AL 7.3.2.4 Adapt Activity Lifecycle) To guarantee that they do not visit a Doctor until
their MPID has been verified, Patient decides to add ® as a necessary condition on the
creation of “Visit Doctor”. That is, they will not begin executing the “Visit Doctor” task
until their MPID has been verified. Since “Make Appointment” already precedes “Visit
Doctor”, adding a fulfillment condition to the former carries over to the creation condition
of the latter. Thus, they decide to add @ as a necessary fulfillment condition of “Make
Appointment” thereby stipulating that verification of their MPID is now part of setting up

an appointment.
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(PG 7.4.1.2 Propagate Adaptation of Activity Lifecycle) Since “Make Appointment” is
the depender in the “Appointment” dependency, the change in the fulfillment condition of
the activity needs to be propagated to the global model.

12

(AG 7.3.1.3 Adapt Dependency Lifecycle) The regulatory agency deems the Patient’s
requirement, for completion of verification prior to finalizing an appointment, reasonable
and agrees to it. The fulfillment condition of “Make Appointment” needs to brought about
by the “Appointment” dependency, and hence d> is added to the fulfillment condition of

“Appointment”.

13

(PL 7.4.2.3 Propagate Adaptation of Dependency Lifecycle) Doctor accepts the new
responsibility implied by the new fulfillment condition of “Appointment”, in which they

are the dependee, and propagates the change to their local view.
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14| (AL 7.3.2.4 Adapt Activity Lifecycle) Since “Schedule Appointment” is already
responsible for fulfilling the “Appointment” dependency, Doctor explores options for
having the activity bring about the new necessary condition, ®, required for fulfilling the
dependency. Since “Verify Patient Info” is already responsible for bringing about ®, and
since MPID verification is now part of appointment scheduling, Doctor decides to make
“Verify Patient Info” a child of “Schedule Appointment”. The fulfillment condition of the

former now becomes a necessary fulfillment condition of its parent.

15 | At this point none of the participants requires further changes. All participants agree on
the adapted model.

Given that original model in Figure 8.1, Figure 8.2 summarizes model elements that were
added or changed. We omit original model elements that have not been changed but include ones

that have been linked to, and gray them out.
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Figure 8.2 Summary of first set of adaptations made to the medical example

8.1.1.2 Generating ACDL Protocol

We applied our automated tool to the adapted model to obtain the ACDL messaging protocol
specification in Figure 8.3. Note how this protocol specification ensures the patient will never

obtain an appointment unless they provide proof of eligibility.
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Even with such a tailored example, the automation provided by the tool has proven useful in
avoiding specification errors. Prior to finishing the tool implementation, we had made an honest
specification mistake in an earlier incarnation of the medical example (Mahfouz et al., 2009)
where we hand-constructed a messaging speciﬁcation that was supposed to be consistent with
the corresponding requirements model. A mistake was later revealed after running the tool on the
requirements model, long after the work has been published. Our tool demonstrated that the

hand-constructed messaging specification was indeed inconsistent with the requirements model.

Sequence
Send AuthorizationRequest From Patient To MP
If (HasActivePlan)
Send AuthorizationResponse From MP To Patient
Else
Sequence
Send AuthorizationRejected From MP To Patient
Fail 'NOT HasActivePlan'
Send AppointmentRequest From Patient To Doctor
Send MpidRequest From Doctor To Patient
Send MpidResponse From Patient To Doctor
EligibilityProvided = true
Send VerificationRequest From Doctor To MP
If (ValidMPID)
Send VerificationResponse From MP To Doctor
Else
Sequence
Send VerificationRejected From MP To Doctor
Fail 'NOT ValidMPID'
MpidVerified = true
EligibilityVerified = true
If (SlotAvailable)
Send AppointmentResponse From Doctor To Patient
Else
Sequence
Send AppointmentRejected From Doctor To Patient
Fail 'NOT SlotAvailable'
Parallel
Sequence
Send PaymentRequest From Doctor To MP
Send PaymentResponse From MP To Doctor
Send PrescriptionResponse From Doctor To Patient

Figure 8.3 Generated ACDL for the first adaptation of the medical example

8.1.1.3 Discussion

Whereas physical activities are not directly represented in the resulting messaging
specification, performing the adaptation to the requirements models allowed us to take into

account physical activities both as:
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a. Constraints: The need to verify eligibility before the Patient visits the Doctor played a role

in deciding the order of messaging activities.

b. Alternative realization of dependencies: Carrying physical proof of eligibility to the
Doctor’s office was considered as an alternative to providing eligibility information via

electronic messaging.

It can be argued that the Doctor could have realized the need to make “Verify Patient Info” a
child of “Schedule Appointment” in step 5 rather than later. We deliberately delayed establishing
this parent-child relation to further demonstrate the collaborative nature of our process. Later in
the process, in step 10, Patient incorporates an ordering constraint to guard their interests, which
is then propagated back to Doctor's local model where the omitted relation gets established. After
Doctor added the missing relation, the produced model satisfies constraints imposed by both
local models, the Doctor’s and the Patient's. Even though the longer path produced redundant
constraints, e.g. the precedence between “Provide MPID” and “Visit Doctor”, our automated tool

manages to generate an ACDL specification while eliminating redundant constraints.

There is no guarantee that the process will yield a single canonical adaptation. For example,
Doctor could have added precedence from “Verify Patient Info” to “Schedule Appointment” and
the resulting adapted model would have required Patient to provide her MPID before even
requesting an appointment. However, if a process concludes successfully, i.e. all participants
agree to an adapted global model and all changes have been propagated, our adaptation guidance
guarantees that the resulting adaptation is a valid one that satisfies the business needs of all
participants. We do not provide means for finding a “shortest path” to adaptation or means for

obtaining a minimal messaging specification.

8.1.2 Second Adaptation: Limiting Outstanding Balance

The second adaptation aims to improve the cash flow of a Doctor. Since an MP is not required
to provide immediate reimbursement, a Doctor needs protection against a delinquent MP. To
mitigate this risk, the health department, i.e. the regulatory agency, requires maintaining the

outstanding balance within a certain credit limit for every Doctor-MP pair. The outstanding
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balance is the total of all payments that have been requested but not yet paid. We apply our

adaptation process to incorporate the new constraint into the CLG model of Figure 8.1.

8.1.2.1 Applying the Adaptation Process

The outstanding balance of an MP increases whenever a Doctor requests a payment from an
MP, hence the health department requires as a pre-condition on requesting a payment that
condition ® holds, where ® represents ‘“credit limit has not been exceeded”. The process

proceeds as follows:

1| The health department suggests an adaptation to the global model so as to incorporate the

pre-condition on requesting a payment.

(AG 7.3.1.3 Adapt Dependency Lifecycle ) Since requesting a payment is tied to the
creation of a “Payment” dependency, the pre-condition can be enforced by adapting the
creation condition of the dependency. Hence, ® is added as a necessary creation condition

for the "Payment" dependency.

2 [ Since Doctor is the depender in the bidirectional “Payment” dependency, a Doctor is
responsible for its instantiation. Thus, adaptation to its creation condition needs to

propagate to their local model.

(PL 7.4.2.3 Propagate Adaptation of Dependency Lifecycle) Doctor identifies the
depender activity in the "Payment" dependency. An instance of "Collect Payment" is
responsible for creating an instance of “Payment”. Thus, ® needs to be added as a

necessary pre-condition on the creation of "Collect Payment".

