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Abstract

To incorporate expert opinion into a Bayesian analysis, it must be quantified as a prior distribution
through an elicitation process that asks the expert meaningful questions whose answers determine
this distribution. The aim of this thesis is to fill some gaps in the available techniques for eliciting
prior distributions for Generalized Linear Models (GLMs) and multinomial models.

A general method for quantifying opinion about GLMs was developed in Garthwaite and Al-
Awadhi (2006). They model the relationship between each continuous predictor and the dependant
variable as a piecewise-linear function with a regression coeflicient at each of its dividing points. How-
ever, coefficients were assumed a priori independent if associated with different predictors. We relax
this simplifying assumption and propose three new methods for eliciting positive-definite variance-
covariance matrices of a multivariate normal prior distribution. In addition, we extend the method of
Garthwaite and Dickey (1988) for eliciting an inverse chi-squared conjugate prior for the error variance
in normal linear models. We also propose a novel method for eliciting a lognormal prior distribution
for the scale parameter of a gamma GLM.

For multinomial models, novel methods are proposed that quantify expert opinion about a conju-
gate Dirichlet distribution and, additionally, about three more general and flexible prior distributions.
First, an elicifation method is proposed for the generalized Dirichlet distribution that was introduced
by Connor and Mosimahn (1969). Second, a method is developed for eliciting the Gaussian copula as
a multivariate distribution with marginal beta priors. Third, a further novel method is constructed
that quantifies expert opinion about the most flexible alternate prior, the logistic normal distribution
(Aitchison, 1986). This third method is extended to the case of multinomial models with explanatory

covariates.
All proposed methods in this thesis are designed to be used with interactive Prior Elicitation

Graphical Software (PEGS) that is freely available at http://statistics.open.ac.uk/elicitation.

iii


http://statistics.open.ac.uk/elicitation

Contents

1 Introduction

2 Literature review

2.1 Introduction . . . . . . . i i e e e e e e

2.2 Psychological aspects in eliciting opinion . . . . . . . ... ... .. ..o ...
2.3 Prior elicitation for normal linear models . . . . . ... ... ... ......
2.4 Prior elicitation for GLMS . . .« v v v v vt e e e
2.5 Prior elicitation for multinomial models . . . . .. ... .. ... ... ...,
2.6 Other general graphical elicitation software . . . ... .. ... ........
2.7 Concluding comments . . . . . . . ...t

3 The piecewise-linear model for prior elicitation in GLMs

3.1 Introduction. .. . . .. . . . . . e e

3.2 The elicitation method for piecewise-linear models (GA method) . ... ...
3.2.1 The piecewise-linearmodel . . ... .. ... ... ... ...
3.2.2 Eliciting the hyperparameters of the multivariate normal prior
3.2.3 Computing values for the suggested assessments . . .. ... .. ...

3.3 Assessment tasks and software description . . . . . . ... ... .. oL
3.3.1 Definingthemodel . . . . . ... ... ... ... ...
3.3.2 Defining the response variable and covariates . . . ... ... ... ..
3.3.3 Initial medians assessments . . . . . ... .. .o

iv

10

11

11

15

21

37

49

51

53

54

56

o7

60



3.34 Thefeedbackstage . . . . . . . . . .. . ... e 75

3.3.5 Conditional medians assessments . . . . . ... .. e e e 76

3.3.6 Conditional quartiles assessments . . . . . . .. .. .. ... ... ... 77

3.4 Concluding comments . . . . . ... . ... . 81

4 Eliciting a covariance matrix for dependant coefficients in GLMs 83
4.1 Introduction. . . . . . . . . . . . e 84

4.2 A proposed method for eliciting the variance-covariance matrix of a pair of

correlated vectors of coefficients . . . . . . ... ... o L 85
4.2.1 Notations and theoretical framework . . . . .. ... ... ... .... 85
4.2.2 Assessment tasks and software description . . . .. . ... L. 91
4.2.3 On the positive-definiteness of the elicited covariance matrix . . . . . 95

4.3 Another elicitation method for the variance-covariance matrix of correlated

coefficients . . . . . . . ... e 98
4.3.1 The case of two vectors of correlated coefficients . . . ... ... ... 99
4.3.2 The case of various vectors of correlated coefficients . . .. ... ... 103
4.3.3 Assessment tasks . . . ... ... ... L oo 109

4.4 A general flexible elicitation method for correlated coeflicients . . . . . . . .. 114
45 Concluding comments ... . .. ... ... .o 120
5 Eliciting prior distributions for extra parameters of some GLMs 122
5.1 Imtroduction. . . . . . . . . o 0 i e 123
5.2 Eliciting a prior distribution for the error variance in normal GLMs . . . . . 124
5.2.1 The mathematical framework and notations ... . . . . ... ... ... 125
5.2.2 Implementation and assessment tasks . . . . .. ... ... ... ... 133

5.3 Eliciting a prior distribution for the scale parameter in gamma GLMs . . . . 137
5.3.1 GLMs with a gamma distributed response variable . . . . . ... ... 138
53.2 Assessment tasks . . . .. ... L L e e 143



54 Concluding comments . . . . . . . . . . e e 148

Eliciting Dirichlet priors for multinomial models 150
6.1 Introduction. . . . . . . . . . . e e 151
6.2 Eliciting beta parameters using quartiles . . . . . .. ... ... .. e 152
6.2.1 Introduction . . . . . . i i e e 152
6.2.2 Normal approximations for beta elicitation . . .. ........... 154
6.2.3 Least-squares optimizations for beta parameters . ... ... ... .. 158
6.3 Eliciting a Dirichlet prior for a multinomial model . . ... .......... 160
6.3.1 Introduction . .. .. ... ...« .. ... 160
6.3.2 The multinomial and Dirichlet distributions . . . . . . ... ... ... 161
6.3.3 The marginal approach . . . ... ... ... ... .. . .. ... ... 162
6.3.4 The conditional approach . . . .. .. ... .. ... ... . ..., 167
6.4 Concluding comments . . . . . ... . o e 173
Eliciting more flexible priors for multinomial models 174
7.1 Introduction . . . . . . . i i e e e e e e e 175
7.2 Eliciting a generalized Dirichlet prior for a multinomial model . . . . . . . .. 176
7.2.1 Connor-Mosimann distribution . . . ... .. ... ... ... ..... 176
7.2.2 Assessment tasks . . . . . . . ..o 179
7.2.3 Marginal quartiles of the generalized Dirichlet distribution. . . . . . . 180
7.3 Example: Obesity misclassification . . . . . ... .. ... ... ... .. ... 182
7.4 Constructing a copula function for the prior distribution . . . . . .. ... .. 189
7.4.1 Gaussian copula function . . . . ... ... 189
7.4.2 Assessment tasks . . . . ... ... e 192
7.4.3 Eliciting a positive-definite correlation matrix R . . . . .. ... ... 197
7.5 Example: Waste collection . . . . . . ... ... ... ... .. . o 203
7.6 Concluding comments . . . . . . . ... e 210

vi



8 Eliciting logistic normal priors for multinomial models

8.1

8.2

8.3

8.4

8.5

8.6

8.7

Introduction . . . . . . . . . e e e

The additive logistic normal distribution . . . . . ... .. .. ... ... ...

8.2.1 Approximate distribution of the lognormal sum . . . . ... ... ...

Assessment tasks . . . . . . . e e e e e e

8.3.1 Assessing initial medians . . . . ... ... .. L

8.3.2 Assessing conditional quartiles

8.3.3 Assessing conditional medians

......................

Eliciting prior hyperparameters . . . . . . . . . . .. ... ... .

8.4.1 Elicitingamean vector . . ... ... .. ... ...

8.4.2 Eliciting a variance-covariance matrix . ... ... ... ... ... ..

Feedback using marginal quartiles of the logistic normal prior . . . . . .. ..

Example: Transport preferences . . . . . . . . . . ... o

Concluding comments . . . . . . . . ... e

9 Eliciting multinomial models with covariates

9.1

9.2

9.3

9.4

9.5

9.6

Introduction . . . . . . v v e e e e e e e e e e e e e e e e e

The base-line multinomial logit model

Notation and theoretical framework

Eliciting the mean vector- . . . . . . . . . . .. L e

Eliciting the variance matrix . . ... ... .. ... ... oL

9.5.1 Eliciting the variance-covariance sub-matrices . . . . . ... ... ...

9.5.2 Assessing conditional quartil

9.5.3 Assessing conditional medians

es

......................

9.5.4 Eliciting the covariance matrix o . . . . . . . . ..o

Concluding comments . . . . . . . . ... e e

10 Concluding comments

vii

211
212
212
215
217
217
218
220
221
227
227
240
245

250

252
253
254
255
258
261
261
262
263
265

268

269



List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

5.5

A piecewise-linear relationship given by median assessments . . . . ... ... 56

A bar chart relationship for a factor given by median assessments . . . . . . . 57
The dialogue box for defining themodel . . . . . . . .. ... ... ...... 72
The feedback SCTEEN . . .« o v v vt e e 76
Conditional median assessments for the continuous covariate “Weight” . . . . 77
Quartile assessments for a continuous covariate . . . .. ... ... ... ... 78
Quartile assessments for a factor . . . ... ... ... oo Lo 79
Assessing quartiles conditioning on two fixed points . . . . . . ... ... ... 80
Assessing conditional quartiles for the last level of a factor . . . . . . .. . .. 81
Assessments needed in the first phase for correlated covariates. . . . . . . .. 92
Assessments needed in the second phase for correlated covariates . . .. . .. 94
Assessments needed for two correlated variables . . . . . ... ... ... ... 110
Assessments needed for five correlated variables . . . . . ... ... ... ... 116
Assessments needed for various correlated variables . . . . . . . ... ... .. 119

Three dimension plots of d(go/q;)/0v againsf, v and Cj for various sample sizes

k(7). o e 131
Assessing a median value conditioning on a set of data . . . . . . .. .. ... 135
The output table showing the elicited hyperparameters . . . . . . . ... ... 136
Changes in quartile values with the change of A at different mean values. . . . 142
The main software panel for assessing gamma parameter,. . . . . . . ... .. 145

viii



6.1

6.2

6.3

6.4

6.5

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

8.1

8.2

8.3

8.4

8.5

8.6

8.7

9.1

9.2

9.3

Assessing probability quartiles of each category . . . . .. ... .. ... ... 159

A feedback screen showing 2 different quartile options . . . .. ... ... .. 166v
Assessing conditional quartiles for Dirichlet elicitation ... . .. ... ... .. 168
Assessing conditional quartiles with scaled beta feedback . . . . . .. ... .. 169
The feedback graph presenting marginal quartiles . . . . . ... ... ... .. 172
Medians and quartiles assessments . . . . . . . . ... . oo e e 185
Assessing conditional medians . . . . . .. ... o Lo 186
Assessing conditional quartiles . . . .. ... ... . oL 187
Assessing conditional quartiles for copula elicitation . . . ... ... ... .. 194
Assessing conditional medians for copula elicitation . . . . . .. ... ... .. 196
Software suggestions for conditional medians . . . ... ... ... ... ... 197
The initially assessed marginal medians and quartiles. . . . . ... ... ... 204
The coherent assessments suggested. by the software . . ... ... ... ... 205
Assessing conditional quartiles . . . . ... ... o oo o oo 206
Assessing conditional quartiles for the last two categories . . ... ... ... 207
Assessing conditional medians . . . . ... ..o o oo 208
Assessing probability medians for logistic normal elicitation . . . .. ... .. 218
Assessing conditional quartiles with lognormai feedback . ........... 219
Assessing conditional medians for logistic normal elicitation . . . . ... ... 221
Software suggestions for initial medians . . . . .. ... ... ... 246
Assessing conditional quartiles . . ... ... ... .. . 0 L. 247
Revised conditional medians . . . . . . . .. ... ... . 248
Software suggestions for marginal medians and quartiles . . . . ... ... .. 249
Assessing probability medians at age =40 years . ... ... ... ... ... 259
Assessing conditional medians at age =40 years . ... .. ... .. ... .. 264
Assessing conditional medians given changes at the reference point . . . . . . 266

ix



10.1 Options for assessing correlations between regression coefficients . . . . . ..

10.2 A flowchart of the prior elicitation software for multinomial models . . . . . .



List of Tables

7.1

7.2

7.3

7.4

7.5

7.6

7.7

8.1

8.2

Probability assessments for different elicited priors . . . ... ... ... ... 188
Expert’s assessments of medians and quartiles . . . . .. ... ... ... ... 205
Expert’s assessments of conditional quartiles. . . . .. ... ... . ... ... 206
Expert’s assessments of conditional medians . . . . . .. ... ... ...... 208
The elicited hyperparameters of marginal beta distributions . . . . . ... .. 209
The elicited covariance matrix of the Gaussian copula prior . . .. ... ... 209
Probability means and variances from marginal beta distributions. . . . . . . 210
The elicited mean vector of a logistic normal prior . . .. ... ... ... .. 249
The elicited variance-covariance matrix of a logistic normal prior . . ... .. 250

xi



Chapter 1

Introduction



In many situations there is a substantial amount of information that is only recorded in
the experience and knowledge of experts. To efficiently use this knowledge as an input to a
statistical analysis, the experts must be asked meaningful questions whose answers determine
a probability distribution. This process is referred to as elicitation and different forms of
probability model require different elicitation methods.

Bayesian statistics offers an approach in which data and expert opinion are combined
at the modelling stage, yielding probabilities that are a synthesis of the survey data and
the expert’s opinion. To incorporate expert opinion into a Bayesian analysis, it must be
quantified as a prior distribution. This should be accomplished through an elicitation process
that asks the expert to perform various assessment tasks. These tasks include questions that
the expert is able to comprehend and answer accurately according to her prior knowledge,
without needing to know about mathematical and statistical coherence that is required in
her assessments.

The elicitation of prior beliefs has been studied extensively in the statistical, psycho-
logical, decision and risk analysis literature. Elicitation techniques have been proposed for
many probabilistic models including both univariate and multivariate probability distribu-
tions. However, achieving accurate elicitation is not an easy task, even for single events or
univariate distributions. The difficulty increases for multivariate distributions in which many
constraints must be imposed on the expert’s assessments to be statistically coherent. Due to
this complexity, relatively little literature deals with elicitation techniques for multivariate
distributions. O’Hagan et al. (2006) argued that the lack of elicitation methods for multi-
variate models and the lack of user-friendly elicitation software to implement them constitute
remarkable deficiencies in the existing elicitation research.

The aim of this thesis is to fill some gaps in the available techniques for eliciting prior
distributions for multivariate models. We are mainly interested in eliciting prior distribu-
tions for the parameters of Generalized Linear Models (GLMs) and multinomial models. We

extend some of the available methods of prior elicitation for GLMs parameters and propose



some original novel methods for eliciting different prior distributions for the parameters of
multinomial models. All proposed methods in this thesis are designed to be used with in-
teractive graphical software that is written in Java and tailored to the specific requirements
of each method. These pieces of software are freely available as Prior Elicitation Graphical

Software (PEGS) at http://statistics.open.ac.uk/elicitation.

The elicitation methods for GLMs that are available in the literature focus mainly on
logistic regression. A more general elicitation method for quantifying opinion about a logistic
regression model was developed in Garthwaite and Al-Awadhi (2006). The method is very
general and flexible and can be generalized to GLMs with any link function. The same authors
proposed this generalization in an unpublished paper, Garthwaite and Al-Awadhi (2011). In
their method, the relationship between each continuous predictor and the dependant variable
is modeled as a piecewise-linear function and each of its dividing points is accompanied with a
regression coefficient. However, a simplifying assumption was made regarding independence
between these coefficients, in the sense that regression coefficients were a priori independent
if associated with different predictors. One of the main purposes of this thesis is to relax
the independence assumption between coefficients of different variables. Then the variance-
covariance matrix of the prior distribution is no longer block-diagonal. Different elicitation
methods for this more complex case are proposed and it is shown that the resulting variance-
covariance matrix is positive-definite. The method of Garthwaite and Al-Awadhi (2006)
was designed to be used with the aid of interactive graphical software. It has been used in
practical case studies to quantify the opinions of ecologists and medical doctors (Al-Awadhi
and Garthwaite (2006); Garthwaite et al. (2008)). The software is revised and extended
further in this thesis to handle the case of GLM with correlated pairs of covariates.

Available methods of prior elicitation for GLMs all concentrate on the task of quantify-
ing opinion about regression coefficients. For some GLMs, such as logistic regression, this
determines the prior distribution completely. But with some other common GLMs, such as

the normal linear model and gamma GLMs, prior opinion about an extra parameter must
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also be quantified in order to obtain a prior distribution for all model parameters. For this
reason, we extend the method of Garthwaite and Dickey (1988) for eliciting an inverse chi-
squared conjugate prior for the error variance in normal linear models. We also propose a
novel method for eliciting the scale parameter of a gamma GLM.,

The other multivariate model for which we develop original elicitation methods in this
thesis is the multinomial model. Multinomial models consist of items that belong to a number
of complementary and mutually exclusive categories. These models arise in many scientific
disciplines and industrial applications. The multinomial data are well described using the
multinomial distribution, say with parameter vector p. In Bayesian analysis of multinomial
models, an important assessment task is to elicit an informative joint prior distribution for
the multinomial .probabil‘ivties p. Ifc is Well-known that the »Dirichlet d_istrjbq‘pion 1s a conjluj
gate prior for the parameters of multinomial models. A limited number of attempts have
been made to introduce elicitation methods for Dirichlet parameters. However, the Dirichlet
distribution has been criticized as insufficiently flexible to represent prior information about
the parameters of multinomial models [e.g.Aitchison (1986), O’Hagan and Forster (2004)].
Its main drawback is that it has a limited number of parameters. A k-variate Dirichlet distri-
bution is specified by just k& parameters that determine all means, variances and covariances.
Dirichlet variates are always negatively correlated, whichv may not represent prior belief.

Several authors have been interested in constructing new families of sampling distributions
to model propqrtions. Some of these distributions can be used as prior distributions for
the probabilities of multinomial models. See, for example, Forster and Skene (1994) and
Wong (1998). However, elicitation methods that give these more flexible families as prior
distributions for multinomial models have not been proposed. It is tricky, in the case of
multinomial models, to elicit assessments that satisfy all the necessary cbnstraints. Some
of these constraints are obvious; the probabilities of each category must be non-negative
and sum to one, for example. Others are less obvious. For example, if there are only two

categories, the lower quartile for one category and the upper quartile of the other category

4



must add to one. As the number of categories increases the constraints that must be satisfied
increase and become less intuitive.

Partly because of these difficulties, no doubt, elicitation methods and software for multi-
nomial sampling seem to have been constructed only for modelling opinion by a Dirichlet
distribution. In this thesis, we propose novel methods that quantify expert opinion about
a Dirichlet distribution and additionally about three more general and flexible prior dis-
tributions. First, an elicitation method is proposed for a generalized Dirichlet distribution
as a more flexible prior distribution. The generalized Dirichlet distribution, introduced by
Connor and Mosimann (1969), has a more general covariance structure than the standard
Dirichlet distribution and a larger number of parameters. Second, another method elicits the
Gaussian copula as a multivariate prior that expresses the dependence structure between_the
marginal beta priors of multinomial probabilities using a multivariate normal distribution.
Third, a further novel method quantifies expert opinion about the most flexible alternate
prior, the logistic normal distribution, Aitchison (1986). With this distribution, the multi-
nomial probabilities are transformed to variables that (by assumption) follow a multivariate
normal distribution, using a multivariate form of the logistic transformation. These different
elicitation methods are each implemented in interactive graphical software.

The logistic normal distribution has a large number of parameters and gives a prior
distribution with a much more flexible dependence structure. Moreover, assuming a logistic
normal prior for multinomial models enables us to extend the elicitation method to the case
of multinomial models with explanatory covariates. For these models, we proposed a method
for eliciting a multivariate normal prior distribution for the regression coefficients based on
the multivariate logistic transformation.

The assessment tasks and the task structure implemented in all the proposed methods
lead to coherent assessments without the expert having to be conscious of coherence con-
straints. Using the interactive software, the expert is only required to assess conditional

and/or unconditional medians and quartiles for the elements of the probability vector p. For



each of the available prior distributions, the expert does not need to be conscious of the con-
straints on her assessments. Instead, through the software we suggest coherent values that
are close to her initial assessments, which she may accept or modify.

This thesis consists of 10 chapters. After this introductory chapter, Chapter 2 first gives a
brief review of the main findings and considerations from psychological literature that should
influence the construction of elicitation methods. Then the most relevant methods of eliciting
prior distribution for normal linear models and GLMs are reviewed and discussed. Interactive
computer software for these purposes is also listed with some of the different applications for
which they have been used. In addition, the limited literature of prior elicitation methods
for multinomial models is also reviewed, together with its implementing software. We also
discuss some recent intg_ractiye graphical con}pu’_cer programs that have been reported in the
literature for some other problems.

In Chapter 3, the piecewise-linear model of Garthwaite and Al-Awadhi (2006), for eliciting
multivariate normal priors for regression coefficients in GLMs is reviewed in detail and the
assessment tasks that the expert performs to quantify her opinion are discussed. Also, we
describe the software that implements it and detail improvements to the implementation that
were made by the author of this thesis.

As mentioned earlier, the elicitation method of Garthwaite and Al-Awadhi (2006) makes
the simplifying assumption that the regression coeflicients associated with different predictors
are independent in the prior distribution. In Chapter 4, we propose 3 new methods for eliciting
positive-definite variance-covariance matrices of a multivariate normal prior for regression
coefficients that do not require this simplifying assumption. Each method ié a trade-off
between flexibility and the number of assessments that must be made by the expert.

The first method proposed in Chapter 4 is an extension to the method of Garthwaite
and Al-Awadhi (2006). It is the most flexible of the methods but it needs a large number of
assessments. The second method requires fewer assessments but assumes a restricted correla-

tion pattern between regression coefficients. The third method first uses one of the other two



methods to obtain the correlations between the regression coefficients of two predictors. Then
all other correlations are induced through some assessed weights that reflect the magnitude
of correlations relative to each other. The expert assesses these weights and then an imple-
menting software presents interactive graphs that help her review and revise assessments to
hér satisfaction.

In Chapter 5, we introduce two elicitation methods that aim to complete the prior struc-
ture of the normal and gamma GLMs. The methods quantify expert opinion about prior
distributions for the extra parameters of these modgls. The first prbposed methods elicits
a conjugate inverted chi-squared prior distribution for the error variance in normal models.
Our proposed method is based on the expert’s assessments of medians and conditional me-
dians of the absolute difference between two observed values of the response variable at the
same design point. It extends the method of Garthwaite and Dickey (1988) by using more
than one data set of hypothetical future samples.

The second proposed method in Chapter 5 is a novel method for eliciting a lognormal
prior distribution for the scale parameter of gamma GLMs. Given the mean value of a gamma
distributed response variable, the method is based on conditional quartile assessments. It
can also be used to quantify an expert’s opinion about the prior distribution for the shape
parameter of any gamma random variable, if the mean of the distribution has been elicited
or is assumed to be known.

Chapter 6 proposes two methods for eliciting a standard Dirichlet prior distribution for
multinomial probabilities, using either a marginal or a conditional approach. The main
difference between the two proposed approaches is in the assessment tasks that they require.
In the marginal approach, the expert assesses unconditional medians and quartiles for each
multinomial probability p;. Then we use these quartiles to obtain a marginal beta distribution
for each p;. The parameters of these marginal betas are reconciled to form a standard Dirichlet
distribution. Three different forms of reconciliation are used, each based on least-squares

optimizations. For each optimization method, the medians and quartiles of the consequent



Dirichlet distribution are computed and graphically presented to the expert, who chooses
which of the Dirichlet distributions best represents her opinion. She is also offered the option
to change the medians and quartiles if none of the offered sets is an adequate representation
of her opinions.

The other approach proposed in Chapter 6 is the conditional approach. Using this ap-
proach, the expert is asked to assess the median and quartiles of the first probability. For
each of the remaining probabilities, she assesses conditional medians and quartiles, where
the conditions state values for the preceding probabilities that the expert should treat as
correct when making her assessments. These conditional assessments are then used to form
conditional beta distributions that are also reconciled into a standard Dirichlet distribution.

New elicitation methods for two more general prior distributions for multinomial models
are proposed in Chapter 7. The first method uses the same conditional assessments, as
obtained in Chapter 6, to elicit a flexible generalized Dirichlet prior, a Connor-Mosimann
distribution, through its conditional beta distributions. The flexibility of the generalized
Dirichlet distribution means that the elicited parameters of these conditional betas are exactly
the same hyperparameters of the elicited generalized Dirichlet prior; no reconciliation is
required. This elicitation method and the elicitation methods prop;)sed in Chapter 6 are
compared in an example in Section 7.3. In the example, a prominent medical expert in Malta
quantified his prior opinions about obesity misclassification in health surveys in Malta.

The second proposed method in Chapter 7 elicits a Gaussian copula prior for the multino-
mial probabilities. To do this, marginal beta distributions for the multinomial probabilities
are obtained from their assessed unconditional medians and quartiles. Then the correla-
tions between the multinomial probabilities are elicited using extra sets of assessments of
their conditional medians and quartiles. The proposed Gaussian copula prior assumes that
the dependence structure between the multinomial probabilities can be represented by a
multivariate normal distribution, where the marginal prior distribution of each multinomial

probability is still expressed as a beta distribution. In Section 7.5, the proposed elicitation



method and its implementing software are used by an environmental engineering expert to
quantify his opinion about the fuel used by waste collection vehicles in the UK.

In Chapter 8, a novel method is proposed for eliciting a logistic normal prior distribution
for the probabilities of a multinomial distribution. The method requires conditional medians
and quartiles of multinomial probabilities to be assessed. No beta distribution is elicited,
instead, a monotonic multivariate logistic transformation is used to transform these assess-
ments into medians and quartiles of a multivariate normal vector. Then a mean vector and a
positive-definite covariance matrix of the multivariate normal are determined using the trans-
formed quartiles. The adopted structural method of getting assessments guarantees that the
elicited variance-covariance matrix is positive-definite. Chapter 8 also gives an illustrative
example in which prior knowledge of a transport expert is quantified to elicit a logistic normal
prior distribution for a multiﬁomial model about a transportation problexﬁ.

The elicitation method proposed in Chapter 8 for logistic normal priors of multinomial
distributions is extended further in Chapter 9 to handle multinomial models that contain
explanatory covariates. Our extended method in Chapter 9 elicits a multivariate normal
prior distribution for the regression coefficients associated with different covariates in a form
of the base-line multinomial logit model. For k categories and m covariates, the model that
contains a constant term has exactly (k —1)(m + 1) free parameters. In Chapter 9, we show
that the same assessment tasks of Chapter 8 can be repeated for each covariate to elicit a
mean vector and a positive-definite variance-covariance matrix of a multivariate normal prior
distribution for the (k — 1)(m + 1) regression coefficients.

Concluding comments are given in Chapter 10 where some directions for future research

are also considered.



Chapter 2

Literature review
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2.1 Introduction

Relatively recent comprehensive reviews of eliciting probability distributions in its theory,
methods, techniques, software, applications and case studies are found in Garthwaite et al.
(2005), O’Hagan et al. (2006) and Jenkinson (2007). The aim of this chapter is to review
the recent literature on quantifying expert opinion that is most relevant to eliciting prior
distributions for Bayesian GLMs and multinomial models. The emphasize here is on the
different statistical formulations of elicitation models as well as on the design of the software
pieces available in the literature as elicitation tools.

A brief review of some important elicitation topics, ideas and psychological aspects is
given in Section 2.2. The important elicitation method of Kadane et al. (1980) for normal
linear models-is reviewed in Section 2.3, where some other elicitation methods for these
models are also reviewed briefly. Important and recent elicitation methods and software
tpols available in the literature for the pripr distributions of Bayesian GLMs are reviewed in
Section 2.4. However, most of these methods and their accompanying computer programs
were devoted to prior elicitation of the Bayesian logistic regression models with anticipated
extensions to the more general family of GLMs. Section 2.5 reviews available methods and
computer programs for quantifying expert’s opinion about priors for multinomial models. As
expected, the majority of these methods and tools are quantifying opinions about the simple
conjugate prior, the Dirichlet distribution. Some of the recent graphical interactive software
that quantifies expert opinion about different problems other than GLMs and multinomial

priors are reviewed in Section 2.6.

2.2 Psychological aspects in eliciting opinion

Psychological research on human performance in assessing probabilities dates back to the
1960’s. Peterson and Beach (1967) in their paper “Man as an Intuitive Statistician” studied

human statistical inference for estimating proportions, means, variances and correlations.
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Their results conclude that man can use probability theory and statistics intuitively in per-
forming these inferential tasks. In the same year, Winkier (1967) stated that, in assessing
prior distribution for Bayesian aﬁalysis, the expert has no ‘true’ built-in prior distribution .
that can be elicited. Instead, an elicitation process only “helps to draw out an assessment
of a prior distribution from the prior knowledge”. This prior distribution is affected by both
the assessor and the assessment techniques.

Garthwaite et al. (2005) reyiewed a body of psychological literature about some of the
main mental operations, heuristics, that an expert may perform in his mind to give a specific
numeric assessment and biases that may influence these operations. A recent comprehensive
review of psychological research on assessing probabilities including heuristics and ‘biases is
given by Kynn (2008). She also provided some guidelines for eliciting expert knowledge
based on human biases and inadequacies in assessing probabilities given in the psychological
literature. Other useful discussions on psychological aspects in the elicitation context may
be found in Hogarth (1975), Wallsten and Budescu (1983) and O’Hagan et al. (2006).

The main interest of this thesis is to elicit multivariate probability distributions. Mul-
tivariate distributions require more quantities to be elicited than univariate distributions.
Beside the usual summaries of each random variable, the dependence structure between all
variables must be also assessed. In the rest of this section, we briefly review psychological
aspects involved in assessing quantities required for multivariate distributions.

As a measure of central tendency for each random variable, we have decided to elicit
its median value from the expert. Experimental work in the literature reveals that people
are better at eliciting medians rather than means, especially for skewed distributions. See
Garthwaite et al. (2005) and references therein. The median value can be assessed through
one step of the bisection method, see for example Winkler (1967), Staél von Holstein (1971)
and Pratt et al. (1995). The expert is asked to determine her median as the value that the
random variable is equally likely to be less than or greater than. For more discussion about

bisection tasks and their usage, see for example Garthwaite and Dickey (1985), Hora et al.
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(1992) and Fischer (2001).

To elicit variances, we have chosen to assess the two quartile values of each univariate dis-
tribution. By assuming a smooth unimodal distribution, such as the normal or approximate
normal distribution, quartiles are transformed to elicit the variances. Quartiles can be easily
assessed using the bisection method, which is also called the successive subdivision method,
as follows. The upper quartile is assessed by asking the expert to assume that the random
variable is above her assessed median value. She is then asked to assess her upper quartile as
the value that the random variable is equally likely to be less than or greater than. Similarly,
the lower quartile is assessed as the value that divides the range below the median into two
equally likely ranges.

The assessed quartiles represent a central 50% credible interval. People can perform the
task of assessing credible intervals reasonably well. However, there is a clear tendency for
people to be overconfidence in assessing central credible intervals; they tend to give shorter
intervals [Garthwaite et al. (2005)]. Some other quantiles were found to reduce the degree of
overconfidence, such as the 33 and 67 percentiles. O’Hagan (1998) suggested using the central
66% interval, and mentioned that experimental work about different quantile assessments had
not revealed any single choice to be the best in all cases. For more details, see Hora et al.
(1992), Garthwaite and O’Hagan (2000) and Kynn (2005, 2006).

To complete the elicitation process of a multivariate distribution for dependent variables,
summaries of dependence structure must be elicited. Typically, determining correlations
is the trickiest part in a multivariate elicitation, especially when there are more than two
random variables and a variance-covariance matrix must be assessed. Such a matrix must
be positive-definite for mathematical coherence. We will make extensive use of the method
of Kadane et al. (1980) to elicit positive-definite variance-covariance matrices. The method
is described in the next section. It relies on assessing conditional medians and quartiles
to compute conditional variances and covariances. Conditional quartiles are assessed in a

structural way that guarantees positive-definiteness.
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Assessing conditional quartiles is not, however, the only way to elicit correlations. Other
methods were suggested in Clemen and Reilly (1999) and Clemen et al. (2000). These meth-
ods include direct assessment of a correlation coefficient, and assessing conditional percentiles
or probabilities of one variable given percentiles or probabilities of the other variable, either
for one or two items from the population. These assessments were used to calculate Pear-
son, Spearman and Kendall’s 7 correlation coefficients. Although Clemen and Reilly (1999)
discussed building copula functions as joint distributions, that can be elicited using marginal
distributions and elicited correlations, they did not attempt to obtain a positive-definite
variance-covariance matrix for multivariate distributions.

In summary, in building our proposed elicitation methods throughout this thesis, we take
into account the fgllowing :c‘o‘nsidel_"atic')ns. These Wgr.evmentliqned ‘by’ K@d“anle,‘ gndﬂ W({)_’lfso‘n
(1998) as the points of agreement among most of the statistical literature on how elicitétion

should be carried out.

1. Expert opinion is the most worthwhile to elicit.

2. Experts should be asked to assess only observable quantities, conditioning

only on covariates (which are also observable) or other observable quantities.

3. Experts should not be asked to estimate moments of a distribution (except
possibly the first moment); they should be asked to assess quantiles or prob-

abilities of the predictive distribution.

4. Frequent feed-back should be given to the expert during the elicitation pro-

cess.

5. Experts should be asked to give assessments both unconditionally and con-

ditionally on hypothetical observed data.
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2.3 Prior elicitation for normal linear models

Although it was introduced as an elicitation method for the parameters of a normal linear
model, the work of Kadane et al. (1980) has been an important step towards eliciting prior
distributions for GLMs, and even for eliciﬁing many other multivariate distriButions. See, for
example, Dickey et al. (1986) Al-Awadhi and Gafthwaite (1998), Garthwaite and Al-Awadhi
(2001, 2006). The ideas of Kadane et al. (1980) are utilized, modified and implemented
extensively throughout this thesis. A detailed review of their elicitation method is given
below.

Suppose the normal linear model is given by
Y=XB+e,  e~N(0,0?), (2.1)

where X = (x,, ..., X,) isa vector of r explanatory variables, and 8= (g,, ..., g,)'
is the vector of regression coefficients. Kadane et al. (1980) introduced an elicitation method

for the natural conjugate prior distribution structure of the parameters in model (2.1) as

0.2R—1
(é|02) ~ N(.IZ) 6—-{-7“_), (22)
CLRNS (2.3)

The hyperparameters to be elicited are thus a mean vector b, the two positive scalars
d, w and a positive-definite matrix R. The expert cannot be asked about these quantities
directly as they are not observable. Instead, the prior distributions are induced from expert
assessments about the response variable Y, which is an observable quantity, at some given
values of the explanatory variables. Hence, a number of m realizations X, - - - , X, is selected.
Kadane and Wolfson (1998) discussed how these design points can be selected efficiently.

At each design point X;, i =1,---,m, the expert assesses a median value ¥; 0.5, an upper
quartile y; 075 and a 0.9375 quantile y;0.9375 of the explanatory variable Y;. The quantile

¥:,0.9375 can be obtained using two bisection iterations above y; 0.75. These assessments were

used by Kadane et al. (1980) to elicit b and § as follows.
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To elicit the mean vector b, the assessed medians were treated as observations of Y, and

b was elicited as the least-squares estimate
_ -1
b= (X'X)" X'y (2.4)

where Yo5 = (¥1,0.5: 92,05, * »Ym,0.5) ‘and X is the design matrix, which is given by X =
(X1, X5+, X5)'-

Under the prior structure in (2.2). and (2.3), the predictive distribution of (Y|X) is a
multivariate ¢ distribution with J degrees of freedom. To elicit §, Kadane et al. (1980)

pointed out that the ratios

ai(éf_é) — Yi,0.9375 — yi,0.5’ (2.5)
Yi,0.75 — Yi,0.5

depend only on § as a measure of the thickness of the distribution tails. Since the standard
normal distribution has the minimum value of this ratio as 2.27, Kadane et al. (1980) used
a; instead of a; to elicit d, where a}(X}) = max{a;(X}),2.27}. Then § was elicited as the

nearest value of degrees of freedom that gives the closest ratio ¢5(0.9375)/t5(0.75) to

m * !
C_L,:k — Zi:l’:;i (&’L) . (26)

| We propose a different method for eliciting a degrees of freedom hyperparameter in Chap-
ter 5 of this thesis. Our proposed method is an extension of the approach given by Garthwaite
and Dickey (1988), which is described later in Chapter 5.

Although the method of Kadane et al. (1980), for eliciting a positive definite matrix R and
a value for w, is complicated and requires substantial mafhematical notation and details, we
review it here because its structural elicitation approach is essential in our proposed methods
for eliciting positive-definite matrices throughout this thesis.

The method is based on the properties of the multivariate t‘ distribution. The center
and spread of the distribution are defined as follows. For any constant vector a, and any
constant matrix B, if Y has a standard multivariate ¢ distribution, then the center of the
vector Z = a -+ BY is defined as C(Z) = a. The spread of Z is defined as S(Z) = BB'. If

6 > 1, then the mean exists and E(Z) = C(Z). If 6 > 2, then the variance exists, and is
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given by Var(Z) = 5—%5 (Z). Expert’s assessments were used to compute centers and spreads
to elicit R and w, as detailed below.

The conditional elicitation structure suggested by Kadane et al. (1980), for i =2,--- ,m,
involved assessing conditional medians and upper quartiles of Y; given sequences of hypo-
thetical values 39, - - - ,y?_l. The conditions that were imposed on these hypothetical values

insured discrepancy between conditional and unconditional centers, in the sense that
¥ # C(), (2.7)

These conditions guarantee the existence of the elicited positive-definiteness matrix R, as will
be shown later.

Centers and conditional centers were assessed using medians and conditional medians.
For example, C(Y1) was taken as the unconditional median assessment y105. For j < ¢,
C(Yily?,- - ,y?) were taken as the conditional medians of ¥; given that Y1 = 9,--- ,Y; = y?,
which are denoted by (v 05|37, - ,y?). Similarly, conditional upper quartiles of Y; given
P, ,y? are denoted by (yi,o_75|y(1), e, y?) Spreads and conditional spreads were computed
by dividing the assessed semi-interquartile range by the corresponding semi-interquartile

range t(6,0.75) of a standard multivariate ¢ distribution with § degrees of freedom. This

gives
2
Y1,0.75 — Y1,0.5
Sh) = | ==V 2.9
(1) [ £(6,0.75) ] ’ (2:9)
and, fori =1,2,--- ,m—1,
0 0 0 072
Yi+1,0.751Y1, " Y7 ) — \Yi+1,0. s Y
S(Yi+1|y?)"' 7y1(,]) = |:( i+1,0 5| 1 t((sl-z'l, O(,;;) 5ly1 yz) . (210)

To elicit a positive-definite matrix R, the approach of Kadane et al. (1980) is to successively
elicit the spread matrices U; of (Y1, -+ ,Y;) in a way that guarantees the positive-definiteness
of the final matrix, Uy,. The value of U; equals S(¥;) > 0 as given in (2.9). Then, supposing

that U; has been estimated as a positive-definite matrix, the aim now is to elicit U;4+1, and
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show it is positive-definite. U;y; is partitioned as

U; Uig.
U1 = | el (2.11)

i Ui S(Yia)
Conditional median assessments were used to estimate g, 41 88 follows. The partition in

(2.11), with the properties of the multivariate ¢ distribution, gives
C(Yi*}‘lly?v te )y?) - C(}/H-l) = (y(l) - O(Yl)a T ,yzo - C(YL)) gi+1' (212)

Moreover, for j < i, taking the center of both sides of (2.12) given that ¥; = ¢9,--+ ,Y; = y?,

gives

0
Y1 — O(Yl)
yy — C(Y;)

C(Yapalyl, - ,y?) —C(Yit1) = 9ir1 (2.13)
C(}/j—l—llyi(l)) T ayg) - C(YJ+1)

Since j = 1,2, ,i, Kadane et al. (1980) ended up with a system of i equations of the form

hiyy = Minrg,, (2.14)
where ) )
C(Yisa|y?) — C(Yita)
C(Yi+19?,99) — C(Yit1)
hiy1 = ne ' ; (2.15)
_C(Yi+1]y(1), N C(Yit1) |
and
W—-C) Caly))-C(Yz) -+ CViy?)—C(¥3)
W-cm) H-CF) - ClW,¥9) - C(Vi)
My = . (2.16)
_y?—C(Yl) y3 — C(Ya) ¥ — C(Y5) |
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Multiplying both sides of (2.14) from the left by the matrix

- 1 0 o 0—

-1 1 0 0
Qitri=]0 -1 1 0 :f> (2.17)

0

(0 - 0 -1 1

gives an upper diagonal system that can be solved for 9, 88 follows,

r - =1
W-C) Caly))-C(¥a) -+ CYily}) - C(Vi)
0 ¥y —C(Yely)) -+ C(Yilyd,43) — O(Yily))
Gy = | Oiy1,  (2.18)
o e 0 )~ CYilyd,- )]

where 0;,1 = Qit+1h; 4.

Under conditions (2.7) and (2.8), the upper diagonal matrix in (2.18) is nonsingular and hence
a unique solution for g, +1 exists. It remains now to elicit the value of the spread S(Y;+1) in
(2.11). Kadane et al. (1980) used the elicited conditional spread, with the properties of the

conditional spread of multivariate ¢ distribution, to get a formula for S(Y;41) as follows,

1+6_1Hi

S(Yiy1) = +€;+1 Ui 9,410 (2.19)

where
Hi=(-cv), -, W-Cu) Ui @f-cm), -, s—-c)

Using Schurr complement, the matrix Us,; as partitioned in (2.11), is positive-definite if

and only if U; is positive-definite and
 S(Yi1) — gy, Uig; .y >0, (2.20)

which is guaranteed from (2.19). Then, using mathematical induction, the final matrix Up,
is positive-definite.
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To elicit R using Up,, properties of the multivariate ¢ distribution were used to yield the
following formula

5
Rl = %(X'X)*le(Um — wlp) X (X'X)"Y, (2.21)

where I, is the identity matrix of order m. See Kadane et al. (1980) for details.

The formula requires w to be elicited first. To elicit w, the expert is asked to suppose that
two independent observations Y; and Y;* are taken at the same design point X = X,;. Given
y?,- -+ ,y2_,, the expert assesses the median of ¥; which is used to estimate C(Yi|y?,- -+ , 32 ;).
Then the expert is given a hypothetical value y? for ¥; and is asked to assess the conditional
median of Y;* given 3?, -+ , 39 to be used as an estimate of C(Y;*|y?,--- ,4?). The conditional

distribution of the two observations is a bivariate ¢, and its properties were used to elicit w;

as
0+i1—1
wi =[SVl - ,90) — K5 (2.22)
where
S(Yilyds- - vi-1)
K. =[C(Y* O,"',(-]—-CY' 0"'_,()_ 11J1) y Ji—1 ’
i =[O, w) = Ol vl s — e 0y
and
Li=(f - X4b, -+, o0y —Xi ) Uiy (4 — X1b, -+, 90y — X5 4b)"
Different values w1, -+ , wm, were then averaged to get a final elicited value w. Our exten-

sion of the method suggested by Garthwaite and Dickey (1988) for eliciting w, as proposed
in Chapter 35, makes the same assumption of getting two independent observations at the
same design point. But we require a median assessment of the difference between the two
observations, which is due only to the random variation.

The method of Kadane et al. (1980) has been extensively reviewed in the literature. See
for example Kadane and Wolfson (1998) and Daneshkhah and Oakley (2010), where two
extra examples for its implementation were also discussed. Two drawbacks of the method
were mentioned by Garthwaite et al. (2005). The assessments it uses are likely to be biased

by conservatism as the expert is asked to revise her opinion based on hypothetical data.
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Eliciting the spread using the median and upper quartile may not reflect both halves of the
distribution, hence masking any asymmetry of expert opinion.

Some other alternate methods for eliciting the parameters of normal linear models are
available in the literature. See, for example, Oman (1985), Garthwaite and Dickey (1988,
1992) and Ibrahim and Laud (1994). Oman (1985) used empirical Bayes methods to estimate
both § and R instead of eliciting them from the expert. The method of Garthwaite and
Dickey (1988) is similar to that of Kadane et al. (1980) in that both of them make use of
repeated assessments that are reconciled and utilize a structural set of conditional questions
to guarantee the positive-definiteness of the covariance matrix.

However, instead of asking about Y;, Garthwaite and Dickey (1988) suggested asking the
expert aboutvt‘he‘ mean Y; of Y that may be observed in a large number of experiments at
the design point X;. In this way, the expert’s‘ assessments do not include random variation.
On the other hand, the design points that are used in Garthwaite and Dickey .(1988) are to
be selected by the expert. This enabled the method to be extended to the variable selection
problem in linear models, see Garthwaite and Dickey (1992). Nevertheless, the method of
Kadane et al. (1980) is more flexible than that of Garthwaite and Dickey (1988). The latter
is not designed to handle categorical explanatory variables nor polynomial regression models
that contain interactions between explanatory variables. A more detailed review of normal

linear models elicitation can be found in Garthwaite et al. (2005) or O’Hagan et al. (2006).

2.4 Prior elicitation for GLMs

Starting from the idea that it is more efficient and easier to elicit expert opinion about
observable quantities, rather than about parameter values, Bedrick et al. (1996) were the first
to elicit priors for some arbitrary generalized linear models. Their work switched from normal
linear regression elicitation (Kadane et al. (1980); Garthwaite and Dickey (1988); Garthwaite
and Dickey (1992)) into GLM. Their specification of informative prior distributions for the

regression coefficients of a GLM is based on expanding the idea of conditional means priors
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(CMP).

The idea of the CMP is that the expert is asked to give his assessment of the mean
of potential observations conditional on given values at some carefully chosen points in the
explanatbry variable space. This information is used to specify a prior distribution at each
location point. These priors are conveniently assumed to be independent for the various
locations. A prior distribution for the regression coefficient vector is then induced from the
CMP.

To clarify this idea, consider for example the binomial GLMs, with n independent obser-
vations Y;, each with a corresponding vector X; of p explanatory variables. Let N;Y;|X; ~
Binomial(V;, p;), hence p; = E(Y;]X;). The probability of success u is related to the vector

X through a monotonic increasing link function g(.) as

9(w) = X'B,  (2.23)

where § is a p vector of regression coefficients. Common choices for the link function g(.)

yield logistic, probit and complementary log-log regressions. The likelihood function for B is
given by

) o [0 (X100 - g (Kig e 224

Bedrick et al. (1996) induced the prior on 8 from a CMP on fi; = E(Y;|X,), the suc-

cess probability for a “potentially observable” response Y; at the vector X X, of explanatory

variables. They assume that the p vectors X ; are linearly independent and assume that
i~ beta(alyi, ag,i). (2.25)
Hence, from independence, the prior on f is given by

(1) o H AT (L = ) (2.26)

Under the independence assumption and from (2.23), (2.26), they gave the induced prior
on f3 as
P
(@) o« [T o7 &iB) L - g7 (Xi) > dlg™ (XiB))- (2:27)

i=1
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Although the above example is only valid for binomial GLMs, Bedrick et al. (1996) gave
generalization and examples where their method is applicable to common GLMs including
Poisson and exponential regression. However, for normal and gamma regression models they
were only interested in eliciting priors on the regression coefficients § assuming that the
dispersion parameters of these models are known.

The power of this approach as they stated is that “it is much easier to elicit information
about success probabilities such as E(Y|X) = p, which are on the same scale as the data,
than to attempt the extremely difficult task of eliciting prior knowledge about 3.”

In their work, the use of data augmentation priors (DAP) was also proposed to induce
priors on §. They showed that DAP’s are closely related to CMP’s and can be induced by
particular cases of CMP’s. A DAP on f has the same functional form of the likelihood and can
be obtained by specifying “prior observations” and their weights. These prior observations
must be taken at specific locations in the predictor space. Hence, a DAP also needs some
locations in the predictor space to be specified a,sbin the case of a CMP.

The good choice of the predictor space location should be in the expected range of X,
spread enough so that the corresponding probabilities can be reasonably assumed to be
independent and they should also be accepted by the expert. It is straightforward, however,
to let the field expert choose these locations. Bedrick et al. (1996) noted that the independence
in CMP’s does not mean that the component of the 8 vector will be independent too.

After selecting a proper X it =1, ,p, to determine the value of Y; in a DAP, it can
be thought of as a typical prior observation associated with X ;- For example, in binomial
GLMs, it can be thought of as a prior estimate of the mean number ‘of successes at X, . If

the beta prior in (2.25) is reparameterized such that

a1, =w;Y; and  ag; =w;(1-Y;), (2.28)

then, for the logistic model, the CMP in (2.27) is exactly a DAP since it takes the same

functional form of the likelihood in (2.24). The CMP in (2.27) induces a DAP for the logistic
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mode] as the logit link function is such that

dlg™ (X'B)] = g HX B - g1 (X B)). (2:29)

The induced DAP in (2.27), using (2.28) and (2.29), is proportional to a likelihood based on
the “prior observations” (¥;,X,,@;,: 4 = 1,---,p). The weight parameter w; in (2.28) can
be interpreted as the prior number of observations associated with Y;. Consequently, large
values of ; reflect more confidence in the prior belief which means that the prior is relatively
more informative. However, these extra parameters need to be quantified, the matter which
may make the CMP easier to be elicited.

Although the resulting priors are not necessarily members of any specific family of dis-
tributions, Bedrick et al. (1996) argued that the CMP and DAP priors lead to tractable
posteriors for GLMs through importance sampling and Gibbs sampling techniques.

Another approach for eliciting different classes of priors for GLM parameters started with
the work of Ibrahim and Laud (1994) for normal linear models. Their work was then extgnded
to prior elicitation and variable selection for logistic regression models by Chen et al. (1999).
A further extension to GLMs was given by Chen et al. (2000), who proposed the class of
power priors for GLMs.

-The main idea of the above series of papers is that a prior prediction vector Y can be
specified for the response vector Y, either using historical data or an expert’s opinion. A
scalar 0 < ag < 1 needs also to be elicited to quantify the expert’s confidence about her
best guess Y, relative to the actual data. Hence the scalar ag reflects the contribution of the
prior information in the posterior relative to the information given by the current experiment.
Together with the design matrix X, Y, and ag are used to specify an informative prior for
regression coeflicients.

In the class of power prioré, the prior density is raised to the power ag, which is considered
as a precision parameter that controls the heaviness of the tails of the prior distribution. For a
random aq, a beta distribution was assumed by Chen et al. (2000) as a prior for ag. Although

the class of power priors cannot be expressed in a closed form, Chen et al. (2000) discussed
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its theoretical properties and propriety together with its required computations.

Different extensions to this class of priors have been proposed in the literature. For exam-
ple, based on the same ideas, Chen and Ibrahim (2003) proposed a class of conjugate priors
for GLMs and discussed its elicitation. Moreover, Chen et al. (2003) introduced an informa-
tive class of priors for generalized linear mixed models. Extensions to variable selection were
suggested by Meyer and Laud (2002), Chen and Dey (2003) and Chen et al. (2008).

Garthwaite and Al-Awadhi (2006) developed an elicitation method for piecewise-linear
logistic regression. The method is also valid for other GLMs and Garthwaite and Al-Awadhi
(2011) extends the idea to GLMs with any link function. They assumed a multivariate
normal distribution for the regression coefficients; its parameters can be determined from the
expert assessments. One of the main aims of this current thesis is to extend this piecewise-
linear elicitatiog method in the context of GLMs to treat the case of correlated regression
coeflicients. The method is reviewed in detail in Chapter 3 and the proposed extensions are
given in Chapters 4 and 5.

The piecewise-linear elicitation method was designed to be used with the aid of interactive
graphical software written for this purpose. Older prototypes of the software were used
in practical case studies for threatened species in Garthwaite (1998) and Al-Awadhi and
Garthwaite (2006). A more recent version of the software has been written by Jenkinson
(2007), this version of the software has been reviewed, modified and extended further in
Chapters 3, 4 and 5 of the current thesis.

Another prototype of the interactive graphical software was given by Kynn (2005, 2006)
to elicit expert opinion for the Bayesian logistic regression model. The software is called
ELICITOR and appeared as an add-on to WinBUGS. Kynn extended the program written by
Garthwaite (1998) and rewrote it in a more robust programming language. The software was
originally developed as a user friendly tool for quantifying environmental experts’ knowledge
while studying the presence or absence of endangered species. It adopted the same approach

of Al-Awadhi and Garthwaite (2006).
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Following Garthwaite (1998), the elicitation scheme adopted in ELICITOR is based on
the logistic regression model in which the probability of the presence of an endangered species
is represented by a Bernoulli distribution and can be related to a number of environmental
variables via a logit function. The expert is asked to give conditional probability assessments
at the preferred or optimum site of species presence as the intercept. Then assessments are
made at other sub-optimum levels of each other covariate.

The choice of the “optimum” value or level of each covariate to be its intercept, also called
the reference value, is made by Garthwaite (1998) and thoroughly justified in Kynn (2006).
She discussed that it is psychologically meaningful to the expert to be asked about conditional
probabilities given that all or all except one covariate are at their optimum level. In this case,
conditioning on all cher covari“ates can be:t?ranslate‘d in the expert’s mind as cqnditioning on
one event where everything is optimal. Kynn mentioned also some ecological concerns that
make the optimum point a good selection, a noticeable concern is that the species responses
distribution is usually considered to be unimodal. However, in our extensions to the piecewise-
linear model, the expert freely chooses the reference level, although she is advised to select
the optimum one.

While categorical covariates are related to the probability of presence, or generally of
success, through a bar chart in both ELICITOR and the prototype and its extensions,
representing continuous covariates is clearly different. ELIQITOR does not only assume
a piecewise-linear relation between continuous covariates and the presence probability, but it
also offers the options of linear and quadratic functions to model this relation. Nevertheless,
Kynn (2006) stated that the fully linear form is not realistic and that the quadratic form can
be too restrictive. We believe that the piecewise-linear relation is a very general form that
can model many other forms as special cases.

The main critical point in the statistical model of ELICITOR is that the regression
coefficients are assumed to be independent a priori, an assumption that may not be true in

many situations. Thus, only univariate normal priors were elicited and no attempt was made
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to elicit covariances even for the coefficients at the dividing points of the same piecewise-linear
curve or at the different levels of each single categorical covariate. |

The idea of successive sub-division, also called the bisection method, as a technique to
assess the three quartiles from an expert, has been generally accepted as a comparatively
easy task for the expert to perform. The prototype software in Garthwaite (1998) and its
extensions apply the bisection method to obtain expert’s assessments. However, Kynn (2006)
has a detailed discussion about available alternatives to assess percentiles, and cites results
of studies comparing these methods. But in désigning ELICITOR, she decided to use a quite
different technique by letting the expert give her two boundaries of a credible interval, then
give the probability of this interval. Despite being easy to perform, this method does not
seem to be efﬁciently t‘bested or justiﬁed.

Rather than assessing probabilities as numbers, the users of ELICITOR have more in-
teractive visualizations for estimating probabilities. These include a probability wheel, a
probability bar and other visualizations to help experts assess probabilities closer to their
knowledge. The feedback provided after the assessment process are alternative credible in-
tervals and probability distribution functions for the intercept and categorical variables.

ELICITOR was intended to be extended to encompass other GLMSs, with flexible options
of the link functions and prior distributions, not only the logistic regression. The software
documentation mentioned that this and other extensions were being tested, but we do not
know of any version of the software where these extensions have been implemented. For more
details on ELICITOR see Kynn (2005); Kynn (2006) and O’Leary et al. (2009), although the
software and its documentation no longer seem to exist as an open source on the web.

Denham and Mengersen (2007) introduced a method and developed software to elicit
expert opinion based on maps and geographic data for logistic regression models. Elicit-
ing information on observable quantities, such as values of the dependant variable at given
values of the predictors, (referred to as the predictive procedure) is usually preferred and

easier than direct assessment of the regression parameters (structural procedure). However,
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they argued that each procedure is more convenient for a specific type of experts. For ex-
ample, they considered two types of ecological experts: the ‘physiologist’, who has a good
understanding of the physical requirements of each species, is more likely to respond well to
a structural elicitation. The ‘field ecologist’, who has more knowledge about the places of
existence for each species, may be better at responding to a predictive elicitation. Denham
and Mengersen (2007) proposed a new approach that combines both strategies. In their
combination approach, the expert may use either method or the two methods simultaneously
with each variable, according to his preference and background.

They adopted the usual logistic regression for species modelling,

Y; ~ Binomial(n;, y;),

with the logit link function Y =Ag(,ui) = log(ui/(1 — p)), and Y = X, where Y; is the
number of observations of a species at site ¢, and X is the matrix of explanatory variables.

The aim is to quantify the expert’s opinion about the prior distribution of 8 in the form
Y L

B ~MVN(, %).

They stated that the methods of Kadane et al. (1980) and Garthwaite and Dickey (1988,
1992) can be used in this context to estimate the hyperparameters b and ¥ by asking the
expert to assess some quantile information for the value of Y at particular values of X.
However, they referred to the difficulty of this predictive elicitation procedure for the ‘field
ecologists’ who may have knowledge about the presence of a specific species at a located site
map rather than the explanatory variables affecting this presence.

To help this type of experts, Denham and Mengersen (2007) suggested two alternatives.
The méthod of Kadane et al. (1980) can be used, with the expert choosing the design points
based on location, without specific reference to explanatory variables. Or, instead, the design
points could be selected as in the method of Kadane et al. (1980), and then transformed to
map locations that are displayed on the map for the expert.

Their proposed combination approach as an elicitation method is not only a hybrid ap-
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proach that combines both the predictive and structural procedures together, but it also
offers the opportunity to use either of the two procedures simultaneously for each single
variable. The basis of their method is to use the standard elicitation method with maps as
discussed above, to derive a “first pass” elicitation of b. A structural elicitation procedure is
then applied. The latter is implemented by presenting a univariate graph for each of the p
explanatory variables. In each graph, they fix all the other p — 1 variables at their mean or

median value, i.e. for the jth variable, j =1, - ,p, they display the graph of

V4
Y=bo+bX;+ > bpXp
k=1,k7j

These univariate graphs are automatically updated once the expert updates the map
by adding new points or editing values. Moreover, the expert can directly manipulate the
graphs, which cause the map to automatically chanige ‘as well. The'expert is meant to keep
changing the map and/or the graphs until they all represent her prior knowledge. To elicit
3, The expert is asked to provide a 95% “envelope” around the displayed regression lines by
assessing upper and lower 95% quantiles.

To apply this approach, Denham and Mengersen (2007) developed elicitation software
under a Geographié Information System (GIS), in which design points were actual location
on interactive maps. They listed the benefits of the elicitation procedure using the software
with interactive maps over the usual elicitation with paper maps. The new procedure is more
flexible, it allows the expert to access information at any point in a convenient manner. The
scale dependency of the hard copy maps could be removed by using the feature of zoom in
and out. Using the software allows the visualization of the responses and provide feedback
to the expert. In which case, the expert can revisit and/or modify any previous assessment
on the interactive map.

Denham and Mengersen (2007) implemented their software in two case studies for mod-
eling the median house prices in an Australian city and for predicting the distribution of an
endangered species in Queensland. In their first case study, they modelled the median house

prices using a piecewise-linear regression to attain flexibility and maintain the simplicity of
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the linear regression. They chose the dividing knots of the piecewise-linear relations as the

0.33 and 0.66 quantiles of each explanatory variable. Their model takes the form
Y = fo+ BiXa + BaXiy + B3 Xi1 + BaXiz + Bs X]o + B Xi,

where X is the distance from city center in kilometers and X, is the distance from the river

in kilometers. For j = 1,2, they defined X; and X} as

(
Xij — Xoas; if Xi5 > Xo.335,
0 otherwise,
\
and )
Xij — Xoeej if Xij > Xo.esss
Xl =4
0 otherwise,

\

where Xo.33; and Xo66; are the 0.33 and 0.66 quantiles of X, respectively.
They meant to simplify the Bayesian prior structure of the model compared to that of

Kadane et al. (1980) or Garthwaite and Dickey (1992), to be of the form

Y|X,B,0% ~ N(X'B,0%),
B ~ MVN(b, X),

o? ~ Inverted Gamma(vg/2,S0/2),

In this case study, they specify a prior for the regression parameters 8. However, it does
not seem that they‘ implemented any procedure to elicit the two extra hyperparameters 1y and
So. The results suggested that the experts managed to elicit quantifications of their opinions
of the house prices in the city that were consistent with the actual house prices. The priors
appeared to be relatively consistent. All participant experts in this case study reported that
they preferred the combined approach over the map or the standard approach. Most experts
elicited slightly different priors under the different elicitation methods they used.

The second case study in Denham and Mengersen (2007) was devoted to eliciting two

experts’ opinion about the distribution of the brush-tailed rock-wallaby in Queensland. The
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explanatory variables were chosen by one of the experts to be X: a measure of terrain, Xs:
a moisture index, X3: aspect and X4: a 4-category variable representing the rock type. They

were interested in the following logistic model

Y; ~ Bernoulli(p;),
logit(pi) ~ N(pi, 0%),
i = Bo + P1X1i + PaXoi + B3 X% + BuX3
+ Bs X3 + BeXa1i + BrXazi + BsXagi,

B ~ MVN(b, %).

They aimed to elicit the multivariate normal prior of 8. The experts were allowed to
choose the design points. The expert chooses a design Vpoint by clicking on a map, then an
interactive dialogue pops up giving a plot of a beta distribution of the probability of presence
at the selected design point. The given plot has three adjustable points at the median and the
0.05 and 0.95 quantiles. The expert is asked to adjust the three quantiles, or the computed
beta parameters, until the presented beta curve is the best representation of the expert’s
belief about the probability of the specie presence at the selected point. This procedure is
repeated for a number of design points.

Once the expert has selected a minimum number of points, a logistic regression model
is fitted by the software at each design point. Then the univariate relation between the
probability of presence and each of the explanatory variables is presented to the expert in a
separate graph, a response curve. Each curve is drawn assuming that the other variables are
kept fixed at their means. The categorical variable X} is represented by box-plots rather than
a curve. The expert can review and modify the design points to get the automatic impact
on the response curves. The elicited beta distribution at each design points could be used to
elicit the multivariate normal distribution of the regression parameters g through weighted
logistic regression or a simulation based approach, see Denham and Mengersen (2007) for more

details. They stated that the priors elicited from the experts were reasonably informative,

31



with corresponding posteriors that are clearly different from those posteriors obtained from
a uniform improper prior.

Although the software is specially designed for geographical data elicitation of a logistic
regfeséion model, they indicated that the concepts can be generalized to any GLM. However,
Denham and Mengersen (2007) Wr;.Jte the software explicitly for each of thé tﬁo case studies
separately, tailored for the given cases and sefs of explanafory variables. In its pfesent form
their software is thus limited and cannot be used as a general elicitation tool. Moreover,
they used the R language to code staﬁistical functions, with Visual Basic and other software
for interactive graphs embedded in the GIS system. Tfle latter. limits the uéability of their
software.

Jenkinson (2007) re-wrote the software of Garthwaite and Al-Awadhi (2006) in Java
to provide a more transportable and stable version. He gave a detailed description and
documentation of both the software and the piecewise-linear theoretical model behind it
[Jenkinson (2007), p.215-251]. Further modifications of the theoretical model and the software
are given in this current thesis in Chapters 3, 4 and 5.

An important medical application of the GLM elicitation software is given in a case
study reported in Garthwaite et al. (2008). Aiming to estimate the costs and benefits of
current and alternate bowel cancer service in England, a pathway model was developed,
whose transition parameters depend on covariates such as patient characteristics. Data to
estimate some parameters were lacking and expert opinion was elicited for these parameters,
using the indicated software and under the assumption that the quantity of interest was
related to covariates by the generalized piecewise-linear model given by Garthwaite and Al-
Awadhi (2006). The assessments were used to determine a multivariate normal distribution to
represent the expert’s opinions about the regression coefficients of that model. One conclusion
of this work was that quantifying and using expert judgement can be acceptable in real
problems of practical importance, provided that the elicitation is carefully conducted and

reported in detail.
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A thorough detailed comparison has been conducted by O’Leary et al. (2009) for three
relatively recent elicitation tools for logistic regression. The comparison included the interac-
tive graphical tool of Kynn (2005) and Kynn (2006), the geographically assisted tool under
GIS of Denham and Mengersen (2007) and a third simple direct questionnaire tool with no
software. These tools were compared in an elicitation workshop (see O’Leary et al. (2009)
for more details on the third method). The paper discusses and gives a detailed description
for each of the three methods used, showing advantages and disadvantages of each of them.
Methods were compared according to their differences in the type of elicitation, the proposed
prior model, the elicitation tool and the requirement of a facilitator to help the expert. Prior
knowledge of two experts was elicited to model the habitat suitability of the endangered
Australian brush-tailed rock-wallaby. The comparison revealed that the elicitation method
influences the expert-based prior, to the extent that the three methods gave substantially
different priors for one of the experts. Some guidelines were also given for proper selection of
the elicitation method. This work of O’Leary et al. (2009) is part of a large body of applied
research which shows the importance of eliciting expert knowledge when modeling rare event
data, see also Kynn (2005); Al-Awadhi and Garthwaite (2006); Low Choy et al. (2009) and
Low Choy et al. (2010). |

Although they are interested mainly in designing the elicitation process for ecological ap-
plications, Low Choy et al. (2009) give a framework for statistical design of expert elicitation
processes for informative priors which may be valid for Bayesian modeling in any field. The
proposed design consists of six steps, namely, determining the purpose and motivation for
using prior information; specifying the relevant expert knowledge available; formulating the
statistical model; designing effective and efficient numerical encoding; managing uncertainty;
and designing a practical elicitation protocol. Other important stages in the elicitation pro-
cess may be found in Garthwaite et al. (2005), Jenkinson (2007) and Kynn (2008). Low Choy
et al. (2009) validated these six steps in a detailed discussion and comparison of five case stud-

ies, revisiting the principles of successful elicitation in a modern context.
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The recent work of James et al. (2010) is very interesting and important in the current
review for two aspects. First, it introduces and describes a general elicitation tool for quan-
tifying opinion in logistic regression using interactive graphical stand-alone software, called
Elicitator. Second, the software is based on a novel statistical methodology to elicit a normal
prior distribution for regression parameters.

Their work is an extension to that of Denham and Mengersen (2007) as applied on nor-
mal prior elicitation for logistic regression in a geographically-based ecological context. As
mentioned before, Denham and Mengersen (2007) did not introduce a general purpose tool,
their software was tailored to the requirements of specific case studies. Motivated by that,
James et al. (2010) developed the Elicitator software as a stand-alone elicitation tool that
can be used for a wide range of applications.

Although the Elicitator software is based on the same interface and protocol as its pro-
totype in Denham and Mengersen (2007), the statistical method adopted to transform as-
sessed values into elicited priors is a novel one inspired from the CMP ideas of Bedrick et al.
(1996). James et al. (2010) argued that the CMP is more tractable and more applicable in
general compared to the predictive approach used by Kadane et al. (1980) and Denham and
Mengersen (2007). The novel modification in the Elicitator design to the approach of Bedrick
et al. (1996) is that it relaxes the assumption that the number of chosen points at which the
expert assesses her priors is exactly equal to the number p of explanatory variables in the
logistic model. This is the assumption that leads to the induced prior on g as in (2.27).

Relaxing this assumption allows the number of elicitation points, say k, to exceed the
number p of explanatory variables, the situation that is commonly encountered. Although the
prior on § can no longer be induced as in (2.27), James et al. (2010) proposed a measurement
error model in which elicitation points represent data in a beta regression model. In this
sense, increasing the number & of elicitation points will lead to a more accurate prior.

Specifically, they assume a standard logistic regression model with a Bernoulli distribution

and a logit link function as used by Bedrick et al. (1996). A main criticism is that they
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assume that the explanatory variables are independent a priori, in the sense that independent

univariate normal priors were assumed for S, i.e.
Bj ~N(bj,03),  j=1,---,p. (2.30)

Although they mentioned the possibility of assuming a multivariate normal prior distribution,
no attempt has been made for its implementation in Elicitator.

For i =1, - ,k, the expert assesses information about the probability of success u; at
a geographical site ¢, selected by the expert, with a known combination of the explanatory
variables Xy, Xo;, -+, Xp;. For example, the expert may assess information about the
probability of presence of a species at a known combination of environmental predictors at
site 4. Following Bedrick et al. (1996), expert’s assessments are used to elicit a beta prior
on ﬂi as in (2.25). However, in situations where & > p, a beta prior on g; would not help
induce the normal prior for 8. Instead, James et al. (2010) assumed a beta prior on the
expert’s probability of success, say Z;, which is different from the actual probability ;. As

in a measurement error model, y; is the conditional expectation of Z; in the sense that

logit (1) = X;
Zi|ps ~ beta(ay i, az,), (2.31)

E(Zi|pi) = -

James et al. (2010) discussed the expert’s assessments about Z; that are required to
elicit beta distributions as in (2.31). They argued that the required best estimate of the
probability Z; in the measurement error model is the arithmetic mean, however it is difficult
to assess. They were also against the idéa of assessing the médian, claiming that it needs
more effort from the expert to assess. Hence, Elicitator requires the mode of Z; as its
best estimate. Then, following the well-established practice of assessing several quantiles for
beta elicitation, Elicitator requires the four bounds of the 50% and 95% credible intervals.
Although two assessments are mathematically sufficient for eliciting the two beta parameters,

it is better to elicit more assessments and reconcile them, especially for skewed distributions.
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A simple numerical procedure is used to elicit beta parameters from the mode and either two
or four assessed_ quantiles.

To elicit the hyperparameters b; and 0’J2~, j =1,---,pin (2.30) using the elicited beta
parameters a;; and ag;, ¢ = 1,---,k in (2.31), James et al. (2010) proceed as follows.
In principal, the beta regression in (2.31) is performed using the expert’s data on Z; and
the known values of the explanatory variables to provide the expert-defined estimates of 3.
However, due to difficulties in implementing any beta regression package in Elicitator, the
beta regression problem has been approximated by its discrete version, a binomial regression.
An R software package is used to perform the binomial regression, where point estimates
Ej and their corresponding standard errors s.e.(Bj) are obtained. The prior distributions in

(2.30) are finally elicited using these estimates as

-~

B ~N(Bjse(By)?), =1, ,p (2.32)

Two criticisms of the proposed measurement error model in this context are as follows.
First, it adds additional sources of uncertainty, namely, the discrepancy between the expert’s
probability Z; and the conceptual probability p;. Second, it imposes difficulties in compu-
tation and implementation in the software, requiring a binomial regression approximation.
However, these criticisms do not seem to be a high price compared to the increased accuracy
gained by increasing the number of elicitation points of CMPs. Moreover, the use of beta or
binomial regression make it easy to represent standard regression diagnostics to the expert
as feedback.

Interactive graphs that are given by Elicitator to the expert as feedback fall in three
main groups. The first group includes a box-plot, a pdf curve and some numeric statistics
of the elicited beta prior at each site. These are all interactive in the sense that they are
automatically modified if the expert changes her assessments of the mode value or the credible
interval bounds of the probability of success at each site.

The second group involves the univariate graphs that highlight the main effect of each

explanatory variable associated with each of the elicitation sites. These graphs plot the
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elicited probability against the value of the site predictor with a standard regression fit. The
categorical predictors are drawn as bars to emphasize their discrete nature. Various regression
diagnostics graphs are given in the third group. These graphs help the éxpert consider how
the estimated prior model elicited from her assessments corresponds to her knowledge overall.

The Elicitator software is written in Java and uses open source libraries. It does not
require a commercial GIS, in contrast to the prototype of Denham and Mengersen (2007).
All statistical calculations are performed using the R statistical package. Elicitator uses a
Java package to communicate with R, without needing to run an actual instance of the R
software. This greatly increases the generality and flexibility of Elicitator as a stand-alone
tool that can be used by a wide range of experts with different backgrounds.

According to James et al. (2010), Elicitator is highly extensible and one of the main
extensions they are willing to handle is the ability to implement more GLMs rather than
only the logistic regression model. But they did not mention or discuss how this can be done

for other distributions and link functions under their proposed model for measurement error.

2.5 Prior elicitation for multinomial models

An early attempt to elicit a Dirichlet prior distribution for multinomial parameters was
suggested by Bunn (1978). He argued that the usual fractile assessment procedure that
has been used for eliciting beta priors may be difficult and tedious to be applied on their
multivariate extensions, the Dirichlet priors, when more conditions and restrictions must
be taken into consideration. As will be shown on Chapter 6 of this thesis, developments in
computing techniques and tools make it easy to implement fractile procedures in user-friendly
software that assess quartiles and elicit Dirichlet priors effectively and interactively.
However, the approach suggested by Bunn (1978) as an alternative to the fractile method
for Dirichlet elicitation was the method of ‘imaginary results’. He used two versions of this

method, namely, the Equivalent Prior Samples (EPS) and the Hypothetical Future Sample

37



(HFS), to quantify opinions about a Dirichlet prior. Specifically, let p = (pl, Do, -, D)

be the vector of multinomial probabilities, with a Dirichlet prior distribution of the form

F k_ a‘i k_ (.Ii_l k
flp) = SCENISE , Yopi=1, a;>0. (2.33)

Hf:l I'(as) i=1

It can be shown that the posterior mean of p;, say p;, after sampling N data is given by

b = __~ai++, (2.34)
N+ a
where n; is the number of items, out of N, that falls in category .
In the EPS method, the expert is asked to assess a set of prior means p},i =1,2,--- ,k.

She also assesses the equivalent sample size of her subjective belief that would empirically
give this set of probabilities. This sample size gives direct information on Zi;l a;. Thus, the

prior hyperparameters can be elicited as

k
a =P}y a; (2.35)

i=1
The main criticism to the usage of the EPS method here is that the expert cannot easily
give an assessment for Zle a; directly. The assessed value does not necessarily represent
her opinion accurately and may contain sources of assessment bias. Therefore, Bunn (1978)
proposed the alternate HFS method, in which the expert also assesses the set of prior expec-
tations ﬁ:‘,z =1,2,---,k, but, in addition, she is asked to assess her posterior expectations,
say p;*,i = 1,2, -+ ,k, given that a hypothetical future sample of size M has resulted in a

number of m; items in category i, where 1 < m; < M. Hence, the hyperparameters can be

elicited, using (2.34) and (2.35), as

_.m; — Mp* '

The main source of bias in the HFS method is ‘conservatism’; the expert tends to revise
her probabilistic beliefs from prior expectations to posterior expectations as a result of the
new data ‘insufficiently’ if compared with the revision indicated by Bayes theorem. The

strong assumptions of the HFS method, that the expert can be an ‘intuitive Bayesian’ and
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can modify her prior beliefs in the light of new data sets, turned out to be poorly satisfied in
the case study of Bunn (1978) and other studies mentioned therein. For example, in eliciting
beta priors, Winkler (1967) found that the methods of imaginary results gave greater bias
than the usual fractile methods.

Another problem with the two methods suggested by Bunn (1978) is that probability
means are directly elicited from the expert. We believe that medians are easier to assess
and, by using the bisection method, the expert will represent her beliefs more accurately.
Although the unit sum of the probability assessments can be directly fulfilled by assessments
of means (the means must sum to one), median assessments of these probabilities can be
elicited for beta marginal or conditional distributions. Methods for reconciliation of beta
elicited distributions into a Dirichlet prior are proposed in Chapter 6.

In the HFS method of Bunn (1978), he did not give any suggestion about the selection
of the hypothetical sample. Instead, in a case study, he used an actual sample based on a
survey, and called his method an Actual Future Sample (AFS). To investigate the feasibility
of this method and its possible biases and subjective inconsistencies, the AFS method was
implemented in a case study reported in Bunn (1978). In this study, a publishér quantified
his opinion about the expected market attitudes towards a new product. Different possible
attitude events were summarized in three categories, for which he assessed their expected
prior probabilities as

Pt =020, p; =0.30, = 0.50. (2.37)

From his EPS assessment, Z?:l a; was set equal to 10.
Then, a survey of 20 customers revealed that the number of customers in each category
were 6, 7, 7, respectively. Based on this survey, the publisher was asked to revise his prior

probability expectations. He gave the following posterior expectations
P1*(A) = 0.25, py"(A) =0.30, p3"(A) = 0.45. (2.38)

To investigate the conservatism of the publisher, the posterior expected probabilities were
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computed as in (2.34). Since, a; = 2, ag = 3, ag = 5, the computed posterior expectations

given by Bayes theorem are
P (C) =0.27, p3*(C) =0.33, p5*(C) = 0.40. (2.39)

Comparing the assessed posterior probabilities p;*(A) in (2.38) to the computed ones in
77*(C) in (2.39) reveals the conservatism of the publisher, who did not revise his prior prob-
abilities by as much as Bayes theorem would revise them.

Bunn (1978) discussed the possible reasons of the revealed bias and inconsistency in using
the methods of imaginary results for eliciting a Dirichlet prior. He argued that the expert
should complete several iterations with these methods to achieve consistent results. However,
he did not discuss how this might be done through feedback given to the expert, nor did he
suggest any method of reconciliation. These drawbacks of the imaginary results methods
suggest that a fractile method is to be preferred, especially in multivariate cases where more
inconsistency can be expected.

Using the same idea as the HFS method, and consequently the same forms of equation as
in Bunn (1978), Dickey et a(. (1983) reintroduced the elicitation method with a different case
study. The mathematical formulation of the two methods is identical. However, two main
differences in the elicitation process can be identified.

In assessing the expected prior probabilities 7},7 = 1,2,--- , k, Bunn (1978) assumed that
the expert is coherently aware that these assessed expected probability must sum to one.
In contrast, in the work of Dickey et al. (1983), the expert was free to assess the expected
probabilities without being conscious of any probabilistic constraints. Insteéd, Dickey et al.
(1983) suggested normalizing the initial assessed probabilities to get the following normalized

set

o
oy (2.40)
i=1P;

that is guaranteed to add up to one. We use this simple normalization procedure extensively

for our proposed logistic normal prior in Chapters 8 and 9. An important property of a good
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elicitation method is that the expert is not overly conscious of the mathematical constraints
on her assessments. Methods that include normalization and reconciliation procedures are
generally better than those that ask the expert to make assessments that meet specified
constraints.

The second difference between the elicitation procedure of Bunn (1978) and that of Dickey
et al. (1983) regards the reconciliation of an expert’s assessments. As mentioned before,
given the hypothetical sample, one expected posterior probability suffices to elicit the full
vector of the Dirichlet hyperparameters. But it is usually better to assess several posterior
probabilities and then reconcile the different results. Bunn (1978) regarded discrepancies in
results as inconsistency on the part of the expert and suggested asking the expert to resolve
inconsistency by doing many iterations of the elicitation process. On the other hand, Dickey
et al. (1983) suggested reconciling different hyperparameter values by averaging them. They
also advised that large discrepancies may indicate that the Dirichlet distribution is not a
suitable prior.

The case study in Dickey et al. (1983) quantified a social psychologist’s opinion about
the attitudes of potential jurors in law trials where the death penalty was available. Their
attitudes were classified into 4 categories, and the psychologist’s assessments of the prior

probabilities of the categories were:
#7 =0.02, p5 =0.08, p3=0.15 5z =0.75. (2.41)

The psychologist was then told that a hypothetical sample of 200 potential jurors had
been distributed between the four categbries as 16, 20, 32, 132. Given this information, the

expert revised her prior probabilities and gave the following expected posterior probabilities:
p* =0.05, po* =0.09, p3* =0.16, p3* = 0.70. (2.42)

Using each of these values in (2.36) gives an initial value of a;, which can then be used
in (2.35), together with the corresponding prior probability, to get an estimate of Zf=1 a;.

These estimates were averaged in Dickey et al. (1983) and gave a value of 140. This gives
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the final hyperparameter elicited values, again from (2.35), as a; = 2.8, az = 11.2, a3 = 21,
aq = 105.

In contrast to the case study in Bunn (1978), the expert here was not conservative; her
posterior probabilities were closer to the relative frequency of the hypothetical data, 0.08,
0.10, 0.16, 0.66, rather than to her prior probabilities. A lack of conservatism is also shown
by the small value of E:.Ll a; = 140, compared to the hypothetical sample size of N = 200.
Using (2.35), the posterior probabilities in (2.34) can be considered as a weighted average of

the prior probabilities and the relative frequency of the hypothetical sample, since

- N N Zl‘g—l @i
b= —~+ = . (2.43)
YN+ ThiaN N+YL e

If the expert assesses Zi-;l a; to be less than the hypothetical sample size N, then she gives
rﬁore weight to the relative frequency of the hypothetical sample. If Ele a; = N, then the
expert has given her prior opinion and the data equal weight. As in Bunn (1978), Dickey
et al. (1983) did not suggest a way to generate the hypothetical sample.

Another method for eliciting a Dirichlet prior distribution was developed by Chaloner
and Duncan (1987) as an extension of their method for eliciting beta distributions (Chaloner
and Duncan, 1983). Their approach relied on assessing the mode vector for the predictive
distribution, and some probabilities for other vectors around the mode. These assessments
were used to elicit a Dirichlet-multinomial predictive distribution that was then used to
induce a Dirichlet prior distribution for multinomial sampling. The approach thus differs from
other Dirichlet elicitation methods in using mode assessments and in utilizing the predictive
distribution rather than the prior distribution.

The predictive distribution of a multinomial likelihood and a conjugate Dirichlet prior
is a Dirichlet mixture of multinomial distributions. This distribution is referred to as a

Dirichlet-multinomial distribution and its probability mass function takes the form
T(n+ 1)T(N) [T T(ai + as)]
T(n+ N) ([T Tl + )] [T Ta)]

xT; > 0, Zf:l T;=mn, a;> 0, 21’;1 a; = N.
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Chaloner and Duncan (1987) proved that the Dirichlet-multinomial predictive distribution
in (2.44) is a unimodal distribution for large values of n. They also gave sufficient conditions
under which a vector, with components greater than or equal to one, is the unique mode of the
Dirichlet-multinomial distribution. These conditions are mainly related to the probabilities of
a set of vectors that are coordinate adjacent to the mode vector. Moreover, the identifiability
of the Dirichlet prior distribution from the Dirichlet—mﬁltinomial predictive distribution was
also proved.

The above results were used in an elicitation scheme that was implemented in a computer
program, in Chaloner and Duncan (1987), as follows. The expert specifies a large value of
n as the sample size. Then she specifies a mode vector m = (mq,ma,--- ,my) that satisfies
Zle m; =n and m; > 1. The computer program then uses a multinomial probability vector
of n~1m to compute probabilities at some points that are component adjacent to the mode
vector. These probabilities are presented to the expert and she is given the option of changing
them if they do not represent her opinion adequately. The modified set of probabilities,
together with the mode vector m, determine an initial value for the parameter vector a of
the Dirichlet-multinomial predictive distribution. This is also taken as the elicited parameter
vector for the Dirichlet prior distribution.

The elicitation scheme of Chaloner and Duncan (1987) does not stop there. Instead, theyA
chose to use the initially elicited vector g to compute the Dirichlet-multinomial probabilities at
the same points where assessments had been elicited and give them as feedback to the expert,
‘offering her the possibility of revising them to more closely represent her opinion. Moreover,
Chaloner and Duncan (1987) believed that more replications were required. Therefore, the
expert was to repeat the whole process again for a number of S different sample sizes nj,
ng, +++, ng. The resulting parameter vectors a,, a, -+, ag were to be reconciled to give
one final elicited vector of parameters. Chaloner and Duncan (1987) argued that it might be
“dangerous” to use an automatic specific reconciliation method, instead, they recommended

that the expert should examine the inconsistencies and “reconcile them introspectively”.
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However, the method requires direct assessment of the sample size n, this might lead to
improper representation of an expert’s opinion and incur more bias [Bunn (1978)]. On the
other hand, Chaloner and Duncan (1987) did not mention how large the assessed value n
should be, neither did they discuss whether the expert should keep in mind the constraint
ZLI m; = n, on the mode vector m, or whether it may be corrected by the program if
necessary. Nevertheless, it seems from their reluctance to apply any reconciliation that they
preferred to leave it to the expert to make sure that the constraints were satisfied. Repeating
the elicitation process for S different sample sizes may constitute an extra burden on the
expert, especially if she is responsible for the final reconciliation. Unfortunately, the computer
program implementing their method does not seem to be available for reviewing and testing.

Instead of using means or modes, van Dorp and Mazzuchi (2000, 2003, 2004) introduced
a numerical algorithm and software to specify the parameters of a beta distribution and its
Dirichlet extensions using quantiles. The motivation for their work was to quantify expert
opinion as beta and Dirichlet distributions for subjective Bayesian analyses. They favored
assessing quantiles rather than means or modes, as betting strategies can be used by the
expert to make their assessments. They started by solving for the two parameters of a beta
distribution using two quantiles, as follows.

First, to ease the generalization to Dirichlet extensions, the beta distribution with two
parameters a and b was reparameterized in terms of a location parameter 4 = a/(a + b), and
a shape parameter N = a+b. Given the values of any two quantiles, say L and U, L < U, the
two parameters p and N can be obtained, although solving for these two parameters involves
the use of the incomplete beta function, so that no closed form solution can be obtained. van
Dorp and Mazzuchi (2000) utilized the limiting forms of a beta distribution as N tends to 0
and oo to prove the existence of at least one solution for the beta parameters in terms of any
two quantiles.

They gave a numerical algorithm to determine the beta parameters using a bisection

method as a numerical search procedure. If multiple solutions were found, the algorithm
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selects the solution with the lowest value of N, i.e. with the highest level of uncertainty. The
algorithm was implemented in software called BETA-CALCULATOR that inputs any two
beta quantiles to output the corresponding values of the beta parameters.

To extend the numerical algorithm to Dirichlet parameters, van Dorp and Mazzuchi
(2003, 2004) used quantiles that were assessed through direct specification of marginal beta
distributions. A Dirichlet distribution as given in (2.33) was also reparameterized in terms of
its mean values p; = a;/N, as location parameters, and N = Zf=1 a; as a shape parameter.
The extended algorithm was designed to use two quantiles for one of the Dirichlet variates,
say L; and U;, L; < U;, for the ith variate, and just one quantile for each of the remaining
variates, say @;, j # 4. Hence, the number k of quantile equations that they had is exactly
equal to the number of required parameters.

Following similar lines to their arguments for the beta distribution, van Dorp and Maz-
zuchi (2003, 2004) showed theoretically that at least one solution of the resulting system of
equations always exists. The two quartiles L; and U; were first used to elicit the marginal
distribution of the ith Dirichlet variate as X; ~ beta(u;, N). The value of N is then used
with the qugntiles Q)j to elicit the remaining beta marginal distributions as X; ~ beta(u;, N),
j # 4. If more than one solution exists, they decided to choose the solution with the smallest
N, which is again the solution with maximum Dirichlet variance, hence giving the highest
level of uncertainty. In addition to the Dirichlet distribution, they also gave another numer-
ical algorithm for the ordered Dirichlet distribution, which differs from the Dirichlet in the
domain of its variates, see Wilks (1962).

A criticism of the algorithm regards the selection of the Dirichlet variate for which two
quantiles are assessed. No comment regarding the selection of this special variate was given in
the published paper. The importance of its choice is that it determines the value of N for all
other variates and hence determines the variances of the Dirichlet distribution. If substantial
bias is made in assessing these two quartiles, all elicited parameters will be highly affected as

a result.
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In addition, to get a better representation of an expert’s opinion in the elicitation context,
it is better to use over-fitting (Kadane and Wolfson (1998)). We believe that it is preferable to
assess more quantiles than the minimum necessary and then apply a reconciliation technique
to estimate parameters. The expert may then be given feedback and questioned as to whether
the feedback corresponds to her opinion, with re-assessment made when necessary.

A possible general multivariate distribution, that can serve as a prior distribution for
multinomial models, is constructed through using a multivariate copula function. A copula
is defined as a function that represents a multivariate cumulative distribution in terms of
one-dimensional marginal cumulative distribution functions. Hence, it joins marginal distri-
butions into a multivariate distribution that has those marginals. The importance of the
copula function is due to Sklar’s Theorem, which states that any joint distribution can be
written in a copula form. The marginal distributions can thus be chosen independently from
the dependence structure that is represented by the copula function. For an introduction to
copulas, see for example Joe (1997), Frees and Valdez (1998) and Nelsen (1999).

The use of copula functions to elicit multivariate distributions has been considered in the
literature, see Jouini and Clemen (1996), Clemen and Reilly (1999) and Kurowicka and Cooke
(2006), among others. The joint distribution can be elicited by first assessing each marginal
distribution. Then the dependence structure is elicited through the copula function. Different
families and classes of copula functions have been defined for both bivariate and multivariate
distributions. Jouini and Clemen (1996) used bivariate and multivariate Archimedean and
Frank’s families of copulae to aggregate multiple experts’ opinions about a random quantity.
However, the simplest and most intuitive family of copulae is the inversion copula [Nelsen

(1999)], of the form
ClGi(z1), -, Gr(mr)] = Fa, iy {Fi H[G1(z1)], -+ Fy HGr(m)]} (2.45)

where G; are the known marginal distribution functions, F{; ... x) is the assumed multivariate
distribution function and its marginals are F;. Hence, the marginal functions G;’s are coupled

through F{; ... r) into a new multivariate distribution given by the copula function C'
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The distribution F,... ) is usually selected as a multivariate normal distribution, which
gives a Gaussian copula [Clemen and Reilly (1999)]. It has also been taken as a multivariate.¢
distribution, [Demarta and McNeil (2005)], or even as a Dirichlet distribution [Lewandowski

(2008)]. The Gaussian copula function is given by
C[Gl (:1:1), e ,Gk(a:k)] = (I)Ic,R {@_1[G1 (371)], R Q_I[Gk(wk)]} . (2.46)

where @4 g is the cdf of a k-variate normal distribution with zero means, unit variances,
and a correlation matrix R that reﬂecfs the desired dependence structure. ® is the standard
univariate normal cdf.

For eliciting a multivariate distribution, the Gaussian copula is the most appealing, see
Clemen and Reilly (1999), as it is parameterized by the correlation matrix R of the multi-
variate normal distribution; hence it only requires pairwise cofrelations afnong the variables.
To .elicit the Gaussian copula, any assessed positive-definite correlation matrix R can be used
together with the e'licited‘marginal distributions Gi(z1), -+ ,Gr(zk). As with any other in-
version copula, any univariate distributions are allowed as marginal distributions G;’s in the
Gaussian copula.