3 | Doctor explores options for adapting their local view to incorporate ® as a necessary pre-

condition for “Collect Payment”.

(AL 7.3.2.4 Adapt Activity Lifecycle) Doctor finds the option of adding ® as a necessary

creation condition on “Collect Payment” is undesirable. This adaptation allows a state
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where a Doctor finds out they cannot request a payment from an MP except AFTER
having provided treatment to Patient, thereby potentially wasting their effort if the MP

fails to reimburse them.

Doctor considers other options for making ® a pre-condition on “Collect Payment”
including adding ® as a necessary fulfillment condition on activities that precede it.
Doctor finds a satisfactory alternative which is to add ® as a fulfillment condition of
“Schedule Appointment”, whose fulfillment transitively precedes the creation of "Collect
Payment".

(AL 7.3.2.1 Add Activity) Doctor’s local view does not contain any activity that can bring
about the condition ®. Doctor adds a “Check Limit” activity whose purpose is to assert

that ® true, and thus its fulfillment condition is ©.

(AL 7.3.2.2 Adapt Refinement) To enforce that @ is part of the fulfillment condition of
“Schedule Appointment”, “Check Limit" is added as its child thereby making the

fulfillment condition of the latter, i.e. ®, a necessary part of the former.

(PG 7.4.1.2 Propagate Adaptation of Activity Lifecycle) Since “Schedule Appointment” is
the dependee in the “Appointment” dependency, changes made to its lifecycle need to
propagate to the global view. Since the activity is responsible for fulfilling the
dependency, changes in its fulfillment thus propagate to the "Appointment" dependency.
Doctor also suggests dismissing the “Appointment” dependency if the credit limit of the
Patient’s MP has been exceeded, i.e. if “Check Limit” fails and ® does not hold.

(AG 7.3.1.3 Adapt Dependency Lifecycle) O is added as a necessary fulfillment condition
of the "Appointment" dependency. Also, the health department agrees to make the

dependency dismissible if the credit limit of the MP in question has been exceeded.

(PL 7.4.2.3 Propagate Adaptation of Dependency Lifecycle) Change in fulfillment and
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dismissibility conditions of the "Appointment" dependency need to propagate to its

depender activity, "Make Appointment".

(AL 7.3.2.4 Adapt Activity Lifecycle) Patient may object to the new dismissibility
condition since maintaining the balance within the credit limit is the MP's responsibility,
and not theirs. If Patient objects, the process terminates in failure. We will assume that
Patient does not object so that we illustrate the process further. The Patient propagates the
change in “Appointment” dismissibility condition to “Make Appointment” activity.

Patient explores alternatives to guarantee that they can re-attempt to obtain an

appointment. They annotate “Make Appointment” as being repeating.

Changes to the Patient’s local view propagate to the global view.

(PG 7.4.1.2 Propagate Adaptation of Repetition) Adaptation of repetition of “Make
Appointment” propagates to the dependency in which it is the depender.

(AG 7.3.1.3 Adapt Dependency Repetition) The health department agrees to annotating
the “Appointment” dependency as being repeating to allow a Patient to re-request an

appointment.

10

Change in “Appointment” repetition needs to propagate to the local view of the Doctor.

(PL 7.4.2.3 Propagate Adaptation of Dependency Repetition) Repetition of the
“Appointment” dependency propagates to the dependee activity “Schedule Appointment”

which is marked as repeating.

11

(AL 7.3.2.4 Adapt Activity Repetition) Doctor annotates the “Schedule Appointment”

activity as being repeating.

None of the participants requires further changes, they agree to the adapted model.
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8.1.2.2 Generating ACDL Protocol

A summary of the adaptations is shown in Figure 8.4 and the generated ACDL

generated

from the adapted model is shown in Figure 8.5. The response to an appointment request is now

guarded by the condition on the credit limit. If the check fails the appointment is rejected and

another iteration of the “While” loop starts. Note that, as specified, the loop only terminates if

the Patient obtains an appointment. Practically, a Patient, after trying a number of times, may

give up and abandon the interaction.
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Figure 8.4 Summary of second set of adaptations made to the medical example

Sequence
Send AuthorizationRequest From Patient To MP
If (HasActivePlan)
Send AuthorizationResponse From MP To Patient
Else
Sequence
Send AuthorizationRejected From MP To Patient
Fail 'NOT HasActivePlan'
While (NOT AppointmentObtained)
Sequence
Send AppointmentRequest From Patient To Doctor
If (SlotAvailable AND WithinCreditLimit)
Sequence
Send AppointmentResponse From Doctor To Patient.
AppointmentObtained = true
Parallel
Sequence
Send PaymentRequest From Doctor To MP
Send PaymentResponse From MP To Doctor
Send PrescriptionResponse From Doctor To Patient
Else
Send AppointmentRejected From Doctor To Patient

Figure 8.5 ACDL incorporating the credit-limit check adaptation
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8.1.2.3 Discussion

A viable adaptation alternative, which we had otherwise identified was not discovered by our
process. An MP who believes they have exceeded their credit limit with a Doctor could stop
issuing authorizations to patients, i.e. dismiss authorizations. The reason this alternative was not
discovered is that the emergent requirements was expressed from the global point of view. Had
we formulated the requirement from the MP's local point of view, for instance as "authorizations
may only be issued when credit limit has not been exceeded", our process would have found the
alternative that involves dismissing authorizations. However, a Doctor has to protect their
interests against an MP who fails to reject an authorization. A Doctor should be allowed to

dismiss an appointment when the credit limit has been exceeded.

Even though conditions under which an appointment may be dismissed are not relevant to a
Patient, the multi-participant nature of a choreographed interaction caused Patient’s interests to
be affected by the relation between MP and Doctor. Had a Patient rejected the potential of
dismissing appointment requests, the adaptation process may have ended in failure. In reality, the
Patient’s opinion may not have the same weight as that of the MP, so they could end up being
forced to comply with the adapted specification. Our process assumes all participants have an

equal say and hence does not account for such situations.

8.2 Validating Our Approach Using a Real-World Scenario

Government agencies overseeing the insurance business put forward rules to protect the
interests of vehicle owners as well as all parties involved in vehicle insurance and repair.
Interactions that take place after an accident between vehicle owner, insurer, and repairers are
typically regulated. Our second validation experiment combines a “Vehicle Insurance” case
study frequently occurring in the interaction specification literature with requirements drawn
from publicly available real world documents that regulate the vehicle insurance business. We
adapt the specification of the vehicle insurance interaction as it appears in the literature by
incorporating requirements extracted from the real-world documents. First, we introduce the

specification of vehicle insurance interaction as described in the literature, then analyze
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documents that regulate vehicle insurance business in North America, adapt the literature
specification to a variety of requirements stated in the real-world documents, and reflect on the
results. We apply our ACDL derivation tool before and after adaptation to obtain, in an

automated way, a messaging protocol consistent with the requirements models.

8.2.1 Requirements for Vehicle Repair from Literature - AGFIL Case

The original specification of the vehicle repair interaction first appeared as the "AGFIL case
study" (Browne & Kellet, 1999) in the CrossFlow project (Grefen et al., 2000). The case study
was later revisited by several authors (Xu, 2004; Desai et al., 2006; Orriéns & Yang, 2006; Desai
et al,, 2009). We present the original interaction specification then build on the analysis
conducted later by Telang & Singh (2009) to create Tropos requirements models for the
interaction. Where these Tropos models diverge from the original specification, we stick to the
original. On the other hand, where these Tropos models are under-specified we make justifiable
assumptions to fill the gaps. We refer to the literature case, both the original specification and the

corresponding Tropos models, as the AGFIL case for short.