To elicit R, Clemen and Reilly (1999) suggested that a pairwise rank-order correlation
between each X; and X, such as Spearman’s p;; or Kendall’s 7;;, should be assessed.
Then properties of the multivariate normal distribution are used to transform them into

the product-moment Pearson correlation r; ; as follows:
Tij = 2 sin(wpi,j/G), or Tij = Sin(ﬂ'T,;,j/2). (2.47)

Then the product-moment correlation matrix R is formed from the elements Tij

Clemen and Reilly (1999) suggested that only rank-order correlations should be elicited,
not product-moment Pearson correlation, as the latter cannot necessarily be transformed
through the function ®1[G;(.)] - while rank-order correlations transform regardless of the
choice of the marginal distribution function G;(.). To elicit these correlations, Clemen and

Reilly (1999) mentioned three methods that can be used either separately or together. The
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first method involved the direct assessment of the correlation coefficient. Although people are
not good at such direct assessment (Kadane and Wolfson, 1998), experimental evidence in
Clemen et al. (2000) suggested that it can be a reasonable approach. The other two methods
were based on assessed conditional probabilities or conditional quantiles that can be used to
compute Kendall’s 7 or Spearman’s p correlation coefficients, respectively.

The method proposed by Clemen and Reilly (1999) for eliciting a correlation matrix is
not guaranteed to yield a positive-definite matrix. They cited two other studies in which
dependence measures were assessed in a hierarchical way using dependence trees that require
a fewer number of assessments. These studies use entropy maximization to guarantee the
positive-definiteness of the resulting correlation matrix. However, Clemen and Reilly (1999)
criticized this approach for the relatively constrained nature of its dependence structure
modelling. Instead, they suggested that the expert should be asked to revise her assessments
if the resulting correlation matrix is not positive-definite. For large problems with many
variables, this revision method would generally be very tedious and confusing.

In Chapter 7, we propose a method for eliciting a Gaussian copula function, as a prior
distribution for multinomial models. Our approach overcomes two problems of the method of
Clemen and Reilly (1999) simultaneously. First, we transform the assessed conditional quar-
tiles of X; and X, through ®~![G;(.)], then product-moment correlations can be computed
on the normal scale with no need for the rank-order correlations. Second, the conditional
quartiles are assessed according to the structural elicitation procedure of Kadane et al. (1980),
which guarantees that the elicited correlation matrix is positive-definite.

Copula functions were used extensively in the literature for building multivariate distri-
butions based on known marginals. This includes, of course, building joint prior distributions
for Bayesian analysis using copulae. For example, Yi and Bier (1998) utilized some copula
families to construct a joint prior distribution that reflects inter-system dependencies between
accident precursors in a Bayesian study to estimate accident frequencies. A Gaussian cop-

ula has not been widely used in the literature as a prior distribution for multinomial models.

48



However, the need for a flexible joint prior distribution that effectively combines the marginal
beta prior distributions of multinomial prpbabilities makes the Gaussian copula an attractive
choice as it gives a more general dependence structure than the usual Dirichlet distribution.
An applied Bayesian study by Palomo et al. (2007) used a Gaussian copula to model external
risk in project management. In one of their adopted scenarios, they assumed that any of
k potential disruptive events might occur, one at a time, according to a multinomial distri-
bution. The multinomial probabilities were assigned beta marginals, and a Gaussian copula
function was used as a multivariate distribution to parametefize the dependence structure

between these probabilities.

2.6 Other general graphical elicitation software

This section reviews other interactive graphical elicitation software that has been reported in
the literature. Software projects that are reviewed below cover general elicitation problems
apart from those for GLMs and multinomial models. These have already been reviewed in
Sections 2.4 and 2.5.

Chaloner et al. (1993) aimed to quantify experts’ opinion in the form of a prior distribution
about regression coefficients in a proportional hazards regression model. In a clinical trial,
prior distributions from five AIDS experts were elicited. To compare two treatments with
a placebo, experts were asked to elicit the joint and marginal distributions of the survival
probability under each treatment. This could be done by assessing some probabilities and
quantiles to elicit a joint extreme value prior distribution for the proportional hazards model
parameters.

For this purpose, they developed an interactive computer program that uses interactive
graphs to elicit experts’ opinion and give them feedback. The curves of the two marginal
distribution and the contour representing the joint distribution were presented to the experts.
This feedback was given in the form of dynamic graphical displays of probability distributions

that can be adjusted freehand.
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Some of the main “lessons” learned about this elicitation process, as stated by Chaloner
et al. (1993), can be summarized as kfollows. They stressed the importance of the dynamic
graphical displays in helping experts to visualize probability distributions and in giving useful
instant feedback. They also noted that it is necessary to have a clear well-defined outline
and explanation of the questions that will be addressed to the expert. In cases where an
expert had to assess her best guess of a specific probability, they wanted her also to report
her uncertainty about it. In assessing approximate bounds, experts found extreme percentiles
easier to think about than quartiles. However, there is substantial empirical evidence that
people are poor at assessing extreme quantiles [e.g. Winkler (1967); Hora et al. (1992)] and we
believe that quartiles provide a more faithful representation of an expert’s opinion, especially
if they are assessed using the bisectiqn method.

A comparatively simple elicitation computer program was developed by Kadane et al.
(2006) for the generalized Poisson distribution. In their paper, they explored the properties
of the Conway-Maxwell-Poisson (COM-Poisson) distribution, in particular, the conjugate
family of prior distributions associated with it. A computer application has been created to
elicit the hyperparameters of the conjugate prior distribution of the COM-Poisson parameters:

The COM-Poisson distribution is a two parameter generalization of the Poisson distribu-
tion that allows for over- and under-dispersion. It has the following probability function

X1
@) ZOwv)’

Pr{X =z|\, v} = z=0,1,2,...,

where

G

The distribution indicates over-dispersion (under-dispersion) if v is less (greater) than 1. It

. SV
Z(\v) = Z A
=0

is the usual Poisson distribution if v = 1. Since the COM-Poisson distribution is a member

of the exponential family, it has a conjugate prior of the form
h(A,v) = X" e " Z(\, 1) "k(a, b, c), A>0,v >0,

where k(a, b, c) is the integration constant.
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The computer program, available at http://www.stat.cmu.edu/COM-Poisson/, is de-

signed to elicit the values of the hyperparameters a, & and ¢ from the field expert. It computes
and plots the histogram of the predictive distribution at allowable selected values of a, b and

c. Specifically,
o0 o0 |
Pr{X = z|a,b,c} = k(a, b, c) / / Na+a—1g=v(bHlog(@)) 7 () )=+ gady,
0 0

Kadane et al. (2006) pointed that it may be difficult for the expert to give meaningful
values for the hyperparameters a, b and ¢, since the distribution is likely to be new to her.
They assumed that the expert may have some knowledge about Pr{X = z}. Thus, the
program plots the predictive distribution as feedback to the expert. She can type in or
modify the values of a, b and c using sliders and see the direct impact on the predictive
histogfam. |

However, it does not seem that the expert will be able to adjust three values simulta-
neously to assess a histogram that represents her prior belief. Also, some combinations are
not allowed because of mathematical incoherence, and some others need large numbers of
iterations to produce the histogram. A lot of adjustment may be needed before the expert
is happy with the histogram, since no specific combination of the hyperparameter values is

known in advance for any intended appearance of the histogram.

2.7 Concluding comments

In this chapter, we have reviewed some of the relevant research work on eliciting prior distri-
butions for the Bayesian analysis of GLMs and multinomial models. We have also discussed
and reviewed the main psychological aspects that are usually involved in making the assess-
ments to elicit these prior distributions. In addition, we commented on some of the recent
interactive graphical software that have been reported in the literature for implementing and
facilitating the elicitation processes in some other statistical problems. However, this review
has been restricted to work that is directly relevant to the elicitation methods proposed in
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this thesis. There is a huge body of research that handles elicitation problems and tech-
niques in general. As noted earlier, psychological concerns and recommendations for efficient
elicitation techniques will be taken into consideration while developing the elicitation meth-
ods proposed in this thesis. Available elicitation techniques and computer software will feed
into the methpds developed in the ne?ct chapters and will help in building the software to

implement these proposed methods.
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Chapter 3

The piecewise-linear model for

prior elicitation in GLMs
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3.1 Introduction

Generalized linear models (GLMs) constitute a natural generalization of classical linear mod-
els, where the linear predictor part is linked to the mean of the dependent variable through
some link fun;:tion. The distribution of the dependent variable is not necessarily assumed to
be normal. The model is determined by a combination of the link function and the family
of distributions to which the dependent variable belongs (see McCullagh and Nelder (1989)
for an introduction to GLMs). Being very common in both frequentist and Bayesian data
analysis, GLMs have attracted much research.

An important task in the Bayesian analysis of GLMs is to specify an informative prior
distribution for model parameters. Suitable elicitation methods play a key role in this task of
representing expert knowledge as a prior distribution (see, for example, Bedrick et al. (1996)
and O’Leary et al. (2009)).

A method of quantifying opinion about a logistic regression model was developed by
Garthwaite and Al-Awadhi (2006). They mentioned that the method is very flexible and can
be generalized to GLMs with any link function, not just the logistic link. This generalization
has been introduced by the same authors in an unpublished paper, Garthwaite and Al-
Awadhi (2011). Their method has been used to quantify the opinions of ecologists (Al-Awadhi
and Garthwaite (2006)) and medical doctors (Jenkinson (2007); Garthwaite et al. (2008)).
However, the method makes simplifying assumptions regarding independence between the
regression coefficients. One purpose of the current thesis is to extend the elicitation method
so that these assumptions are unnecessary. Different methods for this extension are proposed
in Chapter 4. This will significantly increase the range of situations where the method is
useful.

The original method for logistic regression was developed and implemented in user-friendly
interactive software. The software was re-written in Java by Jenkinson (2007) who also
extended it to elicit expert opinion about some other GLMs. It has been modified and

extended further by the author of the current thesis.
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The software is interactive, requiring the expert to either type in assessments or plot points
on.graphs and bar-charts using interactive graphics. An executable stand-alone version of
the current software is available as a java executable (jar) file and a Windows executable
file (with .eze extension). The stand-alone versions together with the user manual and the
source code are freely available as Prior Elicitation Graphical Software for Generalized Linear

Models (PEGS-GLM) at http://statistics.open.ac.uk/elicitation.- The software is aimed to

be executable on any machine regardless of its operating systems and without need of any
other software packages.

The current modified version of the software is more flexible in determining the options
available for the user, especially for data input and results output. Some important modifica-
tions involve broadening the scope of available models and the range of the link functions, and
giving the user many suggestions, help notes and video clips, questions, warning messages and
directions aimed at making the software more interactive and easy to use for non-statistical
experts. Useful feedback has also been added.

In this current chapter, the piecewise-linear model of Garthwaite and Al-Awadhi (2006)
is reviewed, and we describe the elicitation method they propose together with the above
modifications. The assessment tasks that the expert performs quantify her opinion about
the regression coefficients as a multivariate normal prior distribution. The largest extension
to the current version of the software is a new section for assessing expert knowledge about
correlated covariates. This will be introduced in Chapter 4. Important options have been
added to the method that quantify opinion about the extra parameter in GLMs that involve
gamma and normal distributions. The theoretical derivation and implementation of these

options are proposed in Chapter 5.
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3.2 The elicitation method for piecewise-linear models (GA

method)

For quantifying expert’s opinion about GLMs, Garthwaite and Al-Awadhi (2011) proposed a
method to elicit expert opinion about the prior distribution of regression coefficients and its
hyperparameters. As mentioned before, the method, which will be referred to here as GA, is
a generalization of the same authors’ piecewise-linear model that they used for quantifying
opinion for logistic regression (Garthwaite and Al-Awadhi (2006)).

In their work, the relationship between each continuous predictor variable and the link
function (assuming all other variables are held fixed) was modeled as a piecewise-linear func-
tion. Figure 3.1 illustrates a piecewise-linear relationship between the quantity of interest
Y, and a continuous covariate “Weight”; the relationship correspondence to a sequence of
straight lines that form a continuous line. The endpoints of the straight lines are refereed to

as knots.
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Figure 3.1: A piecewise-linear relationship given by median assessments

If the predictor variable is a categorical covariate, it is referred to as a factor. Its relation-

ship with Y corresponds to a bar chart as in Figure 3.2, where the factor takes four levels:
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Very large, Large, Normal and Small.

The aim of the elicitation process is to quantify opinion about the slopes of the straight
lines (for continuous variables) and the heights of the bars (for factors). In the GA method, a
multivariate normal distribution was used to represent prior knowledge about the regression
coefficients. These coefficients were allowed to be dependant if associated with a single

variable. A detailed discussion of their model is given next.
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Figure 3.2: A bar chart relationship for a factor given by median assessments

3.2.1 The piecewise-linear model

Consider a response variable ¢, with m continuous covariates Ry, Ry, -- ,R,, and n cat-
egorical variables (factors) Rpyi1, Rm42,- - ; Rmtn. Each variable R; has 6(i) + 1 knots,
Ti0,Ti1s """ ,Ti8(s), Where ryj_3 < for j =1,2,---,6(i) and i = 1,2,--- ,m + n. These
knots represents the dividing points of the piecewise-linear relation for the continuous vari-
ables, or levels for factors, with r; o taken as the reference point of each continuous covariate

R;,i=1,--- ,m, or the reference level of each factor R;, i=m+1,--- ,m+n.
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Let ry be the overall reference point, where all variables are at their reference values, i.e.

— ) !
To= (1"1,0, 72,0, Tm_m,o) . (3.1)

For the response variable ¢, the expert is asked about its mean values given points on the

space of the explanatory variables, i.e. about

u(r) = E(C|R =r), (3.2)
where R= (R, Ry, .-+, Rpmyn) @ndr isany specific value of R.
Let
Y=glu@]=a+8 X +B,Xo+ -+ 0 . Xoins (3.3)

where ¢(.) is any monotonic increasing link function. If g(.) is monotonic decreasing we

multiply it by -1, then change the sign of the resulting regression coefficients. We put -
)—('é = (Xi,17 Xi,Z: MR Xi,5(i))l’ 1=1,2,---,m+n, . (34)

Bi= i1, Bis, -, ﬂi,é(i)),’ i=1,2,---,m+n. (3.5)

The relation between R; and X, for continuous covariates is that:

L gy

(
0 if Ry <51
Xig = Ri—rij1 ifrijo1 <Ry <y (3.6)
d; j if ri; < Ry,

\

fori=1,2,---,m,and 7 =1,2,---,6(¢), where
dij = Tij = Tij-1. (3.7)
For factors, Xj; ; is defined by:

’ 1 if Ri = ’T‘i,j
Xij = (3.8)

0 otherwise,
fori=m+1,m+2,--- ,m+n,and j =1,2,---,6(i).

Note that, if R; = r;o, then X is a zero vector (i =1,--- ,m +n).
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The method concentrates on an expert’s opinion about each covariate R; separately, one

at a time, assuming that all other covariates are kept at their reference values. Hence, for

any specific value r, Y;(r) is defined as

Yi(r) = glus(r)], (3.9)
where
pir) = o, o) ricig, ™ ripne ey Tm+n,0)/)’ (3.10)
denotes the mean value of { when R; has a value of r, and R; = rj, j # 1.
Then
Yi(r) = a+ B.X;, i=12---,m+n. (3.11)
Now, fori=1,--- ,m+mn,j=1,---,35(2), let
Yi; = Yi(ri;)- (3.12)
For B, as in (3.5), if R; is a factor and r = r;;, then, in view of (3.8),
Yij=a+Bi (3.13)
hence, for factors, where i =m+1,--- ,m+n, j=1,---,6(i), we have
Bij = Yij —Yip. (3.14)
For continuous covariates, from (3.6) and (3.7), fori=1,---,m, j=1,---,6(3),
Y.
Bij = Yig — Yigm1, (3.15)
dij
The values of §;; are the slopes of the piecewise-linear relation in Figure 3.1.
ior distribution of d = (g L v )i be the follow-
The prior distribution of o and g (gl’ J : ém+n) is assumed to be the follow
ing multivariate normal distribution,
a bo 000 g
~ MVN , (3.16)
é b g X



The elicitation of the hyperparameters b, b, 0,0, ; and X is reviewed in the next section.
The matrix ¥ is assumed to have a block-diagonal structure, as the vectors é;,__;, RN ém n?

are assumed to be independent a priori. We propose three elicitation methods that relax this

assumption in the next chapter.

3.2.2 Eliciting the hyperparameters of the multivariate normal prior

The assessments that are required for eliciting all the prior hyperparameters are only medians
and quartiles of p;(r). The monotone increasing function g(.) in (3.9) is then used to transform
these assessments into medians and quartiles of ¥;(r). Two main properties of the assumed
normal distribution of Y are used extensively to elicit the hyperparameters from medians
and quartiles. Namely, these properties are equating means to medians and getting variances
from interquartile ranges.

It is well-known that, for normally distributed Y,

2
Var(Y) = [%} , (3.17)

where @)1 and @3 are the lower and upper quartiles of Y, respectively, as 1.349 is the in-
terquartile range of a standard normal distribution.

Using the above approach, the elicitation of each hyperparameter is detailed below.

Eliciting by and ogp

Let mo0.5, mo,025 and moo.75 be the median, lower and upper quartiles, respectively, of
u(rg). Recall that ry is defined in (3.1) as the reference point of all variables, in which case,
Y is equal to the constant term «. The expert assesses mg .5, Mo,0.25 and mg,0.75, which are
then transformed into the corresponding quartiles of Y, using the monotone increasing link

function ¢(.) in (3.3), as

you = 9(mog),  for ¢ =0.25,0.5,0.75. (3.18)
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So, by and og are elicited, in view of (3.17), as

bo = ¥0,0.5, (3.19)
Y0,0.75 — Y0,0.25 2
00,0 = [——].ag—-—-:l . (320)

Eliciting b

The expert is asked to assume that her previously assessed value mq 5 is the true value of
the mean of ¢ at the reference point 74, i.e. assume that p;(r;0) = mo .5, for each covariate
i in turn, i = 1,2,--- ,m + n. Given this information, she then assesses the conditional
median of u;(r) at all other knots of R;. These conditional medians are denoted by m; j 0.5,
for j=1,2,---,6(1).
Hence '

m; 405 = The Median of [/-"i(ri,j)lﬂi("'i,o) = m0,0.S}- (3,21)

The use of the software to assess these conditional medians is reviewed in detail in Sec-
tion 3.3.3.
From (3.16),

b= E(f) = E(B|a = bo), (3.22)
but, from (3.1), (3.10), (3.18) and (3.19), we have
b= E[B|ui(ri0) = mop.s). (3.23)
From the conformaly partitioning in (3.16), each element of b in (3.23) is of the form
bij = E|[B; j|pi(rip) = mo0.5]- (3.24)
Applying g(.) on both sides of (3.21), in view of (3.9) and (3.12), we get
EY;;lpi(ri0) = mo0.5] = ¥i,5,0.5 (3.25)

where

Y305 = 9(Mij0.5)- (3.26)
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Now, from (3.24) and (3.25), b;; can be elicited for factors, in view of (3.14), as

bij = Yi5,0.5 — Y0,05, (3.27)
fori=m+1,---,m+mn,j=1,---,6(i), and for continuous covariates, in view of (3.15), as
bij = Y305 — yi’j_l’O'S, (3.28)

di,j

fori=1,---,m,j=1,---,5%).

Eliciting ¢,

For any value o* satisfying a* # by, it can be seen, from (3.16) and the theory of multivariate

normal distribution, that
E(fla=a") = b+ g1004(a* — bo), (3.29)

from which

_ [E(Bla = a*) ~ Q]Uo,o‘

g (3.30)

[e4]

So, g can be elicited using assessments of gla* = E(B|a = a*), or equivalently, the expert is

asked to assess
mi,j,0.5|a* = The Median Of [/ii(ri,j)lﬂi(ri,o) = g'l(a*)], (3.31)

Following the same approach as in (3.27) and (3.28), equation (3.31) implies, for factors, that

bijla* = Yij,0.500r — (3.32)
fori=m+1,--- ,m+n,j=1,---,6(i), while for continuous covariates it implies that
bijlar = Yi,5,0.5|a* 'C_l‘y.i,j-—l,o.Sla*’ (3.33)
1’7]

fori=1,---,m,j=1,---,8(¢), where

Yi,5050a = 9(Mij,0.5/a°)- (3.34)

Using the interactive software, o is taken as yg .75, and the task of assessing m; j0.5/y0 0.75

is detailed in Section 3.3.5.
62



Eliciting X

For eliciting the variance-covariance matrix ¥ of the multivariate normal prior distribution of
B, the méthod of GA adopts a structured approach that recursively elicits conditional lower
and upper quartiles given incremented sets of the previouély assessed median values. The
aim of using this structural elicitation is to be able to ensure that assessments yield a matrix
3 that is positive-definite, as required for mathematical coherence.

The idea is that assessed conditional quartiles are transformed, under the normality as-
sumption, into sets of conditional variances that deterrﬁine all elements of ¥. The positive-
definiteness of ¥ is guaranteed under a very logical condition that is quite simple to recognize
and which the expert can fulfill during the elicitation process. Specifically, the expert is
asked to keep reducing her uncertainty as a set of conditional values is increased. Condition-
ing on more information should increase her confidence in her assessed values, especially as
the conditions say that her previous median assessments were accurate.

In what follows, we review the method of GA for eliciting ¥, using the same notations
and equations of Garthwaite and Al-Awadhi (2006). In the next chapter, we propose a
generalization of the method for the case of correlated vectors of regression coefficients.

Let the conditions that ui(rs0) = moos and pi(rij) = mijo0s be denoted by m?’o and

mgj, respectively, for i =1,2,--- ,m+n, j=1,2,---,46(3).
For each covariate R;, i = 1,2,--- ,m + n, the assessment process consists of §(7) steps.
At step k, kK = 1,2,---,6(¢), the expert is asked to assume that conditions m?,o, mgl, e

mg’ x—1 hold. Given this information, she assesses the conditional lower and upper quartiles of
pi(rs,), denoted by mi,j,0.25|m?,0, e ,mg’k_l and mi,j,g,75|m?’0, e ,mgk_l, respectively, for
j=kk+1,---,6%7).

The use of the interactive software to obtain the assessments of these conditional quartiles
is discussed in Section 3.3.6.

Fori=1,2,--- ,m+n,k=1,2,---,6(¢),j=k,k+1,---,6(¢), using (3.17), the assessed
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conditional quartiles are used to elicit the conditional variance:

2
(mijorsimdy, - ymQy_1) — g(majo2slmo, -+ ymdy 1)

1.349 ’
(3.35)

g
Val”(Yi,j|yg,o, e ,?J?,k—l) =

where ygl denotes the condition that Y;; = y;,0.5, which is equivalent to m?’l from (3.10),
(3.12) and(3.26).

For mathematical coherence, conditioning on more values at each further step must reduce
the value of the conditional variance in (3.35). Consequently, the expert must steadily reduce
her uncertainty when she moves from one step to another. In view of (3.35), this means that
the assessment of the interquartile range in step k£ must be less than that in step k¥ — 1, which

guarantees that
Var(Yiily00, ¥e1s s Yiw-1) 2= Var(Yijlvgo, ven, -+ Yi)- (3.36)
For ¢ = 1,2,--- ,m+mn, k = 0,1,---,6(4) — 1, let the conditional variance-covariance
matrix A; x be defined as
Ai=Var(Yigr1, - Yis@ o v81, - 9k)- (3.37)

To elicit the full matrix A;o in the last step and investigate its positive definiteness,
mathematical induction is used to obtain a positive-definite matrix A; x—; from A; that has
the same property.

To achieve this, let

bikk ¢,
Ajj1 = e (3.38)
b ik
for k=1,2,---,0(%), where ¢; ;. is a scalar, Q, k is a vector and ®;  is a square matrix.

In particular, the scalar ¢;  in (3.38) is given by
ik = Var(Yiglydo, v01, -+ vbk—1),  for k=1,2,--+,5(i). (3.39)

The scalar ¢; can thus be directly elicited using (3.35)..

The vector g % takes the form:

Gir = Bikpsr, Pikzs - ¢i,k,¢5(i))l' (3.40)
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From the theory of conditional multivariate normal distributions, and for j = k+1,---, (i),

we have
Var(Y; [y, -+ » vek) = Var(Yijlufo, - ¥0k—1) — i xPin.j- (3.41)

Hence, from (3.36) and (3.41), ¢ik; , j=k+1,---,6(3), in (3.40) is given by

1
B = (i [Var(Yiiludo, v01, -+ 1 ¥ko1) — Var(Yigludo, v91, -+ vi)]} 2 (3.42)

What is left to be elicited in (3.38) is the matrix ®;, which can be computed, using the

conditional multivariate normal theory, as
Dije =Ny + szqt'w_likéik (3.43)

Hence, the matrix A;,—_1 in (3.38) can be obtained from A;y, for £ =1,2,---,6(i) — 1.
Finally, A; is the result of applying the same routine recursively, starting with Ai,a(ij—l
as

A;5ay—1 = Var(Yi s |v0, ¥91, -+ Uis(i)-1)- | (3.44)

It can be seen, from (3.35) and (3.44), that
Ai,a(i)—l > 0. (3.45)
From (3.38) and (3.43), we can write the determinant of A;x_; as

|Ai k1] = @il Qi — Qi,kﬁ,i,kgﬁ;kl
= ¢i ke k| Ai |- (3.46)
Hence, from (3.45) and (3.46), A;p is positive-definite.

Under the independence assumption between the elements of different vectors of regression

coefficients, the matrix A can be defined as
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DA o(DTYY O 0
(@ 0
A O " Di'Amo(D7!) O (3.47)
0 Amt1o O
0 O
) O Anino
where, for i = 1,2,--- ,m, each D; is a lower triangular matrix given by
dap 0 0 0
dip dig O 0
Di=\|diy dip dig 0 (3.48)
0
dip dip dig3 di 5(5)

With d; ; as defined in (3.7), d;; # 0, and hence D;” ! exists. Since, for continuous covariates,

from (3.15), we have

(},i,l’ Y%,Z) * Yi,g(i))l = (a, , a)’ + Dié’i’ (349)
then
Var(D;f3,|a) = Va,r((yi’l’ Yia, o+, Yi,,s(i))llo‘) =Asp, fori=12---,m.  (3.50)
Hence,
DA o(D7YY, fori=1,2,---,m,
V(gla) = (3.51)
Aip, fori=m+1,m+2,---,m+n.
In view of (3.16), the matrix ¥, as the unconditional variance of 3, can be given by
2 =A+g10540). (3.52)

The full variance-covariance matrix of (o, ')’ is thus positive-definite, from (3.16), (3.47)
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and (3.52), since

000 O} L
= 00,0|Z — Ql"()—,olﬂ = 00,0[A- (3.53)

g %

The needed assessment tasks in order to elicit all the hyperparameters by, b, 00,0, g; and X,

are given in detail with the software description in Section 3.3.

3.2.3 Computing values for the suggested assessments

For larger elicitation problems, with many covariates or large numbers of knots per covariate,
the number of required assessments increases and may represent an overload on the expert. To
reduce this number of assessed quantities and help the expert to go through the elicitation
process more easily, the method of GA suggests some values of assessments that can be
brééénted by the software to the expert, as a guide for her possible assessed conditional
medians and quartiles.

The expert may accept these suggestions if she finds them a reasonable representation of
her opinion. Or, instead, she may change or modify them to the best of her knowledge and
experience. The method of GA chooses values to suggest by extrapolation from the previously
assessed medians and quartiles, assuming some patterns of dependence or independence at

different knots of each covariate. The derivations of these suggestions are reviewed below.

Suggesting conditional medians

Assuming independence between o and 3, the conditional medians m; jo5|c* in (3.31) that
are required for eliciting g;, can be suggested as follows.

Conditioning on a = o*, and under the independence assumption, we have
bi,j|a* = bi,j; Vi, j. _ (354)

Taking o* = Y0.0.75, and equating the right hand sides of (3.27), (3.28) to those of (3.32),

(3.33), respectively, equation (3.54) implies that

(91,3,0.5140,0.75) = ¥0,0.75 = ¥i,j,05 — Y0,0.5 (3.55)
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fori=m+1,-'- ,m+n,j=1;2"" 76(i))a’nd

(41,,0510,0.75) — (¥1,j-1,0.5140,0.75) = ¥i,j,05 — Yirj—1,0.55 (3.56)

fori=1,2,---,m,j=1,2,---,8(:).

Now, from both (3.55) and (3.56), we have

(¥1,4,0.5140,0.75) — ¥,5,0.5 = ¥0,0.75 — Y0,0.5 (3.57)

fori=1,2,--- ,m+mn,j=12,---,6%1).
Hence, from (3.34), (3.57) and the independence assumption, a reasonable suggestion denoted

by i,j,0.5|%0,0.75 for m; j0.5/y0,0.75 is given by
Mi,5,05190,075 = 9 (40,075 — Y0,0.5 + ¥i,5,0.5)s : (3.58)

fori=1,2,---,m+n,j=1,2,---,6(%).
All the components in the right hand side of (3.58) can be computed from the previous
assessments as in (3.18) and (3.26). Of course, accepting these suggested medians by the

expert will lead to a zero vector as a value of g;.

Suggesting conditional quartiles for factors

The simple idea here is to assume that the expert’s opinion at one factor level is independent
of her opinion at other levels. These lead to conditional quartiles that are unchanged as the
number of conditibns increases.

In particular, let 7m; j 0.25 |m20, el m?, e and m; 5.0.75 |m20, e, mg’ i be the suggested values
Qf the conditional lower and upper quartiles, mi,j,0,25}m?,0, el m?,k and mi,j,o,75|m?,o, e ,m?,k,
respectively, as required in (3.35), for i = m+1,--- ,m+n, k = 1,2,---,6(:) — 1 and
G=k+1k+2,--,8().

Under the independence assumption, the suggested values are
~ 0 0 _ 0 0
i,5,0.25M.05* Mk = Mi5,0.25Mg 0+ + Ty o1, (3.59)
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and

~ 0 0 _ 0 0
Ti,5,0.75/Mg 0, " My g = i 5,075 05+ + G 1, (3.60)

fori=m+1,--- ,m+n,k=12,---,6(¢)—land j=k+1,k+2,---,6(7).

Again, the expert can change any of these suggestions should she wish.

Suggesting conditional quartiles for continuous covariates

In offering suggestions for the conditional quartiles, mi,j,0,25|m?’ 01" ,m?’ , and mi’j’[)jslm.?’ 0
e ,m?’k, as required in (3.35), the method of GA distinguishes Between two cases, the case
where k = 0, and the case where k& > 0.

In the case of k = 0, the assumption is that the relation between Y and R; is approximately
linear, instead of being piecewise-linear. Hence, we may imagine three lines emerging from
Y0,0.5 at the reference knot r;9. The middle line connects all the medians y; jo.5, while the
lower (upper) line connects all the lower (upper) quartiles. g(mi’j,o,25|m20) (g(mi,j,0.75lm?,0)),
at all other knots, r; ;, for j =1,2,---,4(3).

The linearity assumption ensures that the slopes of each of these three lines are equal at

all knots r; 7, j = 1,2,---,0(¢). This implies that, for any value I =1,2---,6(7), [ # 7,

Yi,g,05 — 9(Mij0.25lm0)  Yig0.5 — 9(min0.25iml)
Irij — riol Iriy — Tl

, (3.61)

and

g(migorsimdy) — vijos  9(miporslmdo) — yiLos

= 3.62
73,5 — 7i,0] iy — Tiol (8.62)

Once the expert has assessed one conditional quartile, miyl)0,25|m?’0 or mi,l,0,75|m20, equation

(3.61) or (3.62) can be used to suggest conditional quartiles as

N _ Tij — Ti0
i go.25lm = 97" {yi,j,o.s = [ig05 — g(mi,l,0.25|m?,o)]||—7ﬁ—|l} ; (3.63)
1" ’L)
or
~ - Ti,j — 7,0
i i,

respectively, for j =1,2,---,6(7), j # 1.
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Suggestions for all conditional lower (upper) quartiles are extrapolated from only one
assessed value of the conditional lower (upper) quartile. This helps a lot in saving the expert’s
time and effort during the elicitation process.

For the remaining assessment tasks, where & = 1,2,---,4() — 1, a new assumption is
imposed to obtain the suggested quartiles 7 ,0.25/mg, - m?, and iy j0.75/mdg, - - md,.
The conditional correlation coefficient between Y; ; and Y, for j =k + 1,k +2,--- ,6(7), is

assumed to be of the form
Corr(Yij, YikloPo, - »90k) = ol 774, (3.65)

From which, using theory of bivariate normal distributions, the conditional variance is given
by

Var(Yiglulo, U1 080) = (= ol " VarYigllo, - s vdc)y (3:66)
forj=k+1,k+2,--+,8().

Once the expert has assessed both a lower and an upper conditional quartiles at any one
knot, say 7; k11, the value of Var()’i,k+1|y20, e ’y?,k—l’y?,k) can be elicited from equation
(3.35). Since Var(Yi,k.i_llng,--- ,y?,k_l) has already been elicited in step k& — 1, then the
value of p; ;1 can be computed from (3.66) for j =k + 1.

Substituting with p; 1 again in (3.66), and using the already elicited values of Var(Y; ; |y?,0,

. ,y?,kml), for j =k+2,---,4(¢), the value of Var(Yz-,j|y?,d, e ’y?,k:—-l’y'?,k) can be obtained

forallj =k+2,---,6(d).

After the value of Var(Yi,j|y20, “ee ,ygk) has been elicited, we can solve the following two .
equations for g j,0.25[400, -+ » ¥y and §ij,0.7545 0, - - - ,y?, ks
5 0 0 = 0 0\12
y.’ 1,0.75 y e y —_— y.’ ’025 y e 7y,
Var(y;jly?(),' . :y'?k) _ ( 2,3 | 1,07 ) z,k) ( (2%] l 4,07 1,,]9) ’ (367)
R ’ 1.349
and
(ﬂz',j,oisly?,o,“' ,y?,k) Y505 Q(mi,j,0.75|m?,o, e sm[i),k—l) — Yi,5,0.5 (3.68)
Yi,5,05 = (Jig,0.250900,  Yok)  Yigos — 9(magoasimdy, - md ;)

The use of equation (3.68) aims to ensures that asymmetry of the suggested quartiles around

the median at step k is the same as any asymmetry of the assessed quartiles at step k& — 1.
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Finally, in view of (3.26), the suggested quartiles are given by
Mi 025 = 9 (Fig025l880, -+ USR)» (3.69)

and
Mi0.75 = 9 (§i,3,0.751Y50, -+ Y0k, (3.70)

fori=1,2,---,m k=1,2,---,6(i)—landj=k+1,k+2,---,5().

3.3 Assessment tasks and software description

The assessment procedure divides naturally into five stages, which are described in turn. A
description of the method and theory for using the assessments to estimate the hyperparam-

eters of the prior distribution was reviewed in Section 3.2.2.

3.3.1 Defining the model

The modified version of the software, PEGS-GLM, offers the expert different options for the
model to be fitted. The choices available are ordinary linear regression, logistic regression,
Poisson regression and any other user defined model. Ordinary linear regression assumes
a normal distribution for the response variable with the identity link function. For the
logistic regression the assumed distribution is Bernoulli with the logit link function. Poisson
regression assumes a Poisson distribution with the logarithm link function.

The expert can choose to define any other model, in which case she will be asked to
give a distribution and a link function. Available distributions are the normal, Poisson,
binomial, gamma, inverse normal (inverse Gaussian), negative binomial, Bernoulli, geometric
and exponential. The user is also asked for some parameters of the selected distribution
where appropriate. However, the expert has the option to elicit the extra parameters of the
normal and gamma distributions. Novel methods for eliciting these parameters are proposed

in Chapter 5.
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Available link functions are the canonical, identity, logarithm, logit, reciprocal, square
root, probit, log-log, complementary log-log, power, log ratio and user defined link function.
For a detailed definition of these link functions see McCullagh and Nelder (1989). For the
power link function the software expects the exponent of the power function to be entered by
the expert, a value of (-2) is suggested as a default. On choosing the distribution the software

suggests the suitable canonical link function so as to help the expert (see Figure 3.3).

{Hernaiaranon ) R R =10l x}
Humber of covariates in the modet -
Chocsetheregressionmodet:  [Othermassl ]
’ Choose the distridxion: Binomial v} Dist.2ndparameter I1—
Choose the Bnk functiors Qterlinkfunction Exponentvaiua ’3—

\Write your function here: y=||9§l’!} o Help?]

Write your iverse function here:

| <Batk | " Net> I Help? |

Figure 3.3: The dialogue box for defining the model

An important modification to the software (made by the author) is that it offers a large
range of GLM’s. It also lets the expert write her own link function and its inverse. The
programm can parse both formulas and check their validity as mathematical expressions.
Moreover, the program can help by checking whether the functions are valid inverses of each

other.

3.3.2 Defining the response variable and covariates

The expert determines the dependant variable with its minimum and maximum values in
a dialogue box. The modified version of the software suggests the maximum and minimum
values of the response variable whenever possible. The expert may still change them, but, in
the light of the chosen model with the specified link function, invalid values are not accepted,
and the expert is shown a warning message (For example, the range for a binomial proportion
must not extend outside the interval (0,1)).

A set of explanatory variables (covariates) are chosen by the expert. Each covariate is
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treated as either a continuous random variable or a factor. Continuous covariates are specified
with their minimum and maximum, factors are spéciﬁed with their levels. For each continuous
covariate, knots are chosen by the expert or suggested by the software. A reference point is
chosen for each covariate, while the origin is the setting for which every covariate is at its
reference point. After determining the number, names and types (continuous covariate or
categorical factor) of the variables, the expert has only to give the maximum and minimum
for each of her continuous covariates together with the value of its reference knot, and the
modified software then suggests a suitable number of knots and the position of the reference
knot relative to the other knots. The software can then divide the range and gives the value
of each knot. This process is done automatically to reduce the burden of data entry, but,
again, the expert can change any of these.

The fractional part of each single numeric value is always being rounded to four decimal
places, so as to avoid large decimal numbers which are not easily readable nor suitable for
graph axis. If higher precision is to be used, measurement units can be modified to use data
values of no more than four decimal places. For categorical factors, the expért gives the value
of each level. In some cases, when the factor levels are ordinal data, for example, the expert
may wish to keep the order of the factor levels, while still being able to select any level as
the reference level. The author’s modification of the software gives an option to select the
reference level of each factor without restricting it to be the first knot (see Figure 3.2).

Using a dialogue box, the median, lower and upper quartiles of p;(rg) at the origin are
assessed, namely, mg .25, Mo,0.5 and mo.75, as denoted in Section 3.2.2. These values must
be inside the previously specified range of the response variable; if not, the software warns
the expert and asks her to resolve this conflict. In the expert’s opinion, the true value of
wi(rp) is equally likely to be bigger or smaller than the assessed median. Together with the
median, these quartiles should divide the range into four equally likely intervals. The expert
is encouraged to modify her median and quartile assessments until they divide the range

into four intervals that each seem equally likely to her. These assessed values are used as in
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equations (3.18), (3.19) and (3.20), in Section 3.2.2, to estimate by and oq .

3.3.3 Initial medians assessments

In the remainder of the elicitation procedure, the expert is separately questioned about
each covariate in turn. She is asked to assume the other covariates are at their reference
values/levels and forms a piecewise-linear graph or bar chart to represent her opinion about
each separate covariate.

The previous stage elicited the expert’s median estimate, mog.5, of u;i(ry) at the origin
r = ry. The software plots this value on the reference vertical line and the expert is told
to treat it as being correct. The expert then plots her median estimates, m; jo.5, of pi(rs7),
as given in equation (3.21), to form the remainder of the graph. She does this by using
the cémputer mouseb fo ‘click’ i)binté on thé verﬁiéal .lil;es. .S;raight lines are drawn by the
computer bétween the ‘clicked’ points, which the expert can change until she feels the graph
corresponds to her opinions.

As an illustration, Figure 3.1 shows a software graph for the variable “Weight”. The
horizontal axis gives values for the variable and the vertical axis gives values of Y. Thus the
graph plots the effect on Y as the value of “Weight” varies. The experts is told that, if the
graph is fairly flat, then the variable has less influence on Y than if the graph is more curved.
The axes and vertical lines are drawn by the software.

For factors, bar charts are formed to represent the expert’s opinion. The value of Y has
been elicited earlier for the reference level and this gives the height of the reference bar. The
expert is told to assume that this bar is correct and to judge the appropriate heights for
other bars relative to it. These heights give the value of Y for each level when the other
covariates are at their reference values/levels. The software draws thin vertical lines for each
level and the expert specifies the height of a bar by clicking on the line with the mouse. This
is illustrated in Figure 3.2 where all bars have been specified.

The expert could change an assessment by re-clicking on a line. These median assessments,
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™;,,0.5, for the continuous covariates and factors yield estimates of the hyperparameter b, the
mean of the regression coefficient vector 8. Theoretical derivation of this estimation is given

in detail in Section 3.2.2, equations (3.26), (3.27) and (3.28).

3.3.4 The feedback stage

It is important to help the expert check that her assessments have resulted in a prior distri-
bution that is a reasonable represenfation of her opinion. This is done through a feedback
stage, in which the expert is informed of some other measurements that are inferred from her
assessments. She can review and revise her original assessments, in the light of this feedback,
if necessary. The current elicitation method has quantified the relationship between the re-
sponse variable and each covariate in turn, while assuming that all other covariates are at
their reference points. Hence, it is important that the expert has feedback that shdws her
implied predictions of the response variable when all covariates are simultaneously éhanged
from their reference points.

The software computes the values of the response variable at some suggested design points
and‘ presents these values to the expert to check that they are reasonable representation of her
opinion about the response variable at each suggested design point. Figure 3.4 illustrates a
feedback screen, in which the software suggests 6 design points, each of which is a combination
of the values and levels of all covariates. Combinations 1 and 4 are the covariate values that
gives the minimum and maximum response values, respectively. Combinations 2 and 3 consist
of the values that divide each covariate range into one-third and two-thirds, respectively.
Minimum and maximum values of each covariate are suggested in combinations 5 and 6,
respectively. The expert is asked to specify other design points of interest and to revise any

design points offered by the computer that are unrealistic combinations of covariates.
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Figure 3.4: The feedback screen

The expert is asked to check that the row of “Graph values of Y”, as given in Figure 3.4, is
an acceptable representation of her opinion at each design point. These values are predicted
from the graphs of medians that were assessed by the expert in Section 3.3.3. The values
that are outside the range of the response variable, which was specified at the start of the
elicitation process, are flagged in red. The expert can change the unacceptable values by
varying the “Overall scale factor” until the row of the “Scaled values of Y”, in Figure 3.4,
represents her opinion reasonably well in terms of the predicted values at each design point.
The scaled values of Y are computed by multiplying all regression coefficients, except the
constant term, by the selected value of the overall scale factor.

The expert may choose to review and revise the scaled median assessments again as in
Section 3.3.3. Then she will be shown an updated feedback screen. The process will continue

until the expert is happy with the graph values of Y as presented in the feedback.

3.3.5 Conditional medians assessments

During this stage the expert is asked to assess her conditional medians, m; j0.5|/mo,0.75, for
each covariate in turn, ¢ = 1,2,--- ,m + n. This is done by changing the conditioning value

at the reference point from the median, mg.5, to the upper quartile, moo.75. See Figure 3.5
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in which median assessments made in the previous stage are given together with the upper
quartile at the reference point. The expert assumes that the true value of Y at the reference
point is the given upper quartile and she is asked to change the median values at other points
to assess m; j0.5|mo0,0.75 in the light of this new conditioning value. Conditional medians for
all values have been assessed by the expert in Figure 3.5.

These assessments are needed to elicit a part of the covariance matrix A, namely, o;,
the covariances between o and each of the components of 3, see equations (3.32), (3.33) and
(3.34), in Section 3.2.2. Suggested values of these conditional medians, ; j0.5/mo,0.75, are
given by the software, assuming that @ and 8 components are independent, see equation

(3.58) in Section 3.2.3. The expert can change these suggested values if she wishes.
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Figure 3.5: Conditional median assessments for the continuous covariate “Weight”

3.3.6 Conditional quartiles assessments

The median assessments provide point estimates of the relationship between different covari-
ates and the variable Y. The remaining task is to quantify the expert’s confidence in these
estimates and their interrelationship, i.e. how accurate she believes the estimates to be and

the correlations between them for each covariate individually. Correlations between coeffi-
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cients of different covariates are estimated in three different methods proposed in Chapter 4.

In this stage, assessments of conditional lower and upper quartiles, mi,j,0,25|m20 and
mi,j,o,75|m?’0, respectively, are elicited. Assessing quartiles is a harder task for an expert
than assessing medians, and quite a large number of quartile assessments are required. To
assist the expert, the software suggests some quartile values by extrapolating from other
quartile assessments of the expert. The theoretical procedure for getting these suggested
values, mi,j,0.25|m20 and mi,j,o.75|m?,o, as reviewed in Section 3.2.3, was programmed into the
software to effectively help the expert during the current stage. The expert can change these
assessments and commonly does so but, even then, a starting value to consider seems to make
the task easier.

For each continuous covariate in turn, the software displays the graph of the medians
that had been assessed earlier, m;jos5, and then sets of conditional quartile assessments,
mi,j,o,25|m?’0 and mi,j,o.75[m20, are elicited. For this first set of assessments, the condition is

that the value of Y at the reference value/level equals the median assessment, i.e. pi(rip) =

M 0.5-
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Figure 3.6: Quartile assessments for a continuous covariate

In an interactive graph like Figures 3.6 and 3.7, the expert is asked to give her lower
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and upper quartiles for Y at one point on each side of the medians for each value/level of
the covariate except for the reference value/level. The lines joining quartiles look similar
to confidence intervals and it is emphasized to the expert that there should only be a 50%
chance that the value of Y is between the lines at any point. The expert uses the computer

mouse to make assessments or change values suggested by the software.
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Figure 3.7: Quartile assessments for a factor

For the second set of conditional assessments, the expert is asked to assume that the me-
dian estimates of Y are correct at both the reference value/level and the nearest points
on each side of it, i.e. conditions mdy, mf;, ---, mQ,, in Section 3.2.2. The expert
gives lower and upper quartiles at énother point, 7; 141, and the software suggests quar-
tiles, mi,j,o.25|m?’0,m?,1, e ,mg’k and ﬁzi,j,o,mlmgo,mgl, e ,m?’k, for the remaining points,
j=k+2,---,6(¢). In Figure 3.8 lower quartiles have been assessed while upper quartiles are
to be assessed. The expert modifies quartile values so as to represent her opinion, subject
to the restriction that the current values must be within the previous set of quartile assess-
ments, M, j0.25/mY, MYy, -+ ymPy_; and myjo7slmd,my, -+ ,md;_;. The idea is that as

conditions increase, uncertainty should reduce. As detailed in Section 3.2.2, this condition
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guarantees that the covariance matrix of correlation coefficients is positive definite.

Figure 3.8 illustrates the graph formed at that stage. The two red lines (the outer lines)
represent the previous set of quartile assessments, the second highest (black) line gives the
median assessments, and the second lowest (blue) line joins the new lower quartile assess-
ments. The black line joining the median at the right two bold points represents the condition
that these medians should be treated as being correct. In assessing quartiles, the expert is

told to consider the points to which she thinks the blue line may reasonably extend.
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Figure 3.8: Assessing quartiles conditioning on two fixed points

Conditional assessments are also needed for factors. The software displays the bar chart
that was formed during the assessment of medians. Conditional on the value of the bar at the
reference level being correct, i.e. on m?,o’ the expert assesses a lower and an upper quartile,
mi,j,o_25|m20 and mi,j,0.75|m20, respectively, for other factor levels.

For each further set of conditional assessments, for both continuous covariates and factors,
the expert is asked to assume that a further median given by another value/level was correct
and to give her opinion about quartiles for the remaining values/levels. This is continued

until the condition includes all but one of the values/levels at one side or one at both sides,
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when the expert gives her opinion about just the last one or two values/levels (see Figure 3.9).
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Figure 3.9: Assessing conditional quartiles for the last level of a factor

As in other parts of the elicitation procedure, the expert uses the mouse to make assess-
ments. Figure 3.9 illustrates the bar chart when conditioning values are specified (indicated
by the solid squares); quartiles for the last level are marked with short horizontal blue lines
(the inner two lines), while the highest and lowest (red) lines represent the previous quartiles

conditioning on fewer medians. Again, current conditional quartiles are not allowed to lay

outside these red lines. The conditional quartile assessments, m; j0.25|m o, m?;, - - ,m?, and
2 ? b

i 50.75|mYg, M1, - -+ , MY}, yield estimates of the variance, X, of the hyperparameter g, see

Section 3.2.2.

The conditional assessments complete the elicitation procedure for the case of independent

coeflicients as required in Section 3.2.2.

3.4 Concluding comments

The piecewise-linear elicitation method for logistic regression introduced by Garthwaite and

Al-Awadhi (2006), as reviewed in this chapter, is widely applicable for GLMs with any
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monotonic increasing link function. The method only requires conditional and unconditional
medians and quartiles to be assessed from the expert, these assessment tasks are easy to
perform using the bisection method. The number of assessed quantities is sufficient to elicit
a mean vector and a positive-definite variance-covariance matrix for a multivariate normal
prior distribution of the regression parameters of any GLM. The available modified software
has increased the applicability of the method and made its implementation easier for the
expert. However, the independence assumption between different regression coefficients that
is imposed by the method is sometimes unrealistic and need to be relaxed. Extended methods

that relax this assumption are proposed in the next chapter.
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Chapter 4

Eliciting a covariance matrix for

dependant coefficients in GLMs
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4.1 Introduction

For quantifying expert’s opinion about generalized linear models (GLM), Garthwaite and
Al-Awadhi (2011) proposed a method of eliciting opinion about the prior distribution of the
regression coefficients. This method, which will be referred to here as GA, is a generalization
of the same authors’ piecewise-linear model that they used for quantifying opinion for logistic
regression (Garthwaite and Al—Awadhi. (2006)). A detailed description of their method has
been given in the previous chapter.

In their work, the relationship between each continuous predictor variable and the depen-
dant variable (assuming all other variables are held fixed) was modeled as a piecewise-linear
function. They used a multivariate normal distribution to represent prior knowledge about
the regression coefficients. These coefficients were allowed to be dependant if they were asso-
ciated with a single variable. However, they assumed that there was no interaction between
any variables, in the sense that regression coefficients were a priori independent if associated
with different variables.

Our aim in this chapter is to relax the independence assumption between coefficients of
different variables. In fact, in many practical situations, it may be thought that regression
coefficients of different variables should be related in the prior distribution, if the prior dis-
tribution is to give a reasonable representation of the expert’s opinion. The expert may be
Vasked to state which variables this applies to. We propose three different elicitation methods
that are implemented in interactive graphical software. The software is freely available as

PEGS-GLM (Correlated Coefficients) at http://statistics.open.ac.uk/elicitation.

In the first method, after assessing additional conditional quartiles, GA’s method of es-
timating the variance-covariance matrix is generalized and used to estimate the variance-
covariance matrix in generalized linear models where pairs of correlated vectors of coef-
ficients are not necessarily independent in the prior distribution. The second method is
designed to require a smaller number of assessments. Its generalization to the case of var-

ious vectors of correlated coefficients is straightforward, where the required conditions for
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positive-definiteness can be easily investigated. A third flexible method is proposed in which
the expert assesses the relative correlation structure for all pairs of vectors, then chooses one
of the other two methods to specify the coeflicient for the highest correlated vectors. This
method automatically fulfil the requirement that the whole variance—ébvariance matrix must

be positive-definite. The three proposed methods are detailed below.

4.2 A proposed method for eliciting the variance-covariance

matrix of a pair of correlated vectors of coefficients

In this section, we propose an elicitation method that generalizes the method of GA to
handle correlated coefficients in GLMs. We start by generalizing the equations given in
the previous chapter to make thém applicable to the case of correlated coefficients. The
underlying mathematical framework is given in Section 4.2.1. The equations given there show
how the required conditional assessments are mathematically treated to elicit the variance-
covarianée matrix. Our approach to assess these conditional quartiles from the expert using

interactive software is detailed in Section 4.2.2.

4.2.1 Notations and theoretical framework

Consider the piecewise-linear GLM of GA, with m continuous covariates Ry, Rg, - -+ , Rin and
n categorical variables (factors) Rp+1, Rm+2, " Rm+4n. The model has been defined in
Chapter 3, equations (3.1) to (3.15).

Recall that ;uhe prior distribution of o and 8 = (éll , By e, B )’ is assumed to be

27 ’ Emin

a multivariate normal distribution

a bo 000 o
~ MVN , . @

ﬁ b g X

The elicitation of the hyperparameters by, b, 000, ¢; and X has been reviewed in Section 3.2.2.

Equation (3.52) states that X = A + g;0q dah, where A has been assumed to have the
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block-diagonal structure

DA o(DTYY O e .. O
o o0
A : O D Amo(D;Y) 0 : : | @)
: : 0 Amy10 O :
) )
10) O Amingo
where, for i = 1,2,--- m, each D; is a lower triangular matrix given by
di 0 O 0
dip dp O 0
Di=|dy do dg 0 (4.3)
0
dia dip di3 dis(i)

Hence, for continuous covariates

(Yi,l, Yig, -, Y},a(i))l =(a, ---, ) +DiB,
and
Var(D;f,|a) = Var((yi,l, Yia, o, y;’a(i))'la) = A0, fori=1,2,---,m,
where
Y= Q[H((rl,o, cee, Tic1,00 Tig, Tid1,00 'r'm+n,0)’)]-

As required, Y is a continuous piecewise-linear function of the variable R;, if all other

variables are kept at their reference values. Hence,

D' Aio(D7YY, fori=1,2,---,m,
Var(éi|a) = (44)

Ai,07 fori=m+1,m+2,---,m+n.
Formulae for A;q are given in GA as reviewed in the previous chapter, see equations (3.37)

to (3.44).
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Instead of assuming the block-diagonal structure given by (4.2), we will conformally par-

tition A as
Y11 2 o Bimtn
22,1 Yoo ot Bomin
A= , (4.5)
Em+n,1 Em+n,2 Tt 2m+n,m+n
where
Eiy’i zvar(gila)’ for i = 1)2;"' ,m—+n, (46)
and the submatrices X are not necessarily zero matrices (s =1,2,--- ,m+n,t=1,2,---,

m+n and s # t). We will estimate the ¥, matrices in (4.5) by generalizing the method of
GA.

Assurl.ne tlh‘at‘ the eﬁc}-)ert‘ Béﬁeveé thaf gs énci gt are’ ‘c.:orfelé,tedb. For sﬂ< t, v;/eY muét
estimate the upper diagonal covariance submatrix V;; of V,where,

Vss Vs,t

V= Var[(é; é:)'la] = (4.7)

Vis Viu
As a variance-covariance matrix is symmetric, Vi s = V.
The correlation relationships are handled one pair at a time. Suppose we are currently
interested only in the pair gs, B ” and that these are correlated in the prior distribution.
(The same procedure can be followed for each pair that is correlated.)
For s = 1,2,---,m+mn,t=1,2,--- ,m+n, and s < t, let 65z = 6(s) + §(¢), and for
kE=0,1,---,0¢ — 1, put |

4

Var(Ys,k+17 te >lfs,5(s)7 l/t‘,l, M) )/t,é(t)lyg,m t 7yg,k)’

for 0<k<é(s)—1.
Ast,k: =

Va‘r(yz,k——d(s)-l-h T 1}/t,5(t)|yg,07 Tt 1y2,§(s)’ y?,O, te ’y?,k—6(s))’

for §(s) <k <ds— 1
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Specifying conditional values yg ;» is equivalent to conditioning on the corresponding assessed

0

medians m; ;, as detailed in the previous chapter.

We start with

Ast -1 = Var(Yi o |Us0s -+ » Yo a(sys Yoor** » Ut6(t)=1); (4.8)
which can be computed from the conditional quartile assessments of the covariate R; at
d(t). The conditioning specifies the values of Y at all previous knots of R; and all knots of
Rs as well. Given these conditions, the expert assesses conditional quartiles m; 5)0.25 and
™My 51),0.75- L he method of assessing these quartiles is detailed in Section 4.2.2. The formula

for computing the variance ensures that Ag 5,1 > 0, since

0 0 0 0
At 5y—1= [g(mt,6(t),0.75|ms,07 T Mg s(s) 00" 7 ’mt,é(t)—l)
: 0 0 0 0 - 2
= 9(M4,6(8),0.251M5.00 s Mg 5()> M00 " "+ My g()—1)/1-349]° (4.9)
We put
bsthr ¢
A1 = el (4.10)
_‘ést’k ést,k
for k=1,2,---,ds, where ¢ 1 1 is a scalar, _q_Sst . is a vector and ®4 k is a square matrix. In

particular, the scalar ¢g j j in (4.10) is given by:

( ,
Var(}/s,klyg)ﬁ) e 7y27k—1)’ fOI' 1 S k S 6(3))
= 4.11
Pstik =\ Var(Y o) 800, » 030 Y600 s Yok—s(e)-1)> (4.1
for §(s)+1<k<bq.
Recall from the previous chapter that, for j =k +1,---,8(4),
VaT(Y?,ﬂy?,Oa T 7yzg,k) = Var(yi,j|y?,0’ e ﬁy?,k—l) - ¢;.I§,k¢z2,lc,j’ (4'12)

as a result of the theory about conditional multivariate normal distributions. Equation (4.12)
can be generalized for the case where there are two correlated vectors of coefficients. Then,

the vector ¢ , , in (4.10) takes the form:

—_ ]
Pt = (Bstgogorts =+ s Bsthbo)
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where

/

[¢st,lc,k{var(ys,jly2,0: T ’yg,k—i) - Var(Ys,jlyg,O, e ayg,k)}]%:
for 1<k<d(s),
j=k+1,---,6(s).
[bst e,k {Var(Yy j_s()|v00: -+ 1Yo p_1)
—Var(Y, j_s(s)ly2 0 - ’yg,k)}]'lﬁ,
Gstkj = for 1<k<4(s), (4.13)
J=0(s)+1,---,0s.
(b5t ek {Var(Ye o) 1990, * 148 55) Y800 Yok—s(s)—1)
_Var(yt,j-é(s)lyg,O! e wyg,a(s)’ygo’ e ’y?,k—é(s))}] %’
for 6(s)+1<k < bty

j:k+1a"'a68t'

\

The main constraint needed here is that conditioning on more values at each further step must
reduce the value of a conditional variance. The expert must therefore reduce her uncertainty
as the elicitation process progresses. It means that her assessments of each interquartile range

must steadily decrease. This will ensure that, for i = 1,2,--- ,m+mn, j >k, 1 <k < dg,
V. (y..l@ v 0 ) > Vi Yo, 00 (4.14)
ar\Yq,ji¥; 0 s Yik—1 ar(Y,; Yi00 s Yik)- .

Conditional variances in (4.11) and (4.13) can be written in terms of the assessed conditional

quartiles as

2
g(ms ;075 mo,g, oo ,m0 ) — g(ms jo.25imQg, - ,m2 )
Var(Ys’j|yg’0, e ,yg’k) _ s,J s s,k 8, 5,0 s,k ,
1.349
for 0<k<é(s), j=k+1,---,4(s), (4.15)
2
g(mujoasimdg, -+ ,m2L) — g(mejoaslmlp, - ,md,)
0 VA s k& 3Js ,0 k&
Va’r(}/t,jIys,O, T 7y.(s),k:) = [ = - 1.349 - 2 ’
for <k < 5(5)! j=1,-- ’5(0’ (416)
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0 0
Var(Ye,i|udos -+ » Yog(sys Yoos ** » Yok) = [9(Meg0751me 0, M 500y, Me0s -+ » MEE)
- g(mt’j70-25|m2,0’ e ’mg,é(s)’mgo’ T »m?,k)/1'349]2’

for1<k<é(), j=1,---,0(¢). (4.17)

What is left to be estimated in (4.10) is the matrix ®g x, which can be computed, using the

conditional multivariate normal theory, as

ot = Aot + Dy, oSy i (4.18)

Hence, the matrix Ay x—1 in (4.10) can be obtained from Agy, for k=1,2,---,d5 — 1.
Finally, Ag o is the result of applying the same routine recursively, starting with Ag,s,,—1 as
in (4.8).

If At is conformally partitioned as

Asto= ) (4.19)
Ats Mgy

then its submatrices can be used to obtain the required conformally partitioned matrix in

(4.7), as follows. Take
Vs s Vs,t

’

V= ,
v Vi
S,t tat

where V; ; is the variance of és given a. Clearly, V; s = Z; ¢ of equation (4.5), also Vs s = Ass

of equation (4.19). Hence, from (4.2),

D7'Aoo(D7YY, fors=1,2,---,m,
Vss =

)

As0, fors=m+1,m+2,---,m-+n.
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The submatrix V;; is the covariance of ﬁs and g : given «, of the form

;

DEIAs,t(D;I)', fors=1,2,---,m,
t=1,2’... ,m,

DAy, for s =1,2,--- ,m,
Vs =

]

t=m+1,m+2,---,m+n,

As,t, fors=m+17m+2,...,m+n,

t=m+1m+2,---,m-+n.

\

Noting that Ay in (4.19) is the conditional variance of § , given _ﬂ_s and ¢, another version

conditional only on « can be taken as

Dt_lAt)t(D;l)l + ‘/S/,t‘/s?sl‘/&ty for t = 1, 2, e, M,
Vi =
Atvt+VsI,tVs:c;1V:9,ty fort=m+1,m+2,---,m+n.

With this construction, in Section 4.2.3 below, the matrix V is shown to be positive-definite.

4.2.2 Assessment tasks and software description

The modified elicitation software PEGS-GLM (Correlated Coeflicients), that is freely avail-

able at http://statistics.open.ac.uk/elicitation, elicits the expert’s conditional quartiles that

are needed to estimate the covariance matrix of correlated pair of covariates. The mathe-
matical details have been given in Section 4.2.1. The expert is asked whether the regression
coefficients of any pair of covariates are dependent in her prior distribution. If so, she will be
asked to name the two variables that have such dependence. Then she will be shown a panel

that simultaneously displays two graphs (see Figure 4.1 or Figure 4.2).
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Figure 4.1: Assessments needed in the first phase for correlated covariates

The upper graph of the panel is for one variable of the correlated pair. It shows the
previously assessed median values for that variable, denoted by m?’j, i =1,2---,m+n,
j =12,---,0(3), as in equations (4.9) and (4.15)-(4.17). The expert is asked to assume
that these median values are the correct values of Y at the given knots. That is, they are
accurate estimates of the mean response for the specified covariate values. Conditional on
this information, the expert clicks on the lower interactive graph to assess new conditional
quartile values, denoted by m; jo.25 and m;;o7s, i = 1,2, --‘,m +mn,j=12---,0(i), in
equations (4.9) and (4.15)-(4.17).

The procedure consists of two phases; in the first phase the expert assesses quartile
values for the variable in the lower graph given sets of medians for the variable in the upper
graph. Specifically, these medians are denoted by m?,o, “ee ,m(s),k in equation (4.16). The set
of conditioning values of the first variable in the upper graph are incremented by one extra
value at each new step. The expert is asked to take account of the additional information and

re-assess conditional quartiles. This gives the assessments denoted by my jo.25 and m¢ jo.75

in equation (4.16).
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Step 1 of the first phase is shown in Figure 4.1, where the expert is asked to assess con-
ditional quartiles for different knots of the “Weight” variable in the lower graph conditioning
on the previously assessed medians mJ o, mJ, of the “Height” variable at its reference knot
and one other knot. These two medians are connected by the rightmost (black) line in the
upper graph. The conditioning set includes also the median of the “Weight” variable at its
reference knot (23.0).

The upper and lower (red) curves in Figures 4.1 and 4.2, represent the previous quartile
assessments conditioning on fewer medians. Current conditional quartiles are not allowed
to lay outside these red lines. This fulfils condition (4.14), which guarantees the positive-
definiteness of the variance-covariance matrix, as discussed before. Specifying these conditions
by drawing boundary lines on the graph makes it easier for the expert to absorb what the
conditional values are and what they imply. This helps her apply the idea of reducing
uncertainty as conditions increase.

The second phase starts after conditioning on the median values at all knots in the top
graph, denoted by mg,o’ e ,mg’ 5(s) in equation (4.17). Each further step in this second phase
adds an extra median value from the lower graph to the conditioning set. These additional

values are m‘t)o, e m? % in equation (4.17). Further conditional quartiles m; ;0.25 and m¢ 5,075

are assessed in the lower graph and used in equation (4.17).
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Figure 4.2: Assessments needed in the second phase for correlated covariates

This phase is very similar to the assessment of conditional quartiles in the GA method, as
reviewed in the previous chapter, where incremented sets of medians of the same variable are
used as conditioning sets for assessing conditional quartiles. However, in this phase previously
assessed median values at knots for a different variable (R;) are also taken into consideration
when assessing conditional quartiles of R;, where s < t.

One of the steps of the second phase is shown in Figure 4.2. In this step, the expert
is asked to assess conditional quartiles m; jo.25 and myjo7s, for j = 1,--- ,4, for different
knots of the “Weight” variable in the lower graph. Some of the conditioning values are the
previously assessed medians, mg,o, R m2,3, of the “Height” variable at all of its four knots.
These are connected by the black line in the upper graph. The other conditioning values are
the median, m{, of the “Weight” variable at its reference knot (23.0).

Suggested conditional quartiles are computed by extrapolating from other quartile assess-
ments in the same manner as in GA method; see the previous chapter. The middle (green)
lines in the lower graph in Figure 4.2 represent these suggested values.

On finishing all phases of the assessment for this pair of explanatory variables, the user is
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asked about other correlated pairs, and the process starts again for the new pair, if there is
one. The modified software outputs data in three different files, one containing the basic setup
data, the second containing all assessments made by the expert, and the third containing the
resulting mean vector and covariance matrix of the hyperparameter vector, which are in a

form suitable for further Bayesian analysis.

4.2.3 On the positive-definiteness of the elicited covariance matrix

After generalizing GA’s method, as shown in Section 4.2.1 above, to estimate the variance-

covariance matrix of _/Qs and 8 ) we ended up with

V= Var((g, B)le)= , (4.20)
ot Vi

where X, s is estimated using the method of GA. Now V;; # X;;. Instead,
Vit =S5+ Vi 2o Vass

with

Dt_lAt’t(Dt—l)’, fort=1,2,---,m,
5y, = Var(g,18,, @) =
Aue for t=m+1,m+2 -, m+n.

To check the positive-definiteness of the variance-covariance matrix Var((8, B;)|a), we
proceed as follows. First, we will show that V' in'(4.20) is positive-definite. Then we will find
a transformation to replace the sub-matrix V;; of V' by the directly elicited unconditional
variance matrix X;;. This transformation replaces V with a new matrix, say A, which will
be shown to be positive-definite.

Now, in the matrix V, we have:

e From (4.4) and (4.6) X, ; is positive-definite, since A is positive-definite as shown in

the previous chapter, and from (4.3), D, are lower triangular for s =1,2,--- ,m.

e ¥}, is positive-definite since it was computed in the manner of ¥y s, above.
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e Since X ¢ is positive-definite, so is 2;;, and V;’tES_jVS,t is sure to be positive semi-

definite. In fact, Vz ## 0,
o’ (V:s,,tz.;iv&t) z=(Veuz) 55 (Vauz) 20,
from the positive-definiteness of X7 }.

o V;; is thus the sum of a positive-definite and a positive semi-definite matrix, hence V;

is positive-definite.

For V to be positive-definite, we use the Schurr complement (Abadir and Magnus, 2005,
p-228) to show that

(Zf + Vsl,tz.;—,.g Var) — ‘/sl,tzs—,é Vet = 24

is positive-definite, which is the case.
We believe that the submatrix Y14 is better than Vi, as an estimate of Var(g,|a). Note
that V;; was computed by conditioning on both a and ..

Our aim now is to introduce a new matrix, A, conformally partitioned as,

Es s As,t

)

A= ,
AP
S,t t’t

to replace V/, where we believe A will generally be a better estimate of the variance-covariance

matrix of (' ﬁ;)lla'

To this end, put
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and take A = BV B’. Then

I o Ses Ver) [I O
1 1 _1 1
o stvit)\vi, vi.) \o viis,
1 1
Ys,s VS,tVt,t : 2tz,t
1 1 1 1 1 1
sivaivy, o, (Vt,fw,tvt,ﬁ) 53,

3

Es s As,t

)

/
As’t Zt,t

—1.1
with Ay = VsV, 2572, We next investigate whether A is necessarily positive-definite.

Since ¥, and ¥;; are positive-definite, A is positive-definite, using the Schurr comple-

ment again, if and only if

is positive-definite. But

—1 47
Es,s - As,tzt,t As,t?

_1 1 1 1
Es,s - As,tEZtlA's,t = Es,s - (Vs,tv;t,t2 Etz,t) Et-,t1 (Ef,tvt,t2 Vs/,t)

1 1 1 1
_ ~32 3 y—1g3 2y
= Es,s - Vs,tVt,t <2t,tzt,t ZJt,t) Vt,t s,t

—1y,t
= Es,s - Vs,tVt,t Vs,t'

Thus 35,5 — As 437 tlA’s’t is positive-definite from the positive-definiteness of the matrix V. It

can be simply seen also from the matrix equation A = BV B’ that A is positive-definite since

V is positive-definite, and B is non singular (Abadir and Magnus, 2005, p.221).

Now, although each variance-covariance matrix A for any pair of correlated vectors of

coeflicients, has been shown to be positive-definite, some extra conditions must be imposed for

the whole variance-covariance matrix A in (4.5) to be positive-definite. For that, a structural

elicitation method should be applied to the whole matrix. In which case, a huge number of

conditional assessments will be needed to inter-relate all pairs, even though many of them

may be slightly correlated.

may be no real gain.

This puts an extra assessment burden on the expert and there
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However, the power of this method is apparent when only one pair of vectors is highly
correlated. Another good situation for its application is when there are only a few correlated
pairs and the whole variance-covariance matrix can be re-arranged so that these are 2 x 2
partitioned matrices on the main diagonal and off-diagonal covariance matrices are zeros.
The whole matrix is sure to be positive-definite in this case. The expert should, of course,
be willing to use the proposed method to elicit each main diagonal 2 x 2 partitioned matrix
by assessing all the required conditional quartiles.

Although the variance-covariance matrix cannot be guaranteed to be positive-definite
when there are many correlated pairs of vectors, it can still be checked for positive-definiteness.
The expert may be asked to review her assessments, if needed, to fulfil the property. How-
ever, we propose another elicitation method in the next section that not only fulfils the
positive-definiteness of A in (4.5), but Whicﬁ also requires a smaller number of assessments.

We also combine the two methods to give a flexible approach in which the expert assesses
the variance-covariance matrix for the highest correlated pair of vectors using the current
method. She then assesses the relative correlation of other pairs of vectors in comparison
with the most highly correlated pair of vectors. These relative correlations are scaled to give

the whole matrix. The details of this approach are presented in the next two sections.

4.3 Another elicitation method for the variance-covariance

matrix of correlated coefficients

One possible drawback of the elicitation method proposed in Section 4.2 is that the num-
ber of conditional quartiles that the expert must assess will become uncomfortably large, if
many pairs of covariates are thought to be correlated. For such situations, another method
is proposed here to elicit the off—diagonal covariance matrices. It uses a small number of
coefficients to reflect the pattern of correlation between pairs of vectors and this reduces the

number of assessments that are required. At the same time, the assessments can be used to
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induce all the elements of the covariance matrix and, under suitable conditions, the resulting
variance-covariance matrix is positive-definite. These cqnditions can be translated into allow-
able ranges shown to the expert on an interactive graph; the expert will be asked to restrict
her assessments so that conditional medians lie inside these ranges. The mathematical details
of the proposed method are given in Sections 4.3.1 and 4.‘3.2 below. Thé iequired assessments

for the equations in these two sections are discussed in detail in Section 4.3.3, where the use

of the interactive software to obtain the conditional medians is also discussed.

4.3.1 The case of two vectors of correlated coefficients

To reduce the number of required assessments for estimating the covariance matrix of any
correlated vectors és and ,» We assume a fixed pattern of correlation between the elements
of these two vectors. We must make some simplifying assumbtions about the cofrelation
betweevn theée vectors. If the varianée—covariance matrix of -@s were the identity matrix aﬁd
the same were true for §,, then it might be reasonable to assume that any component of
_,Qs had the same correlation with each component of ét’ and vice-versa. Of course, the
variances of _ and §, are ndt identity matrices. Instead, we transform §_and §, into §_
and §,, respectively, for which, Var(és) = Is(s)s Var(ﬁt) = I5). Then we assume that the
correlation coefficient between any element &,; (i =1, 2, . ,0(s)) of §_and any element & ;
(j = 1,2,---,0(¢)) of €, is a fixed number, és,t. We elicit the value of ¢s¢ using a small
number of conditional assessments.

The matrices Var(8,) = Es,s and Var(g8,) = Z:; may be estimated using the method
of GA that was reviewed in Chapter 3. These matrices are positive-definite, so there exist

non-singular matrices A and B such that
AES,SA, = Ié(s)a
) th,tBl = Ig(t).

In fact, we take A and B as the inverse of the two unique symmetric positive-definite square

roots that can be obtained from the eigenvalue decomposition of X s and ¥4, respectively,
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ie.

@ g

A=3%,2,

B=3%,2.
Let { = A_Qs and §, = BS,, then
és ~ MVN(Ab-s’ I6(s)),

€, ~ MVN(Bb, I).

We assume that

Csit Cs,t
COV(§S,§t) = Cs,t = E v E = Cs’t _l&(s) l:?(t)' (4.21)
cs)t ¥
5(s)x4(t)
So that
f AQ -[6 s Cs,t
= | ~MVN o e . (4.22)
¢, Bb, Cor  Is)
Assume further that
E(gtiés = Abs + ﬂs) = B-Qt =+ Qty (423)
where
o, = (775 ns 'fls)l =1; 1, for an arbitrary chosen value 75 > 0,
0=, 6, .-- 6) =01

But it is known, from the conditional multivariate normal theory, that
E(§t|§_s = Ab, + ﬂs) = Bb; — C;,tI,s_(;) [A.Ils — (Ab, ‘*‘ﬂs)} = Bb; + C;,tﬂs- (4.24)
Thus, from (4.23) and (4.24), we get
8y = Cgum,. (4.25)

The expert will be asked to determine the conditional mean of §, given a specific value of

€., hence the value of 6; will be computed from the expert’s assessment of E(¢,). In
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fact, the expert assesses only conditional medians of Y, which are then transformed, under
normality assumption, into conditional means of the slopes of the piecewise-linear relation,
or bar heights for factors, as will be detailed in Section 4.3.3.

From (4.25), the value of ¢ is simply estimated as

0;
= —— 4.2
= 55 < (4.26)
It will be shown that Var(g’ 13; )’ is a positive-definite matrix if, and only if,
T e L
leos] < —et (4.27)
SN o(s) % 0(t) '
Using (4.26), this condition can be written in terms of 6;, as
o(s
10¢] < ms % (4.28)
To prove (4.27), note that
1 1 1
ﬂs 232,3 és z:s,s Esz,s Cs,t Etz,t
V=Var| | = Var ) = . .
ét El;z:t §t Ezt é,t E‘?]S Et9t

Since ¥ s and X are both positive-definite matrices, V' is positive-definite, using the Schurr

complement, if and only if

1 1 1 1
Sss = Bds CopCyy Bds =D& (Is(s) — CsCiy) s (4.29)

is positive-definite, or equivalently
FE 1 1 , 1
Y — Etz,t Cs,tCs,t Zt?;t‘: th,t (Ié(t) - Cs,tCS t) Et2,t (4.30)

is positive-definite.
In other words, from (4.29) or (4.30), V is positive-definite if and only if

Ié(s) Cs,t
Var(€_, § t) =
Cot Isw)

is positive-definite.
Let,

F= Ig(s) - Cs,tC;,t,

1

G= 50) L5 Ls(s)s
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and note that G is a symmetric idempotent matrix with rank(G) = trace(G) = 1. Then F

can be written as

F =I5 —Cst Cgy
= I5() — 0(s)(t)c2 .G
=I;s) — G+ G~ 8(s)é(t)c2 .G
= (Iss) = G) + (1 — 8()8(1)c )G

= al(Ig(s) - Q) + a2G,
with

a1=1,

o = (1— 5(3)5\@)@2); "

As both G and (I5(,) — G) are idempotent matrices summing up t!o I5(s), the eigenvalues of
F are oy = 1, with multiplicity rank(I5s) — G) = trace(lsi) — G) = 6(s) — 1 and ap =
(1 —6(s)8(t)c? ;) with multiplicity one. Hence, the necessary and sufficient condition for the
matrix F, and consequently for V, to be positive-definite is that both @; and ey must be
positive. Since a1 = 1, the matrix V is positive-definite if and only if (1 — 6(s)d(¢)c2;) > 0,
which gives the condition (4.27).

The same condition can also be deduced from the quadratic form of the matrix F. First,

recall, from Cauchy’s inequality, that

(i%)zsni:xf.
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Then Vz # 0,

&(s)
Q_,FEI_"=Z(1_6 st T +Z (—d(t)e st)wlxj

=1 i#j
8(s) [5(s)

= Z — 5(t)c§’t Z x; + Zx,w]
i=1 L =1 i#£]
5(s) [5(s) 2

= Za: t)cst ZZ’
8(s) o(s)

>Za: —0(t)d( s)cstZa:

6(3)
SR OUOER) S

Since Ztisl) z? > 0, F is positive-definite if and only if (1 — 6(s)d(t)c2,) > 0.

4.3.2 The case of various vectors of correlated coefficients

When there are more than two correlated explanatory variables, the method given in Sec-
tion 4.3.1 is still valid. We next obtain a set of n(n — 1)/2 conditions that are necessary
and sufficient for the full variance-covariance matrix to be positive-definite, for any number
n > 2 of correlated explanatory variables. The number of assessments required for eliciting
a variance-covariance matrix using this proposed method when n > 2 is only n(n — 1)/2.

The case of n = 2 has been considered already. For n = k > 2 explanatory variables, let

B, B,
_ﬁ_2 [_32

V; = Var , g=FE , fori=1,2,...,k.
8) B;

Assume that V;, 7 = 1,2,...,k — 1, have been obtained and that they are known to be

positive-definite matrices.
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Let

=)
b

_1
=V 2|, fori=1,2,...k—1,

with

We assume that

Cr2
Cov(§, ;&) =Ck = , (4.31)

Ck,k—1

where Cj is a matrix of order (Ef;ll (1)) x 6(k), and that each Cy; is a submatrix of order

6(i) x 8(k), taking the form

Cki " Cki
Cri = , fori=1,2,...,k—1. (4.32)
Cki " Cki
Then
; 1
& Vi1 &1 Igk-150 Ck
M omvn || N IREER . (4.33)
& Ser be Cr.  Isw
Now suppose that
-1 1
E(€ )6, =Vi ® e+ Tki) =57 bp+0k fori=12..,k-1, (4.34)
where
Tki = (Q;c,l ﬂ;c,z y-;c,i)l’

M = (Wk,j Mk, j nk,j)l =mn; 1, j=1,2,...,14, for arbitrary chosen n,; > 0,
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Qk:,i (Qkﬂ Ok,i Qk,i)/ ek,i L
1
_1

The process will consist of k — 1 steps, at the i*® step, an elicited value of E(¢ kléz =V, ? g+
;) will be obtained. This can be done by asking the expert to assess conditional median
values of Y that can be transformed, under the normality assumption, to conditional means
of the slopes c;f the piecewise-linear relation, or bar heights for factors, as will be discussed
in Section 4.3.3. We can then obtain the conditional medians E({ k|§z = Vf% € +Ty;) in
(4.34) from E(gklﬁl,é2, e ,gt) The conditional values of 3 ,8,, -+, B;, will be displayed

through a set of ¢ graphs, each of which gives a value for a different _,B_j, i=12 ..,1

Moreover, from the conditional multivariate normal theory, equation (4.33) gives

1 _1
P et ) =k bt (cy 1o o ChIsi s()Th (4.35)

B(g,le, =V, L

Then, from (4.34) and (4.35), we get
bri=(Cp, Cpy - Cl'c’i)lk,i' (4.36)
Hence, after finishing the k — 1 steps, the following system of equations can be formed

Ok,1 = 6(1)ck, 1Mk 1,

Ok,2 = 0(1)cr1mk,1 + 6(2)ck 27k 2,

T Ok g1 = 0(V)ekamir +0(2ckomr2 + o+ (k= ek p—1Mk k-1

To solve for ci i, i = 1,2,...,k — 1, the system can be written as

C,1 Ok,1
Ck,2 | Or,2 '
Q - , (4.37)
Chk,k—1 Ok k—1

105



where

S(mea 0 - 0
S(nkr 6(2)mk2 0
Q= : (4.38)
0
SV 06(2mke -+ 0(k — )Mk p—1
Provided that ng; # 0, Vi=1,2,...,k — 1, the matrix 2 is non-singular and hence
Ck,1 Or1
Ck,2 L k2
=Q° . (4.39)
Chk k-1 Ok k—1
Now, the variance-covariance matrix Vj can be estimated as follows:
B,
B V% ¢ Vi V% C ;
1 Sp k-1 1 Cr X
Vi=Var | 2| =Var k 11 = ) . i B (4.40)
: ik & Zik Cr Vil Sk
B,

1 1
We define the matrices &;, for i = 1,2, ,k — 1, that conformally partition V;2 ; Cg E,ﬁ,k

as
Y1k Ck,1
ok 1 Ck,2 1 1 1
=V7, 52, =V, G 57, (4.41)
Sro1k : C'k,k—1)

Following the same steps as in the case n = 2, and since Vi_; and X ; are positive-definite
matrices, equations similar to (4.29) and (4.30) show that Vj is positive-definite if and only
if the matrix

Inirsw O
Cr L
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is positive-definite. Putting

Fk = Ig(k) - C,’ch

k-1

= Isky — Z Cy.iCr.i»
=1

1
Gr = @ l5(k) l:s(k)y

where G}, is idempotent of rank 1, it can be shown that

Fie = (Isk) — <1 - Z §(k)5(5)ci 1.) k

=1

is positive-definite if and only if

i=1

k-1
(1 = é(k)é(i)c,%,i> > 0. (4.42)

This condition implies k¥ — 1 conditions for ¢, i = 1,2, ...,k — 1, of the form

1- 35 (086) e

=1
lexd| < 35 ET O (4.43)

These k — 1 conditions guarantee that the elicited matrix Vj, in (4.40) is positive-definite,
provided that Vj_; is positive-definite. Since V5 is known to be positive-definite from Sec-
tion 4.3.1, we can use mathematical induction to prove that the full variance-covariance

matrix V, is positive-definite, as follows. For any number (n > 2) of correlated vectors f,,

Bys -+ +» B, the whole matrix
B, P11 B2 o Sim
B, D1 Sap -0 Lo
Vi = Var =
én 2"«:1 En,Q t 2'n,,n

is certain to be positive-definite if (a) the n — 1 conditions in (4.43) hold and (b) Vp—1 is
positive-definite. This imposes an extra ¢ — 1 conditions on each matrix V;, (i = 2,--- ,n—1),

so that each V; is positive-definite. Then V,, is positive-definite under a number of >y _, k —
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1=3"7"1k=n(n—1)/2 conditions of the form:

i—-1
1= 8(k)6(j)ct ;

j=1

 OET G fori=1,2,--+,k—1, k=2,3,-+- ,n. (4.44)

lex,s| <

Using these conditions, the range of each 6, for i = 1,2,...,k — 1, k = 2,3,...,n, can be
computed and shown to the expert who can ensure that her assessed values fall within these
ranges. This will guarantee that the estimated variance-covariance matrix is positive-definite.

Fori=1,2,...,k — 1, from (4.36) and (4.43), the range of 0;; is given by

1—1 . i—1
D 5 ekgms |+ e (f((—k)) 1= 8(k)S()et; | | - (4.45)
j=1 j=1

This formula for the allowable range of 6 ; has a drawback: we cannot calculate these ranges
until quite late in the assessment procedure, so the expert may sometimes be asked to revise
assessments that she made some time earlier. Hence, we decided to find a different approach
that gives a more direct range for each 6y ;, and which only asks the expert to modify recent
assessments that she has made. At step ¢, when conditioning on the value of §i, the expert
may be asked to modify the assessment she has made in step ¢ — 1, but she will not be asked
to modify assessments she gave at stages before that. This can be formulated as follows.

Instead of equation (4.34), let

1 _1
EElE =V ? e +1;) = E(§|E,_, =Viei €1+ Tri1) + 0 (4.46)
_1 : |
=% 2 b+ Oy fori=1,2.,k—1, (4.47)
Jj=1
where
Tki = (Q;c,l ﬂ;c,z e ﬂ;c,i),’

M= ('flk,j Th j Wk,j), =n; 1,7 =1,2,...,1, for arbitrary chosen 7y ; ‘> 0,

Qk,z’ = (919’1; Ok,i e Gk,i), = ek,i 1
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In this case, using standard results of conditional expectations, we get
_1 : _1
Sl bt Y Ok =52 by+Cizyy, fori=1,2,.,k—1. (4.48)
j=1

Then equation (4.36) becomes

Bk = Chatly, ;» (4.49)
which gives
ek,i = J(i)ck,mkd, 1= 1,2, veey k — 1.

Hence

O;

ck;’l: = 6(1) % nk’i?

i=1,2,..,k—1. (4.50)

The positive-definiteness of the whole variance-covariance matrix V;, is still guaranteed under
the same conditions in (4.44). But the allowable range for each fy; (i = 1,2,...,k — 1,

k =2,3,...,n) has the simplified form,

100 < i g(% 1= S 5G| (4.51)
j=1

This represents a simple range for 6y, in comparison with (4.45). The range in (4.51)
depends only on the change 7,; in the ith variable, £, not on the changes 7, ; in all variables
£,7=1,---,i—1, as in (4.45).

4.3.3 Assessment tasks

e The current assessment tasks start after eliciting all variance matrices £;; (i = 1,2, ..., k).
o For any pair of correlated vectors (gs, B t), we assume that
1
COV(,B /6 ) Es sUs tztz s #t, (4-52)
where Cj s is given in (4.21) and X ; and X ; are the variances of és and _,8_ o respectively.

e The expert will be shown a panel that simultaneously displays two graphs and a slider
(see Figure 4.3). For continuous covariates, the upper graph of the panel shows the

piecewise-linear relation between Y and X;. The slopes of the black (lower) curve
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represent b, = E(ﬁs ), while the slopes of the blue (upper) curve represent the change
of E(gs ) by Es%,sﬂs , i.e. the slopes of the blue (upper) curve are b, + Eé,sﬂs- The
black (lower) lines represent the expert’s original median assessments but she is asked
to suppose that the correct values are actually the blue (upper) lines. Given this
information, the expert is asked to use the slider to change the position of the black
(middle) curve in the lower panel so that it gives her new opinion about the median
value that Y will take as X; varies. The magnitude and direction of the change reflects

the correlation between és and 8 -

AT ICEERTION [Ohr et St - - o
e ] i ]
[¥: D tnak st e ——— " R P e e s A 101
! Given the changes of (Y) on the upper panel, give your new assessments on all the lower panels using the siider.
“Zlolx]
10 Changes in the medians of (Y) at values of (X1)
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0.0000 03333 06687 1.0000
x

Eliciting new medians of (Y) at values of (_'xz) conditionat on the above changes of (X1). =
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i

g

0.0000 01867 03333 0.5000 0.6667 08333 1.0000 2

Figure 4.3: Assessments needed for two correlated variables

o The two red (outer) piecewise-linear curves in the lower panel of Figure 4.3 represent the
allowable boundaries for the change of 3 ,; these boundaries ensure that the resulting
variance-covariance matrix is positive-definite. The boundaries are calculated from
the condition given in equation (4.28). Moving the slider simultaneously changes the
position of all the medians of Y in the lower panel. When the expert is happy with the

new position of the curve on the lower panel, the corresponding value of the slider is
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used to compute c; ¢, as will be shown later.

The expert is asked to assume that the slopes of X, in the upper panel of Figure 4.3,
1
have changed from b, to b, + Eﬁ,sgs. Conditional on this information, she revises the
1
slopes of X, in the lower panel, changing them from b, to b, + X6, The expert

changes all the slopes simultaneously using the slider.

The size of the change, 7s, in the conditioning variable, X, in the upper panel, is
chosen such that the vertical distances between the two piecewise-linear curves in the
upper graph do not exceed the upper quartile at any of the knots of X. This ensures
that the new conditioning values b, + Es%, s7, are not too far from by, as they have to
be values that the expert finds plausible. This choice is also not too close to by, so it

should prompt a measurable change in b, in the lower panel of Figure 4.3.

The software calculates medians to draw a piecewise-linear curve with slopes b, +E§,SQS.
For ¢ = 1,2,---,4(s), the median value of Y‘ at each knot 4, ms;05, is changed to
™My i 0.5 as follows.

First, let

m:,o,o.s = M,0,0.55
and

dii—1 =Tsi— Tsi-1.
Then, fori=1,2,---,4(s), we put

* *
Mgi05 ~ Msi-105

1
d = bs,i + ns(z.g,s)i
1,8—1

_ Msi,05 — Ms,i~1,0.5
dii—1

1
+ ns (232,3)1"

1 1
where (325); is the sum of the elements of the ith row of 3.

Hence,

1
X ; 1
Myi05 = Myim1,05 T Msi,0.5 = Msi—1,0.5 + Nsii—1(E3s)i- (4.53)
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If X, is a factor, then
1
Mgi05 = Msi,0.5 + Ns(T3s)i- (4.54)
In view of (4.53) and (4.54), n; can be chosen as

Msi0.75 — M
.‘9,1,0.75 3»10-5 , (455)
Y3

Dim1 45,j-1(23s);

for continuous covariates. For factors, it can be chosen as

7s = min;

Ms,i,0.75 : Msi05 ) (4.56)
(Esz,s)i

7s = min;

In order to draw the red (outer) boundaries in Figure 4.3, we require upper and lower

bounds, mgi,o.s and mf:LO.S' From (4.28), if X; is a continuous covariate, we put

Myi05 = Mpi—1,05 + Mti05 = Mi105 + s %‘%di,i—l(zét)i, (4.57)
and
mtI:z',O.S = mZL,i—l,O.s + M4,4,05 — Mti-1,05 — Ns %((gdiﬂ'—l(zt%,t)i' (4.58)
If X; is a factor, we put
my; 0.5 = Mti05 + 7 %%(Zt%,t)i’ (4.59)
and
mf,’i,o.5 =MMti05 — s %(Zét)i- (4.60)

Using the slider, in view of (4.27), the expert changes the value of ¢, between its two
boundaries, +1/4/3(s) x d(¢). To be interpretable by the expert, the slider presents a

scaled range between -1 and 1 as a measure of correlation between és and 8 " Hence

¢s,t = The slider value /4/6(s) x 6(¢).