8.2.1.1 Original Specification of Vehicle Repair Scenario

AGFIL is an insurance company that covers the cost of vehicle damage repair incurred by
policy holders. AGFIL provides claim reception and vehicle repair services to policy holders.
Additionally, AGFIL needs to assess claims to protect itself against fraud. AGFIL uses its
partners, Europ Assist (EA), Lee Consulting Services (CS), and various repairers, for executing
these tasks. EA provides a help-line to policy holders for reporting a claim, and directs them to
an approved repairer facility. Lee CS provides insurance adjustors, who perform damage
assessment, and presents invoices to AGFIL on behalf of repairers. Several approved repairers
provide repair services at their shops. AGFIL makes decisions on claim approvals, and provides
payment to repairers. Figure 8.6 depicts the original AGFIL case reproduced from (Browne &

Kellet, 1999) where arrows represent control and data flow between activities.
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Figure 8.6 Original AGFIL flow specification.
8.2.1.2 Global View — High-level Role-Dependency Diagram

The AGFIL interaction involves five roles: Claimant, Insurer, Adjustor, Repairer, and Call
Center. The original case study mostly ignored the Claimant role after reporting the accident,
because the case study was focusing on the Insurer business process. To construct an RD
diagram for the choreographed interaction, we include dependencies between Claimant and thé
other roles (Figure 8.7). The scope of the interaction is limited to the claim processing and
vehicle repair. That is, signing up for insurance, collecting insurance premiums, paying
adjustor’s fees, etc. are outside the scope of the interaction, consistent with the original

- specification.

Analyzing dependency characteristics we find that among the total of fourteen dependencies
three are physical by nature: "Release Vehicle" where Claimant hauls vehicle to Repairer,
"Present Vehicle" where Repair presents vehicle to Adjustor for inspection, and "Repaired
Vehicle" where Repairer releases back repaired vehicle to Claimant. We also chose physical
fulfillment for “Accident Info” as it is common that Claimant reports an accident on-site via

phone, consistent with the original specification. Otherwise, the rest of the dependencies are
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Figure 8.7 Global model of vehicle repair example.

Repalre

fulfilled via electronic messaging. We also identified two bidirectional dependencies: "Claim
Form", where Insurer requests Claimant to fill form, and "Cost Approval”, where Repairer

requests Adjustor to approve repair costs.

8.2.1.3 Local Views and Combined Local-Global Diagram

Having specified the global view of the AGFIL interaction, we construct the local view for
each participant. We used the analysis of the AGFIL interaction presented by Telang & Singh
(2009) as a starting point. This analysis concluded by providing participant local views including
activities and their refinement. Additionally, the original AGFIL use case specification contains
several data and control flow constraints on participants activities (Browne & Kellet, 1999). For
example, as depicted using arrows in Figure 8.6, a Repairer receives a car, then estimates repair
cost, then they contact an Adjustor, which in turn inspects the car and approves the cost, then
they repair the car only when the estimate has been approved. We extracted such data and
control flow requirements from the original specification and represented them using precedence
links in the local views contributed by (Telang & Singh, 2009). Finally, using dependencies from
the global model, we combined the local models to construct the CLG diagram in Figure 8.8. All
precedence links in the figure are imposed by the original flow (Browne & Kellet, 1999), except
for the link between the “Perform Repair” to the “Release Vehicle” activities which is logically

necessary.
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8.2.1.4 Generating ACDL Protocol

Feeding the GLG to our tool we automatically obtain the messaging protocol in Figure 8.9.

Two notes on how the generated protocol reflects the constraints embedded in the CLG:

¢ Parallelism: Call Center simultaneously notifies Insurer of an incident and informs Claimant
of an assigned repairer. We wondered when we first saw the protocol, why wouldn’t Call
Center also simultaneously notify Repairer of accident location. The CLG explained the
reason that “Determine Accident Location” is a child of “Receive Emergency Call” and hence
its fulfillment precedes that of its parent. Had we constructed the model such that the two
precedence links emanating from “Receive Emergency Call” are instead emanating from

“Collect Accident Info”, the higher level of parallelism would have been obtained.

e Synchronization: Two independent execution paths eventually get synchronized in the
generated messaging protocol. Adjustor has to have both a copy of the incident form, from
Insurer, as well as a request for cost approval, from Repairer, before inspecting the vehicle. In
case the cost approval request is received first, the generated “While” loop with a NOOP

ensures that Adjustor never inspects a vehicle until a copy of the incident form is received.

Sequence
Send AccidentLocationResponse From CallCenter To Repairer
Parallel
Sequence
Send IncidentFormResponse From CallCenter To Insurer
Parallel
Sequence
Send IncidentFormCopyResponse From Insurer To Adjustor
IncidentFormCopyReceived = true
Sequence
Send ClaimFormRequest From Insurer To Claimant
Send ClaimFormResponse From Claimant To Insurer
Send AssignRepairerResponse From CallCenter To Claimant
Send CostApprovalRequest From Repairer To Adjustor
While (NOT IncidentFormCopyReceived)
NOOP
Send ReviewedCostEstimateResponse From Adjustor To Insurer
Send CostApprovalResponse From Adjustor To Repairer
Send InvoiceResponse From Repairer To Adjustor
Send ReviewedInvoiceResponse From Adjustor To Insurer
Send PaymentResponse From Insurer To Repairer

Figure 8.9 ACDL description for the original'AGFIL case
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8.2.2 Requirements for Vehicle Repair - Real World Documents

We analyzed public documents published by government agencies that regulate vehicle
insurance and repair business in four of the most populous regions in North America: State of
California Department of Insurance (CA)'; State of New York Department of Insurance (NY)%
State of Illinois Department of Insurance (IL)’, and the Financial Services Commission of
Ontario (FSCO)*, Canada. From these documents we extracted several requirements that the

specification of AGFIL case does not satisfy. These requirements are listed® in Table 8.1:

Table 8.1 Requirements extracted from public documents not satisfied by AGFIL case study

ID Description

CAl If further damage is found during the repair process, repair shop should contact insurer to get additional

cost of repairs approved. The insurer may send out an adjuster to re-inspect additional damages.

CA2 If you do not hear from anyone, call your insurance company for assistance. If they are not responsive, or

you believe there is an unreasonable delay in settling your claim, contact the Department of Insurance.

CA3 In the event that you do not agree with your insurance company on the amount of loss either of you can

demand an appraisal. Each party selects a competent appraiser. The appraisers then select an umpire.

CA4 The insurance company must stand behind the repairs of the recommended shop if the vehicle is not

repaired properly.

FSCO1 | When you file a claim for damage or loss, the payment made by the insurance company may be subject to

a deductible, i.e. the amount of the claim you will be responsible for paying yourself.

FSCO2 | You may also be required to complete a claim form, also known as a Proof of Loss form.

! http://www.insurance.ca.gov/0100-consumers/0060-information-guides/0010-automobile/Y ou-had-an-accident.cfim

2 http://www.ins.state.ny.us/auto/2010/auto10.pdf

3 http://www.insurance.illinois.gov/autoinsurance/auto_own_claim.asp

4 http://www.fsco.gov.on.ca/english/insurance/auto/after auto accident ENG.pdf

5 Requirements quoted from original documents, where “you” refers to Claimant and “insurance company” refers to Insurer.
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FSCO3

In some cases the adjuster will want to meet with you in person.