. a s e . . . .
The corresponding new curve, say my ; o 5, is interactively changing with each movement
of the slider. For continuous covariates, mllt,i,O.S is computed after mé’i_l’o_5 has been
calculated:

1
! ! 2
Myi05 = Myii—105 T Mti0s — Mi-1,05 + Csrdii-1(584)i (4.61)
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For factors

Mt i05 = Mt 0.5 + Cs (52 ' (4.62)

When the expert is happy with the new position of the curve, the value of ¢, is used

in (4.21) and (4.52) to calculate the covariances between B, and §,.

For k > 2 correlated vectors of coefficients, the process will consist of k—1 steps. At the
it step, the expert will be asked to change the conditional medians of (éklgl 1Bosv s @_i)
by a value of 6 ; given a set of ¢ graphs, each of which shows a change with a different

fixed value 7; for each ﬁj, i=12,..1

However, we choose not to offer this general case as an option in the interactive soft-
ware. Although it has been shown to have a consistent mathematical framework and
adeqﬁate theoretical properties as proposed in Section 4.3.2, its practical implementa-
tion may raise some critical issues in the elicitation process. Conditioning on simulta-
neous changes in many gr’aﬁhs for different vafiables gives too much information for an
expert to readily absorb. She may not be able to assess the direct conditional impact

of these changes on the variable of concern.

Another difficulty arises in choosing the different values n;, j = 1,2, - - ,4, that control
the change in the conditioning set used in step . These values must be carefully
specified so that the resulting simultaneous change represents a valid combination of

values that is acceptable by the expert to condition on.

A general problem in successive increment of variables in the conditioning set is that the
allowable range of medians at the variable of concern gets tighter as we approach the
last variable in the list. This problem is not only a practical one, but it has also been
shown that variances, and hence covariancés, of the last variables in the list are usually
over estimated By the expert due to incremental conditioning (Garthwaite, 1994). These
drawbacks constitute the motivation for the third elicitation method proposed in the

next section.
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4.4 A general flexible elicitation method for correlated coef-

ficients

The aim here is to form an elicitation method suitable for GLMs that contain a large num-
ber of correlated vectors. We propose the following elicitation method as a promising new
approach for eliciting the whole variance-covariance matrix. It uses only a small number of
assessments that directly reflect the pattern of correlations between all pairs of vectors.

The method avoids the previously mentioned disadvantages of using incremented condi-
tioning sets of variables. Instead, the method treats all variables symmetrically. As with
the method proposed in Section 4.3.1, it assumes a fixed correlation structure for the ele-
ments of each pair of vectors. The current method differs from the generalization proposed
in Section 4.3.2, in that it avoids incremented conditioning and assesses all covariances si-
multaneously.

The main idea is that the expert assesses the relative magnitudes of the average corre-
~ lations between each pair of vectors. She is asked to ensure that these weights reflect the
strength of the average correlation of each pair relative to each other pair. The expert need
not be conscious of conditions that are required for mathematical coherence. Instead, the
assessed relative weights will be scaled to ensure that the assessed variance-covariance matrix
is positive-definite.

The current method can be used alone or together with one of the two methods proposed
before in this chapter. In the latter case, the current method needs an assessment of the
correlation of only one pair of vectors, then all other correlations are vcom’puted using the
relative weights. This correlation assessment may be obtained using the method proposed
in Section 4.2 or the method proposed in Section 4.3.1. With the latter method the expert
might use a slider to adjust the slopes of one vector of a highly correlated pair.

In what follows, the method is introduced in detail and the scaling needed to obtain a

positive-definite matrix will also be investigated.
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Assuming that all the k covariates are correlated, let
-1
§i = Ei,izéi’ ’L - 1, 2, e ,k, (4.63)

then

Var(_’g‘_i) = I5(i)7 i1=1, 2’ e ,]g_ (4.64)

Foralli=1,2,---,k, j=1,2,--- ,k, i # j, we assume that

Cij tr Cij
Cov(§,€)=Cij=| i ... = ci; Lsy Loy (4.65)
Co . Y . .
" %9/ syt
with ¢j; = ¢ 5.
Then - -
1 1
COV(éi,Ej) = Ei"’,iOi,jEJ?,j, (4.66)
and hence
B,
B, 1 1
V=Var | 7| =Ag CAZ , (4.67)
By

1

1
where A2, is a block-diagonal matrix with ¥7; as the ith main diagonal block and

Isy Ciz - Crk
Coa Ispo
C= ® , (4.68)
Cr-1,k
Cri - Cre-1 5w
with
Cj,i = Cl{,j'

1 1
Since each X7, is positive-definite, so is A, ,- Hence, we can state that V in (4.67) is positive-
definite if and only if C in (4.68) is positive-definite.
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Fori=1,2,--- ,k,j=1,2,--- ,k,i# 7, let

Cij = cwi,j, (4.69)

where w; ; are the relative weights to be assessed from the expert and ¢ > 0 is a fixed scaling
constant that adjusts to ensure that C is positive-definite.

The main assessment task with this method consists of one dialogue box. An example
is shown in Figure 4.4. The expert assesses the relative magnitudes (weights) and signs
of different correlations between all pairs of vectors. Since the correlation matrix must be
symmetric, we just require the elements below the main diagonal to be assessed. Hence, when
there are n vectors of coefficients, we require n(n — 1)/2 assessments for this stage. The main

diagonal elements are necessarily set equal to ones, as C is a correlation matrix.

(N EBciting Correlations : (R o =10l x]
Enter your relative correlations:
Covariate: X1 X2 3 X4 x5
Xt 1
X2 1
X3 1
x4 ; i i 1
F<Bac | Ters T eip s}

Figure 4.4: Assessments needed for five correlated variables

The relative weights that are assessed in this task need not be coherent correlation co-
efficients. For example, they are not necessarily restricted to be between -1 and 1. Instead,
any assessed numbers are accepted; they must simply reflect the magnitude of the correla-
tion between any pair of vectors relative to other pairs. Negative values are allowed and are
appropriate when an expert believes a correlation is negative. The expert is asked to assess a
single weight for each pair of vectors. The weight should reflect her opinion about the average

correlation between all pairs of elements in that pair of vectors.
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The relative weights assessed in Figure 4.4 will be denoted by w} ;, where w; ; corresponds
to the fixed average correlation between all elements of B, and Qj. The expert is asked to
ensure that the relative magnitudes of w};, 1 =1,2,--- |k, j = 1,2, -+ ,k, 1> j, model her
opinion about the relative correlation of each pair compared to the others. As mentioned
before, w; j will be scaled later to attain mathematical coherent values of correlations.

For mathematical simplicity, we use the weights, w; j, of correlations between & and §j
when investigating the conditions required for the scaiing constant c in (4.69). However, we
assess the weights wj ; in terms of éi and ﬁj, as the expert cannot think about correlations
between the transformed vectors £, and §j. Hence, we need an explicit relationship between

w;,; and w; i We obtain one as follows.

Fori=1,2,---,k, j=1,2,--,k, 1> j, let
cij=cw; (4.70)

1,5

be the scaled average correlation between 3, and éj' Then

8(i) =8 - '
i = PR zsghcw(ﬁf,r,ﬁj,s)/aras]’ ()
’ » 8()8(4)
where, as in (4.66), Cov(8;r,B;,s) is the (r,s) element of Cov(ﬁi,_ﬂ_j), and o, and o, are the

square roots of the rth and sth main diagonal elements of ¥;; and X ;, respectively.

Hence, from (4.65), (4.66) and (4.71),

3(i j
Cf = Ci s ETE“-?[ g(-—.—q [0-7')3/0-7"0-5] (4.72)
VTSR0

1 1
where o, is the (7, s) element of Elf‘:i(l)‘;(i)(;(j)ij’j, ie.

, 5(5)8(j
REbST0 o (4.73)

ci:j = ‘
r=]1 s=1 [O'T'»S/O-TO'S]

So, in view of (4.69) and (4.70), we have

SR - o
r=1 245=1197,s/9r0s

It remains now to investigate the allowable range for the positive scaling constant c, so that

C in (4.68), and consequently V in (4.67), are positive-definite.
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First, from (4.69), we write C in (4.68) as
C=I+cW, (4.75)

where I is the identity matrix of order Z;-“zl d(j), W is a conformally partitioned matrix with
main diagonal zero block matrices, and all the elements of each (7, j) off-diagonal block are
equal to w; ;.

Let Awy, 0 =1,2,--+, ?:1 8(7), be the eigenvalues of W. We have that
min(Aw,;) <0,
1

since if not, W with zero main diagonal elements will be a nonnegative-definite matrix, in
which case

ng < wiswi; =0, Vi#j,
which is true if and only if W is a zero matrix.
Since I and W are symmetric, C in (4.75) is positive-definite if and only if all its eigenvalues,
say Mgy, 1 =1,2,--- ,Z;?:l 0(j), are strictly greater than zero. |

But

k
Mej=1+chw  i=1,2,Y 8(j). (4.76)
i=1

Consequently, C is positive-definite if and only if
min(A¢c;) > 0,
2

i.e. if and only if
-1

-]?I—l-’l:i—I—l(A_w/,i) . (4.77)

c<

The condition in (4.77) guarantees that C and V' are positive-definite, and also that

¢ j = cw;j, i # j, are coherent correlation values, since, from the positive-definiteness of C,

The software obtains the value of min;(Aw,;) using the eigenvalue decomposition of the matrix

W. Then the boundary of ¢ in (4.77) is computed.
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With the software, different options are available to the expert for assessing a value of ¢
that fulfils condition (4.77). The default option is to use a slider. The expert chooses the
value of ¢ that represents her opinion on the basis of interactive graphs. Specifically, the

software displays a panel with &k graphs, as illustrated in Figure 4.5.

P R = F
ficiczan i BT |
. Given the changes of (Y) on the upper panel, give your new assessments on all the lower panels using the siider.
23 oM [=} 571

Changes in the medians of (Y) at values of (X1)
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H H 1 \\:g B Te20
09 H ' : caxn
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- Eliciting new medians of [Y) at values of (X4) conditional on the above changes of (X1). Tas
X T a2
08 “a00
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Figure 4.5: Assessments needed for various correlated variables

The upper graph shows the slopes for one continuous covariate after each of its slopes
hés been changed by a fixed amount, . This covariate is one of the mostly highly correlated
pair of vectors. In the same manner as in Section 4.3.3, the expert is asked to assess the new
medians of all other k£ — 1 covariates (factors) given the change in the above graph. Apart
from the condition in (4.77), other equations needed for drawing the graphs are exactly as in
Section 4.3.3.

Instead of using the slider and all graphs in Figure 4.5, another two options are also
available to the expert after assessing the relative weights w} ;. As the first option, the expert
can choose to use the method proposed in Section 4.2, to elicit different covariances for the

elements of the highest correlated pair, say gs and §,. An averaging argument as in (4.71)
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is then used to get c;. As the second option, the expert might use the method proposed in

Section 4.3.1 to obtain cj;. In both cases, the value of ¢ may be taken, for a small € > 0, as

. -1 Cs
c=min{ ——— —¢, 2t

=0 (4.78)

w;,t

The expert may choose the option that suits her most. For example, the option that
combines the current method with the one in Section 4.2.1 is flexible although it requires
more conditional assessments. However, we favour the default option as it gives the expert a
good chance to see how all the other covariates are affected by her choice of ¢c.

*

The expert can, of course, go back in the software to change her assessed values of wy ,

if she finds that the allowable range of c is not a reasonable representation of her opinion.

4.5 Concluding comments

Three different methods for eliciting expert opinion about the variance-covariance matrix of
correlated coefficients in GLMs have been proposed.

The first method is the most flexible for modelling correlations between pairs of vectors
- it is a good method if correlations are only substantial between a few pairs of variables,
while the other correlations are near zero. However, it needs lots of assessments if there are
lots of variables that are inter-related, and the number may become uncomfortably large.
The positive-definiteness of the resulting matrix has only been investigated in the case of
two vectors of correlated coefficients. No clear conditions have been investigated for the
positive-definiteness of the whole matrix if many vectors of coefficients are thought to be
correlated.

The second proppsed method requires fewer assessments and has been shown to be a valid
method for any number of vectors of correlated coefficients. Also, the required conditions for
positive-definiteness of the covariance matrix in this method have been investigated. These
were translated into boundaries for conditional assessments on the interactive graphs, which
helps the expert fulfill the conditions. The disadvantage of the methéd is that it makes
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strong assumptions about the correlation structure between two vectors of coefficients, and
sometimes the assuinptions will be inappropriate.

The third proposed method requires a smaller number of assessments. For n > 2 cor-
related vectors of coefficients, the expert is required to make only n(n — 1)/2 assessments
of relative magnitudes of correlations between pairs of vectors. This leads to coherent es-
timates of correlations and a scaled variance-covariance matrix that is guaranteed to be
positive-definite. The needed conditional medians can be easily assessed from the expert by
the movement of one slider using the available user-friendly software. The method has been
shown to give flexible options to the expert as an extension of the first or the second proposed
methods. This third method is very promising. It also avoids incremented conditioning and

treats all covariates symmetrically.
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Chapter 5

Eliciting prior distributions for

extra parameters of some GLMs
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5.1 Introduction

So far, we have completed the process of eliciting the multivariate prior distribution for the
vector of regression coefficients of any GLM. However, in some common GLMs, such as the
normal and gamma regression models, the regression parameters are not the only parameters
in the sampling model. The other parameters in these GLMs must be either assumed known
or expert opinion about them must be quantified in a suitable way.

In normal GLMs, prior opinion about regression coefficients can be quantified using the
methods discussed in the previous two chapters. However, prior opinion about the error
variance in normal GLMs must also be quantified to complete the prior distribution of all
the model parameters.

A limited number of elicitation methods for error variance in normal linear models has
been proposed in the literature. See, for example, Kadane et al. (1980), Garthwaite and
Dickey (1988) and Ibrahim and Laud (1994). However, these available methods have been
criticized for using assessment tasks that the expert may not be very good at performing
(Garthwaite et al., 2005).

The method of Garthwaite and Dickey (1988) elicits a conjugate inverted chi-squared
prior distribution for the error variance through conditional assessments that depend only
upon the experimental error. The expert is required to assess her median of the absolute
difference between two observed values of the response variable at the same design point.
Then conditional medians of the same difference is assessed given a set of hypothetical data.
These two assessments are sufficient to elicit the two hyperparameters of the inverted chi-
squared prior of the normal error variance. However, it is better to specify several data sets
and get a conditional median for each data set, then different assessments can be reconciled
to elicit the two hyperparameters. In this chapter, we propose an elicitation method based
on more than one data set of hypothetical future samples.

The‘ second task addressed in this chapter is to assess prior distributions for the shape

parameter of a gamma distribution and the scale parameter of gamma GLMs. Prior dis-
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tributions for these parameters have been proposed in the literature [see for example Miller
(1980), West (1985) or Chen and Ibrahim (2003)], but no prior elicitation method for these
parameters has been suggested. To fill this gap, we propose a new method for eliciting log-
normal prior distributions for such parameters. The proposed method is based on conditional
quartile assessments given that the mean of the gamma distribution is known or has already
been elicited.

In Section 5.2 of this chapter, we extend the method of Garthwaite and Dickey (1988) for
eliciting the variance of random errors in normal GLMs. A novel method for eliciting a lognor-
mal prior distribution for the scale parameter in gamma GLMs is proposed in Section 5.3. The
two methods have been implemented as extra options in our elicitation software PEGS-GLM

(Correlated Coefficients) that is freely available at http://statistics.open.ac.uk/elicitation.

5.2 Eliciting a prior distribution for the error variance in nor-

mal GLMs

The method of Garthwaite and Dickey (1988) is based on conditional assessments that depend
only on the random error to elicit a conjugate inverted chi-squared prior distribution for the
normal' error variance. In their method, the expert is asked to assume that two observations
are taken at the same design point. Then she assesses her median of their absolute difference
- the two observations differ only because of random variation.

The method has been also used to quantify experts’ opinion about multivariate normal
distributions [Al-Awadhi and Garthwaite (1998, 2001,)’ Garthwaite and Al-Awadhi (2001)].
However, it has been criticized for eliciting only the minimum number of assessments that
are required to determine the hyperparameters. To overcome this, Garthwaite et al. (2005)
suggested that it is a good idea to elicit more than one estimate of the hyperparameters and
to then reconcile these estimates in some way.

The aim of this section is to extend the method of Garthwaite and Dickey (1988) by
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increasing the size and frequency of the hypothetical (virtual) sample data that are used as
the conditioning set on which the expert is modifying her opinion. Qur extended method
is designed to elicit a conjugafe prior for the error variance in normal GLMs. This will
complete the prior distribution structure of these models when the prior distribution of their
regression coefficients is elicited using the piecewise-linear model discussed in the previous
chapters. However, the method developed here can be used to elicit the prior distribution of
error variance in any normal model where the prior distribution of its regression coefficients
is totally known or has been elicited using any other elicitation method.

The theoretical derivation of the proposed extension is detailed in Section 5.2.1. The
implementation of the method has been programmed as a new option in the PEGS-GLM
(Correlated Coefficients) software. The assessment tasks and the vdescr»iption of the procedure

that implements our proposed method are discussed in Section 5.2.2.

5.2.1 The mathematical framework and notations

The normal GLM assumes that the link function g(.) in (3.3) is the identity link function,

which means, in view of (3.2), that
(=a+fXi+ X+ + BupnXmin +e (5.1)

where € is assumed to be a normal random error with zero mean and an unknown variance
a2, ie.

e~ N(0,02). (5.2)

A conjugate prior for o2 is the inverted chi-squared distribution [see, for example, Pratt
et al. (1995), Kadane et al. (1980) or Garthwaite and Dickey (1988)]. Equivalently, we assume
that

02 ~ Inverted Gamma(v/2, vw/2), (5.3)
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with a pdf of the form

f(O'?;V,w)=-I,—(l—}-/2—)(~VQﬂ)V/2 <;1§>(v/2)+1exp(_%>,

oz >0,v>0,w>0. (5.4)

The aim now is to elicit the values of the hyperparameters v and w of the pdf in (5.4). To
attain this, the expert should preferably be asked to assess values that depend only on the
random variation. For that, the method of Garthwaite and Dickey (1988) requires the expert
to assess a median value, say qp, of the absolute difference, |(; — (2|, between two observed
values of the response variable ¢ at the same design point (X1, X2, -+ , Xn4m)-

The expert is then asked to assume that the true value of this absolute difference is a
suggested value z. Given this piece of information, she gives her new median assessment , say
q1, of the absolute difference between two observations for any new hypothetical experiments
at the same design point (X1, Xs,- -+, Xp+m). The difference between gg and the new median
assessment, qi, reflects the expert’s confidence in her first median assessment gg. Then both
go and q; were used in Garthwaite and Dickey (1988) to calculate the two hyperparameters
v and w.

To extend their method, instead of conditioning on only one hypothetical datum 2, we
repeat the assessment of the conditional median for a number of s steps. At each step,
the condition is on a steadily increasing set of hypothetical data representing the response
differences for pairs of experiments at the same design point.

At each step j, 7 =1,2,-- -, s, the expert is asked to assume that a number k(j) = 297}
of experiment pairs at the same design point has given a hypothetical data set of absolute
differences, z1, 22, - - - , Z(j)- She is then asked to give her conditional median g; of the absolute
response difference of a new pair of experiments at the same design point. In what follows,
we show how to use these assessments to estimate a number of elicited values that can be
reconciled to give a better assessment of v and w.

Fori=1,---,k, where k > 1 is any integer number, let Z; be the difference between the
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two observed values, (;1 and (; 2, of the response variable ¢ in any two experiments at the

same design point (X, -+, X,,.,), i.e. Z; =1 — G-

Clearly, from (5.1) and (5.2), given o2, the random variables Z1, - - -, Z; are independent
and identically distributed normal variates, i.e. fori=1,2,--- , k,
Zilo? ~ N(0,202), | (5.5)

with the joint distribution

1 k
fla1, o zilo?) = W exp (—Zzz?/%?) ,

i=1

—00< 2z <00, 02>0. (5.6)

From (5.4) and (5.6), the joint distribution of Z1, - -+, Z and o2 is given by

: . v viky g k
. . . . (V'LU/Q)V/2 1 5+ . 1 o
f(Zl,"‘,Zk,0'2;i’/,w):-————~——- - exp § — Zz+21/’ll) ,
. ‘ T'(v/2)(4m)k/2 \ o2 4o? ;
-0 <z <00, o v,w>0. (5.7)
Integrating o2 out from the RHS of (5.7), we get
v+k
ko221 2
f(zly"' ,Zk;V,’LU) = F((V+k)/2)k 1+ i=1% )
T(v/2)[vn(2w))F/2 v(2w)
-0 <z <00, v,w>D0, (5.8)

which is the k-variate version of the general three-parameter Student-¢ distribution with v
degrees of freedom, zero mean vector and a diagonal scale matrix 2wly, where Ij is the

identity matrix of order £, i.e.
Zy, -y 2 ~ MV-t, (0, 2wl}). : : (5.9)

Now, the conditional distribution of o2 given Z; = 21,-++,Zr = 2, can be obtained by

dividing the RHS of (5.7) by that of (5.8) to get

| . . b\ ER)/2
f(O'gIlezly..-,ZkZZk;U,U))=m':Z (2Uw+;z1?>:l x
v+k : :

+1 . k
exp{—-z‘—z- |:2Vw+zz,?]}, 03)V7w>0' (510)

€ i=1
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Since the inverted gamma distribution is a conjugate prior for o2, comparing (5.10) with

(5.4), we can write

(02|21 = z1,- -+ , Zy = z,) ~ Inverted Gamma (V ;— k, G +2k)wk) , (5.11)
where
1 Zf=1 z
wp = o [Vw+——2——— . (5.12)
For j =0,1,---,s, define a new set, Z(;)y = {(j),1 — {(5),2> of the response variable differences
for two further experiments at the same design point (X;,---,X,,.,). The variates in this

new set are iid with the same normal distribution as in (5.5).
The conditional distribution of (Z(;y|Z1 = 21, ,Zy5) = 2x()), with k(5) = 27-1 for

j=1,---,s,is given by

HZyl2y =2, Zy) = 2(5)) =

oo
/2_0 f(Z(j)l‘Tg) X f(o2|Z1 =2, s Lk(j) = zk(j))dcrﬁ. (5.13)

Using the normal distribution in (5.5), and putting & = &(j) in (5.11), the integrand in (5.13)
is similar to the RHS of (5.7) with k set equal to 1, v replaced by v + k(j) and w replaced
by wyj) with k set equal to k(j) in (5.12).

As in (5.8) and (5.9), integrating o2 out from (5.13) gives
(2|21 = 215+, Zag) = () ~ tok(i) (05 2Ws)) (5.14)

forj=1,---,s.
Similarly, for j = 0, the marginal unconditional distribution of Z( is obtained, from (5.4)
and (5.5), as

Z () ~ (0, 2w). (5.15)

As will be discussed in the next section, ‘under reasonable choices of the conditioning values
Z1, "+, Zk(j), the expert assesses her median of the absolute value for each of the Student-t
distributions in (5.14) and (5.15). These are exactly the upper quartiles of the t-variates,

from symmetry about zero.
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Let the assessed upper quartile of Zg) and (Z(;)|Z1 = z1,--- s Z(j) = 2k(j)) be denoted
by go and g, for j = 1,--. s, respectively. If we denote the upper quartile of a standard

Student-t¢ distribution with v degrees of freedom by @,, then we have
0 = (2w)'/2Q,, (5.16)

and

g = (2wk(j))1/2Qu+k(j)a (5.17)

forj=1,---,s.

The aim now is to solve the above pairs of equations for v and w. By division, for each pair,

we get
1/2
w0 _ G [ e ] . (5.18)
G Quikl) LWe() o
Using (5.12), (5.16), we can eliminate w from (5.18), to get
3
Q0 _ Qv v+ k(3) jl (5.19)
9 Quik) (v + Q2 Y59 (zi/a0)?

forj=1,---,s.

For each value of j, the assessed ratio of gg/g; is used by the software to search for the
value of the degrees of freedom v, say v;, that solves équation (5.19).

To guarantee the existence of a unique solution for v using this approach, two conditions
must be imposed on the function in (5.19). It must be strictly monotonic in v on the interval
of concern. For statistical coherence, the assessed quartile, g;, must also be above a lower
limit, say a;, for j =1,2,---,s.

To satisfy the latter condition, we assume that there is a reasonable minimum value of
the elicited degrees of freedom, say min(v). Since gp has already been assessed, using the
extreme value min(v) in the RHS of (5.19) gives the lower limit of g;, as follows:

v . %

Qumin()+k() min(v) + Qfmn(u) Zi'cg)(zi/ 90
Qmin(u) min(z/) + k(j)

o = qo , (5.20)

for j=1,2,---,s.
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Setting this limit, we can now investigate the monotonicity condition. In fact, the mono-
tonicity of (5.19) as a function of v is required to ensure that there exists a unique value
vj > min(v) that satisfies (5.19) for ¢; > a5, j =1,2,---,s.

In (5.19), if we put

k(5)
Ci = (z/D0) (5.21)
i=1
then the first derivative of qo/q; with respect to v will take the form

9(q0/ ;) ___1/2(qj/‘I0)QuQu+k(j)
v QG+

{CiQ2Qu+k(i) — 2(v + E(1))Ql 1 x(5)]
+ 2V(V + k(]))(Q;/Qu+k(_1) - QVQ:/-}-IC(J)) - k(j)QuQu+k(j)}‘

So, for all v > min(v),

0(g0/95)
ov <0
if and only if
c () QuQuakg) — 20 + k())QLQurr() — Qv @y k(i)
7 < _min 3 — =Cjo. (5.22)
v2min(v) Q3 Qutrg) — 2(v + k(]))Q,,+k(j)]

Since there does not exist a closed form for the derivative of a Student-t quantile with
respect to its degrees of freedom, the values ‘of Cjo cannot be found analytically. Instead,
these values have been computed numerically using Maple 14 Software, for s = 5, v € [1,50].
Figure 5.1 lists these values of Cj o, where the derivative 9(qo/q;)/0v is plotted against v and

Cj,for j=1,2,--- 5.
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0.07
OOH
Qs 0.03-/
0.04-1
OLB‘f J 0.02-
0.02-1
0.0i-J
For fc(l) = 1, Ci0 = 1.626. For k(2) = 2, C2p0 = 3.367.
0.0i4
(1 %
For k(3) = 4, C3,0= 6.950. For k(4) = 8, (740 = 14.222.
Forj = 1,2, *«« .5, Cj,0 is such that:
— <—. J <0, forall 1 < v <50,
dv \qgJ
50 40 20 ;
d_ - 01
()7 00( if and only if Cj < Cj, o
-0.00!
-0.01C

For k{5) = 16, C5,0= 28.846.

Figure 5.1: Three dimension plots of d(qo/qj)/dv against v and Cj for various sample sizes

kti)-
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It can be seen from Figure 5.1 that

Cjo
Cro < =2, for j = 2,3,4,5. 5.23

Now, from (5.21), (5.22), (5.23) and Figure 5.1, we can state that the function in (5.19) is

strictly monotonic decreasing in v, for all 1 <v < 50 and j =1,2,.-.,5, if and only if
Zi (/20
== < 1.626. 5.24
k(5) (524

Although we have not examined the case where v > 50, Figure 5.1 suggests that (5.24) holds
for v > 1.

In the implementation of the method, the software generates the values of z; that satisfy
(5.24). Hence, for j =1,2,---,5, a unique solution »; can be obtained from (5.19), then the
corresponding w; can be obtained by substituting v; for v in (5.16). We then reconcile the
five different values of the degrees of freedom parameter v by taking their geometric mean.

When averaging different assessments of a degrees of freedom parameter, taking their
geometric mean is favored, by empirical evidence, rather than their arithmetic mean. Sée for
example, Al-Awadhi (1997), Al-Awadhi and Garthwaite (1998) or Garthwaite et al. (2005).
The elicited value of w can then be obtained from (5.16) by substituting for v with the
geometric mean of vy, -+ ,vs.

Finally, we assume that the regression coefficients vector of parameters 8 = (o, f1,- -,
Bman) is independent from o2 a priori, and give the full prior structure of the normal GLM

as
18, 02) = f1(B) f2(c2), | (5.25)

where f1(8) can be taken as the multivariate normal prior distribution elicited in the previous
chapters, and fo(0?2) = f(02;v,w) as given in (5.4) with the elicited hyperparameters v and

w.
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5.2.2 Implementation and assessment tasks

The elicitation method proposed in the previous section has been programmed into the PEGS-
GLM (Correlated Coefficients) software by the author of this thesis. The option of eliciting
the prior distribution of the random error variance is given to the expert once she selects
her model as an “ordinary linear regression” model. The same procedure has also been
programmed in a separate piece of software that can be used as an add-on to any other
elicitation software for normal models. This developed sofpware is freely available as PEGS-

Normal at http://statistics.open.ac.uk/elicitation.

In a dialogue box, the expert is asked to assume that two independent experiments have
been conducted at the same design point, i.e. at the same values of the explanatory variables.
She then assesses her median value, go, of the absolute difference, |Z (0)|, between the observed
values of the response variable after these two virtual experiments.

Since the distribution of Z(p) is symmetric about zero, see (5.15), the assessed median
qo of |Z(g)| is exactly the upper quartile of Z(). In fact, Pr{|Z )] < q;)} = 0.5 implies
that Pr{—go < Z(g) < qo} = 0.5, which implies from symmetry that Pr{Z( < qo} = 0.75.
Similarly, from (5.14), each upper quartile ¢;, for j = 1,--- , s will be assessed as the median
of the absolute difference |Z(;)| given that Z1 = 21, -, Zr(;) = 2x(j)-

In assessing the remaining conditional medians g;, the choice of the conditioning values
21,22, Zk(5), for j =1,2,--- ;5, is an important issue. As mentioned before, the method
of Garthwaite and Dickey (1988) uses only one hypothetical data point z;, for which they
suggested a value of z; = qo/2. They argued that, this choice will give a conditioning value
that is not too close to gg, so as to prompt a significant change in the expert’s opinion in
assessing q1. This value of z; is, at the same time, not too far from qp, so as to represent an
acceptable value for the expert to condition on.

In our implementation of the extended me‘phod, the above two criteria will be considered
in choosing values for z;, i > 1. This means that the values should result in a considerable

change in the expert’s opinion, while the expert still find them plausible values. To attain
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this, we take z1 = go/2, following Garthwaite and Dickey (1988). Then we generate four extra
set;s,‘of hypothetical data, for j = 2,---,5, the jth set consists of k(j) = 2/~1 data points.
The ﬁfst 29=2 data points of each set, namely z1,--- ,, 25j-2, are taken as the same elements
of the previous data set, while the new extra elements zgj-2,4, - ,,23;-1, are generated as
follows.

Fori=2/"241,...,2/71 we generate z; as random variates from a population with a
median of gp/2. Hence, we choose each z; as the absolute value of a normal variate with zero
mean and a variance of (go/1.349)2. Thus, the interquartile range of this normal distribution
is go, and the upper quartile of the signed variates, which is also the median of the unsigned
ones, is exactly go/2.

For any data set j, j = 2,.--,5, if the generated values fail to satisfy the following

condition
k() 2 2
2i1 % 3
===t L - 5.26
Wy S \1®) (>:29)
we resample the new elements z9j-2,1, " ,, Zpi—1, from the same normal distribution, until

(5.26) is satisfied. This guarantees that the generated data should prompt the expert to
revise her opinion by a substantial amount.

To implement the proposed procedure, The expert is asked to perform an assessment
task that consists of s = 5 steps. In each step j, for j = 1,---,5, the software presents an
interactive graph to the expert. The graph in Figure 5.2 is an example of the graph presented

to the expert by the software at step j = 3.
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§{ Ehciting the distribution of ithe normal ervorwatianoe S i 3 o S = B % % : M

The thick black Tine marks your onginal oithe ian difference b i St the same design point.
But WO i wene ducted at wach of a number of design poirts.

The difference t wach par of s marked by an amow in the diagram —

thie nenw differences are marked by green armows and earlier ones (or the earfier one) by bladk arroes.

The median valuse of these amows is also -tra d-poirting arrow.
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Now how big do you think their ditference would ba?

‘Phease give your median assessment by dicking on the horizontal kne.

(Your assessmertt should be between the red marks.)

Eliciting Conditional Medians of The Absolute Difference of two resp atthe same design point

. , T T TT \ , \ , , \ , ;

; } } | } f } } } } } i
00 10 20 | 3.[i 40 50 o 78 80 80 100 110 120

Median of 4 data points

Absolute Difference Assessed median at 4.8326

Figure 5.2: Assessing a median value conditioning on a set of data

This gréph shows the expert’s first unconditional median gy drawn as the thick black long
line and the more recent assessed median in the second step (j — 1 = 2) as the other thick
green long line. The graph also shows a number of k(3) = 23! = 4 generated data points
21, - , 24, represented by upward arrows, together with a downward arrow that shows the
sample median of this virtual data set.

The upward arrows of the data points from the previous set of hypothetical data, z; and
29, are shown in the green color, while the upward arrows of the new generated data points,
z3 and z4, are shown in the black color.

Given the virtual data set (displayed as arrows), the expert is asked to assess her current
median value g3 by clicking on the horizontal line between the two short red lines. These
are the lower limit ag computed as in (5.20) with min(v) = 1 and the initial assessment go.
The expert’s median must lie between the red boundaries, otherwise she will get a warning
message asking her to re-assess her median and satisfy this condition.

To assess g3, the expert has two obvious strategies. The first strategy (the black one) is
to look at the black line that shows her initial assessment gy, and decide where to revise this
value in the light of the new information given by the black downward arrow that shows the
median of the whole hypothetical data set z1,--- ,24. The other strategy (the green one) is
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for the expert to look at the green line that shows her most recent median assessment which
has been based on the hypothetical data set in green arrows 2; and zs. She then decides
where to revise this median assessment in the light of the new generated points z3 and z4
shown as the black arrows.

With both of these strategies, if the expert is confident about her previous assessment,
then her new median assessment should be near to this value rather than near to the new
hypothetical data. When the expert gives her new median assessment ¢s, its value is first
used by the software to compute v3 from (5.19), and then to compute ws from (5.16) using
Us.

The final output of the procedure, as illustrated in Figure 5.3, gives the five different
elicited pairs of v and w, together with the geometric mean of v and its corresponding value
of w. The expert is asked to check whether the different elicited values are close to each
other and represents her opinion well. If not, she has the option to change any of them by
going back to reassess a specific g; through pressing the corresponding ‘Change’ button for

this step, see Figure 5.3.

M 6LM ELICITATION (Ehiciting the distribution of the normal error variance) s SO B |Uf x|
Step Elicited vafue of DF EXicited value of W

1 3.6740 32.2546
2 3.0870 30.9910
3 45280 : 335489
4 43840 333635
[ 273170 300095 " Change

Average 3.6136 32.1419

[Heib? a7y |

Figure 5.3: The output table showing the elicited hyperparameters

After the expert has finished making any revision, the hyperparameters v and w are set

equal to the two values in the last row of the table illustrated in Figure 5.3.
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5.3 Eliciting a prior distribution for the scale parameter in

gamma GLMs

In this section, we propose a novel méthod for eliciting a lognormal prior distribution for the
scale paraméter of a gamma GLM. 'It is well-known that the scale parameter of a gamma
GLM, which is the reciprocal of the dispersion parameter, is in fact the shape parameter of
the gamma distribution. Our new method is a valid means of eliciting the shape parameter
of any gamma distribution once the distribution’s mean has been elicited (or the mean is
assumed to be known).

Bayesian methods have been developed for analyzing data to estimate the shape pa-
rameters of a gamma distribution, or the scale parameters of a gamma GLM. Miller (1980)
proi)osed a genéral bonjugaﬁé éléss. (;f priof; fbr the fwo it)araméﬁéré éf the ggr;irha disffi’butioh,
but he gave no method of eliciting its hyperparameters. Sweeting (1981) introduced some
suggestions for the Bayesian estimation of the scale parameters in exponential families. The
problem of unknown scale parameters in GLMs was examined by West (1985). In his work,
he discussed general ideas concerning scale parameters and variance functions in non-normal
models including gamma GLMs, (see also West et al. (1985)). However, there does not seem
to be a good method of eliciting a prior distribution for such parameters. Ibrahim and Laud
(1991) suggested a Jeffreys’s prior for the regression coefficients and an independent marginal
informative prior on the scale parameter of gamma GLM, but they did not suggest any fam-
ily of distributions fqr this informative prior. The method of Bedrick et al. (1996), which
is considered as the ﬁrst.elicitation method of informative prior distributions for GLMs, as-
sumed the scale parameter to be known and elicited priors only for the regression coeflicients.
Chen and Ibrahim (2003) proposed a novel class of conjugate priors for GLMs. They also
discussed elicitation issues and strategies of these conjugate priors. Their proposed prior
structure involves the dispersion parameter as well. However, no explicit elicitation method

was introduced for the dispersion parameter.
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5.3.1 GLMs with a gamma distributed response variable

For a continuous, positive, skewed distributed response variable ¢ in a GLM of the form,
Y =g(p) = 9(E(C|X)) = a+ p1X1 + BoXo+ - + B Xm, (5.27)
the observzitions are often assumed to follow a gamma distribution, say
¢ ~ Gamma(A, 6),

where A and 4 depend on X. Its pdf is

1

AA—1_—6¢
]."‘(/\)0 e

S(¢IA0) = » GAE>0, (5.28)

where A is the shape parameter, 6 is the rate parameter or the inverse of the scale parameter.

It is well-known that
p=E() =)0, o%=Var(() = \/6% | (5.29)

For the gamma GLM in (5.27), with any monotone increasing link function g(.), the
methods discussed in Chapters 3 and 4 can be used to elicit the prior distribution of the

regression coefficients
é: (Of, ;61) 521 M) ﬁm)’ (530)

which represents the prior distribution of y, i.e. reflects the prior knowledge about the ratio

A/6. We assume that the prior distribution of this ratio has already been elicited as
g9()/8) ~ N(Xob, Xo¥X,), (5.31)

where b = E(B), ¥ = Var(8), have been assessed using methods given in the previous
chapters, and the vector X, denotes all explanatory variables to be at their reference points.

Having elicited this prior for the ratio A/, the prior expert’s opinion about one of the
hyperparameters A and 6 must be quantified to complete the prior structure of the gamma
GLM model. In what follows, expert opinion about the scale parameter A is modelled by

a lognormal prior distribution and we propose an assessment method for determining the
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hyperparameters of this distribution. As discussed before, the proposed method can be also
used to elicit a shape parameter A of any gamma distribution.

We base our method on a gamma distribution with A as the only unknown parameter,
assuming p to be already assessed or completely known. For gamma GLMs, the elicited
vector b can be used to obtain a single value of y, say o, from (5.31). As we assume that

the link function g(.) is monotonic increasing, the median value of A/ is then
po = g~ (Xgb). (5.32)

We take the gamma distributed random variable ¢ defined in (5.28) and change parameters

by putting § = A/u as in 5.29. This gives

A A
f(CI/\,M)=F—(1X5(%> @ causo, (539)

We let

C
W = 34
= (5 )

and then the pdf of W will depend only on A, i.e. W ~ Gamma(A, \). This has the form

__]'_ A, A1 —Aw
f(w|>\)—r(>\))\w e ™, w,A>0. (5.35)

Our aim now is to find some meaningful strictly monotonic function in A, such that the
expert can quantify her opinion about this function effectively. The expert cannot answer
questions about /\ directly, as a gamma distribution pararﬁeter has little meaning to an
expert because it is not an observable quantity. Instead, the expert should be asked about
an observable quantity that directly relates to the observable gamma variate, and which can
be monotonically transformed to A. The expert can thus be asked about any quantile of
the gamma distribution as an observable quantity, provided that it is a strictly monotonic
function in A. In what follows, we show that quantifying the expert opinion about the lower
quartile of the gamma distribution in (5.35) will lead to a full prior distribution for A, and

that this quartile is a strictly monotonic function in A.
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To check the monotonicity of different quantiles in A, let F(w, A, A) be the cdf of W, then

it can be written in the form of a regularized gamma function as follows

YA A w)
Flw, A\ A) = ——=—=, .
(w2, %) = T35 (536)
where (A, A\, w) is a form of the lower incomplete gamma function,
Y\ w) = Mer-le—Mge, (5.37)

Ji=0
Note that it differs from the usual lower incomplete gamma function y(A, w) in that the latter
does not contain A* in the integrand.
It is clear that the function F(w, A, A), as a cdf of W, is strictly monotonic increasing in

w. But, as a function in A, the usual cdf

F(w,A);lsz(:\_‘;’),‘ | C (5.38)

as a regularized gamma function is strictly monotonic decreasing in A. The proof of this fact
is given in Tricomi (1952), see also Gautschi (1998).

We next show that the same type of monotonicity is true for the function F(w, A, A) in
(5.36). This helps in finding a range of quantiles that are monotonic functions in A.

In fact, following the note of Koornwinder (2008) for F'(w, \), we can write

T(A A w) (A A, w)
) YW\ w) + T\ w)’

F(w, M) = (5.39)

where (), A, w) takes the form in (5.37), and T'(}, A, w) is a form of the upper incomplete

gamma, function, i.e.

DA\ w) = MiA—le=Mgr, ‘ (5.40)

t=w

Differentiating (5.39) with respect to A, we have

6F(zg:\)\, N _ r':(i\ ) {7 O ) ar‘(g, AA,w) o A,w)@_%_’;’_@} , (5.41)

The quantity in curly braces can be written, after getting the derivatives as,

A2 { /: w ()22 log(t/u) — (¢ — w) dudt}_ (5.42)

u=0
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So, the function F(w, \,)) is monotonic decreasing in A if log(t/u) — (t — u) > 0 in the

integration domain, i.e. if

o0 . w .
/ te~tdt > / te~tdt. (5.43)
t t

=w =0

Apparently, the above condition is fulﬁlied if
w < median of Gamma(2,1) = 1.678. (5.44)
Hence, from the positive skewness of a gamfna distribution, and for all 0 < a < 0.5,
Wo < wos < E(W)=1< 1.678, YA > 0, (5.45)

where w,, is the a-quantile of W.

From (5.44) and (5.45) we can see that F(w, A, A) is strictly monotonic decreasing in A
for all quantiles w, such that w < wps. However, we believe that the 'expert can ‘4efﬁcient1y
quéntify hef opinion about quartiles more easily by using the bisection method, see for
example Pratt et al. (1995). So, we choose the lower quartile, wp 25, as a monotonic function
in A since the function F(wg.25, A, A) is decreasing in A\. Note that the opposite is not true, i.e.
if w > wp5 then w is not necessarily greater than 1.678, and no monotonicity is guaranteed
for wy.75, for example.

Another reason for choosing the lower quartile and not the upper quartile, beside mono-
tonicity as discussed above, is that the lower Qua,rtile is more sensitive than the upper quartile
to changes in the the shape parameter A at any fixed value of the mean. Figure 5.4 illustrates
this fact; it shows the changes in both the lower and upper quartiles of gamma distributions
due to the change of its parameter value A, for different fixed mean values at 0.5, 5, 50, and
500. It can be seen from Figure 5.4 that the lower quartile is more sensitive than the upper

quartile to the changes in X at fixed mean values.
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Figure 5.4: Changes in quartile values with the change of ) at different mean values.

Now, since F(w, A, \) is strictly monotonic increasing in w and strictly monotonic decreas-
ing in A, for w < w5, then fixing F(w, A, A) = 0.25, the lower quartile w25 is an implicit

monotonic increasing function in A, say
Wo.25 = h* (/\) (5.46)

Hence, from (5.34), we have

Q1 = ph*(\) = h(N), (5.47)

where @ is the lower quartile of ¢, and h(.) is a monotonic increasing function of \.

The expert will be asked to assess three quartiles of her prior distribution for ¢J;. Then,
from the monotonicity of k(.) in (5.47), these quartiles can be transformed into the corre-
sponding three quartiles of \. We assume that the prior distribution of \ is a lognormal
distribution, and use the three transformed quartiles to solve for the two parameters of the
lognormal distribution. The required assessment tasks to implement this method using in-

teractive graphical software are detailed in the next section.
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5.3.2 Assessment tasks

The expert is questioned about the lo§ver (iuartile of the gamma distribﬁtion, ()1 say. However,
she is not simply asked to give a point estimate of @1 - she is asked to give assessments that
quantify her uncertainty about it. Specifically,' she is asked to give her lower and upper
quartiles for (); in addition to her median assessment of its value. Questions that make this

a meaningful task that an expert can reasonably be asked to perform are suggested later.

o Three quartiles of Q; will be assessed by the expert, say Q1,1, Q1,2 and Q1 3, where the
median Q12 is a point estimate of @1, and Q13— Q1,1 is its interquartile range. Details

on how to ask about these quartiles are given later.

e Under the monotonicity of h(.) in (5.47), the three assessed quartiles Q1,1, Q1,2 and

Q1,3 of Q1 can be transformed to the three corresponding quartiles of A, say Qx1,

Qx2 and Q) 3, respectively.

e Hence, we obtain the three quartiles Q) 1, Qa2 and @y 3 of the prior distribution of A
given u, as |

Qri=h H(Qui), i=1,23, (5.48)

where h~1(.) can be implemented by numerically inverting the incomplete gamma func-

tion F(w, A\, A) via a simple search procedure.

e From (5.47) and (5.48), if the three assessed values Q1,1, @1,2 and Q1,3 are the three
quartiles of Qy, then @)1, @2 and Q3 are the three corresponding quartiles of Ay,

respectively. Clearly

Pr{Q1 < Qu:} = Pr{(Alp) < A7 (Qu1)}

=Pr{(Alp) < @Qx;} =0.25(3), 7=1,2,3. (5.49)

e We assume that the prior distribution of A given p is a lognormal distribution with two

hyperparameters a and b of the form

1 —(In X — a)?
FO) = s exp | 0L
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The properties of the normal distribution are used to estimate @ and b from the trans-

formed assessments @y ;, ¢ = 1,2,3.
e Since, from the assumed lognormal prior distribution in (5.50), we have
(InAlw) ~ N(a,b), (5.51)

and using the fact that b = IQR/1.349, then clearly

a=In(Qsg), b= 2 (QA’31).;42“ (@), (5.52)

e The prior structure of the gamma GLM parameters take the form

Flus Ay = f(p) x F(Alp), (5.53)
where f (,u) can be obtained from (5.31), and f(\|p) is given és'lognormai(d, b)

This elicitation method has been implemented in graphical user-friendly software that au-
tomatically estimates the two hyperparameters of the lognormal distribution. The soft-
ware has been developed as an add-on to the PEGS-GLM (Correlated Coefficients) soft-
ware for eliciting the scale parameter A of the gamma GLM. It is also freely available at

http://statistics.open.ac.uk/elicitation as a stand alone version, PEGS-Gamma, for eliciting

the shape parameter X of a gamma distribution with a known mean.

In the former case, the median po and and the lower quartile @Q; of the response variable
¢ at the reference point have already been elicited, see (5.32). For the latter case, the expert
is asked, in a dialogue box, to assess her mean value po and the lower quartile @1 of the
gamma random variable. In both cases, these two assessments represehts the first assessment
step, from which the software suggests reasonable initial values for the other two required
assessments.

The median value Q1 2 is set equal to the assessed value of Q1, while the other two quartile

values (1,1 and ()1 3 are suggested as

1 .
Q= Q2 — gmln(Ql,m po — Q1,2), (5.54)
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These initial suggested values are used in (5.47) and (5.49) to get the three quartiles @, |,

Qx2 and QR,3 of the parameter A, respectively. The inversion of (5.47) is done by the software

Q3 =Q12+

through a simple search procedure.

As in (5.52), these quartiles are used to compute the two hyperparameters a and b of the

assumed lognormal distribution of A. Using a and b, the mean value of A, say ), is computed

from the lognormal distribution of A:

Then py is used with the assessed mean value pg to draw the pdf graph of the gamma
distribution, Gamma(uy, x/po)- A main panel is presented to the expert showing this pdf

graph; see the upper graph of Figure 5.5. The thick black line on this graph represents the

mean value ug.

1
pr = exp(a + ;b%).
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Figure 5.5: The main software panel for assessing gamma parameter

For statistical coherence of the assumed normal distribution of In()), the two normal

quartiles In( R’l) and ln(Qg‘ﬁ) should be symmetrical around the normal mean, a = In(Q) 2).
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To attain this, we assume that the expert is always more confident in assessing the median
value, than assessing the other two quartiles. So we treat her original and t;ansformed
medians Ql,g and @), respectively, as being correct. Then we suggest two céherent sets
of quartiles Q1,1, Q1,3 and Qx1, Qa3 to replace the initial assessments QF;, Q73 and QY ,,
QR,B, respectively, as follows. First, @)1, Qx3 are computed as the actual first and third
quartiles, respectively, of a lognormal distribution with the two elicited parameters a and b.
Then Q1,1, Q1,3 are computed from Q3 1, @23, respectively, using (5.47) and (5.49).

The first group of values in the right-hand side panel of Figure 5.5 gives the values of the
three suggested coherent quartiles Q1 1, le’z and @y,3. These quartiles are also drawn as the
three blue lines in the upper and lower pdf graphs of Figure 5.5. The second group of values
gives the three quarpiles of A, @1, Qa2 and Qx3. The elicited values of a and b are shown
as the third grdup of values in the same panel.

The lower graph in Figure 5.5 represents the elicited distribution of the lower quartile
Q1, with the three vertical blue lines representing Q1,1, Q1,2 and Q1,3. The graph is inteﬁded
to help the expert check that the distribution is a reasonable representatioﬁ of her prior
knowledge of ;. Although we do not assume any specific family of distributipns for Q1,
the pdf graph is drawn using pointwise numerical derivatives of the cdf of @;. This cdf is
obtained as in (5.49), not only for the three quartile points, but also for a sufficiently large
number of points. A set of 1000 points covering the whole range of Q; has been used.

Hence, Figure 5.5 shows all the assessed and suggested quartiles of @1 and A, with the
two corresponding values of a and b. The two pdf graphs of A and Q; are also presented
to the expert to show her the impact of these quartile values and hyperparameters on the
two distributions. The main assessment task that the expert is asked to perform uses the
following type of question. Let us suppose that the variable that has the gamma distribution
is the period of time that a patient with some medical disorder may stay in hospital. Then
the expert will be asked to consider the length of time that a hypothetical patient, John,

will spend in hospital. She is told, “John has this disorder and will spend a time in hospital.

146



Suppose he is fortunate and does not spend as long as most people in hospital. Specifically,
suppose exactly 25% of patients with John’s disorder spend a shorter time in hospital than
John. Give your median assessment for the length of time that John spends in hosp&tal. Now
give your lower and upper quartiles for this length of time.”

The expert will be shown suggested coherent assessments and graphs. If she finds the
suggestions a reasonable representation of her opinion, she can accept them, which finishes
the assessment procedure. If they do not represent her opinion adequately, she has the
option of directly reviewing the median value Q12 of Q1, or indirectly reviewing the quartiles
Q1,1 and Q13 by changing the value of the hyperparameter 6. As discussed before, for
statistical coherence, changes must be made first to the value of b and then transformed into
corresponding coherent changes in Q1,1 and Q1 3.

In principal, the expert can change .Ql,z to any value in (0, o), and she can change b to
any positive value. However, to get a unimodal distribution for @i, some restrictions must
be imposed on the values of a and b, as detailea below.

Although the relation between Q1 and A, as given in (5.47), is strictly monotonic increasing
for all A > 0, the numerical second derivative of h()\) reveals a critical point of zero at
A = 0.5045. Therefore, the pdf of @ is not guaranteed to be unimodal if the elicitéd values
of a and b lead to a non-neglectable probability of A < 0.5045.

| To avoid an undesirable appearance of the pdf of @1, we restrict the elicited lognormal

hyperparametérs a and b to satisfy

- a+0.684

;—— > 3.11. (5.57)

This condition insures (from the standard normal distribution) that

} < 0.001, (5.58)

In(A)—a _—0.684—a
Pr{ 5 < 5

i.e. it guarantees that

Pr() < 0.5045) < 0.001. (5.59)
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If condition (5.57) is not satisfied, the right hand side panel on Figure 5.5 will only allow
the expert to increase the value of Q) 2, hence increasing a = In(Q1,2), or directly decreasing
the value of b.

A "Reset’ button is available for the expert to return at any time i;o the initial coherent set
of suggestions and graphs and review them again if she needs to. When the expert is happy
with the quartile values and the. corresponding pdf graphs, she clicks ‘Done’ and obtains the

two corresponding hyperparameters a and b as the output of her assessments.

5.4 - Concluding comments

To elicit an informative prior distribution for normal and gamma GLMs, expert opinion
must be quantified about both the regression coefﬁcients and the extra parameters in these
models. In this chapter, two elicitation methods have been proposed to quantify expert’s
opinion about a prior distribution of the random error variance in normal GLMs, and a prior
distribution for the scale parameter in gamma GLMs.

A method of assessing a conjugate inverted chi-squared prior distribution for the error
variance in normal models has been proposed. The method quantifies an expert’s opin-
ions through assessments of a median and conditional medians of the absolute difference
between two observations of the response variable at the same design point. Conditional
assessments have been based on various sets of hypothetical future samples. These assess-
ments depend only on the random error and have been used to elicit the inverted chi-squared
distribution. A computer program that implements the method is available as an option
in the PEGS-GLM (Correlated Coefficient) software and also as an add-on to any other
elicitation software for normal models, PEGS-Normal. Both versions are freely available at

http://statistics.open.ac.uk/elicitation.

A novel method for eliciting a lognormal prior distribution for the scale parameter of a
gamma, GLM, or the shape parameter of any gamma distribution, has also been proposed.

The method depends only on quantifying an expert’s opinion about the lower quartile of
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a gamma distributed random variable. This lower quartile is itself a random variable; for
which the expert assesses a median value as a point estimate and an interquartile range. An
example of questions that can be addressed to the expert has been given. The interactive
graphical PEGS-Gamma software implementing this method is user-friendly. It gives coherent
suggestions for all the required assessments and presents instant graphical feedback. To the
best of the author’s knowledge, this is the first piece of interactive software that is designed
for eliciting a prior distribution of the shape parameter of a gamma distribution or the scale

parameter of a gamma GLM.
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Chapter 6

Eliciting Dirichlet priors for

multinomial models
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6.1 Introduction

Multinomial models, consisting of items that belong to a number of complementary and
mutually exclusive categories, arise in many scientific disciplines and industrial applications.
For example, they are frequently encountered in geology for different compositions of rocks, in
microeconomics for patterns of consumer selection preferences, in political science for voting
behavior. Other application areas include medicine, psychology and biology.

For mathematical coherence, the probabilities of each category must be non-negative and
satisfy a unit-sum constraint. The multinomial distribution describes this model as a direct
generalization of the binomial distribution to more than two categories.

It is well-known that the Dirichlet distribution is a conjugate prior for the parameters
of multinomial models. The distribution preserves the unit sum constraint of multinomial
probabilities and imposes a simple Dirichlet pattern of dependency between them. This
structure gives negative correlations between the probabilities of categories, as will be shown
later.

A different way of t}ﬁﬁking about prior distributions for multinomial models is to use the
multivariate normal distribution as a large sample approximation to the Dirichlet distribution
or to the distribution of the vlog contrasts of the multinomial probabilities. Another option is
to estimate the exact distribution of log contrasts using a Monte Carlo sample. Generalized,

nested or mixed forms of the Dirichlet distribution have been also introduced and suggested

as suitable priors for multinomial models. For more details on possible pixii(r)rﬂai?stfifbutigﬁsr for

multinomial models see, for example, AO’Hagan and Forster (2004).

Eliciting parameters of multivariate distributions is not, ‘in general, an easy task. It is
even more complex when the variates are not independent, in which case summaries of the
marginal distributions should be assessed, together with effective and reliable summaries of
the dependence structure of the joint distribution [O’Hagan et al. (2006)]. In this chapter, our
proposed method makes use of assessments of marginal beta distributions. Decomposition

of the Dirichlet elicitation process into the assessment of several marginal beta distributions
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helps reduce the complexity of eliciting a multivariate distribution.

In Section 6.2, we develop a method of quantifying opinion about a beta prior distribution
by the assessment of three quartiles. The method will be generalized to elicit a Dirichlet
distribution in Section 6.3. The elicited beta univariate distribution will also be used to
construct more flexible distributions in the next chapter, including the generalized Dirichlet ‘

prior and a Gaussian copula function for the prior distribution.

6.2 Eliciting beta parameters using quartiles

6.2.1 Introduction

The beta distribution is widely used in Bayesian analysis as a conjugate prior for the proba-
bility 6f success in Bernoulli trials. The doinéiri of definition for the beta distribution of the
first type is the interval [0,1], which is appropriafe for the probability parameter of Bernoulli
and binomial distributions. Moreover, the beta distribution is also a conjugate prior for
Bernoulli and binomial sampling' distributions, so that the posterior distribution is obtained
through simple arithmetic. The wide range of valid values of the two hyperparameters of the
beta prior gi%/es it great flexibility and its pdf has varied shapes. In this sense, the beta dis-
tribution is more likely to be a reasonable model of the expert’s opinion compared with other
priors such as the uniform distribution over the interval [0,1] or the triangular distribution
suggested by van Dorp and Kotz (2002).

It seems that eliciting beta parameters is the most studied elicitation problem to date,
whether it is a beta prior for Bernoulli or Binomial sampling distfibutions, a distribution
of a probability of an event, or a proportion that ranges between zero and one. There
are ﬁany methods available in the literature for eliciting beta distribution parameters. A
comprehensive literature review may be found in Hughes and Madden (2002), Jenkinson
(2007) or O’Hagan et al. (2006).

The available methods for beta elicitation can be classified into two general classes of
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elicitation methods, yariable interval and fixed interval. In the variable interval methods, the
probability is fixed and the expert assesses an interval that gives this probability. In the fixed
interval methods, the interval is fixed and the expert assesses the probability that the event
of interest will be in that interval. Asking about quartiles is an example of the ﬁrst methods,
while assessing probabilities is an examéle of the second class of methods.

Beta elicitation methods vary in the quantities that the expert must assess. She may be
asked to assess a location value such as the mean, the median or the mode. Also, a scale
value must be assessed, such as the probability of being in an interval, the boundaries of an
interval, or the mean absolute deviation about a location value. These quantities may be
converted into the hyperparameters in exact forms or through numerical approximation.

Regarding the number of required assessments, most of the available methods use only
two assessed quantities, usually one for location and the other for scale. These give estimates
of the two beta parameters. Although only two assessments are mathematically needed to
elicit two unique parameters, some methods use over-fitting through assessing three or more
quantities, followed by some sort of averaging or reconciliation.

In this section we propose a new method of eliciting the parameters of a beta prior
distribution for the binomial success probability. Assessments of the median and two quartiles
are elicited. A compromise is needed to.reconcile these three assessments into two unique
parameters. We use a normal apprqximation to the beta distribution to estimate initial
values of the beta parameters, followed by a least-squares technique to optimize the two
initial values. According to the classifications given above, thé proposed method is a variable
interval method that uses three assessments, a median and two quartiles.

We believe that it is better to elicit a median as a location value and quartiles for scale,
than, say, to elicit a mean and other quantiles. The median and quartiles are easier for an
expert to assess as they are obtained by the first two steps of equally likely subdivisions (bi-
section method). The expert can be asked about the median as the value that the probability

of success is equally likely to be above or below. Then we ask the expert to sub-divide the
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interval above the median into two equally likely intervals for the probability; her assessed
value is her upper quartile. The same concept is used for the interval below the median in
order to obtain her lower quartile.

van Dorp and Mazzuchi (2000, 2003, 2004) introduced a numerical algorithm and software
to specify the parameters of the beta distribution and its Dirichlet extension using quantiles.
They used the median as a measure of central tendency with any other single quantile as
a measure of dispersion. Although they proved that this suffices mathematically for the
existence of a unique solution for beta parameters, it is more useful in elicitation contexts to

use over-fitting as a means towards better representation of an expert’s opinion.

6.2.2 Normal approximations for beta elicitation

To estimate the two parameters of the beta distribution using three assessed quartiies, we
propose a two step approach. In the first step, a normal approximation for the beta distri-
bution is used to transform and reconcile the three assessed quartiles as two initial values for
the beta parameters. In the second step, a numerical least-squares method is applied to the
initial parameter values so as to optimize them. The aim is to find pafameter values that give
nominal quartiles that are as close as possible to the assessed values. This section is devoted
to the proposed normal approximation, while the least-squares optimization is discussed in
Section 6.2.3 below.

A method that directly fits a beta distribution to the assessed median and two quartiles
is given in Pratt et-al. (1995). They used a normal approximation for the beta distribution
together with averaging. The method was also used as the main assessment method in a study
of the effect of feedback and learning on the assessment of subjective probability distributions
(Staél von Holstein, 1971). Our proposed method adopts the technique of Pratt et al. (1995),
but with a different normal approximation and a new compromise to get initial parameter
values. We also add a least-squares optimization technique. In what follows, we summarize

the argument of Pratt et al. (1995) and then propose a different normal approximation and
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a different compromise.
Let p be the success probability of concern, and assume that p has a conjugate standard

beta prior distribution of the form

P I1-p)t 0<p<1,a>0,b>0. (6.1)

1
fp) = D)

Pratt et al. (1995) stated that the transformation

z=2{lp - 1/3)]"* - 11 - p)(a - 1/3)]"*} (6

has approximately a standard normal distribution. Let ¢; be the ith quartile of p that is
assessed by the expert, for i = 1,2,3. Using the assessed lower quartile ¢; and the assessed

median ¢y, we get the following two equations from (6.2):
Pr{z <2{la®-1/3)]"* - [1-a)(a—-1/3)"*} } = 025, (6.3)

Pr{z <2{la(b-1/3)" - (= g2)(a /3)2}} = 0. (6.4)

Solving (6.3) and (6.4) for a and b gives

a1 =ci1qz + % (6.5)
and
by = (1 ) + 5 (6.6)
Wheré
o= 0112 {21 — )2 - (1 — )] 2}
Similarly, the assessed upper quartilé, q3, gives the equé‘oion
Pr {Z <2 {[qg(b —1/3)]2 —[(1— g3)(a — 1/3)]1/2}} = 0.75. (6.7)
Solving (6.4) and (6.7) for 'a and b gives
as = caqa + % (6.8)
and
by = co(1 — g2) + %, (6.9)
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where
2 = 0.112 {[aa(1 - a0)]2 - gs(1 - ) /*}

The compromise of Pratt et al. (1995) is simply to estimate a and b as the average of (6.5),
(6.6), (6.8) and (6.9), i.e.

_ar+ag

2 (6.10)
b= b1 + by
=

However, Pratt et al. (1995) did not mention the theoretical derivation of the approx-
imation in (6.2), nor its accuracy. So, we tried to use another approximation that is still
mathematically tractable, but whose justification and accuracy have been investigated. Pa-
tel and Read (1982) give a good review of some accurate normal approximations to beta
variables. They describe the following normal approximation as a simple yet accurate ap-
proximation.

If p has a beta distribution of the form in (6.1), then the transformation
z =2{[p(b - /1" - (1 - p)(a — 1/4)*}, (6.11)

has an approximate standard normal distribution. The absolute error of this approximation

is of order

)
Va+b

O(

We adopt the approximation (6.11) to propose a new elicitation method for the beta param-
eters a and b using the three assessed quartiles ¢;, 1 = 1,2, 3.
Instead of direct averaging, we introduce a new compromise, making use of the charac-

teristics of the normal distribution. In fact, it is well-known that
20.75 — 20.25 = 1.349, (6.12)

where 295 and zg.75 are the lower and upper quartiles of the standard normal distribution,

respectively.
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In view of the approximation (6.11), we have

[g2(6 — 1/4)]'? = [(1 ~ g2)(a — 1/0)]/% = 0. (6.13)

2025 = 2{ {0~ /91" - [(1 - a)(a - O}, (6.14)
2075 = 2 {las(b = /0] = [(1 - @) (a — 1/4)]/2}. (6.15)

Substituting with (6.14) and (6.15) in (6.12) we get the new compromise between q; and g3

as

{las(® = 1/4)"2 = [(1 - gs)(a - 1/4)?} -
1349

{lan(— 17402 = [0 - @)@ - 170/} = = (6.16)
Solving (6.13) and (6.16) for a and b, we get
a 1
=cqo +» 1 (6.17)
and
b=c(l—gq)+ i, (6.18)
where
2
- (1'3:9) {l(1-a)? - la( - @)+

31 - @)* ~ 21 ~ a0)] 2}

We argue that our method preserves the assessed median value and the only compromise
is between the two quartiles. We believe this will represent the expert’s opinion better. The
expert usually éssésses her median with more certainty and less bias than her lower and
upper quartiles. By using the new compromise of quartiles in (6.16) and keeping the median
equation (6.13) fixed, we reflect the probable greater accuracy of the median assessment.

According to the accuracy of the normal approximation, the proposed initial values of the
beta parameters, given in (6.17) and (6.18), lead to nominal values for the beta quartiles that
are close to the assessed quartiles. However, they are not guaranteed to be the parameter
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values that minimize the differences between nominal and assessed quartile values. This is
not ideal, so we just treat equations (6.17) and (6.18) as giving initial parameter values that

can be improved upon.

6.2.3 Least-squares optimizations for beta parameters

Oakley (2010) gave a least-squares method for choosing beta parameters a and b that minimize
Q = [F(q1,0,b) - 0.25]" + [F (g2, 0,b) — 0.5 + [F (g3, a,b) — 0.75]", (6.19)

where F(z,a,b) is the cdf of a beta distribution with parameters a and b at the point z.

The same approach has been implemented in the SHELF elicitation framework developed
in Oakley and O’Hagan (2010). They introduced an R package of templates and software
for conducting elicitation, within which minimizing @ in (6.19) was used to estimate beta
parameters from assessed quartiles. However, they do not use any éxplicit normal approx-
imation to a beta distribution when deriving the initial estimates of the beta parameters.
Instead, they just transform the assessed beta quartiles into the mean and variance of a nor-
mal distribution, as if the quartiles were assessed for a normal distribution. The mean and
variance are then assumed to be those of a beta distribution, from which initial values for
the parameters can be computed.

Our accompanying elicitation software, PEGS-Dirichlet, implements programs written by
Flanagan (2011) for the Java scientific library. These numerically minimize (6.19), which
cannot be minimized analytically. They use a multidimensional technique called the down-
hill simplex method. The method was introduced by Nelder and Mead (1965) as a quick
multidimensional minimization method that uses only function evaluations, not derivatives.

To constrain beta parameters to be positive, we transform them to a logarithmic scale.

Hence we actually minimize

Q = {Flar, exp(a*), exp(b")] - 0.25) + {Flaa, exp(a”), exp(b*)] - 0.5
+ {F|gs, exp(a*), exp(b*)] — 0.75}2 ,
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for o* and b*, with initial values as in (6.17) and (6.18), but on the logarithmic scale, i.e.
log(a) and log(b). The final resulting beta parameter values are thus exp(a*) and exp(b*).
Our elicitation software, PEGS-Dirichlet, presents an interactive graph to the expert
showing the previously assessed probability medians of all categories. The expert is asked
to assess a lower and an upper probability quartile for each category by clicking on the
graph. Once the two required quartiles are assessed for any single category, the proposed
method of beta parameter elicitation is implemented by the software on the probability of
this category. A pop up window opens showing the pdf graph of the elicited beta distribution
with the location of the three assessed quartiles. This gives instant feedback to the expert,

see Figure 6.1.
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Figure 6.1: Assessing probability quartiles of each category

If she is not satisfied with the fitted beta distribution, the expert can simply change her
assessments of the two quartiles. The whole elicitation process is applied again whenever the
expert changes her quartile assessments. The pdf curve is interactively changing to show the

direct impact of changing quartiles.
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On finishing the elicitation process for all categories, the beta parameters are then com-

promised to estimate the Dirichlet hyperparameter vector as discussed in Section 6.3, below.

6.3 Eliciting a Dirichlet prior for a multinomial model

6.3.1 Introduction

A limited number of attempts have been made to develop elicitation methods for Dirichlet
parameters, see Chapter 2 for more details. Jenkinson (2007) and O’Hagan et al. (2006)
discussed two methods for Dirichlet elicitation. Namely, the method of Dickey et al. (1983)
and that of Chaloner and Duncan (1987).

The elicitation method suggested by Dickey et al. (1983) starts by assessing the probability
of each éategory d‘irectly from the expert. She will then be given a hypo'theti‘cal fﬁture sample
of a fixed size and told the>nur'nber"’of items in éach category. She is asked to re-assess the
probabilities given this hypothetical sample. The equivalent sample size that corresponds to
her priof knowledge can thus be estimated using Bayes’ theo'rem.‘

Chaloner and Duncan (1983) give a method for eliciting a beta distribution. Chaloner
and Duncan (1987) generalize this method and give an interactive graphical tool for Dirichlet
eljcitat_ion. This is based on assessing the sample size and the modal values of Dirichlet
variates, and then giving feedback to adjust the parameter values.

As mentioned before, van Dorp and Mazzuchi (2003, 2004) introduced a numerical algo-
rithm that yields the Dirichlet parameters from quantile assessments. Their algorithm uses k&
quantile assessments to estimate all the parameters of a k-dimension Dirichlet distribution.
However, we believe that it is better to assess more than k quantiles and then apply some
form of reconciliation to estimate the parameters.

Assuming a Dirichlet prior er the success probabilities is one way of reconciling separate
marginal beta prior distributions. Eliciting a Dirichlet prior by using assessed beta marginal

distributions was outlined in Bunn (1978, 1979). However, his elicitation method used the
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hypothetical future sample teéhnique. He stated that the application of the usual univariate
quantile methods may generally be difﬁcqlt and tedious in practice beqause of the multivari-
ate nature of the Dirichlet distribution. However, the availability of interactive graphs and
efficient computing enables ﬁs to use the quantile method in an elicitation method that is
easy fqr the assessor and quick.

In what follows, we propose some reconciliation methods, based on the Dirichlet dis-
tribution, of combining beta marginals that have already been assessed using the method

introduced in Section 6.2.

6.3.2 The multinomial and Dirichlet distributions

Let the random vector X = ( X1, Xo, -, X,,) be multinomially distributed with k cat-
egories, n trials and a vector of probabilities p = (pl, D2, -, Pk)’ taking the form

— n! T1,,T2 Lk 6.20

f($1,$2,"',$k)—mp1 D™ Py (6.20)

0<z;<n, Yzi=n, 0<p <1, Ypi=1,

or, equivalently, in the form

flz1, 22, 3x) = i s p (L= pr—p2— = pe-1)™, (6.21)

0<z;<n, Yzi=n, 0<p; <1, Yp <1

A conjugate prior for the parameter vector p is the Dirichlet distribution, which has the form

F(l") a1—1_az—1 ap—1
e = e 6.22
ﬂ'(plvp2: 7pk) F(GI)P(GQ) . F(ak)pl p2 pk 1) ( )

ngzsla Zpizla a’£>0) Nizah
or, equivalently, the form

F(N) a;—1_ag—1 ap—1
. = ce — — e — D , 6.23
W(phpZa 7pk—1) F(al)r(ag)"'l—\(ak)pl Py (1 D1 D2 Dk 1) ( )

0<m<1, Ypm<l, a>0, N=>Ya.
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It is well-known that the expectations, variances and covariances of the Dirichlet variates
pi, fori=1,2,---  k, are given by

aq

E(p) = (6.24)
Var(p;) = ;—géVN——J:‘I)) (6.25)
Cov(pi,p;) = m (6.26)

To elicit the vector of hyperparameters a = (q;, aq,, ag)» we use the direct relation

Ty
between the Dirichlet distribution and its special univariate case, the beta distribution. We
have already developed, in Section 6.2, a method of eliciting the two hyperparameters of a
beta distribution. The hyperparameters of the Dirichlet distribution can be induced from
those of the univariate beta distributions through some form of reconciliation. This can be
done using either the standard marginal beta distributions of the multinomial probabilities, or

the conditional scaled beta distribution of each of them. In what follows, these two proposed

approaches are given in detail.

6.3.3 The marginal approach

Consider the form in (6.20) for the multinomial distribution with the conjugate prior Dirichlet
distribution in (6.22). It is well-known that, from (6.20), the marginal distribution of each

z; is a binomial distribution with the two parameters
ni=mn, p, =12,k

It is straightforward to show, using the Dirichlet pdf in (6.22), that the marginal distribution

of each p; is a beta distribution:
p; ~ beta(a;, ;), fori=1,2,---k, (6.27)

where

o = g, fori=1,2,---,k,
& (6.28)
ﬁizzaj) ) fori=l,2,-~-,k.
J#i
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Assessment tasks

Exploiting the beta marginal distribution.s, the elicitation process may be divided into &
steps. At each step, the expert will be asked to assess three quartiles for p;, the binomial
probability of category i (i = 1,2,--- , k). See Figure 6.1, where the lower and upper quartiles
have already been elicited for the first two categories. These quartiles can then be used to
estimate the two hyperparameters «; and G; of the beta prior distribution of p;, as proposed
in Section 6.2. Since we use the mgrginal approach, the categories here are interchangeable.
It does not matter where to start assessing nor the order of the categories.

To reconcile these separate marginal beta distribution into a Dirichlet distribution, we

use a least-squares technique as follows.

Least-squares techniques

It is clear that the system of equations in (6.28) does not have a consistent solution, a =
(a1, apg, -, ai)- From (6.28), each marginal step of the elicitation process provides

estimates of a; and N;, namely
a; = o, . fori=1,2,---,k, (6.29)

and

k
Ni=coi+Bi=)» a; fori=1,2,-,k (6.30)
Jj=1

The estimated hyperparameters must fulfill the unit sum constraint of the probability expec-

tations, i.e. they must satisfy '

where

S
u’t"Ni7

i=12,--- k. (6.31)
Lindley et al. (1979) investigated the reconciliation of assessments that are inconsistent with

the laws of probabilities (incoherent). They developed least-squares procedures as recon-

ciliation tools that may be used for any expert’s incoherent assessments. Following their
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approach, we propose the following options for reconciling different incoherent estimates of
p; and N, yielding coherent estimates u; and N*, respectively.

Options for y}:

- 1. Normalize each p;, as required for the Dirichlet distribution, giving

pr=—t =12k (6.32)
=1 Hj
2. Minimize the sum of squares of differences between p} and p;,7 =1,2,--- , k, subject to

the constraint Zle pi = 1. This can be done using Lagrangian multipliers to minimize

Q as follows.

k k
Minimize Q = Y (1} — pa)> + A pf — 1). (6.33)

=1 i=1

~ Solve for p;, giving

1-F s
#;=m+_z%/ﬁ, i=1,2,- k. (6.34)

However, the values of uf computed here using Lagrangian optimization are not guaran-
teed to be positive. If negative values are found, we replace the Lagrangian multipliers
method with a numerical restricted minimization technique. The downhill simplex

method of Nelder and Mead (1965) can also perform restricted minimization as follows.

k
Minimize Q = Y (4} — mi)?, (6.35)
i=1
such that
O<p; <1, i=12---,k, (6.36)
k
>our=1 (6.37)
i=1
To solve this restricted optimization problem, for u}, ¢ = 1,2,--- ,k, our elicitation

software, PEGS-Dirichlet, implements a program for minimization written by Flanagan

(2011). The initial values for this method are obtained from (6.32).

3. The option in (6.34) changes each value of u; by adding a fixed amount. However,

the precision of each estimate, i.e. the inverse of its variance, can be used as a weight
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to reflect the expert’s confidence in each of her assessments [Lindley et al. (1979)]. A

constrained weighted least-squares procedures can be formulated as follows.

k k
Minimize Q = Y w;(u} — mi)* + A uf —1). (6.38)
i=1 i=1
where
o N a;fB; - . .
w; = [Var(p;)] ™" = |:(C‘~’z ¥ B; + D{os _}_.ﬁi)gjl , t=1,2,-- k. (6.39)

Solving for u; gives

1=
N;k:#l—l‘—“%l—__jf: i:]-)za"',k-
wiijle

Again, the minimization method implementing the restricted downhill simplex method

is used if negative values of u} are found:

Minimize Q = Z wi(uf — ), (6.40)

i=1

under the same constraints given by (6.36) and (6.37), using initial values as in (6.32).

Options for N*:

1. Since no constraints are imposed on N*, minimizing the sum of squares
) ;
Minimize Q = Z(N* — N;)?,
i=1
gives the average
k
Y o N;
N* = _2_.1;1._’ (6.41)
k
2. Using the same weights as in (6.39) gives the weighted average

k

N+ = 2aiz1 WilVi
- Tk

j=1Wj

(6.42)

as a solution of

k
Minimize @ = Zwi(N* - N;)2.

i=1

Estimating pf and N*, using any of the options listed above, makes it easy to estimate

a; by af, where

a:(:p’:(N*’ ?'=172)7k
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Implementation and feedback

We use three different combinations of the options given above as follows:

1. Direct normalization of p} as in (6.32) and the average N* in (6.41).

2. Least-squares optimization for y} as in (6.33) or (6.35), and for N* as in (6.41).

3. Weighted least-squares optimization for u} as in (6.38) or (6.40), and for N* as in

(6.42).

The software elicits three hyperparameter vectors of the Dirichlet distribution, one vector

for each of the above combinations. Each vector is then used to compute the corresponding

pairs of marginal beta parameters as given in (6.28). Three quartiles for each beta marginal

are computed numerically for each different Dirichlet hyperparameter vector. The three sets

of quartiles are then displayed to the expert and she is asked to select the set of quartiles

that best represents her opinion. The vector with the selected set of quartiles will be taken

as the final elicited hyperparameter vector of the Dirichlet prior. See Figure 6.2, where the

first two combinations are shown and the expert has selected the second one.
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The expert is still able, however, to modify any or all of the selected set of quartiles,
in which case beta parameters are computed again as in Section 6.2, and the final Dirichlet

hyperparameter vector is computed according to equations (6.29) - (6.32) and (6.41).

6.3.4 The conditional approach

Consider the form' of multinomial distribution given in (6.21); with the form of conjugate
Dirichlet distribution given in (6.23).
If

Pr_q = (p1 py - Pk—l) ~ Dirichlet(a1, ag,- - - , ax),

then it can be shown [e.g. Wilks (1962)] that the marginal distribution of any subset of p, ;

is again a Dirichlet distribution, e.g.

k
Pr) ~ Dirichlet(ay, ag,- - - , ar, Z a;), 1<r<k-1.
1=r+1

2.=(p p

For 1 <r <k—1, we can get the folloWing conditional scaled beta distributions

k
7(p,;a1,a2," ", Qry 2 izp iy @)
w(pelpr, p2, - 4 Pro) = ——————— (6.43)
’/T(B,,._l; a1,a2, * ,0r-1, zi:r ai)
— Z?:r a;—1

= . P (1 S L — ) " (6.44)

= — — , )

:B(ar: Zf:r.{-l ai) (1 - 22‘:1 pi)ar 1- ::1 Di

which are the scaled beta distributions over the intervals (0,1 — :;11 pi). The distributions

in (6.44) are also known as three parameter beta distributions, i.e.

k r—1
(prlp1,p2,- -+ ,pro1) ~ beta(ar, Y ai,1— Zpi), for1<r<k-1.
i=r+1 =1

Applying the transformation
P1, - forr=1,

p: = Dr

r—1
1-3 pi
\ i=1

, forr=23,---,k—1,

gives
" .
pr ~beta(ar, Y @), forr=1,2,--- k-1 (6.45)
. i=r+1
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Assessment tasks

The elicitation process is conducted as follows:

o The expert chooses the most convenient category to start with; we denote its probability

as pi.

e The expert assesses three quartiles for p;, which are then converted into estimates of

the two hyperparameters oy and f; of the beta distribution, beta(a, f1)-

e The expert is asked to assume that the median value she gave in the first step is the
correct value of p;1, and she then assesses three quartiles for ps. Figure 6.3 shows the
graph after the median and lower quartile of the second category have been assessed

by the expert, given the median of the first category as shown by the red bar.

| ¥ st R T T e
‘You assessed the lower quartile p of y (C: Y 2) to be (0.213).

T T— Cloxt

Elleiting Quartiles of the probabilities of Category (Category 2)

Category 1 Cafégnnz Category 3 Category 4
Categories

Figure 6.3: Assessing conditional quartiles for Dirichlet elicitation

e Dividing each of the three quartiles of p2 by 1 —p1, we get the quartiles of p5. Hence we

obtain estimates of the hyperparameters as and (2 of the marginal beta distribution of

*

Ds-
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e The process is repeated for each category except for the last one. Forr =3,4--- ,k—1,
the expert gives quartiles for (p,|p1,p2,- - ,pr—1). Dividing by 1 — Z::_ll p; gives the
three quartiles of p}, which are used to estimate the two hyperparameters o, and 3, of

its marginal distribution. (We do not require the marginal distribution of py.)

e To help the expert during this task, the software presents an interactive graph show-
ing the pdf curve of the conditional beta distribution of (p |p1,---,pr—1), forr =
2,3,--+ ,k — 1, see Figure 6.4. The expert is able to change her assessed conditional
quartiles of p, until she finds the conditional pdf curve an acceptable representation of

her opinion.
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Figure 6.4: Assessing conditional quartiles with scaled beta feedback

Eliciting the hyperparameter vector

Using (6.45), we get the following system of equations

ar = ar, forr=1,2,--- k-1,
k (6.46)
Br = Zai, forr=1,2,--- k1.
i=r+1
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Each elicited beta distribution has its own different estimate of N , given by

T_l . . .
N, = Z a; + ar + Br, (6.47)
=1
based on oy, ¢ = 1,2,--- ,r — 1, which has been estimated in previous steps.

The system of equations in (6.46), as in the marginal approach, might not be consistent

nor have a unique solution fora = (4, ¢ ai)- So, we try to find a way of averaging

2y

this system to get a vector of estima’ges at = (ai, as, v, az) that is a good representa-~

tion of the expert’s opinion. We believe that keeping the mean value fixed, where possible,
while moving from different beta distributions to a Dirichlet distribution may be a sensible

approach.

Using (6.24), put
ar

pr = E(pr) = N

T

Hence, in view of (6.46) and (6.47)

¢

Ay
— . r=1,2,- k-1,
Z o; + Br
pr = { 1 (6.48)
 fr— _
Z:.—-T—__-——’ r=k.
> o+ B
{ i=1
Since, for the Dirichlet Distribution, it is required that
k
Z#T = ]-1
r=1
we normalize the set of y,, for r =1,2,--- ,k, to get

’J‘:: [:jlr ) T:1’27"',k'
' z#i
i=1
Moreover, let

r=1
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and take

ap =prN*, r=1,2,--- k.

It remains now to find a proper estimate of N*. We take this as the average of all the

denominators in (6.48):

k

r. k-1
> lizai-Fﬂr} + o+ B
i=1 i=1

-1
N* ==
k

Changing the expert’s selection of the first category, as well as the order of conditioning
categories at each step, will lead to different estimates of g¢. To overcome this, one possibility
is to repeat the whole process several times, using different starting categories and orderings.
This will give sets of estimates a*’s, for which a simple averaging might give a suitable choice
for a*. However, showing the marginal quartiles of the marginal beta distributions as a
feedback to the expert and offering her the option of changing them seems another sensible

option.

Feedback

The feedback process for the conditional approach is similar to that for the marginal approach.
The main difference is in the relationship between the Dirichlet hyperparamgters and beta
parameters in the two approaches‘. To present the quartiles of each probability p;, i =
1,2,--- ,k, as feedback to the expert after applying the conditional elicitation épproach, we
must first compute the parameters of the marginal beta distributions.

The two parameters o; and 3; of each marginal beta distribution of p;, ¢ = 1,2, , k,
can be simply computed from the already elicited hyperparameter vector a* of the Dirichlet

distribution:

¢

o = Gy,
k
z: % * *
,Bi_—' aJ=N —a;.
J#
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These can be used to compute numerically the three quartiles of each beta marginal distri-

bution. The computed quartiles are then presented to the expert as feedback, see Figure 6.5.
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Figure 6.5: The feedback graph presenting marginal quartiles

The expert is asked to change any of the quartiles that do not satisfactorily represent her
opinion. If any (or all) of these marginal quartiles are changed by the expert, we apply the
marginal approach to re-elicit the Dirichlet hyperparameters as follows.

The new set of modified marginal beta quartiles are used to elicit new pairs of beta
parameters as proposed in Section 6.2. Using these new parameters, together with equations
(6.29), (6.30) and (6.31), we apply the first combination proposed in the marginal approach
in Section 6.3.3. We implement the first combination that uses simple averaging as a quick
and straightforward way to recompute the Dirichlet hyperparameter vector using the new
set of modified quartiles. The whole process can be continuously applied until the expert is

satisfied with the quartiles in the feedback.
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6.4 Concluding comments

A reasonable me_thod for eliciting beta parameters using quartiles has been proposed. The
method combines two different approaches that have been used separately in the literature.
A normal approximation was used to compute initial parameter values, which have then been
optimized using a least-squares technique. In order to elicit the hyperparameter vector of the
Dirichlet distribution, we made use of both the marginal and conditional beta distributions
in two different approaches. The two approaches are programmed in the PEGS-Dirichlet

software that is freely available at http://statistics.open.ac.uk/elicitation.

As it is the simplest conjugate prior distribution for multinomial models, the Dirichlet
distribution is very tractable. However, its lack of flexibility limits its usefulness as a prior
distribution. In'the next chapter, we discuss the drawbacks of the Difichlet distribution and
propose new elicitation methods that give more flexible prior distributions for multinomial

models.
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Eliciting more flexible priors for

multinomial models
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7.1 Introduction

Being a conjugate prior for the multinomial models, the standard Dirichlet distribution is
widely used for its tractability and mathematical simplicity. However, the Dirichlet dis-
tribution in its standard form has been criticized as insufficiently flexible to represent prior
information about the parameters of multinomial models [e.g. Good (1976), Aitchison (1986),
O’Hagan and Forster (2004), Wong (2007)].

The main criticisms of the Dirichlet distribution can be summarized as follows.

1. It has a limited number of parameters. A k-variate Dirichlet distribution is only speci-
fied with k parameters. These determine all the k means, k variances and the k(k—1)/2

covariances, as given in (6.24)-(6.26).

2. The relative magnitudes of each a; determine the prior mean, while only the overall

magnitude N = La; determines all the variances and covariances if the means are kept

fixed.

3. Consequently, the dependence structure between Dirichlet variates cannot be deter-

mined independently of its mean values.

4. Dirichlet variates are always negatively correlated, as can be seen from the covariances

formulae in (6.26), which may not represent prior belief.
5. Dirichlet variates that have the same mean necessarily have equal variances.

Motivated by.these deficiencies, many authors have been interested in constructing new
families of distributions for proportions to allow more general dependence structures [e.g.
Leonard (1975), Aitchison (1982), Albert and Gubta (1982), Krzysztofowicz and Reese (1993),
Rayens and Srinivasan (1994), Tian et al. (2010)].

Some of these new distributions are direct generalizations of the standard Dirichlet dis-
tribution [e.g. Dickey (1968, 1983), Connor and Mosimann (1969), Grunwald et al. (1993),

Hankin (2010)]. We select one of them and develop a method of eliciting its hyperparam-
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eters as a prior distribution for the multinomial model. The selected generalized Dirichlet
distribution shares some of the desirable properties of the standard Dirichlet distribution.
It is conjugate, reasonably tractable and can be elicited via the beta elicitation procedure
proposed in Chapter 6. The me'ghod of eliciting a generalized Dirichlet distribution is given
in Section 7.2 and an example illustrating its use is given in Section 7.3. A Gaussian copula
function is proposed in Section 7.4 as a flexible multivariate distribution that combines the

marginal beta distributions that an expert has assessed.

7.2 Eliciting a generalized Dirichlet prior for a multinomial

model

7.2.1 Connor-Mosimann distribution

Connor and Mosimann (1969) introduced a form of the generalized Dirichlet distribution that
is also known as Connor-Mosimann distribution. It has a more general covariance structure
than the standard Dirichlet distribution and a larger number of parameters, 2(k — 1).

| Its properties have been investigated by Lochner’ (1975) and Wong (1998), who used it
as a prior distribution in a real life engineering application in Wong (2005) and addressed its
maximum likelihood estimation in Wong (2010). The density function can be written in the
form [Connor and Mosimann (1969)],

b1 bi—1—(a;+b;)

F(a’t + bi ) a -1 br—1—1
... = i 7.1
ﬂ'(plap2a ,Pk) E F(a,)f‘(b ij Py ) ( )
0<p;<1l, Y¥pi=1, a;>0, b;>0,bgis arbitrary.
Or, equivalently, in the form [Lochner (1975)]
k-1
T(a; + b; ai— )
T(p1,p2,s e s Pr-1) = H [%ﬁ‘(—b% (1 —-p1—pa —"-—pi)’“} , (7.2)

OSPzSL szﬁl, ai>01 bi>0v

where Yi = bi - (ai+1 + bi+1), for i = 1,2, e ,k - 2, and Ye-1 = bk—l - 1.
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The standard Dirichlet distribution is a special case of the Connor-Mosimann distribution
when b; = aj41 + b1, for i = 1,2,--- & — 2. Moreover, it is also a conjugate prior to the
multinomial distribution. See, for example, Wong (1998).

This generalized Dirichlet distribution can be obtained by transforming (k — 1) indepen-

dent beta variates Zy, Zs,- - , Zr—1, each with parameters a; and b;, for : = 1,2,--- ,k — 1,
as follows
Zl, for ] =1,
pi= j—1 (7.3)
Z;[J(1-2), forj=2,-- k-1
i=1

The remaining variable pr can be also given, in terms of Z;1, Z,- -+ Zg, as
k-1
pe=2 [[( - Z), (7.4)
i=1

where, by definition, Z; = 1.