FSCO4 | As long as your insurance company approves the estimate, you may havé your vehicle repaired at the
repair shop of your choice.

IL1 You must immediately report all losses directly to your insurance producer or company.

L2 Your insurance company may ask for several estimates.

IL3 Your insurance company is required to communicate with you within 21 working days after they are
notified of the loss.

NY1 Your insurance company is required to obtain from you and your repair shop a “Certification of
Automobile Repairs™ form, in order to determine the extent to which your damaged car has been repaired.

NY2 If you fail to submit this “Certification of Automobile Repairs” form, your loss settlement on a subsequent

loss may be reduced.

The public documents we analyzed contained a slew of other requirements not addressed by

the AGFIL use case, yet that can be deemed outside its scope. These additional requirements can

be modularized into interactions independent from vehicle repair. Examples include determining

who is at fault in the accident, the Insurer’s interaction with other Insurers to recover repair cost,

the Claimant getting reimbursed for medical expenditure on injuries resulting from the accident,

filing a police report, and providing a rental car for the Claimant for the duration of repairs.

8.2.3

Adapting the AGFIL Literature Case to Real-World Requirements

We analyze each of the requirements listed in Table 8.1 and we work out how to apply our

adaptation framework to the AGFIL models in order to incorporate each of these requirements.

In summary, each of the thirteen requirements fell into one of the following categories:

7 requirements were straightforwardly handled by our adaptation framework. That is,

nothing special was involved in applying our framework to this set of requirements
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than was needed for the medical example. This set includes: CAl, CA4, FSCO1,
FSCO2, FSCO3,IL1, and NY1.

e 3 requirements were cumbersome, but not impossible, to handle using our approach
because our approach does not provide a representation to support modularization of

an interaction into sub-interactions. This set includes CA3, FSCO4, and IL2.

e 2 requirements could not be captured using the representations at hand. IL3 involve a
timing constraint that cannot possibly be captured using LTL used by FT. NY2
involved a constraint that spans multiple instances of the choreographed interaction,

which neither Tropos nor WS-CDL are well-equipped to support (Austin et al., 2004).

e 1 requirement did not require any explicit change to the interaction specification. CA2
specifies a mechanism by which the global observer (i.e. Department of Insurance),

which is not represented as an explicit interacting role, handles disputes.

We outline the application of our adaptation framework to each of these requirements,
providing more detail when tackling requirements that involved more decision-making than the

rest, and thus were more challenging to the systematic application of the framework.

8.2.3.1 CAL1l: Discovering Further Damage during Repair

This requirement states that a Repairer must get approval for cost of repairing additional
damage discovered during repair. This essentially means that repair may have to be performed
over many iterations; during each iteration previously unnoticed damage may be discovered
which is repaired in the next iteration, and so on. Whenever new damage is discovered the

Repairer is required to get approval from the Adjustor for the new cost.

1 1 (AL 7.3.2.2 Adapt Refinement) The Repairer identifies activities that constitute a “repair
iteration”, which are: "Perform Repair", “Estimate Cost”, and “Get Cost Approval”. For

modularity, Repairer designates a new activity, “Repair Known Damage”, as a common
b

parent for the three activities to aggregate them together. The fulfillment condition of the
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new activity is that no more damage is found.

(AL 7.3.2.4 Adapt Activity Lifecycle) Since the “Repair Known Damage” activity may

repeat, it is annotated as being repeating and its repetition propagates to its three children.

(AL 7.3.2.3 Adapt Precedence) Realizing that a vehicle should not be released until ALL
repairs are done, Repairer adds a precedence link from ‘“Repair Known Damage” to
“Release Vehicle” to replace the link that existed from “Perform Repair” to “Release
Vehicle”. Similarly, a precede link is added from “Repair Known Damage” to "Issue

Invoice" in lieu of the one that existed from “Perform Repair”.

Changes to activity repetition in Repairer local view propagate to the global view through

dependencies.

(PG 7.4.1.2 Propagate Adaptation of Activity Repetition) The many repetition of “Get
Cost Approval” propagates to its associated "Cost Approval" dependency.

(AG 7.3.1.3 Adapt Dependency Repetition) The regulatory agency agrees to the suggested

change and "Cost Approval" dependency is annotated as being repeating.

Changes to the global view propagate to the local view of the depender in “Cost

Approval”.

(PL 7.4.2.3 Adapt Activity Lifecycle) Repetition of “Cost Approval” propagates to the

local view of Adjustor who agrees conducting multiple assessments.

(AL 7.3.2.4 Adapt Activity Repetition) Adjustor marks “Conduct Assessment” as being
repeating. Its repetition propagates to its children, “Inspect Vehicle” and “Approve

Estimate”.

Changes to Adjustor local view propagate back to the global view.
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(PG 7.4.1.2 Propagate Adaptation of Activity Repetition) Repetition of “Inspect Vehicle”

propagates to associated dependency, "Present Vehicle".

(AG 7.3.1.3 Adapt Dependency Lifecycle) The regulatory agency agrees to the suggested

change and the "Present Vehicle" dependency is annotated as being repeating.

6 | Changes to the global view propagate to the local view of the dependee in the “Present

Vehicle” dependency.

(PL 7.4.2.3 Propagate Adaptation of Dependency Repetition) Repetition of “Present
Vehicle” propagates to its dependee activity as Repairer agrees to present a vehicle

multiple times for assessment.

(AL 7.3.2.4 Adapt Activity Repetition) The dependee in “Present Vehicle”, which is

"Submit to Assessment”, is marked as being repeating.

7 | Similarly, the repetition annotation of "Approve Estimate" in step 4 is propagated to the
dependency “Reviewed Cost Estimate” in the global view and then to “Accept

Assessment” activity in Insurer's local view.

8 | All participants agree on adapted interaction specification.

The summary of changes made to Repairer’s local model, where most adaptations were made,

and the ACDL generated from the adapted model is shown in Figure 8.10.
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Sequence
e ~ send AccidentLocationResponse From CallCenter To Repairer

rd \R, Parallel
{ T Y Sequence

Send IncidentFormResponse From CallCenter To Insurer

send IncidentFormCopyResponse From Insurer To Adjustor
IncidentFormCopyReceived = true
Sequence
send ClaimFormRequest From Insurer To Claimant
Send ClaimFormResponse From Claimant To Insurer
send AssignRepairerResponse From CallCenter To Claimant
While (NOT NoMoreDamageFound)
Sequence
send CostApprovalRequest From Repairer To Adjustor
While (NOT IncidentFormCopyReceived)
NOOP
Send ReviewedCostEstimateResponse From Adjustor To Insurer
Send CostApprovalResponse From Adjustor To Repairer
Send InvoiceResponse From Repairer To Adjustor

/ ”,f' Send ReviewedInvoiceResponse From Adjustor To Insurer
Repaire Send PaymentResponse From Insurer To Repairer

Figure 8.10 Adaptation to perform many repair iterations

. Repair Known Parallel
- Damage Sequence

As expected, the repetition resulted in the “While” construct in the messaging specification.
Notice also how the Adjustor performs redundant checks for the receipt of the incident form
every time they are sent a cost estimate. This can be avoided by separating the check into its own

activity but the Adjustor may choose to do the check every time as part of approving the cost.

8.2.3.2 CA2: Reporting Complaints to Department of Insurance

This requirement specifies that the Claimant has the right to contact the department of
insurance to complain about unreasonable delays in claim processing. As specified, this
requirement is not incorporated in a choreographed protocol between the participants per se, but
rather is representative of how a global observer gets involved indirectly in regulating an
interaction. The global observer does not monitor every message exchanged, but rather
participants report non-compliance to the global observer who then investigates and prompts

non-compliant participants

8.2.3.3 CA3: Involving an Appraiser and an Umpire for Arbitration

If Claimant and Insurer do not agree on estimates, they each select an appraiser who will
conduct additional investigations. In case appraisers also do not agree on estimates, they choose
an umpire who will have the final say. Disagreement on estimate constitutes a failure of

participants to carry out the vehicle repair interaction to completion. This failure triggers another
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interaction with different roles and a separate messaging protocol. An “arbitration” interaction
takes place between the roles Appraiser, Umpire, Insurer, and Claimant. Although this
interaction can be designed separately from the main vehicle repair interaction, integrating them
both together is a non-trivial task. This calls for systematic techniques for composing interactions

specified using CLGs, which we do not address.

8.2.3.4 CAA4: Insurer Stands Behind Repairs if Vehicle is not Repaired Properly

This requirement stipulates that the Insurer is responsible for repairing the vehicle to
Claimant's satisfaction. Since this requirement is not specified in detail we will assume that it
will be up to the Claimant to declare their dissatisfaction with repairs when they visit the
Repairer to pick up the vehicle. That is, Claimant will refuse to pick up the vehicle if they are not
satisfied with repairs. That is, the “Repaired Vehicle” dependency is made dismissible which
means Repairer may have to repeat the activities "Release Vehicle", "Perform Repairs",
"Estimate Cost", "Get Cost Approval", and "Issue Invoice". These will propagate to Adjustor's
local view which in turn may repeat "Conduct Assessment”, and adaptation continues in a

manner similar to that of CA1.

8.2.3.5 FSCO1: Charging Claimant for Deductible

Under this requirement, a Claimant is obliged to pay the difference between what a Repairer
charges and what an Insurer pays for repairs. It is left unspecified who charges the Claimant for

the deductible so we will assume it is the Repairer, which is the likely alternative.

1 | Repairer needs to adapt their local view to charge Claimant for deductible.

(AL 7.3.2.1 Add Activity) Repairer adds a “Collect Deductible” activity to their local
view. Its creation condition is that they have received payment from Insurer, so that they
know how much a Claimant owes. Its fulfillment condition is that deductible has been

collected, which we'll refer to as €.

(AL 7.3.2.3 Adapt Precedence) Repairer considers ways of enforcing the creation

condition of "Collect Deductible". They identify that "Receive Payment" brings about the
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creation condition of "Collect Deductible" and hence they add a precede link from

"Receive Payment" to the newly added activity.

Changes to the local view of the Repairer propagate to the global view.

(PG 7.4.1.1 Propagate an Added Activity) The newly added "Collect Deductible" relies on

Claimant to provide payment and hence a new dependency needs to be added.

(AG 7.3.1.1 Add Dependency) The regulatory agency agrees to a new "Deductible"
dependency. Since Claimant fulfills this dependency he is made the dependee. Since the
deductible amount is provided to the Claimant by the Repairer, the dependency is

annotated as bidirectional.

Changes to the global view propagate to the local view of Claimant.

(PL 7.4.2.1 Propagate Added Dependency) Claimant accepts the responsibility of paying
the deductible amount as being the dependee in the "Deductible" dependency.

(AL 7.3.2.1 Add Activity) Claimant adds a “Pay Deductible” activity to be the dependee
in the “Deductible” dependency. Since “Deductible” is a bidirectional dependency, the
creation condition of the dependee activity is that "Deductible" has been created and its

fulfillment is that the deductible amount has been paid, i.e. Q.

As an extension to the analysis performed in step 1, Repairer inspects the interaction

specification and decides on further changes.

(AL 7.3.2.3 Adapt Activity Precedence) Repairer realizes that it is in their interest not to
release a vehicle to a Claimant until they have collected the deductible. Hence, they add

precedence from “Collect Deductible” to “Release Vehicle”.

(PG 7.4.1.3 Propagate Adaptation of Activity Precedence) The added precedence changes

the creation condition of “Release Vehicle” which needs to propagate to the global view
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via the associated “Repaired Vehicle” dependency.

(AG 7.3.1.3 Adapt Dependency Lifecycle Condition) Assuming that the Department of
Insurance finds it legal to withhold the vehicle, 2 is added as a necessary creation
condition for dependency “Repaired Vehicle”. That is, paying the deductible becomes a

pre-condition on releasing the repaired vehicle.

6 | Changes to the “Repaired Vehicle” dependency propagate to the local view of the
depender.

(PL 7.4.2.3 Propagate Adaptation of Dependency Lifecycle) The change in the creation
condition of “Repaired Vehicle” propagates to "Pick up Vehicle" which is the depender

activity in Claimant local view.

(AL 7.3.2.4 Adapt Activity Lifecycle) Claimant looks for ways to enforce Q as a
necessary pre-condition on the fulfillment of "Pick up Vehicle". Since "Pay Deductible" is
already responsible for bringing about Q, Claimant decides to add precedence from this

activity “Pick up Vehicle", thereby ensuring the fulfillment of the former precedes
fulfillment of the latter.

7 | Participants agree to the adapted interaction specification.

The adapted elements of the model are shown in Figure 8.11. Generating the ACDL from the
adapted model results in two additional messages at the end of the interaction that directly follow

receipt of payment by the Repairer.

---------------------------------------- . Q added to Fi e asmamesaaa e emee e
Repaire i Repaired ™\ 4 1 Pick up
i Yehicle Vehide .

Fi(Pay Deductible) = Q

Pay
Deductible

Send DeductibleRequest From Repairer To Claimant

: BD Fi(Deductible) = Q Send DeductibleResponse From Claimant To Repairer

e
Deductible Deductible

Figure 8.11 Adaptation of vehicle insurance example to incorporate deductible
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8.2.3.6 FSCO?2: Filling an Claim Form Upon Request

This requirement stipulates that an Insurer "may" require a Claimant to fill a claim form. That
is, "Request Claim Form" activity is no more a necessary part of the interaction as Insurer may
chose not to execute it. Although the Tropos models do not support annotating an activity as
"optional" per se, “OR” refinement may be used to capture this requirement, albeit with undue
bloat to the model: Insurer adds a “Process Claim” activity, which is refined into two mutually
exclusive activities: “Request Claim Form” (which already exists in the model) and an activity

whose semantics are “Process Claim without Requesting Claim Form”.

8.2.3.7 FSCO3: Meeting the Adjustor in Person

This requirement gives Adjustor the right to request to meet in person with Claimant, and also
get a sworn declaration from them about the accident. Conceivably, Adjustor will call Claimant
and suggest a date and place for their meeting. Adjustor and Claimant will then show up at the
agreed date and place to discuss the claim. This is realized by adding two dependencies:
“Meeting Info” from Claimant to Adjustor and “Appear for Meeting” from Adjustor to Claimant,
where the former dependency precedes the latter. To propagate this change to local models of
Claimant and Adjustor activities are added at both ends of newly added dependencies.

Adaptation of both local models proceeds as has been demonstrated before.