The inverse transformations are given by
4

P, for j =1,

PR forj=2,---,k.
1= pi
\ 1=1

The first two moments of the generalized Dirichlet variates can be computed, in view of (7.3)

and (7.4), as
: E(Zl)a for ] =1,
Sj = B(pj) = i1 6)
E(Zj)HE(l*Zi), forj=2,---,k,
i=1
and
E(Zl2)’ for ‘7 — 1,
B T (7.7)
E(ZJ?)HE(l“Zi)2, for j=2,--,k.
i=1

Hence, using well-known formulae for the first two moments of the standard beta distribution,
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and since Z; = 1, we write

ax .
. for j =1,
j-1
a; b;
S = J ' forj=2,---,k—1 .
S PR PR £t (78)
k—1
b; .
yaz+bz for j =k,
afar +1) for j=1
(a1 +b1)(a1 + by +1)° 7=
j—1
aj(a; +1) ] bi(b; +1)
T = I : , forj=2,--- k-1 :
J (aj +bj)(a; + b; +1) ey (ai + b;)(a; + b; + 1) or '7_ ’ ’ (7.9)
k-1
bi(b; + 1) .
; f =k.
;=7 (@i +bi)(ai + b + 1) o
and
Var(p;) = Tj — S, forj=1,2,-- k. (7.10)

Regarding covariances, Connor and Mosimann (1969) showed that

E(p;) :
Cov(p1,pj) = _m(?];)l_) Var(p1), for j=2,--- ,k, (7.11)
Cov(pj; pj+1) = E(Z;j+1)E[Z;(1 - HE[ (1— 2]
_E(p])E(pJ+l)7 fOI'j=2,"' ak_17 (7'12)
and
E(Z ) m-1 '
Cov(pj,pm) = 7o) H E(1-Z;)| Cov(pj,pj4+1), forl<j<m<k. (7.13)
: J i=j+1

Therefore, p; is always negatively correlated with all other variates. However, any other
two successive variates can be positively correlated, as can be seen from equation (7.12).
Moreover, the correlation between any p; and pp,, for 1 < j < m <k, has the same sign as
that of Cov(pj,pj+1)- In this sense, the generalized Dirichlet distribution has a more flexible
dependence structure than the standard Dirichlet, which alway‘s imposes negative correlations
between all pairs of variables, as mentioned before. Similar results were found by Lochner
(1975), while Wong (2005) used these properties to select a generalized Dirichlet prior for

sorting probabilities of microelectronic chips that tend to be positively correlated.
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As in the case of the standard Dirichlet distribution, the conditional distributions of the
generalized Dirichlet variates are still scaled beta distributions. This can be shown, using the
margiﬁal distributions of the generalized Dirichlet distribution, as follows.

Itp, , = (p1,p2, - ,pk—1) hasa generalized Dirichlet distribution of the form (7.2), then
the marginal distribution of any subset from Py S8y p, = (p1,p2,"* ,pr), T =2,3,--+ , k-1,
is again a'genera,lized Dirichlet distribution with the correspohding parameters [e.g. Wong
(1998)].

The conditional distributions of p.|p1,p2,- - ,pr-1, for r = 2,3,--- ,k — 1, can be com-

puted from (7.2) as follows

W(pr;alwa%"' )a'T‘—-lybl’b27"' )br—l)
T sP2, 0 3 Pr—1) = = 7.14
(pr,pl P2 Pr 1) W(B,,._l;a:l;a@v"' 1a'T~2,b1)b2)' T )bT—'?) ( )
1 parl P R
- T 1— L , (7.15)
Blar,br) (1 - £12) pi)r ( 1- Sm)

which are scaled beta distributions over the intervals (0,1 — Z:;ll p;). They are also known

as three parameter beta distributions, i.e.

r—1

(pr‘pl,PL e ,pr—l) ~ beta‘(a”l" bT? 1- Zpt)? forr = 27 3’ U ak -1

i=1

As in Section 6.3.4, applying the transformation

4

D1, forr=1,
* —
Pr —%1——, forr=2,3,--- ,k—1,
1-> pi
\ i=1
gives
py ~ beta(ar, by) Vr=1,2,--- k-1 (7.16)

7.2.2 Assessment tasks

The elicitation process given before in the conditional approach for the standard Dirichlet
case in Section 6.3.4 is still valid here. The main difference in the current case is that

the generalized Dirichlet hyperparameters (a1, ag,- - ,ag—1, b1,b2,+ -+ ,by—1) are exactly the
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parameters (a;, b;) of the beta distribution of p} in (7.16), for r = 1,2,--- ,k — 1. Hence, the
generalized Dirichlet hyperparameters are directly estimated using beta parameters that can
be elicited using conditional assessments as in Section 6.3.4. Note that no compromise or
averaging is needed here, since the total number of hyperparameters that are elicited is equal
to the number of hyperparameters in the generalized Dirichlet distribution, namely, 2(k —1).
This extended number of parameters does not eliminate the benefits of feedback, but it gives
the generalized Dirichlet distribution a more flexible structure than the standard one.
Positive correlations can occur in this generalized case, as discussed before, making it more
useful and practical in quantifying expert’s opinion. However, Aitchison (1986) criticized the
class of generalized Dirichlet distributions as being intractable, particularly with respect to
statistical analysis. He also noted that, despite having a more general dependence structure

than the standard Dirichlet, the class still retains a strong independence structure.

7.2.3 Marginal quartiles of the generalized Dirichlet distribution

It is always useful to give feedback to the expert based on her elicited hyperparameters. This
feedback makes the elicited quantities a better representation of the expertv’s opinion. For the
generalized Dirichlet prior, where the assessed probability quartiles are all conditional except
for the first ‘category, it is helpful to inform the expert of the corresponding marginal proba-
bility quartiles of each category. She should be given the opportunity to modify them so that
they are closer to her opinion, and the elicitation method should change the hyperparameter
vector according to these modifications.

Unfortunately, marginal distributions of the generalized Dirichlet are not directly of the
beta type. However, Qe make use of the indebendent beta random variables given in (7.5)
to approximate the distribution of each p;, j = 1,2,--- ,k, as a standard beta distribution.

Detail is given in the remainder of this section.
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An approximate distribution for the product of independent beta variates

Fan (1991) introduced a beta approximation to the product of a finite number of independent
beta random variables. His method is described in Johnson et al. (1994) and Gupta and
Nadarajah (2004), who report favorably on the method based on Fan’s comparison of the
first ten approximate and exact moments. The method equates the first two moments of
the approximate beta distribution to the corresponding product moments of the independent
beta random variables.

In what follows, we use the method of Fan (1991) to derive the marginal approximate beta
distribution of each pj;, j = 1,2,- -+ , k, from which the marginal quartiles are computed. The
method can also be inverted to give a new elicited hyperparameter vector of the generalized
Dirichlet distribution, based on the marginal quartiles, if any have been modified by the
expert.

For j = 1,2,--- ,k, using the method of Fan (1991), the distribution of each p; can be

approximated by

pj~ beta(aj,ﬁj), (7.17)
where
o = 215 = 1)
J T.’l '—SJZ ?
and

6 = (1-55)(S —Ty)
J T'J _Sf ’

with S; and Tj as given by equations>(7.8) and (7.9), respectively.

Feedback

The three quartiles of the distributions in (7.17) are numerically computed and presented to
the expert. She is invited to modify some or all of them as she thinks necessary, in which
case the modified quartiles are converted in the same manner as proposed in Section 6.2, to

give modified pairs of parameters (o, 07 )-
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The modified two moments of each p;, for j =1,2,--- |k, are computed as follows

*
S =%

. 7.18
J o +ﬁ;—‘ (7.18)

and
T = of(af +1)
(e B (e + B+ 1)

(7.19)

After obtaining SJ’» and T;, they are transformed into normalized values S} and T}, respec-

tively, such that Z;;l S;=1

In the manner of (7.8) and (7.9), we can write the two modified moments of each Z;,

denoted by U; = E*(Z;) and W; = E*(ng), forj=1,2,--- k-1, as

4

ST, for j =1,
a*
Uj= =0 = 55 :

aJ+bJ j—'l N ) fOI‘]=2,:~-,k‘—-1,@, .
Il
Lo+

and

4
17, for j =1,

a;-(a; +1)

W, = - T
TT @) (al + b5+ 1) J

) forj=27"')k_17

j=1 * (1%

H i (bi + 1)
i (af +b5)(ar + 07 +1)
The above system of equations can be recursively solved for the modified hyperparameters
of the generalized Dirichlet distribution, a} and bj, for j=1,2,--- ,k —1, to give

d* _ UiU; = W)

J VVj——UJZ ’
pe = A= UDU; — W)
! W; =~ Uj

These modified hyperparameters of the generalized Dirichlet distribution represent the final

output of the method.

7.3 Example: Obesity misclassification

Obesity and being overweight are serious public health problems whose adverse consequences

can include diabetes, high blood pressure and cardiovascular disease. Obesity can be mea-
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sured using the Body Mass Index (BMI) of adults, which is defined as body weight (in
kilograms) divided by body height (in metérs) squared. Obesity is defined as a BMI of over
30 and overweight is a BMI over 25. Looking at the situation in Europe it is estimated that
50% of adults between 35 aﬁd 65 years of age are overweight, of whom 10-25% are obese.

Malta reportedly has one of the highest levels of overweight people in Europe. According
to the Eufopean Health Interview Survey (EHIS), November 2011, Malta recorded the highest
proportion of obese men (24.7%) and women (21.1%) amongst the 19 EU Member States for
which data are available. The EHIS reports 36.3% of adults in Malta being overweight and
a further 22.3% being obese. Obesity in Malta is indeed a major public health challenge and
it is targeted as a priority action in Malta’s Strategy for Sustainable Development.

In interview surveys, the heights and weights of participating squects.are_ not measured.
Self-reported values of these variables are normally used instéad. However, self—repo.rted val-
ues are less precise and have né guarantee of accuracy, specially when they are con.verted
into BMI (Shields et al. (2008)). Indeed, the prevalence of overweight and obesity are gen-
erally underestimated when calculated from self-reported data as compared with measured
data. Adults have been shown to systematically overestimate their height, and underestimate
their weight. The extent of weight underreporting increases with increasing measured weight
(Shields et al. (2008)). As a result, significant misclassification occufs when BMI categories
are estimated from self-reported data. Correcting interview data for this misclassification
bias is desirable but data to estimate the bias is lacking. Instead, quantifying expert opinion
might be used to estimate the bias.

One aspect of the obesity misclassification problem in Malta was formulated in a multino-
mial model as follows. It relates to Maltese adults (16+) who self-report themselves as having
a normal weight (18.5<BMI<25). Their actual clinical BMI classification may fall in one of
the following multinomial categories: Underweight (BMI<18.5), Normal (18.5<BMI<25),
Overweight (25<BMI<30) or Obese (BMI>30). A health information expert, Dr. Neville

Calleja, used our PEGS-Dirichlet elicitation software to quantify his opinion about this
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model, first giving two separate sets of assessments, each of which determines the param-
eters of a Dirichlet distribution, so that his opinion could be represented by a Dirichlet prior
distribution. The second set of assessments was also used to determine the parameters of a
generalized Difichlet distribution, so that his opinion could be modelled by a more flexible
prior distribution. Dr. Calleja has been responsible for all health surveys in Malta for the last
10 years. Currently, he is the director of the Department of Health Information and Research
in the Ministry of Health, the Elderly and Community Care, Malta. His department leads
the collection, analysis and delivery of health related information in Malta.

To elicit a Dirichlet prior based on unconditional beta marginals, the expert ordered
the four categories as Normal, Overweight, Obese, Underweight. His unconditional median
assessments for these categories were 0.65, 0.20, 0.10, 0.04, respectively. Then he gave his
unconditional lower (upper) quartile assessments as 0.55, 0.15, 0.06, 0.02 (0.70, 0.30, 0.14,
0.07), respectively. See Figure 7.1. The four beta marginals were then reconciled into a
Dirichlet distribution using three different ways; direct normalizing and averaging, least-
squares optimization, and weighted least-squares. Since the expert’s assessed medians nearly
sum to one, the three different ways gave sets of reconciled quartiles that were very close
to each other. He selected marginal medians and quartiles that were computed by direct
normalizing and averaging. The elicited hyperparameters of the Dirichlet prior distribution

were obtained as a; = 13.23, as = 4.71, a3 = 2.18, a4 = 1.08, with their sum N = 21.20.

184



| % i

] 1% Ehcinng Quartiles

Now, you have finished with all categories. You may press 'Next' to proceed

i

—

Normal

Overweight

Categories

Obese

l <Backg

|

JHeR7Er |

Underweight

Figure 7.1: Medians and quartiles assessments

Based on conditional beta distributions, the expert quantified his opinion again to elicit
another Dirichlet prior for the same problem, but using a different elicitation method. His
three quartile assessments of the first category were 0.60, 0.65, 0.72. Then, he was asked to
assume that the probability value of the first category is exactly 0.65; given this information
he gave his three quartiles for the second category as 0.17, 0.20, 0.25. Finally, conditioning
on the probabilities of the first two categories being 0.65, 0.20, he gave the three quartiles

of the third category to be 0.07, 0.09, 0.15. The three quartiles of the fourth category were

automatically computed and shown to the expert as 0.01, 0.06, 0.08.
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Figure 7.2: Assessing conditional medians

Figure 7.2 is a screen shot after the expert had assessed his median for the third category.
The median probability of the third category is in blue (it was assessed), while the fourth
median is in yellow (it was calculated from other assessments). Figure 7.3 shows the condi-
tional quartiles that the expert assessed for the third category and the conditional quartiles
that were calculated for the fourth category. The elicited hyperparameters of the Dirichlet

distribution using this method were a; = 19.91, a2 = 5.00, ag = 1.11, a4 = 0.65, with a sum

of N = 26.67.
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Figure 7.3: Assessing conditional quartiles

On finishing the elicitation process using conditional assessments, the expert was shown
a software message offering him the possibility of using the same conditional assessments to
elicit a generalized Dirichlet distribution. The expert chose to elicit this more general distri-
bution as well. The following hyperparameters of the generalized Dirichlet prior distribution
were elicited, a; = 19.29, ag = 4.41, ag = 0.91, by = 10.23, by = 3.15, b3 = 0.54.

To compare the three prior distributions elicited in this example, expected values and
variances of multinomial probabilities were computed for each distribution as shown in Ta-
ble 7.1. The means and variances of the Dirichlet distribution were computed using the
elicited values of the hyperparameters in formulae (6.24) and (6.25), respectively. The same

was done for the generalized Dirichlet using formulae (7.6) to (7.10).
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Table 7.1: Probability assessments for different elicited priors

‘Marginal assessments | Conditional assessments | Generalized Dirichlet

Median E(p;) V(pi) | Median E(p;)) V(p:) E(pi) V(pi)

p1 0.65 0.624 0.012 0.65 0.746 0.007 0.653 0.008
p2| 020  0.222 0.008 0.20  0.187 0.006 0.202 0.006
D3 0.10 0.103 0.004 0.09 0.042 0.001 0.091 0.004

pse | 004  0.051 0.002 0.06 0.024 0.001 0.054 0.003

It can be seen from Table 7.1 that the first Dirichlet prior, which was elicited using
marginal assessments, and the generalized Dirichlet prior both gave expected values of the
multinomial probabilities that are close to the assessed medians. The second Dirichlet prior
that was elicited using conditional assessments gave a relatively higher mean value for the
first probability than its assessed median, combined with a reduction in the expected values
of all other probabilities. This is a little surprising as the generalized Dirichlet utilized the
conditional assessments that give the second Dirichlet distribution, yet its hyperparameters
are similar to the method that uses marginal assessments. The two elicited values of the
hyperparameter N were relativsly close to each other, 21.20 and 26.67, in the two elicited
standard Dirichlet priors. (There is no single value for N with the generalized Dirichlet.)
Moreover, variances of the multinomial probabilities were all small and also close to each
other in the three elicited prior distributions.

After eliciting each of therthree Dirichlet prior distributions discussed above, the software
showed the suggested marginal medians and quartiles of each pair to the expert. He accepted
the suggested marginal quartile values, saying that the suggested values were very close to
his initial beliefs. Keeping the unit sum constraint in hi_s mind, the expert remarked that
assessing conditional medians and quartiles was easisr than assessing marginal quartiles. He
stated that he could not think about marginal assessments for each category independently

of the others. However, he noted at the same time that the elicited generalized Dirichlet
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distribution may be the most flexible prior of the three.

7.4 Constructing a copula function for the prior distribution

Using the marginal elicitation process given before, we obtain a number of marginal beta
distributions. Rather than assume these stem from a Dirichlet distribution, we would like to
allow a more flexible dependence structure via their joint distribution, with the aim of better
representing the expert’s opinion. A flexible tool for this task is given by the copula function,
which allows us to choose the marginal distributions independently from the dependence
structure between them. The latter structure is given by the copula.

A copula is best described as a multivariate distribution function that is used to bind
together marginal distribution functions so as to form a joint distribution. The copula pa-
rameterizes the dependence between the marginals, while the parameters of each marginal
distribution function can be assessed separately. See for example, Joe (1997), Nelsen (1999)
and Kurowicka and Cooke (2006).

There are many types and classes of copula functions, but the most intuitive ones use
inverted distribution functions as arguments in known multivariate distributions [Nelsen

(1999)]. The general inversion form of a copula function C' is given by
ClG1(z1), -, Grl(mr)] = Fa.. gy {FT [G1(21)], -+ , Fyy  [Grlm)]}

where G; are the known marginal distribution functions, F(; ... xy and F; (i = 1,--- , k) are the
assumed joint and marginal distribution functions, respectively. The copula function C works

as the cdf of the multivariate distribution that “couples” the given marginal distributions.

7.4.1 Gaussian copula function
The best-known example of the inversion method is the Gaussian copula [Clemen and Reilly

(1999)], which is given by

ClG1(z1),+  Gr(@p)] = Br,r {7 [Ga(z1)], -+, @7 [Grlm)]} - (7.20)
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Here ® g is the cdf of a k-variate normal distribution with zero means, unit variances, and
a correlation matrix R that reflects the desired dependence structure. ® is the marginal
standard univariate normal cdf.

Since & g and @ are differentiable, the Gaussian copula density function can be simply

obtained by differentiating (7.20) with respect to z;, i = 1,2,--- , k, giving

f(a1,39, - e R) = L TRII /;‘ 9k (k) exp{—-%}ﬁc(R_l — )Y} (7.21)
where
Yy = (81Gi(z1)], Y Ga(z2)], ---, B~ YGk(zs)])

gi(.) is the density function corresponding to G;i(.), i = 1,2,-- ,k, and Iy is the identity
matrix of order k.

To construct a Gauésian copula function in the case of a multinomial model, we can
think of each marginal distriBution as a beta distribution whose two hyperparameters have
been assessed. Then we can construct a Gaussian copula function for the multivariate dis-
tribution of p1,ps, - ,pr—1. According to the unit sum constraint, the remaining variable,
pp=1-— f;ll p;, can be treéted as a redundant variable that may be removed from the
multivariate distribution to avoid singularity problems. Using the Gaussian copula function,
the dependence structure of the multivariate distribution will have high flexibility rather than
the limited dependence structure imposed by the Dirichlet distribution.

The Gaussian copula function is indexed by the correlation matrix R, which needs to be
elicited effectively and must be a positive;deﬁnite matrix. In what follows we introduce a
method, inspired by Kadane et al. (1980), to elicit the correlation matrix R that is sure to
be positive-definite.

Let Gi(pi) be the cdf of the beta distribution of p; with hyperparameters «; and g;,
1=1,2,---,k—1, and assume that the joint density of p1,pa, -+ , k-1 is ngven by a Gaussian

copula density, such that

- X eoo X _ _ 1
Forp2, - pps|R) = 221 A o 1(p-1) exp{—5Y} 1 (R ~ L)Y} (7:22)
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where
Ve = @G, 27G2(p2)], -, @M (Ghoa(pr-1)]):
and g;(.) is the beta density of p;, 1 = 1,2,--+ ,k — 1.

Note that the marginal distributions of this joint density are still the desired beta marginals.
Since the hyperparameters of each beta distribution of p;, i = 1,2,--- ,k — 1, have already
been elicited, the prior distribution is totally known except for the matrix R. Although the
above density is not multivariate normal for py, ps, - -+ , px—1 and the matrix R is not their cor-
relation matrix, we can still use the multivariate normal properties to elicit a positive-definite

matrix R by considering the following normalizing transformations,
Yi = (D‘I[Gi(p’i)]! 1= 1)2; e ’k- (723)

“ We should stress that with this copula function, the marginal distributions of the p; are
beta distributions that can be fixed independently of R. Thus the ability to specify R gives
added flexibility. The aim is to choose R so as to model the expert’s opinion about the
dependence Betweén the p;.

~ According to the main assumption of the Gaussian copula construction, and from (7.23),

the vector Y} _, = has a multivariate normal distribution with zero
-1 = (17, Yo, Y1

)

means, unit variances and a correlation matrix R, i.e.
Y, , ~MVN(Q, R).

Following this assumption, together with the unit sum constraint of the elements of p, the
full vector Y = (y;, Y, ..., ;) has what is known as a singular multivariate normal
distribution, which will be discussed in more detail in the next chapter. Howéver; we will be
interested, during the rest of this chapter, in eliciting a non-singular corfelation matrix R for
the Gaussian copula function only for ﬁl, D2, vy Pho1-

Keeping in mind that the Pearson correlation coefficients, as elements of R, are not
transformation respecting, i.e. they are not invariant even under‘strictly monotone increasing

transformations as in (7.23). We do not attempt to elicit any correlations between the
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elements of P Even if a correlation matrix for p has been elicited it may be of no use in
estimating R as no explicit relationship between the two matrices is available. Moreover, the
density function in (7.22) is indexed by R, the correlation matrix of Y_, not the correlation
matrix of p.

An alternate method of estimating R that has been proposed in the literature was reviewed
in Chapter 2. In that approach, a transformation that respects non-parametric measure of
correlation, such as Kendall’s 7 or Spearman’s p, is computed for p. The monotonicity of a
transformation like (7.23) is then used to impose the same correlations on Y_;. Pearson’s
correlations are calculated using approximate relations between different correlation coeffi-
cients for the normal distribution. For more details see, for example, Clemen and Reilly
(1999), Palomo et al. (2007) or Daneshkhah and Oakley (2010). ;

In our proposed approach, the matrix R is elicited as a covariance or correlation matrix of a
multivariate normal random vector Y, _,. However, we still utilize the monotone increasing
property of the transformations in (7.23). We may assess conditional quartiles of p, then
transform them into those of Y using (7.23). Correlation coefficients between the elements
of Y, _; can then be estimated using their conditional quartiles and utilizing the properties
of the multivariate normal distribution. This is described in Sections 7.4.2 and 7.4.3.

Although the elicitation method of Kadane et al. (1980) has been designe;d to elicit the
covariance matrix of a multivariate t-distribution as a conjugate prior for the hyperparameters
of a normal multiple linear regression model, their method can be useful in a variety of
multivariate elicitation problems that_ require eliciting positive-definite matrices [Garthwaite
et al. (2005)]. The method is modified here to elicit the correlation matrix R of the Gaussian

copula function.

7.4.2 Assessment tasks

Since the transformations in (7.23) are strictly monotonic increasing from p to Y, we can

establish a one-to one correspondence between medians and quartiles of these two vectors.
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The required assessments are as follows.

Assessing initial medians and quartiles

1. To elicit each marginal beta distribution, the expert has already assessed a lower quar-
tile, a median and an upper quartile for p;, ¢ = 1,2,--- ,k, say L}, m;, and U,
respectively. The method proposed in Section 6.2 can be used to determine the two

parameters o; and f3; of each marginal beta distribution, fori =1,2,--- , k.

2. To help the expert assess the medians and quartile in (1), the PEGS-Copula software
presents an interactive graph showing the pdf curve of the beta distribution of py,
forr = 1,2,--- ,k. The expert is able to change her assessed quartiles of p, until its

pdf curve represents her opinion to her satisfaction, see Figure 6.1.

3. To attain the unit sum constraint, the mean values of the elicited beta marginals must
sum fo one. The elicited parameters ; and f; are thus modified to fulfill this condition,
as follows.

The mean values p; are computed as

Q;

;= ——, fori=1,2,--- k.
M= o + B

The normalized mean values u are given by

* Mg .
Hi = Sk 0 i=1,2,---,k. (7-24)
' Zj:l Hj

We keep the variances fixed as

2 ;i .
e o= , fori=1,2,---,k. 7.25
T @ B+ B+ D) (729

Equations (7.24) and (7.25) give the modified set of parameters of and g, for ¢ =

1,2,--- Jk:

S, A Sl i R | I
« ﬂz[ 0’?

T
g;

Bf = (1—pf) [M’—*(l‘;—”’)‘l]
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4. Before going further, the modified parameters of each marginal beta distribution are
used to compute the correspdnding quartiles numerically. These quartiles are presented
as feedback to the expert, who is still able to change some or all of them, in which case
the process is repeated again until the modified sets of quartilés are accepted by the

expert.

Assessing conditional quartiles

5. To estimate the correlation matrix R, the expert is asked to assume that p; = mj
and gives a lower quartile L3 and an upper quartile U5 for p;. For each remaining
Pjy j =3, ,k — 1, she assesses the two quartiles L} and Uy given that py = mi o,
P2 = M3, ..., Pj—1 = Mj_; 4. Figure 7.4 shows the process of assessing conditional
quartiles, where the expert has already assessed the lower quartile of the third category,
conditional on the median values of the first two categories, which are shown by the

" red bars.
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Figure 7.4: Assessing conditional quartiles for copula elicitation
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6. The lower (upper) quartile L} (Uy) of pi will be automatically shown to the expert
once she assesses the upper (lower). quaftile Ui_1 (Li_q) of pg—1. The two quartiles
L} and U} are shown to Athe expé;‘t as a guide to help her choose L}_, and U;_;. See
Figure 7.4, where the software haé shown the upper quartile of the fourth category
after the expert assessed the lower quartile of thé third category. In fact, L} (Uf) is
the lower (upper) quartile of (px|p1 = Migs ", Pk—2 = Mf_s,) instead of (pklp1 =
migs - Pk—1 = m2—1,0)’ as the two quartiles in the latter case should be just equal

to my, ,, because of the unit sum constraint.

Assessing conditional medians

7. Here we assume that the median of p1 has been changed from mj ; into mi ; = mj +n7.
Given this information, the expert will be asked to change her previous medians mj g

of each p; to be mj;. We put

mjy =myo+05,, forj=2,-k (7.26)
8. In each successive step 4, for i = 2,3, -+ , k—2, the expert will be asked to suppose that
the median values of p1, pa, ..., pi are mi; = mig +n{,Mio =m5 1 + 15, ,M; =

m; ;_1+n;, respectively. Given this informatioh, she will be askéd to update her assessed
medians from the most recent previous step mji;; 1, Mg 1, " ;Mg - The up-
dated assessments are mj, 1 ; =miyy; 101 Mites = Mitei 1005 0y M =
my, i1 0 ;» respectively. In other words, for i = 1,2, - - g k=2, 7=1i+1,i4+2,--- |k,

we can write

mj; = mj, 1 +0;; is the median of (pjlpr =m7,, - ,pi =mi;). (7.27)

On an interactive graph produced by the PEGS-Copula software, see Figure 7.5, the
conditioning set of median values are shown as red bars. The conditional medians of

the remaining categories at the most recent previous step are shown as black lines. The
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expert is asked to assess how her new median values will change based on the new

conditioning set.

| % i) A RN g ; R 0 RS A [

You the p Y of y (Category 3) to be (0.374). Please for other

e =153

Eliciting conditional medians of F for Each Category
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Figure 7.5: Assessing conditional medians for copula elicitation

9. For mathematical coherence, as will be proved in Lemma 7.1, we require
i k
domii+ > omp=1,  i=1,2- k-2
j=1 j=it+1
The expert has the option of changing her initial set of assessments m; 1,00 Mo "
mfm. until she feels that the suggested normalized set m],; ;, mj,5;, -+, mg; gives
an adequate representation of her opinion. The software suggests each normalized

conditional median m? ,, given by yellow bars in Figure 7.6, as

Jii0
7
%*
1—§:mr,r
o= | | m for i=1,---,k—2, j=i+1,---,k
m;; = L m;is ori=1,---,k-2, jg=t+1,--,k.
E: /
mr,i
r=i+1

10. The current assessment task stops at step & — 2, as we do not ask for any conditional
assessments for the last remaining category pi. Since the condition of summing to one

should always be fulfilled, conditioning on specific values of all p;,p2,:-- ,pr—1 gives a
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fixed value for pg. In this case no upper or lower quartiles can be assessed for p, as

mentioned before.

Now, you have finished with this frame. You may press "Next' to proceed

Eliciting i dians of F ities for Each Category
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060 T Elodify your fnedians to surm t 606 of 2CCept SuYesTons in yeliow!
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Figure 7.6: Software suggestions for conditional medians

7.4.3 Eliciting a positive-definite correlation matrix R

The normalizing one-to-one functions in (7.23) are used to transform the assessed condi-
tional quartiles of p into conditional quartiles of Y, and hence, into conditional expectations,
variances and covariances of the multivariate normal variables. In particular, letting M (X)
denote the median function of the random variable X, we proceed as follows.

Fori=1,2, - ,k, let m;o = ®1[G;(mj,)].

Fori=1,2,--- ,k—2,and j=4+1,--- ,k—1, let
mj; = E(Yjlp1 = mig+ni,p2 =my1+m3, - ,pi =m; 1 +n}).
Then
mj; = ®HG;(m],))- (7.28)

Fori=1,2,--- ,k — 2 define #; by letting n; = Y; — m; ;—1 when p; = mi,_1+mn;. Then

mj; = EY;|Y1 =mig+m,Ya=mo1 42, ,Y; =mii_1 +mi), (7.29)
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and

‘—-Q) l[G( H 1+771)]_ 1[G( H 1)] fOI’i=1,2,~-,k—2.

Analogous to m;; = mj,;_; +nj, define
M4 = M1 + i, for i = 1,2, ak_2) (730)

so that Y; = m;; when p; = mf,i

Fori=1,2,---,k—2,and j=i+1,--- ,k— 1, analogous to GJ’f’izm*’z ™5 1 define
0ji = mj; — myi-1,

so that

01 = @G (m};_1 + 65,)] — oG (m} 1))

Fori=1,2,---,k—2,and j=14i+1,--- ,k—1, let
Vji = Var(Y;|Y1 = m10, Y2 = map, -, ¥i = mio),

so that

12
:l ) forj=273a“'7k_1) (731)

with

U;j =97 G; U], Lj =7 Gi(L)].

Having defined the above quantities, we are ready now to state and prove the following

lemma.

Lemma 7.1. Under the unit sum constraint of p, and the multivariate normality of ¥,

Zm’]+2m, i=1,2 k-2

J=i+1

Proof

A property of conditional expectations of singular multivariate normal distributions is given

by equation (8a.2.11) in (Rao, 2002, p 522). Using this property, for i = 1,2,--- ,k — 2, we
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have

E[Yk’|YI = ml,l:' ot 7},7: = m’i,’i] = E[Yklill e ml,l: T 7},1' = Mi,i,

Yisi = E(Yiqa|Y1 =ma, -+, Y = myy),

Yio1 = E(YVi1Yi =mag, -+, Y = myy)),

’

then, from equations (7.29) and (7.30)

M(Yi|Yr =mag,--- Vs =my;) = M(Ye|Y1 = may, -+, Yo = my,

Yit1 = Miq1, 0 Yool = Mp—14)-

Hence

M {7 Gr(pp)llpr = mi 1, - o = mi;} =

M{®YGE(r)]lpr =m0, P = Misy Dig1 = My, Ph—1=T_1,}
which, utilizing equations (7.26) and (7.27), gives

“HGr(mi )] = &Y Gi[M (pklpr =m] 1, ,pi = m},,
Piy1 = mr-{—l,iy vy Pk-1 = m;::—-l,i)]}’

ie.
* * ¥ . o * ¥
Mgi = M (pi|p1 = My P = My Pitk1 = My 147 Pk—1 = mk_l,i)-

Since the condition in the RHS of the above equation is on all the p;s except pg, applying the

unit sum constraint gives the conditional median in the form of the following complement

i k-1

* =1 X *

My =1 me Z My i
j=1 j=it1

which ends the proof of Lemma 7.1.

o To elicit a positive-definite correlation matrix R, let

Xzz(Yi, Y:q, ey, K)7 i=1127"'1k—17



and

Ri:V&r(Zi)s i=1,21"')k—1’
where Ry = Var(Y1) = 1 and the final matrix R = Rg_;.

Suppose that R;—; has been estimated as a positive-definite matrix, we aim now to

elicit Rg, and show it is positive-definite. R; can be partitioned as follows

| Rier Riarg
R; = , (7.32)
riRi—1 Vi
where

Ri_1r; = Cov(¥;_,, Vi),

Vi = Var(Y}).

Although the Gaussian copﬁla function implies that Var(Y;) = 1, we will find another
estimate for V; using the conditional variance of Y; elicited in (7.31). The reason for
this, as will be shown later, is to follow the approach of Kadane et al. (1980) so as to
ensure the positive-definiteness of the matrix R;. In what follows, we use the conditional

median assessments to estimate r;.

Using the partition (7.32), it is well-known from multivariate normal distribution theory,

since E(Y) = 0, that

EYiY;_1) = X_g—lRi—llRi—l.Ci =Y 1r;. (7.33)

Moreover, for j < i— 1, taking the conditional expectation of both sides of (7.33), given

that y, = (myo +m,ma1 + 12, -+ My -1 +n;)s BIVeS
E [BOIY )Y, = y)] = BLIY, =y) s (7.34)
ie

EYilY;=y)=(y, -, v, EWnlY,), -, E¥-lY;) L (7.35)
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From (7.29) and (7.35) we get
mij = (m1,o + M1, mea+n, v, Myi-1+N5, Mg mi-—l,j) ;-
Since j =1,2,--- ,i—1, we end up with a system of i—1 eqﬁations of the form
T; = Qi-11s, (7.36)

where

miai

™m;2

mi,i—lJ
and i
T A
' ma,1 m3 cre mi—1,1

m mg1+1n2 mg2 EE mi_1.2

Qi-1= |p mo1+n2 mag+ns - mi—13

Lm mo1+m2 M32+M3 o Mi-1,i-2 + i1

Since m;; — mij-1 = 055, j = 1,2,--- ;i — 1, and m;o = 0, multiplying both sides of

(7.36) from the left by the matrix

0 0 -1 1
the system can be written as
01 m Oa1 - Oi—11
02 0 mn Oi—12
= -’r'—i'
0
Bii—1 0 - 0 7]
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Provided that

77]760, j=1)2:"')i_17

the upper diagonal matrix M;_31Q;_1 is non-singular. Hence

-1 - -

m b1 -0 i1 0.1
0 n2 - Bii1p )
L, =
0
i 0 0 m—3 | _Gi,i—l_

Since

Var(Y;|Y,;_;) = Var(Y;) — rjRi_11,,

we can now use the assessed conditional variance given by V;;—1 in (7.31) to estimate

the unconditional variance V; as follows
Vi = Vi1 + riRioar;.
Using the Schurr complement, the matrix R; is positive-definite if and only if
V; — riRi_1r; > 0,
which is guaranteed from (7.31) since Vj;—1 > 0.

Choosing the arbitrary values 1} #0,j=1,2,---,i— 1, guarantees the existence of a

unique solution for r;. It can be seen from the relation
nj = ® G (M}, +m))] = @7HG(m] )],
that n; # 0 as n§#0,j=1,2;--- ,‘i——l.

With the proposed method, R; is a positive-definite matrix if R;_; is positive-definite
(:1=2,3,--+,k—1). Since R; =1 > 0, by mathematical induction, the full correlation

matrix R = Ry_1 is guaranteed to be positive-definite.
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e We have to note that, according to this method of elicitation, the variances on the
main diagonal of R, say r;;, = 1,2,--- ,k — 1, will seldom equgl one, except for the
first element 71 1. It is easy, however, to transform R into R*, where R* is a suitable
cox;relation matrix for the Gaﬁssian copula function, satisfying both the unit variances

and positive-definiteness. R* can be obtained from R using the transformation

R* = ARA.

where
I T
1 0 0
0 i 0 0
A= 2,2
0 0
L /Tk—1,k—1

The unit variances in the correlation matrix R* ensures that each marginal distribution
Gi(p;) is still a beta distribution with the same marginal hyperparameters o; and §;

that were elicited before (i = 1,2,--- ,k).

e The accompanying software outputs the elicited pairs of beta parameters o; and ;, for

i=1,2,---,k, together with the elicited covariance matrix, R*.

7.5 Example: Waste collection

The Environmental Agency in the UK is currently interested in the fuel consumption of
waste collection vehicles. It is thought that substantial quantities of fuel are usgd to collect
recyclable waste and that local authorities are insufficiently aware of the amounts involved.
In this example, a waste m.anagement- expert, (Dr. Stephen Burnley, The Open University)
used the PEGS-Copula elicitatioﬁ software to quantify his opinién ébout the proportions of
waste collection trips according fo the type of recyclable waste. Dr. Burnley is a fellow of
the Chartered Institution of Waste Management. He advised that two main types of the

waste are considered; urban recycle and rural recycle. Each of them may contain bins, sacks,
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garden waste and recycle waste. Hence, each collection trip is arranged by the local authority
for only one of eight different wﬁste types. Considering the proportions of collection trips for
waste in each category, the problem can be formulated in a multinomial model with eight
categories. Our method and software were used to quantify the expert’s opinion about a
Gaussian copula prior for the parameters of this multinomial model.

After initializing the software and defining the model, the expert assessed his medians of
the proportion of collection trips for each of the following 8 types of waste: urban-bins/ urban-
sacks/ urban-garden/ rural-bins/ rural-sacks/ rural-garden/ urban-recycle/ rural-recycle. Then
the expert assessed lower and upper quartiles for the proportion of each category. His as-
sessed medians and quartiles are shown as blue bars and short dark blue horizontal lines,

respectively, in Figure 7.7. These assessments are also given in Table 7.2 below.

‘You have nlre"advy assessed all categories t;eforé, but stit you may chahﬁe it
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Figure 7.7: The initially assessed marginal medians and quartiles
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Table 7.2: Expert’s assessments of medians and quartiles

y4t D2 b3 D4 Ds De

b7

Dbs

Lower quartile 0.25 0.05 0.13 0.05 0.01 0.02 0.18 0.07

Median 0.30 0.08 0.20 0.07 0.03 0.05 0.25 0.09

Upper quartile 0.35 0.12 0.28 0.15 0.05 0.07 0.30 0.25

These assessments were used to elicit a marginal beta prior distribution for the proportion

of trips in each category. For mathematical coherence, the expected values of these elicited

beta priors must sum to 1, so, the software used the initial assessments to elicit beta dis-

tributions that satisfy this condition. The median values and quartiles of the coherent beta

distributions were computed and presented to the expert as feedback in Figure 7.8. During

this feedback stage he was invited to accept or revise these quantities. The initial median

values given by the expert have a sum that is nearly equal to one, so the coherent medians

and quartiles suggested by the software in Figure 7.8 were close to his assessments and he

naturally accepted them as representatives of his opinions.
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Figure 7.8: The coherent assessments suggested by the software
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To elicit a correlation matrix for the Gaussian copula prior, the expert gave conditional
assessments that quantified his opinion about the dependence structure between the marginal
beta distributions. To do that, he assessed conditional quartile values, under the condition
that the assessed medians for the previous categories were actually the true values. For
example, he assessed his conditional quartiles of the proportion for the fourth category, given
that the median values for the first three categories equalled their true values. This is

illustrated in Figure 7.9.
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Figure 7.9: Assessing conditional quartiles

The expert’s seven pairs of assessments for the lower and upper conditional quartiles are
given in Table 7.3. The quartiles for the last category are shown in bold typeface in Table 7.3
as they were automatically computed by the software when the expert assessed two quartiles

for the seventh category. This is also illustrated in Figure 7.10.

Table 7.3: Expert’s assessments of conditional quartiles

D2 D3 P4 Ps De b7 Dps

0.03 0.10 0.03 0.01 0.02 0.20 0.19

0.13 023 0.08 0.04 0.08 0.28 0.27
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Figure 7.10: Assessing conditional quartiles for the last two categories

Next, conditional on the proportion for the first category being 0.12, the expert gave
conditional median assessments for the proportions of the seven remaining categories. The
number of conditions was then increased in stages. For example, in Figure 7.11, the expert
has assessed the conditional medians for the last five categories given that the proportions
for the first three categories are 0.12, 0.04 and 0.08, respectively. Table 7.4 gives all the
conditional median assessments, where the underlined values constitute the conditioning set

at each stage.
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Figure 7.11: Assessing conditional medians

Table 7.4: Expert’s assessments of conditional medians

n b2 p3 y2! 23 Ds pr Ds

0.12 0.09 0.16 0.10 0.06 0.12 0.15 0.14
0.12 0.04 0.16 0.14 0.06 014 014 0.2

0.12 0.04 0.08 0.14 0.06 0.18 0.14 0.22

0.12 0.04 0.08 0.07 0.10 0.20 0.14 0.23

0.12 0.04 0.08 0.07 0.05 0.22 0.15 0.26

0.12 0.04 0.08 0.07 0.05 0.11 0.22 0.33

This was the last assessment task, after which the software output the elicited hyperpa-
rameters of the marginal beta prior distributions as in Table 7.5. The dependence structure
between these beta marginals was quantified as a multivariate Gaussian copula function with

an elicited covariance matrix as given in Table 7.6.
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Table 7.5: The elicited hyperparameters of marginal beta distributions

n D2 p3 P4 Ds DPe pr bs

a 37607 1.0661 1.6536 0.6951 0.5731 0.6344 1.2489 0.4545

b 12.0047 14.8133 8.6742 8.6012 19.5493 14.8684 3.3578 3.3669

Table 7.6: The elicited covariance matrix of the Gaussian copula prior

n Y Y3 Yy Ys Ye Yy

Y 1 -0.1279 -0.2601 -0.7773 -0.55 -0.6192 0.5414
Ys -0.1279 1 0.1328 0.1479 -0.4842 -0.3304 0.3326
Y; -0.2601 0.1328 1 -0.082  0.042 -0.03  -0.0618
Y, -0.7773 0.1479 -0.082 1 0.2358 0.4632 -0.4406
Ys -0.55  -0.4842 0.042  0.2358 1 05664 -0.5812
Ys -0.6192 -0.3304 -0.03 0.4632 0.5664 1 -0.8354 .

Y7 0.5414 0.3326 -0.0618 -0.4406 -0.5812 -0.8354 1

The elicited matrix in Table 7.6 does not give covariances between the beta distributed
proportions, p1,--- ,ps. Instead, it gives the covariancés between the transformed normal
variates, Y1,---,Y7. The eighth transformed normal variate is omitted so as to avoid the
singularity of the elicited maﬁrix, as discussed befo?e. The Gaussian copula multivariate dis-
tribution is parameterized by both the marginal 'beta parameters and the covariance matrix
in Table 7.6. The software p.roduces a WinBUGS file Wifh the Gaussian copula prior distribu-
tion. Marginal beta parameters can also be used to compute the expected value and variance
of the proportions of each category. These are given in Table 7.7, where the expected values
are very close to the coherent median assessménfs in Figure 7.8, and even closer to the initial
median assessménts‘ in Table 7.2 and Figure 7.7. |

The elicitation process took about an hour to complete. The expert stressed the impor-
tance of the convenient order of categories when conditioning. During the task of giving

conditional assessments based on an increasing number of conditions, he commented that
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ordering the categories in a suitable sequence made it easier for him to think about these

conditions according to his knowledge.

Table 7.7: Probability means and variances from marginal beta distributions

p1 p2 p3. P4 Ps Pe p7 ps

E(p;) 0.239 0.067 0.160 0.075 0.028 0.041 0.271 0.119

V(p;) 0.011 0.004 0.012 0.007 0.001 0.002 0.035 0.022

7.6 Concluding comments

The elicitation methods for beta parameters proposed in the previous chapter have been
used in this chapter as the main tools for eliciting two more flexible prior distributions
for multinomial models. A novel elicitation method for thé generalized D‘ifichl'e't;,‘ distribu—
tion has been introduced. The method makes use of the fact that the conditional dis-
tributions of the generalized Dirichlet variates are beta distributions. The method has
been implemented in user-friendly software that is freely available as PEGS-Dirichlet at

http://statistics.open.ac.uk/elicitation.

The elicitation of copula functions for multinomial mociels faces two obstacles, as noted
in the literature. The usual correlations cannot be transformed through the assumed cop-
ula transformation, which is one obstacle, and the need to elicit a positive-definite variance-
covariance matrix is the other. Qur proposed elicitation method for the Gaussian copula prior
has overcome both problems. The assessed conditional quartiles could be transformed through
the normalizing one-to-one transformation, making it possible to elicit correlations. Moreover,
the method of Kadane et al. (1980) has been modified to elicit a positive-definite variance-

covariance matrix for the Gaussian copula. The method has been implemented in the user-

friendly PEGS-Copula software that is freely available at http://statistics.open.ac.uk/elicitation.
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Chapter 8

Eliciting logistic normal priors for

multinomial models
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8.1 Introduction

The logistic normal distribution has long been used as a multivariate distribution for propor-
tions (Aitchison, 1986). The constrained proportions are obtained by transforming normally
distributed unconstrained variables on the real space using some one-to-one transformation.
Different multivariate logistic transformations are given in the literature, see for example
Aitchison (1986). The most well-known and widely used logistic transformation, specially for
multinomial logit models, is the additive logistic transformation.

We propose a method for quantifying opinion about a logistic normal prior for multinomial
models. Our proposed method has been implemented in interactive graphical user-friendly

software developed in Java. This is freely available as PEGS-Logistic at http://statistics.open.

ac.uk/elicitation. The elicitation method proposed here is generalized in Chapter 9 to handle

the case of multinomial models with covariates, or what are known as the multinomial logit
models.

In Section 8.2 we define the logistic normal prior to be used and consider its assumptions.
The required assessments with our structural procedure to elicit them using the software are
given in Section 8.3. The use of these assessments to elicit the hyperparameters of the logistic
normal prior distribution is proposed in Section 8.4. A method to obtain the prior’s marginal
quartiles, which are useful as feedback, is proposed in Section 8.5. We finish this chapter by

giving an example in Sections 8.6 and some concluding comments in Section 8.7.