8.2.3.8 FSCO4: Claimant Chooses a Repair Shop

This variant of the vehicle repair interaction appeared in all public documents we reviewed. In
this variant Claimant is responsible for hauling their vehicle to a Repairer, obtaining an estimate,
and sending it to Adjustor. Even though applying our adaptation framework to this requirement
will not be fundamentally different than examples we have discussed before, it is not obvious
that starting from the model of Figure 8.8 is beneficial. Arguably, this variant of the vehicle
repair interaction is sufficiently different that it may be easier to start from a clean slate. The
step-by-step nature of our adaptation process makes it more suited for performing incremental

changes but not as effective for larger-grained ones.
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8.2.3.9 IL1: Claimant Reports Damages Immediately to Insurer

- This requirement stipulates that Claimant should submit a claim form as soon as they can,
instead of waiting till Insurer requests submission of claim. This amounts to changing the “Claim
Form” dependency from being bidirectional to unidirectional, as Claimant does not rely on
Insurer for requesting its fulfillment. Insurer will then change the name of "Request Claim Form"

activity to "Receive Claim Form". No other changes are necessary.

8.2.3.10 IL2: Claimant Required to Provide Multiple Estimates

This requirement gives an Insurer the right to request a Claimant to provide multiple repair
estimates from a number of licensed repairers. This requirement is similar to FSCO4 in that a
Claimant chooses a repairer. The repetition aspect of this requirement can be handled in the same
manner as we did for CA1. However, there is a non-trivial challenge with representing multiple
instances of the Repairer role. Since a Claimant obtains estimates from multiple repairers, the
Repairer role is instantiated multiple times in the same instance of the interaction. WS-CDL does
not directly support representing multiple instances of a role nor does ACDL or Tropos
diagrams. One solution to this problem is to modularize a repeating part of an interaction as a
sub-interaction which is instantiated multiple times. That is, the part of vehicle repair interaction
where a Claimant interacts with Repairer is captured in a separate modular "Obtain Estimate"
that accepts a repairer instance as a parameter. WS-CDL supports sub-choreographies and

ACDL should be extended with an equivalent construct.

8.2.3.11 IL3: Insurer Required to Respond to Claimant within 21 Days

This requirement specifies a maximum time within which an Insurer must respond to
Claimant. We found that specifying a maximum time within which a participant is required to
respond a commonly occurring requirement. Linear Temporal Logic does not support specifying
time limits on events, so formal specification of this requirement is not possible using Formal
Tropos. However, WS-CDL does support timeouts and to make use of this feature an extension

to Tropos is necessary, potentially via annotating dependencies with a time limit.
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8.2.3.12 NY1: Obtaining a Certificate of Repairs from Claimant

This requirement stipulates that a Claimant must obtain a “Certificate of Repairs” from
Repairer after repairs are completed and submit it to Insurer. This requirement is captured by
adding two dependencies: a “Certificate of Repairs” dependency from Claimant to Repairer to
represent the certificate that a Claimant obtains from a Repairer and “Certificate of Repairs
Copy” dependency from Insurer to Claimant to represent the copy that a Claimant provides to an
Insurer. Since this document may only be produced after repairs are done, a precedence link is

added from “Repaired Vehicle” dependency to “Certificate of Repairs” dependency.

8.2.3.13 NY2: Failing to Fill Certificate of Repairs Results in Reducing Next Settlement

If a Claimant fails to submit a Certificate of Repairs an Insurer is left uncertain about the state
of the vehicle. If the same Claimant is involved in another future vehicle this requirement gives
the Insurer the right to reduce the amount they pay for repairs. An Insurer needs to keep track of
repair history in order to check, when a new claim is received, whether a Claimant had submitted
a Certificate of Repairs for previous repairs. That is, execution of an interaction instance affects

the execution of another, which is not supported in choreography languages as interaction

instances are assumed to be independent.

8.2.4 Discussion

We reflect on the results of applying our adaptation framework to the vehicle repair case

study and highlight the main findings grouped into the following categories.

8.2.4.1 Capturing and Adapting Requirements

We demonstrated how our adaptation framework supported adaptation driven by local needs
as well as those imposed by the regulatory agency. By applying guidance provided by our
framework, we propagated changes systematically to all affected parts of a relatively large
model. Using our adaptation framework, we were able to handle a majority of requirements
found in public documents. The case study exercised a range of adaptation operations of
activities, dependencies, and their annotations. The classes of requirements that our framework

handles can be expanded via some minor extensions to Tropos annotations. Annotating
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dependencies with a timeout, marking an activity as optional, and annotating physical
dependencies as dismissible were identified as potential extensions. However, our framework

remains better-suited for handling incremental changes and less so for larger-grained changes.

8.2.4.2 Building Valid Models

Building valid models can become harder as the models get larger. In earlier attempts to
specify the vehicle repair interaction, we made a mistake by adding a precedence link from one
activity to another, where the two activities belonged to mutually exclusive execution branches.
Before it starts executing, the activity on the second branch waits for the activity on the first
branch to finish. However, the first activity never gets to execute if the second branch is taken,
thereby leading to a deadlock. Although these specification problems can be caught by
performing model checking after each adaptation operation, an incremental checking technique
would save architects time. Furthermore, validity alone is not sufficient for deriving a detailed
messaging protocol from a requirements model. To get a detailed messaging specification,
dependencies have to be specified at a fine-grained level. For instance, if the relation between
Insurer and Adjustor were to be represented using a single “Supervise Repairs” dependency, the

generated messaging protocol would have been very terse.

8.2.4.3 Refining Requirements

Requirements in public documents, such as CA4, are not always at a level of refinement
suitable for incorporation directly into a CLG. Refinement of high-level requirements into
detailed specification, i.e. specific activities and constraints, is outside the scope of our
contributions. An analyst should use Tropos or other means for refinement before applying our
adaptation framework to incorporate resulting activities and constraints into a CLG. Similarly,
refinement of coarse-grained dependencies into finer-grained dependencies appearing in a CLG
is a non-trivial task. A high-level RD diagram for the vehicle repair interaction would include a
goal dependency from Claimant to Insurer for covering cost of repair. Refinement of this
dependency into dependencies and constraints appearing in a refined RD diagram require

methodological support such as described by Bresciani (2004).
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8.2.4.4 Specifying Interaction Context

In a textual description of an interaction, such as in public documents, it may not be
immediately obvious what constitutes local vs. global viewpoints. The original AGFIL
specification focused on the business process of the insurance company and its partners, and
omitted the Claimant role, which is an essential role for the global view. On the other hand, the
public documents did not address in detail the relation that an Insurer has with an Adjustor, such
as payment for the Adjustor’s service, and hence it was deemed outside the scope of the repair
interaction. These findings emphasized the benefit of the global view in specifying interaction

context in terms of participating roles and dependencies that are‘part of the interaction.

The relevance of the global model also derives from the importance of the global observer.
Invariably, the public documents specified a dispute resolution service provided by the
Department of Insurance. A Claimant who disagrees with an Insurer on interpretation of an
insurance policy can file complaints through this service. Although an interaction protocol is
necessary for regulating an interaction, it is only part of regulatory material. A range of legal
details about how to determine who is at fault in the accident, how to estimate a cash value of the
- vehicle, etc. cannot be captured in a messaging protocol or even a CLG, but yet should be

considered as part of the interaction context.

Specifying interaction context becomes complicated if the set of interacting roles is not fixed.
Some of the public documents specified that a Claimant may report an accident to an insurance
“broker” which takes care of carrying out the claim process on behalf of the Claimant. This
variation complicates the construction of a CLG as a Broker role is only optionally involved.
Specification of interacting roles also turned out to be problematic when multiple instances of a
role may get involved in the same interaction instance, e.g. in IL2 where multiple instances of ‘

Repairer were involved.

8.24.5 Validation and Verification via Generation of Messaging Specification

Whereas Tropos models are more suited for requirements-driven adaptation of an interaction,

generated ACDL protocols proved to be a useful complementary specification for discovering
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errors and omissions during construction of Tropos models. Our ACDL generation techniques
provided useful feedback both on the validity of requirements model as well as their consistency
with the original AGFIL specification. In earlier attempts to construct the vehicle repair CLG, we
failed to capture a necessary precedence link. Our CHREQ tool alerted us that some activities in
the model were never executed, which prompted us to look for specification errors. By analyzing
constraints governing execution of the activities in question, we were able to attribute the
problem to omission of links. The generated messaging specification also helped identify parts of
the CLG that were inconsistent with original AGFIL requirements. In one iteration, we specified
a precedence link from “Estimate Cost”, rather than from “Get Cost Approval”, to “Perform
Repairs”. The generated messaging appeared under-constrained as it allowed an invoice to be
sent before cost was approved. This error lead us to look for and identify constraints missing

from our CLG governing execution of the activities in question.

8.3 Criteria-Based Evaluation of Adaptation Framework

The service adaptation literature provides a variety of qualitative criteria for evaluating the
range of applicability of adaptation approaches. We evaluate our approach using a set of criteria
covering scenarios for choreography specification, classes of changes to service interactions, and

catalogues of adaptation operations.

8.3.1 Choreographed Specification Scenarios

Section 3.2 discussed approaches that derive local views from a global specification and those
that construct a global view from a set of local views. Our approach supports bidirectional
- change propagation between the global and local views and hence supports both modalities. An
additional scenario is described by Decker & von Riegen (2007) where three scenarios for
choreography specification were proposed. First, “Choreography identification” proceeds from
existing local models to establishing a choreography specification between participants, which
we do support via change propagation from local to global view using dependencies. Second,
“Choreography Context Expansion” broadens the business context of a choreography

specification by incorporating or removing assumptions. We have demonstrated via the vehicle
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insurance case study that we support this scenario. However, we do not provide modularization
or explicit pre-defined variability points. Third, “Collaboration Unification” obtains a
choreography specification by merging existing choreographies. We only provide minimal
support for this scenario via incremental adaptation, but not via composition of whole interaction

specifications. We also have not dealt with changes in interacting roles.

8.3.2 (lasses of Changes to Service Interactions

The nature of service changes may be classified into “shallow”, where changes are strictly
localized to a service and its clients, or “deep”, where the effect of changes cascades beyond to
service clients (Papazoglou, 2008). The guidance we provide for adapting global and local views
addresses the former whereas the guidance we provide on change propagation addresses the
latter. Additionally, changes are further classified as pertaining to structure, business protocol,
policies, and operational behavior. As previously discussed, we cover the first three classes.
Operational behavior requires consideration of message structure and semantics, which we do
not address. Similarly, three classes of changes to business requirements are identified by Desai
et al. (2009), namely: transactional (exchanges between participants), structural (organization of
participant business processes and delegation between them), and contextual (marketplace rules
and government regulations). We have demonstrated how we support these three requirements as
changes to global model, local model, and delegation between models via dependencies.
Furthermore, our particular usage of CLG diagrams addresses the criticism that Tropos has only

been used to model and adapt centrally-orchestrated systems.

8.3.3 Catalogues of Adaptation Operations

Thirteen patterns of business process change were identified by Weber et al. (2007). In
addition to supporting the basic patterns of inserting or deleting elements, our approach also
supports more advanced ones such as making part of a process conditional, e.g. via OR-
refinement or adapting lifecycle conditions. However, we do not provide guidance on supporting

“refactoring” operations of a process such as extracting a sub-process.
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Our approach is consistent with adapting Tropos model in terms of additions and removal of
elements (Krishna et al., 2004), albeit we do not address adding or removing roles. This view is
also consistent with that of Mens & D'Hondt (2000) where a model is adapted via addition,
removal, connection, and disconnection of model elements. Additionally, compositions of those
elementary changes are considered, for which we do not provide specific guidance except via
change propagation. However, these sets of operations do not include changes to lifecycle

conditions, whereas our set of operations does.

8.4 Chapter Summary

In this chapter we evaluated our adaptation framework using two case studies. The first
utilized the familiarity of the constructed medical example to demonstrate the applicability of our
approach and provided resolution to the challenges presented in section 2.4. The second case
study drew on public government documents and a well-studied vehicle insurance scenario to
demonstrate the utility of our approach in a real-world context. Other than justifiable
assumptions about stakeholder intentions, we applied our adaptation framework in a systematic
manner repeatable by an architect who has basic experience with Tropos modeling. We were
able to apply our guidance framework to address a majority of the requirements that we
encountered. We also demonstrated how our ACDL generation technique is useful in verification
and validation of requirements models. We concluded our evaluation by judging the range of
utility of our approach versus a set of criteria drawn from the service adaptation literature.
Throughout the evaluation we have identified some limitations of our approach to be discussed

in the next chapter.
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Chapter 9. Summary and Further Work

This thesis tackled the problem of adapting choreographed service-oriented interaction
protocols. We identified three challenges in the way of solving this problem. Firstly, state-of-the-
art choreography description standards are detached from the business goals of interacting
participants, which makes it hard to ensure adaptations of an interaction protocol satisfy these
goals. Secondly, adapting a choreographed interaction requires agreement between multiple
stakeholders, which calls for means to resolve their potentially conflicting needs. Thirdly, the
space of alternatives for adapting an interaction is typically large, and so ad hoc navigation of
this space is inefficient and error-prone. Our contributions towards solving this problem,
summarized in section 9.1, directly tackle these three challenges. We discuss the limitations of

our approach and future work in section 9.2, and finally conclude in 9.3.

9.1 Summary of Contributions

Incorporating emergent requirements into the specification of a cross-organizational
interaction is a multi-faceted problem. Stakeholder goals driving them to engage in an interaction
as well as global requirements may evolve separately. Adaptation of an interaction protocol
needs to satisfy both sets of interaction requirements while maintaining consistency between the
global view and the local views of interaction specifications. We adopted a requirements-driven
approach that provides a methodological path from problem to solution. We presented three

contributions that directly address the three identified challenges.

Firstly, we represented a choreographed interaction using models of organizational
requirements motivating the interaction. Organizational requirements models embody business
goals as well as global constraints imposed by the context, thereby enabling business-level
reasoning about adaptation. We exploited the semantics of requirements models to automate the
derivation of messaging protocols from them, thereby bridging the gap in level of abstraction

between requirements specification and messaging specifications. This contribution brings
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together two fields: Requirements Engineering and SOC. On the one hand, by advocating
requirements-driven adaptation of choreographed interactions we bring the benefits of
Requirements Engineering (RE) to SOC. On the other hand, by grounding Tropos in
choreography we extend the reach of the methodology and bring it closer to the realm of
standards offered by SOC.

Secondly, we established relations between the viewpoints that represent the interests of
stakeholders in an interaction. We bridge the local business needs of each-participant in an
interaction to the global constraints imposed on the interaction, thereby enabling each
stakeholder to guard their interests while fulfilling their obligations. By propagating changes
across viewpoints we maintain consistency between them and drive the forging of an agreement -
between stakeholders on an adapted interaction specification. This contribution complements the
Tropos methodology with a formalization for separating/integrating concerns in a multi-

participant choreographed system.

Thirdly, we proposed a framework for guiding adaptation of interaction specifications. The
framework helps stakeholders ensure the validity of an interaction specification being adapted.
We built a catalogue of adaptation operations that guides architects through the process of
adapting an interaction specification. For each adaptation operation, we provide guidance on how
to apply it as well as how to traverse the space of available adaptation alternatives. The catalogue
guides systematic change propagation between viewpoints to maintain consistency between
them. Our proposed adaptation process backed by the guidance of the catalogue provides a

blueprint for implementing tool-assisted adaptation of Tropos models.

9.2 Further Work

In chapter 3 we set the stage of our work thereby deeming some work to be outside the scope
of this thesis. During evaluation of our approach, further limitations were identified which we
discuss here along with potential means for addressing them. We outline further work to extend

our approach and render it useful in a wider context.
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9.2.1 Modularizing Representation of Choreographed Interaction

As seen in Figure 8.8 graphical Tropos models for specifying an interaction get complex
pretty quickly. It is desirable to break a Tropos model down into smaller fragments that are
easier to comprehend and manage. Partitioning Tropos models would also help generate a
modular interaction protocol, where reusable blocks of the protocol are modularized into sub-
choreographies, a construct that WS-CDL does support. This is particularly useful when an
interaction contains many alternative paths that make the “main flow” harder to comprehend.
Partitioning a model would also help support multiple instances of a role per interaction, a
common problem in choreographed specification (Decker et al., 2008). For instance, in the
vehicle repair scenario, to specify that a Claimant may receive competing estimates from
multiple Repairers, we may specify a separate interaction between Claimant and Repairer as a

sub-interaction out of which many instance may be created per instance of the main interaction.

To get an integrated view of an interaction from Tropos model fragments we thus need means
for composing models. Although our adaptation framework guides incorporation of elements
(e.g. dependency and activity) into an existing model, it does not solve the general problem of
composing Tropos model fragments. Composing multi-viewpoint Tropos models requires
dealing with the potential for inconsistencies, a problem that has been tackled in the
requirements engineering literature (Ghezzi & Nuseibeh, 1998, 1999). In this respect, existing
Tropos modeling tools (Bertolini et al., 2006) are pretty limited and better tooling support is
called for. Commitments-based approaches, as was discussed in sections 3.1.1.4, provide a
business-level representation of participant inter-connections. One notable advantage of these
approaches is the systematic construction of an interaction protocol by composing reusable
protocols (Desai et al., 2005). Combining this flexibility with the business-level representation
offered by Tropos is a potential approach to modularize representation of choreographed
interactions (Telang & Singh, 2009).

9.2.2 Representing Timing Constraints

- The vast majority of constraints found in the literature can be captured in terms of occurrence,

or absence, of events and precedence between them (Dwyer et al., 1999); this also applies to
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seﬁice-oriented systems (Li et al., 2005). However, we have encountered some fundamental
classes of constraints that cannot be easily represented using these primitives or any other
Linear-time Temporal Logic constructs. Constraints requiring a participant to respond within a
specified time window, i.e. time-bounded responses, stand out as one. Formalisms other than
LTL, such as Duration Logic, have been used to represent this class of timing constraints
(Kazhamiakin et al., 2006). Also, some extensions of temporal logic allow the expression of
constraints such as “condition @ must eventually hold within the next ¢ time units” (Koymans,
1992). One such extension, Fluent LTL (Giannakopoulou & Magee, 2003), was extended to
specify and verify behavior of event-based systems, e.g. message-oriented systems (Letier et al.,
2005). Conceivably, Formal Tropos can be upgraded to use a variant of LTL that can capture
time-bounded responses. On the messaging specification-side, WS-CDL does allow specifying

timeouts for interaction events, so it can already accommodate these constraints.

9.2.3 Handling Service Failures

In a distributed messaging system failures occur due to faulty communication channels or due
to business-level failure. A business-level failure occurs when a participant fails to comply with
their obligations, either by providing an invalid or untimely response (Cristian, 1991). Channel
failures are typically handled by superimposing reliable messaging mechanisms such as retrying
to send failed messages (OASIS, 2009). Handling business-level failures is more complex. We
have introduced dependency dismissibility as a means for handling failure of a participant to
comply with an interaction specification. However, we have not addressed the issue of rolling
back a partially complete interaction, an often required recovery technique in distributed systems
- (Treaster, 2005). Rolling back an interaction is a non-trivial issue, especially without explicit
annotation of service properties, most notably whether operations are idempotent (Hobbs et al.,
2008). Capturing “exceptional” paths of an interaction, i.e. those executed when a business-level
failure occurs, within the same CLG as the “main” path may yield an unreadable specification.

This again calls for means to modularize interaction specifications in Tropos.
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9.2.4 Building a Two-Way Street between Requirements and Messaging

Deriving messaging protocols from requirements models assumes that requirements models
are the single authoritative representation of an interaction specification. This assumption does
not take into account scenarios where the only existing specification of an interaction is a
messaging protocol. To adapt an interaction in this scenario an architect has to reconstruct
requirements models from a messaging protocol prior to performing our adaptation process on
requirements models. This reconstruction is non-trivial for the same reasons that we proposed
performing adaptation to requirements rather than messaging protocols. Requirements models
embody business knowledge as well as physical activities missing from a messaging protocol.
Any tool that would support this reverse derivation has to consult a human, or a well-populated
knowledge base, in order to succeed in reconstruction. We discussed attempts for relating
incremental changes in a BPMN process specification back to requirements models (Koliadis et
al., 2006a). Such approaches only consider incremental co-evolution of requirements and
business process, but do not tackle scenarios that start from only a messaging protocol.
Nevertheless, incremental two-way change propagation between requirements and messaging is
a starting point for relaxing the assumption that requirements models are the single authoritative

specification.

9.2.5 Extending the Adaptation Process

In section 8.3, we demonstrated that our proposed adaptation operations are consistent with
what has been proposed in the adaptation literature. Sequences of add/remove operations on a
model are sufficient for performing incremental adaptation of a model to incorporate an
emergent requirement. However, our proposed operations are fine-grained and do not benefit
from commonly occurring patterns in process-oriented systems such as “Notification”,
“Approval”, and others (Thom et al., 2009). By applying such patterns it may be possible to
reduce the number of adaptation steps and minimize chances of errors. It is thus desirable to
compose our primitive operations into coarser-grained operations with business-level semantics

(Weber et al., 2007). For instance, to specify that a Doctor is allowed to cancel a previously
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confirmed appointment, instead of applying a sequence of primitive operations, one would apply

the “Revert Offer” operation (Singh et al., 2009).

9.3 Conclusion

This thesis presented three contributions to address the problem of adapting choreographed
interaction specifications. The contributions provide a framework for representing an interaction
using requirements models, guiding adaptation of these models, enabling collaboration between
participants on adaptation, and systematically deriving a choreographed messaging protocol. The
utility of the contributions was validated using case studies and criteria from the literature, which
helped identify some limitations of our approach. We outlined potential directions for extending

our approach to tackle these limitations.
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