8.2 The additive logistic normal distribution

The additive logistic transformation from ¥Y* to p is defined by

4

1 .
P , fori=1,
14 ) exp(¥;)
pi = J = . | (8.1)
| e -
- , fori=2,3,---,k,
1+ exp(Yy)
—
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with inverse transformation

Di Pi .
Yi=1lo (‘—>=10 ( ): i1=2,3,--,k, 8.2
T8 p1 08 l-po—ps—-—p/) " ®2)
where

—K* = (1/2, Y:g, e, Yk) ~ MVN(Hk_lﬁzk—l)' (8'3)

e The transformation is one-to-one from the & — 1 dimension random vector Y* into the
k dimension random vector p. The definition of an extra random variable Y1 will be

given later.

k
e For any values Ys, -+, Y}, (8.1) gives Zpi =1,

i=1

e The matrix ¥y is non-singular.

e The transformation is not symmetric in the p;, as we choose a fill-up variable
pp=1-py—p3—-- —pp.

e The transformation is used in the multinomial logit regression model when

Y = X'B..

[ty

o If (8.3) applies, the elements of the vector p are said to have the multivariate logistic
normal distribution. Their joint density has the form

A v 1
f(p; My vz‘k-—l) = Tl 1 X
= e (2m) 2 |Bg—1]2(p1 X p2 X -+ X pg)

oo{-4 ot 5 b))

ok
where p.  =(py p3 -+ p)» 0SPi<I, Zpi =1
i=1

e This additive logistic normal distribution is said to be permutation invariant. That is,
whatever be the ordering of the elements of the vector p, the density function given

above is invariant. For a theoretical proof of this property see Aitchison (1986). Under
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the permutation invariance, any order of the elements of p can be considered. Con-
sequently, the choice of the fill-up variable is arbitrary. Usually it is chosen as the
probability of the most common category, the first category, or the last category. To
elicit a logistic normal prior, we favour choosing the most common category as the first
category and making p; the fill-up variable. This is more convenient for our method

because of the order of conditioning we adopt later.

e For sampling compositional data, the problem of zero components has been reported by
Aitchison (1986) as a critical irregular case that needs special attention in dealing with
the logistic normal distribution. Clearly, the log transformation cannot be applied with
zero components. However, we need not worry about this problem in our elicitation
method, as categories with assessed zero probabilities can simply be removed from the

analysis at the first early step without any loss.

We assume that prior opinion about Y* can be represented by the multivariate normal dis-
tribution in (8.3). As will be shown later, for the assessments of p to be fully transformable
to Y*, a further normalizing transformation must be defined on the fill-up variable p;. We

define an extra variable Y7 such that

Y= log ( 2 ) . | | (8.4)
1-m

Based on the normality assumption of Y* in (8.3) and the unit sum constraint of p, the

random variable e~¥1 can be represented as a sum of k£ — 1 lognormally distributed random

variables, since

1 k
eVt — 2 pi

p1 i—a P1
Although the sum of lognormal random variables has no simple exact distribution, it is

common to approximate its distribution by another lognormal distribution. This is discussed

in the next section.
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8.2.1 Approximate distribution of the lognormal sum

Fenton (1960)-considered the numerical convolution of lognormal distributions and showed
that the sum of such distributions is a distribution that approximately follows the lognormal
law. He added that the sum of two (or more) lognormal distributions can be assumed, as a
first approximation, to have another lognormal distribution. Later, Schwartz and Yeh (1982)
mentioned that there is an accumulated body of evidence indicating that the distribution of
the sum of a finite number of lognormal random variables is well-approximated, at least to
first order, by another lognormal distribution.

Several approximations have been introduced for the sum of lognormal random variables.
Although the idea of approximating their sum using another lognormal distribution has been
common in many studies, methods differs in approximating the moments of the lognormal
distribution of the sum. Fenton (1960) matches the ﬁrs}tutwo moments of the sum of lognormal
random variables to the first two moments of an equivalent lognormal random variable.
Schwartz and Yeh (1982) follow the same approach but compute the exact first two moments
for the sum of two lognormal random variables; the procedure is then iteratively applied
for the sum of more than two lognormal random variables. Their method of computing the
distribution of a sum of independent lognormal random variables was extended to the case
of correlated lognormal random variables by Safak (1993).

Recently, based on approximating the distribution of the sum of lognormal random vari-
ables by another lognormal distribution, a Iot.of work have been devoted to giving various
approximation methods. For example, Beaulieu and Xie (2004) uses a linearizing transform
with a linear minimax approximation to determine an optimal lognormal approximation to a
lognormal sum distriBution. Tellambura and Senaiatne (2010) use the classical complex in-
tegration techniques to approximate the moment genera_ting function of the sum. Mahmoud
(2010) approximates the characteristic function and the cumulative distribution function of
the lognormal sum by exploiting the recent Hermit-Gauss quadrature-based approximation.

It is thus natural to approximate the distribution of ¥1 by a normal distribution with
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elicited mean and variance. (We do not require any approximations to obtain its parameters.)

We can then state our main assumption:

Yi=(vy, Yp, -, Vi)'~ MVN(g,,Zk). (8.5)

The unit sum constraint of p will always lead to a singular matrix ¥;. However, we assume
that there is only one condition on the elements of p, namely thé unit sum. In particular,
we assume that there does not exist any subset of categories such that the sum of their
probabilities is .known with certainty.

Although no density function can be defined for the singular multivariate normal distribu-
tion, its theoretical properties and numerical results have been invéstigated in the literature.
See, for example, Bland and Owen (1966), Kwong and Iglewicz (1996), Albajar and Fidalgo
(1997) or Genz and Kwong (1999).

Usage of the singular normal is thus feasible and has been exploited in numerous mul-
tivariate methods. Khatri (1968) used the notion of a generalized inverse to utilize the
singular normal distribution in multivariate regression. Styan (1970) discussed the distribu-
tion of quadratic forms in singular normal variables. West and Harri‘son (1997) defined the
covariance matrix of the multivariate normal distribution as é non-negative definite matrix.

In Chapter 8 of his book on linear statistical inference, Rao (2002) did not use the density
function to define the multivariate nor}mal distributiop. Instead, he characterized it by the
property that every linear function of its elements has a univariate normal distribution.
He could then list properties and characterizations of the multivariate normal distribution
without using the pdf. The singular normal distribution is thus a special case of the standard
normal distribution, and has similar properties, but with the usual inverse of the covariance
matrix replaced by its generalized inverse. Conditional properties of the singular normal
distribution have been extensively used in the current chapter for eliciting a logistic normal
distribution.

- To this end, using (8.5), we assume that the prior distribution of p is the logistic normal
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distribution induced by the vector
X* = AX];; ~ MVN(Ek_ly 2k—-l)'

where

A= [Q;Ik_l] . (8.6)
Hy_y = Apy , (8.7)
Seo1 = AZLA. (8.8)

We start by eliciting p, and a matrix X of rank k£ — 1. In our approach, we modify the
method of Kadane et al. (1980) and add a special treatment for the kth row and column.
This will give the p, | and Zk_; in equations (8.7) and (8.8). The matrix 3 is singular
of rank k£ — 1, given that no (;ther constraint can be imposed on subsets of probabilities
except the unit sum. However, the matrix Sj_; is shown to be positive-definite of full rank
k — 1, since it is simply Xy with its first row and column removed. A formal proof of the

positive-definiteness of X3 will be given later in Section 8.4.2.

8.3 Assessment tasks

Since the transformations in (8.2) and.(8.4) are strictly monotonic increasing from p to Z,C,
we can establish a one-to one correspondence between the medians and quartiles of these two

vectors. The required assessments are detailed as follows.

8.3.1 Assessing initial medians

o The choice of a category to start with is arbitrary, as discussed earlier. Hence it may
be chosen by the expert as the most common category and its probability is denoted
p1. A median value m; for p; will be assessed as a first step. Then the expert assesses
median values mj, j = 2, , k, for all the remaining categories. These assessed values

are shown by the blue bars in Figure 8.1.
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Now, you have finished with this frame. Accept or modify suggestions to sum to one!

Eliciting Medians of Probabilities for Each Category

i ] i
|

e n——

Categories

FoEE] stins | [ Eem Suggestons | et | [resra |

Figure 8.1: Assessing probability medians for logistic normal elicitation

e The normality assumption of Y, together with the unit sum constraint of p, can be
used in Lemma 8.1 and Theorem 8.1 (which are given in Section 8.4) to show that
the unit sum constraint must be also fulfilled by the m;. That is Z;“:l mj = 1. To
attain mathematical coherence, the software suggests a normalized set of assessments,
given by the yellow bars in Figure 8.1, as follows. Suppose the initial assessments were
my, My, -+ ,my. Then the coherent assessments that are suggested for the m; are given

by

m/,

mj = , forj=1,2,--- k.

Tk
>_mi
i=1

With our software, the expert can keep changing her assessed values until she is happy

with the normalized values that are suggested.

8.3.2 Assessing conditional quartiles

e In this assessment task, the expert is asked to assess a lower quartile L7 and an upper
quartile U for p;. She is then asked to assume that p; = m; and gives a lower quartile

L3 and an upper quartile Uy for ps. For each remaining p;, j = 3,--- ,k — 1, she
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assesses the two quartiles L} and U; given that py = my, po = mg, -+, pj—1 = m;_1.
See Figure 8.2, where the expert has assessed the two quartiles of ps conditional on the

median values of p; and py as given by the red bars.

e The lower (upper) quartile L} (Uy) of py is automatically shown to the expert once
she assesses the upper (lower) quartile Uy_, (L}_;) of pr_1, see Figure 8.2. The two
quartiles Lj, and U}, are also shown to the expert as a guide to help her choose Lj,_; and

Uf_,. In fact, Ly, (Uf) is the lower (upper) quartile of (px|p1 = mi,--- ,pr—2 = Mk_2)

as Ly +U;=U;_+L;=1—m3—---—my_y, from the unit sum constraint.
: e coosncns coreneen 7o mosp UMM E E

The Conditional Distribution of P3
T

10

pdf
e N a2 e =

T

i H

Kow, you have finished with this category. You may press "Next' to pn

P3

2
> o
5 &

Probablities
oS &

Categorles

FEs]  pEE] e

2l $@PMIER 1 * Prunsmme.. | Qrexiis il | e cmmmmioes - . FHTE .

Figure 8.2: Assessing conditional quartiles with lognormal feedback

e To help the expert during this current task, the software presents an interactive graph
showing the pdf curve of the lognormal distribution of (p;|p1 = ma,--- ,pj—1 = m;_1),
for j =2,3,--- ,k— 1, see Figure 8.2. The expert is able to change her assessed condi-
tional quartiles of p; until the conditional pdf curve forms an acceptable representation

of her opinion. With the aid of the lognormal curve, the expert is advised to make
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sure that her assessed interquartile range gives an almost zero probability of p; exceed-
ing 1 — Ef;ll m;. This boundary is given by the red vertical line on the pdf graph of

Figure 8.2. See Lemma 8.2 for the formal validity of the above results.

8.3.3 Assessing conditional medians

e Here, the expert is asked to assume that the median of p; has been changed from my
to mj; = my + ;. Given this information, the expert will be asked to change her

may be written as

previous medians m; of each p;. Her new assessment, m},,
- 1

mi;=mj+05;, forj=2,-,k (8.9)
o In each successive step ¢, fori = 2,3,--- ,k—2, the expert will be asked to suppose that
the median values of p1, pa, -+, p; are m{ 1 = my + 77, M35 = m3; 4+ 13, ,mf; =

mii_1+ 05, respectively, shown as red bars in Figure 8.3. Given this information, she

will be asked to change her assessed medians of the most recent previous step m; 4 ;_1,

m; 210" ,mz,i_l, shown by black lines in Figure 8.3. Her new assessments are
* — * * * _ % * * * *
Mit1; = Myipy-1+ 6i+1,i’ Myyo; = Myiygiq T+ 9i+2,i: ey My = Mg gt ek,i’
respectively, which are shown as the blue bars in Figure 8.3. For ¢ = 2,3,--- ,k -2,

and j=¢+4+ 1,9+ 2, -+, k, we can write
mj; =mj;_1 +6j; is the median of (pjlpy = m1,y, -, pi = mj;). (8.10)

e For mathematical coherence, as will be proved in Lemma 8.3, we have to make sure
that

i k
Zm;)]-i- me,iz]‘) 7:‘:]-,2,"',’{3'—2.
Jj=1 © =it

The expert has the option of changing her initial set of assessments mj; ;, M 0;,
m;, ;» the blue bars on Figure 8.3, until she feels that the suggested normalized set mj,, ;,
M4+ *s My, shown as yellow bars on Figure 8._3, gives the best representation of
her opinion. The software suggests each normalized conditional median m"f,i as

J
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Figure 8.3: Assessing conditional medians for logistic normal elicitation

e The current assessment task stops at step k — 2, as we do not ask for any conditional
assessments for the last remaining category pi. As the condition of summing to one
must be fulfilled, conditioning on specific values of all p1,p2,- -, pr_1 gives a fixed value
for px. Then no upper or lower quartiles can be assessed for pg, as mentioned before.
Conditional medians of Yz, given specific values of Y7, Y2, - -+ ,Y3_1 can be automatically

computed when needed, as will be shown later.

8.4 [Eliciting prior hyperparameters

The normalizing one-to-one functions in equations (8.2) and (8.4) are used to transform the
assessed conditional quartiles of p into conditional quartiles of Y} and, hence, into conditional

expectations, variances and covariances of the multivariate normal variables. In particular,
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letting M (X)) denote the median function of the random variable X, we proceed as follows.

Let

mi, for j =1,
m;‘-,o = (8.11)

YM(pj[pl =my), forj=2,3,---,k.

Since the normal variates, Y; = log(p; /pl)‘, j=2,--+,k, depend on the fill-up probability
p1, eliciting prior hyperparameters for Y* is tractable if we condition on p;. That is why we
define the extra normal variate Y7 as in (8.4) énd the conditional medians, m; g, as in (8.11).
These conditional medians are required instead of the assessed unconditional medians, mj,
to elicit the hyperparameters of the logistic normal prior distribution. However, we chose
to elicit the unconditional medians as they are easier to assess than conditional medians.
Fortuna‘pgly, under the normality assumption of Y* .and the unit sum constraint of p, we _Will
show in Theorem 8.1 below that the marginal unconditional medians, m;, are identical to
conditional medians, m} ,, of pj, fo;‘ j=1,2,---,k, respectively, provided the lognormal sum
is adequately approximated by another lognormal random variable.

Fori=1,2,--- ,k, let

miQ = E(Yl) v (8.12)

Remark 8.1

It is worth noting that Y1 = m1 when p1 = mj g, but, ¥; = m;p when both p; = m;, and
p1=mjg, fori=2,3,--- k.
Extensive use is made of the fact that each Y; follows a symmetric distribution (each has

a normal distribution), so E(Y;) = M(Y;). This is a key assumption in proving the following

lemma, which states an important result that is needed in the proof of Theorem 8.1.

Lemma 8.1. .Under the unit sum constraint of p, and the multivariate normality of Y,

k
* —
Zmz',o =14
=1
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Proof

As given by (Rao, 2002, p 522), the conditional distribution of any subset of singular normal
random variables is normally distributed with the usual conditional mean and variance, but
with generalized inverses of matrices. This property enables us to write, as in the non-singular

case,

E(Y;) = E[ifkllfl = E(}1)]

— E[YilYi = E)),Ys = E(Ya), -+ ,Yi1 = E(Ye_1)].
Then, replacing means by medians and using (8.12), we get
M(Yi|Y1 = m10) = M(Yi|Y1 =m0, Y2 =map, -+, Yie1 = mi_10)-
Hence, from Remark 8.1,

M{log(px) — log(p1)|p1 = mi ] =
M{log(px) —log(p1)lp1 = mig, -+, Pk—1 = Mj_10}s
which gives
log(my, o) — log(mig) =
log[M (pilp1 = m3 g, , Pk—1 = Mj_1 )] — log(m]p)-
ie.
'mz,o = M (prlp1 = m’{,o,pz = mS,O, s Pe-1 = mZ—l,O)
k-1
=1- Z m;‘,o.
i=1

This is the unit sum constraint, which completes the proof of Lemma 8.1.
The main idea in Theorem 8.1 is that the fill-up category can be changed from the first
category to any other category, and the same assumptions are still valid. We first give some

relations and notations needed for the proof of the theorem.
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Let X(1) =Y, and denote the mean vector and variance-covariance matrix of the multi-
variate normal distribution of ¥ ;) by By = By and ¥(;y = ¥g-1. We supposed ) and
¥ (1) have already been assessed. Moreover, let Y11 = log(p1) —log(1—p1), with Ey = E(Y1,1)
and Vi = Var(Y1,).

To change the fill-up category from the first category to any other category j, for j =

2,3,---,k, let
- V1,5 |1 log(p1) — log(p;) —
Yy = Yj-1,5 _ log(p;-1) — log(p;) |
Yji1,5 log(pj+1) — log(p;)
| Yes || log(pe) — log(ps), |
Y;; =log(p;) — log(1 — p;),
with
By = EXy) Ty = VarX),
Ej=E(Y;;), V3= Var(Yj;),
and

pij = E(Yis),  oi;=Var(Yy;), 45=1,2--.k i#].
It can easily be shown that, for j =2, .- ,k,
Yij) = Fi¥ (-0, (8.13)

where Fj is the identity matrix of degree k£ — 1 with the jth column replaced by a column of

-1. From the normality assumption of ¥ (), and in view of (8.13), we have

Yy ~ MVN(g;), (),
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with
By = Fi by
Sy = Fj S¢-1) F;-

Approximate normality of each Yj;, for j = 2,3,-- ,k, is thus induced from the normality
assumption of Y ;) in a manner exactly similar to that for Y1 ;. Hence, foreachj =1,2,---, k,
Qe can also assume that the k random variables Y; ;, for i = l,é, -+, k, are multivariate
normally distributed. Moreovef, using the nbrmality assumption of Y71, we assume that
the k + 1 random variables Y1; and Y;;, for i = 1,2, -- ,k, are also multivariate normally

distributed for each j =1,2,--- k.

Theorem 8.1. For any j = 2,3,--- ,k, under the unit sum constraint of p, and the multi-

variate normality of Y (;),

mj = M(p;) = M(pjlp1 = miy) = mj,.

Proof

Let

mi,(5) :M[log(pz)_log(p])]’ 1=12,---,k, 275.77
then
m4,(4) =E(Yi,j)
=E(Y;;|Y}; = Ej)
=M [log(p:) — log(p;)Ip; = M(p;)]-
Hence, exponentiating both sides of the above relation, we get
Mipilp; = M(p;)] = M(p;) exp(m;j))- (8.14)
As in Lemma 8.1, we put

k
M(pj) + Y Mlpilp; = M(p;)] = 1. (8.15)
' i#]
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Solving (8.14) and (8.15) for M(p;), we get -

M(pj) = — . : (8.16)

1 + Z exp(mi’(j))
i#j

On the other hand, for j # 1, since
Pr{p; < mjolps = mi} = 0.5,
then
Pr{(p;/p1) < (mjo/mio)lpr = mip} = 0.5,

and

Pr{log(p/py) < log(mi o/mio) Vi1 = Fn} = 05.
So, we can write

log(m] o/mjp) = M(Y1,[Y1,1 = E)
| = E(Y1,4|Y11 = E1) = E(Y1,5) = my (j)- (8.17)

Moreover, for j # i # 1, since

mi ) =E(Yi;)

=E(Y|Y11 = E1,Yj; = E(Yj[Y1,1 = E1))
=M log(pi/p;j)Ip1 = mi 0, P; = Mjl,

we have that

Pr{log(pi/py) < mi o1 =m0, = Mg} = 05
and

Pr{p; <mj, ?Xp(mi,(j))lpl =mjo} =0.5.
So,
miy =mjo exp(m;j)),
which gives
m;(j) = log(mio/mjo). | 7 (8.18)

Substituting (8.17) and (8.18) into (8.16) shows that M(p;) is as stated in Theorem 8.1.
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8.4.1 Eliciting a mean vector
To elicit a mean vector y; = (m1o mag - mk,O)’ we put

map = B(Y1) = M(Y}) (8.19)

= M (log(p1) — log(1 — p1))

— log(m} o) — log(l—m). (8.20)
Fori=2,3,--- ,k, put
mio = E(Y;) = E[Y;[Y1 = E(11)] (8.21)
= M(Y;|Y1 = myp)
= M| log(p;) — log(p1)|p1 = m] g]
= log(mjy) — log(mjp). (8.22)
8.4.2 Eliciting a variance-covariance matrix
Fori=1,2,---,k—2,and j=i+1,--- ,k—1, let
mj; = E(Yjlpr =mio+ni,p2 =my+n3,,pi = mi; 1 + 7).
Then

1,1

m¥.
m;; = log (m—“> : (8.23)

For i =1,2,--- ,k — 2, define #; by letting n; = ¥; — m; ;-1 when p; =m;,;_; +n;. Then
mj; = E(Yj|[Y1=mio+m,Ya=ma1+m, -, Yi =mii-1+m), (8.24)

and

m* + * m*
log ———l’O*—an — log ——LO*— , fori=1,
1—(mio+mi) 1-mj,

m¥. 4+ nf mr.
1og(L"’)—1og( 1), fori=2,3, -+ ,k—2.

* *

min mya

Analogous to mj; = m;,_; +n;, define

=

Mi; = mi;—1+m,  fori=12--- k-2, (8.25)
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so Y; = m;; when p; = m;‘)i.

Fori=1,2,--+,k—2,and j=1¢+1,---,k—1, analogous to 07; = m}; —m}fﬂ-_l, define

05 = mji — mji-1,

mk. .4 6%, mk.
0;; = log | —21—21 | _log [ —LI=2 | .
my1 myg

To elicit a (singular) variance-covariance matrix X of rank k£ — 1, let

so that

_ [ = L4177
v = var() = [ B ] (3.26)
where U7 and Ly are the upper and lower quartile of Y7, respectively. We have that
Ur = log(Uy/1 - UY),
Ly = log(L3/1 = LT).
Fori=1,2,--- ,k—2,and j=i+1,--- ,k—1, let
Vi = Var(Y;|Y1 = m1o, Y2 = map, -, Y = mip),
so that
U= L7 o
V?»J—l— [ﬁ[g‘{l ) fOI‘j =2,3,-- ak—la (827)
with

i Lj
Uj=10g m* s Lj=10g m .
1,0 1,0

Having defined the above quantities, we are ready to state and prove the following two

lemmas.
Lemma 8.2. Under the assumptions of Lemma 8.1, fori=2,--- [k —1,
7 (pilpr = m] g, p2 = M3, - ,pim1 = Mi_10) ~ Lognormal(u;, V;*),
where

pi = mio +log(m] o) = log(myy),
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and

. Ui — Li]?
Vi = Vi1 = [ 1.349 }
i—1
2. Pripi>1-)Y miyo <a,
=1
if and only if
Ur 1.349 = ., .
f:; <expy S log | 1— j;mj,o —HKi| s

where z,, is the o quantile of the standard normal distribution.

Proof

From the normality of Y, together with property (v) of the singular normal distribution in

(Rao, 2002, p 522), we have
YilY1 =map,- -+, Yie1 = mi—10) ~ N(mig, Vii-1).
Then for known fixed mj ,
(Y; + log(m] o)|Y1 = ma0, -+, Yi1 = mi—10) ~ N(mip + log(m] o), Vii-1)-

The one-to-one transformations in (8.2) and (8.4) then give

Di & * *
(p—lm1,o|p1 =MmMi0 " Pi-1 = mi—-l,O)

= (pilp1 = mig, - ,pi-1 = Mj_19) ~ Lognormal(m;o + log(m] o), Vii-1)-

Using equation (8.22), the first statement of the lemma is proved.
To prove the second statement, we use standard normal distribution theory and the first

statement of this lemma to state that

i—1_ x *
log(p:) — pj _ 18 (1 ~ 2= mj,o) M

/‘/i* ‘/'L*

Pr

< a,

if and only if

log (1 — ;;11 m*-,o) —pr
VvV < ;
2l1—a
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or, equivalently, if and only if

1.349 =1
Ui—L; < - log [ 1= mjg | —ui
N P

This proves the second statement.

Lemma 8.3. Under the assumptions of Lemma 8.1,

1 k
Zm;:]+ Zm;,’l:zl? i=172,"',k_2.
j=l1 =i+l

Proof

Using equation (8a.2.11) of (Rao, 2002, p 522), for i = 1,2,--- ,k — 2, we can state that

EYy|Y1=ma1, -, Y =m) = E[Yi|Yr =ma1, -+ Yi = my,

Yip1 = EYia|Yi =mya, -, i =mis), -, Yo = E(Yeoa[Yi =mag, -+, Y = myg)].
Then, from definition (8.24) and (8.25)

MYiYi=mi1, -, Yi=my;) = M(Yi|Y1 =my1, -+, Y = myy,

Yit1 = Mig14, Y1 = Mp—14)-
Hence

M{log(px) — log(p1)lpr = m] 1, ,pi =mj;] =

M log(pk) — log(p1)lp1 = mh, RREY 2 mf,i,PiH = m;—i-l,iv 3 Dk-1 = mZ—l,i],
which, utilizing equations (8.9) and (8.10), gives

log(mi,;) — log(mi ;) =

log[M(pilpr =m3 1, P = M43 Dit1 = Miy14 0 s Ph—1 = Mg_1,)] — log(mi ),

ie.

* * — ¥ X o ¥ ¥
Mgi = M (pk|p1 = My 1y P =My Pikl = Myg g4, s PEk-1 = mk_l,i)-
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Since the condition in the RHS of the above equation relates to all ps except pg, applying the
unit sum constraint gives the conditional median in the form of the following complement:
% k-1
mig=1-) mi;— > mi,
i=1 j=i+1
which ends the proof of Lemma 8.3.

Now, we modify the method of Kadane et al. (1980) to show that the quantities in
(8.24)-(8.27) are sufficient to elicit a positive-definite variance-covariance matrix Vi—1 for
Y, =M, -, Yi-1). Then, based on the condition of Zf___l p; = 1, and assuming that it
is the only constraint on sums of these probabilities, we add a kth row and column to get X
as a singular variance-covariance matrix for all the elements of Y. Removing the first row

and column of ¥; will lead to the desired positive-definite variance-covariance matrix 1

of Y*.
e Fori=1,2,--- ,k—1,let

Xi':(}/liyé"" 71/’5),

and

V= Var(Y,),

with V; as defined in (8.26). Suppose that V;_; has been estimated as a positive-definite

matrix. We aim now to elicit V; and investigate its positive-definiteness.

V; can be partitioned as

Vici Vicwy;
V; = , (8.28)
uVi1  o?
where
Vz’—ly_i = COV(Xi_p Yi)7
and

af = Var(Y;).
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e It is well-known from multivariate normal distribution theory that

EYi|Y,;) - EY;)=[Y;_, — E(Xi—l)]’vi:illvi_lgi

=[Y;,4 “ E(Xi—l)]lﬂz'-

(8.29)

Moreover, for j < i— 1, taking the conditional expectation of both sides of (8.29), given

that
Y; = (ml,O +01,me1 + N2, My -1+ 17]'),’
gives
B [BY, )Y, =] - B = B{Yioy - BT, =) e (8:30)
ie.
B(YlY; =y,) - E(Y})
=(yl - E(Y1)>y2 - E()/2)) Y E(}]J)’ .
E(Yj|Y;) — E(Yj), -+ E(Yia|Y) — E(Yie1)) w- (8.31)
From (8.24) and (8.31) we get
mij —mi0 = (M1, M2,1 — M2, + M2, , My j—1 — M0 + Nj,
Mj41,5 — Mj41,0,° , Mi—1,5 — mi—l,o) u;.
This holds for j = 1,2,---,i — 1, so we have a system of ¢ — 1 equations of the form
T = Qi—1y, (8.32)
where 3 )
™M1 — M40
mi2 — M40
T = ;

Mii—1 — M40
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and

-
m m21 — M2 mg3,1 — mM3,0 ce mi-1,1 — Mij-1,0
n Mgl — Mmao+ 72 m32 — M3,0 ax mi—1,2 — Mi—10
Qi1 = m mg1—Mmoo+n2 Mg2—m3o+nNy - mi—1,3 — Mi-1,0
m Mgl — Moo+ M32—M30+N3 ccr Mi-1i-2 — Mi—1,0 T Ni-1

Since m; j — m;j-1 = 6;;, j = 1,2,--- ,i— 1, multiplying both sides of (8.32) from the

left by the matrix

0 0o -1 1
gives
0;1 m O21 i1,
0;2 0 Oi—12
= U
0
_gi,i—l_ o -0 Mi-1 |

Provided that

7]]#0> j=1’277:—]‘7

the upper diagonal matrix M;_1@Q;—1 is non-singular and hence

- ~-1 F -

m Oe1 -+ Bi1 0;1
0 m2 -+ Oi-1p2 B2
u;, =
0
0 - 0 Moy 031

e Since

Var(Y;|Y;_;) = Var(¥;) — u; Vi1,
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we can now use the assessed conditional variance given by V;;_1 in (8.27) to estimate

the unconditional variance o? as follows:
2 _ .. 'V
g; = Vii—1 +u;Viqu,.

Using the Schurr complement, the matrix V; is positive-definite if and only if

2 !
o; —u;Viciy; >0,

which is guaranteed from (8.27) since V;;-1 > 0.

e Choosing the arbitrary values nf # 0, j = 1,2,---,7— 1, guarantees the existence of a

unique solution for u;. It can be seen from the relation

mio+ni ™mi g .
log| ————< | ~log| ——=—— |, forj=1,
ni = 1—(m]q+mni) 1=mi,
;=
} mt. . +nt ) mk.
log M — log J—il , for j=2,3,---,i—1,
UGS mia
thatnj=0ifandonlyifn;=0,j=1,2,---,i—-l.

e So far, the proposed method estimates V; as a positive-definite matrix, assuming that
Vi—1 is positive-definite. Since V3 > 0, the method yields a positive-definite matrix

Vk—1, by mathematical induction.

Estimating the last row and column of ¥

e Let X; be partitioned as follows

Vi1 V1w
Y= : , y o (8.33)

wVeer  oF

where

Vk—-lgk = COV(_Y_k—lv Yk):

and

o2 = Var(Y3).
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Note that, according to the condition that elements of p must sum to one, the condi-
tional variance of Yy, given any specific value for Y, _;, has a fixed value of zero. Hence,

using the standard theory of the multivariate normal distribution, we estimate 0'% as
0% = U Ve-12.
e To estimate u;, we write, as in (8.29),
E(Yi|Yg1) — E(Ye) = [Yyo1 — B(Yg-1)] wy- (8.34)

Exploiting the condition that 3% | p; = 1, we can obtain k —1 estimates of E(Yk|Y_;)

from k — 1 different sets of conditioning values for Y,_;. More preciously, let

mio = E[Yi|Y1 =m0, Y2 =map0, -+ , Y1 = m/;—l,o],

mg1 = E[Yi|Y1 =m11,Y2 = map, -, Yee1 = mi_10),

mp; = EYi|Y1 =m11, Y2 =map, -, Yic1 =mi1,-1, Y5 = my-1,
Yit1 = mig14, - ,Yk—g = Mp_9 k-3, Ye—1 = Mk—1k-1)

fori=2,3,-+- k—2,

My k-1 = E[Yx|Y1 =my1, Y2 =map, -, Y = mp_o k2, o1 = mi_1,k-1],
where my_1 ;-1 is an arbitrary value, which will be chosen such that
ME—_1,k—1 7 Mk—-1,0-

We require mg_1x—1 # mg—1,0 in order to solve the resulting system of equations, as

will be shown later.

This gives the system of k£ — 1 equations,

Ty = Qr-1uy, (8.35)
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where

and

Qr-1=

!
myj

m

m

m

m

m

= Mi,j — M0,

M1 — Mgo
Mmg2 — Mgo
Mik—1 — Mk,0
0 0
7 ’
m39 Mp_9 k-3
m, DY m’
3,2 k—2,k—3
/
m33
ml
k—2,k—3
m’ « e m,
3,3 k—2,k—2
1=2,3,--- ,k—1,

0

I
Mp_1k-1

/
ME_1,k—1

!
Me_1 k-1

/
M _1k-1

j=i-1,i.

We multiply both sides of (8.35) from the left by the matrix Mj_;, which has a different

structure from M;_; (i < k), taking the form

M1 =

1 0 0
0 -1 1 0
0 0 -1
0 0 0

The system of equations can then be written as

Mgl — Mk,0

Mg3 — Mg2

Mg k~1 — Mk k-2

Mg, — Mk k-1

m

0

M2

Nk—2

/
Mg k-2 Tk-1]

U, (8.36)



where
7 .
mi; =Mmi;— Mo, ©=2,3,-,k=2,
Me—1 = Mk—-1,0 — Mk—-1,k—1-
Provided that

77]7407 j=1727k—1a

the lower triangular matrix My_1Qk—1 is non-singular and hence

_ -1 -
m Mg, — Mko
0 2 0O M3 — M2
Uy =
0 e 0 Mk—2 Mk k-1 — Mk k—2
|—m —mgy cr —Mp_gpp Th-1] | TR0~ Mk |

Positive-definiteness of the variance-covariance matrix

As mentioned before, the inverse of the additive logistic transformation is applied to the k
dimension random vector p, transforming it into the k — 1 dimension random vector Y* =
(Y2, Ys, ---, Y;). We are interested in the hyperparameter ¥x_; as this is the variance-
covariénce matrix of Y*. Although the whole matrix ¥, is clearly a singular matrix, we will
show that the submatrix ¥;_; is sure to be a positive-definite matrix, provided that no subset
of categories has a known fixed sum of probabilities.

Consider the following partition of the singular multivariate normally distributed Y :

v ] [log(er) ~log(1 —p1) |
Y, log(ps) — log(p1) )
Y3 log(p3) — log(p L
yo=| 0| = | CEmTRER) i
| : | -
Yect || log(pe-) ~ log(p1)
| Ve || log(pr) — log(p)
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Recall that, by definition,

BN
Y= : il
Y1 *
L Y
Let ¥ be conformally partitioned as
V1 aib
Sk=|aiVric|,
b _Q’ 1Ok
where
V*is a (k —2) x (k — 2) square matrix,
a and ¢ are (k —2) x 1 vectors,
W, a,% and b are scalars.
| : Viid . . .
The method we used to estimate Vi_; = V* guarantees its positive-definiteness, hence
a:
V* is also positive-definite.
The matrix Xg_; is then partitioned as
5 Ve
k=1 = |y
d iog

For ¥_; to be positive-definite, we must show that
o> g’(V*)_l_c_.
In fact, using the inverse of a partitioned matrix, and for d = V; — a/(V*)~1a, we may write

............

T ~d~1d/(v*)~!
= [b;g ] [_(V*)_lgd_l(V*)_l_}_(V*)_lgd_lg’_/(v*)_ljl [Z}

_C__I(V*)_I_Q-l' % {b2 _ 2b[g'(V*)_lg] + [QI(V*)_IQ][Q,(V*)_IQ]}

i

(V) le+ % [b-d(V*) .

Il
[

So, Xj_1 is positive-definite if and only if

b—d (V¥ ¢ #0. (8.37)
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The method used to estimate X automatically guarantees the fulfilment of such a condition.

In fact, using the following partition of uy,

gives

Condition (8.37) thus holds if and only if
Vi —a'(V*)™'a] w1 #0.

But Vi —d/(V*)"!a > 0 from the positive-definiteness of Vj_1, and hence Xj_; is positive-
definite if and only if u; # 0.
It can be seen from (8.36) that

_ Mgl — Mgo

U] = ———————,
m

This condition is sure to be fulfilled since

myo = log | ————— —

Mio
and
1- Yt m,
— 1 1= J 1
my1
from which
mg,1 # M0,
unless
* %
m1,1 = My 0s
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which can never occur since
%
n # 0.

So, the proposed method‘for eliciting the matrix X ensures that Xj_; is positive-definite,
even though ¥ is itself singular.

Once By, and X have been estimated, equations (8.6)-(8.8) give the hyperparameters p1,
and ;_; of the logistic normal prior distribution of p based on the normalizing transforma-

tions given by Y.

8.5 Feedback using marginal quartiles of the logistic normal
prior

Afte'r eliciting the mean vector By q and the variance-covariance matrix Y;_; of Y™, the
software calculates marginal medians and quartiles of the probability of each category and
displays their values as feedback to the expert. Since the initially assessed quartiles were all
conditional, it is useful to inforrﬁ the expert of the marginal quartiles and give her the option
of changing them if she wants.

To add this feedback option to the software, we had to develop a reliable technique for
estimating marginal quartiles from the elicited hyperparameters Br_y and Yz_1. Moreover,
we must correspondingly modify the elicited hyperparameters once the marginal quartiles
have been changed by the expert dﬁvring the féedback stage. N

A simple direct method for estimating the marginal moments, or quartiles, of the logis-
tic no;mal distribution in closed forms does not seem to exist in the literature. Aitchison
(1986) suggested using Hermitian numerical integration methods to obtain @arginal mo-
ments. However, he argued that the main practical interest is in the ratio of components,
not in the component themselves. This is not the case here, as we are mainly interested in
marginal probabilities, not in their ratios. Another approach, based on the Gibbs sampling

technique, has been used by Forster and Skene (1994) to accurately approximate the posterior
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marginal densities and other summaries for a broad class of prior distributions including the
Dirichlet and logistic normal distributions. However, the method approximates the marginal
densities of the posterior distribution rather than the prior distribution.

Under the normality assumption of Y* and the unit sum constraint, it has been proved in
Theorem 8.1 that the marginal unconditional medians of p;, m;, are equal to their conditional
medians, mjg, for j =1,2,--- k.

Moreover, the same assumptions make it possible to estimate marginal lower and upper
quartiles for each pj, for j =1,2,--- , k. In the following lemma we formally state and prove
the above results. Then, we propose a method of revising the estimates of p, ; and X1 to

reflect any change made by the expert to the marginal quartiles.

Lemma 8.4. For any j =1,2,--- ,k, under the assumptions of Theorem 8.1,
b 1
Vi=2qlog Zexp (,ui,j + 501-2’]-) +E;;,
i#j
and V; is guaranteed to be strictly greater than zero.

7

Proof

Since

},i,j =10g (%) NN(Mi,jao-iQ,j)? 7’7.] = 172"" 7k1 Z#J’
J .

with known p; ;, aiz’ j» the expected value of the lognormal distribution of (p;/p;) is given by
i\ _ 1, .
5(5) =ow (s 57%).

k

But
pi_1-p;
iz Pi pj

S0

szE< pJ):E B
i P

k k

Pi 1

= ZE (p—l) = Zexp (Mz’,j + Eazj) . (8.38)
J i#j
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On the other hand, by the assumption of approximate normality for Y} ;, we have

Pj )
lo ~ N(E;,V;),
g<1~pj (Ej, Vj)

SO

and

1 —p.
M;=FE ( .p]> = exp (—Ej + %V}) . (8.39)

We take M; as in (8.38)‘, and Theorem 8.1 gives

m*
Ej =log (1 = :f(:’fo) : (8.40)
: Js .

Equation (8.39) can be solved for V; to give the first statement of Lemma 8.4.

Substituting m} for M (p;) in equation (8. 16) and puttlng My (5) = Wi, Bives
k
= —log Zexp(ui,j) . (8.41)
i#
This guarantees that V; > 0 in (8.39), since by comparing the RHSs of (8.38) and (8.41), we
can see clearly that
Mj > exp (—-Ej) .
This ends the proof of Lemma 8.4.

The two unconditional quartiles of p; can be obtained from

exp[Ql( )]
Qi) = 1 T exp[Ql(Jj,J')],
and
exp|Q3(Y;)]
Qs3(py) = 1+exp[Q3( Vi)l
with

Q1(Y;;) = E; +\/—<1> (0.25),

Q3(Y;;) = E; ++/V; ; ®1(0.75),
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where & is the cdf of the standard normal distribution.

The unconditional quartiles Q1(p;) and Q3(p;) are presented to the expert as feedback
with the unconditional median M (p;), for j = 1,2,--- k. The expert has the option of
changing any of the unconditional medians and/or quartiles. The changes are reflected in

estimates of the hyperparameters p, . and ¥j_1, using the following approach.

e Let m/(p;) denote the values of M(p;) after re-assessment (j = 1,2, ,k). We revise

Hj1 to

. . log(m*(p;)) — log(1 — m*(p;)) forj=1,
Hi1 = E (Y',l) =
log(m*(pj)) - log(m*(pl)) fOI‘ .7 = 21 e )ka

with a new normalized set of medians m*(p;), where

* m,p' .
m(p]):—k-——g—-]—)—, ]-:1,2,-..7k;,

> m'(p;)
i=1

e Suppose one or more of the marginal unconditional quartiles Q1 (p;) and/or Q3(p;) are
re-assessed as @) (p;) and/or Q5(p;), respectively, for j =1,--- ,k. Then we change the

variance-covariance matrix X1y to
* * i 1
Tty = Var'(Y)) = D2 X D, (8.42)

where D is a diagonal matrix with diagonal elements

and o7} is defined by

o074 = Var*(log(p:) — log(p1))

= Var*(log(p;)) + Var*(log(p1)) — 2Cov* (log(p;), log(p1))- (8.43)

The modified variances and covariances, Var* and Cov*, respectively, are determined as

follows.
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As Y; ; is assumed to have an approximate normal distribution, let

) - os (=) ¢ (attg) 2

Vj = Var [l°g (1 ey 1.349 ’

80,

Y;j ~ N(E;, V7).

Using a simple numerical integration technique on the normal pdf of Yj;, we can get the

expectations, for j =1,2,--- ,k, in the RHS of the following equation,

Var*(log(p;)) = E {log [1?21{(—;1)%1]/3])] }2 - {bg [%] } '

To attain a strictly positive value of Uf‘j as in (8.43), we modify Cov(log(p;),log(p1)) by
putting

COV*(IOg(pi))IOg(pl)) = 'wz'COV(].Og(pi), IOg(pl)) 1= 27 37 Tt ,k-

where

v \/Var*(log(m)Var*(log(pl))
¢ Var(log(p;)) Var(log(p1))

2%
J;1

D= 7 | »
Oi1

so as to change the variances of _K(l), while preserving correlations and also preserving the

In (8.42) we use the diagonal matrix,

positive-definiteness for 22‘1).

Another feedback window is available on request for the expert, should she need to see
the influence of changing one or more of the marginal quartile values. If this option is taken
and further re-assessment made, then the method given in Lemma 8.4 is applied again on the
modified matrix 22‘1), to give a new set of marginal quartiles. These can be changed again
by the expert if she does not find it a satisfactory representation of her opinion.

We should mention that the new set of marginal quartiles does not necessarily have
the same values as the modified quartiles. The unit sum condition of p, with the normality

assumption of each Y} ;, for j = 1,2, .- , k, always forces the marginal interquartile range for a
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single probability to partly depend on the other probabilities, as shown in Lemma 8.4. Hence,
for mathematical coherence, the resulting set of marginal quartiles will not correspond exactly
to the expert’s assessments. The proposed approach that uses Lemma 8.4 and continuous

feedback enables the expert to adjust the quartiles until she is happy with the feedback values.

8.6 Example: Transport preferences

In designing transport systems for the future, one ingredient is the relative importance of fac-
tors a person may consider in selecting the mode of transport for different journeys. Estimates
of these preferences help in planning rail services, roads and other transport infrastructure.
Such estimates are also of interest from the environmental point of view, because of the
impact of transport emissions.

For a preparatory environmental study, estimates about factors. affecting transport pref-
erences in 2020 were needed. In this example, a transport expert quantified his opinion about
the factors affecting the choice of transport for a hundred mile journey across UK in that year.
Primary interests of the expert (Dr. James Warren, The Open University) include modelling
energy and emissions to gain a better understanding of transport systems and the potential
effects of transportation policy and technology on the environment. He specified five quan-
tities as the main factors a passenger would consider in choosing the means of transport for
such a journey. These factors are: cost, journey time, environmental impact, comfort, and
convenience. Interest focuses on the relative frequency with which each of these quantities is
the mqst important factor: For what proportion of people would cost be the most important
factor in choosing the mpde of transport for the journey? For what proportion would it be
journey time? And so on. The problem can thus be described as a multinomial model with
five categories, one for each factor. O‘ur method and PEGS-Logistic software were used by
the expert to quantify his opinion about a logistic normal prior fof the parameters of this
multinc;mial model.

After initializing the software and defining the model, the expert assessed his medians of
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the proportion of people for whom Cost/ Time/ Ecolmpact/ Comfort/ Convenience would
be the most important factor. These medians assessments were 0.61, 0.25, 0.04, 0.06, 0.10,
respectively, and they are the blue bars in Figure 8.4. These values do not sum to 1 and the
software suggests values (yellow bars) that did. Rather than accepting these suggestions, the
expert revised his initial median assessments to be 0.49, 0.28, 0.04, 0.06, 0.11, respectively. As
their sum is nearly equal to one, the medians suggested next were very close to his assessments

and the expert accepted them as representatives of his opinions.

Now, you have finished vith this frame: Accept or n)odi}ys}:c}qe&ﬁd@ to sumto.onel .

3 / ; T
. 008 : T o
oy i :
| 000 : i 0 E‘;‘ E‘ 5o
i Cost Time Ecolmpact Comfort Comvenience
: Categories
| Revics Suzguclions ] [Tetem Goageswers | ted= | - |

Figure 8.4: Software suggestions for initial medians

The expert then gave his assessed upper and lower quartile values for the probability of
the first category; these were 0.62 and 0.43 respectively. Then conditioning on his assessed
medians for previous categories, he assessed his conditional quartile values. The four con-
ditional lower quartiles were 0.18, 0.03, 0.03, 0.10, respectively, while the four conditional
upper quartiles were 0.36, 0.10, 0.08, 0.15, respectively. See Figure 8.5, in which the expert
has given his two quartiles of the fourth category conditional on the probabilities of the first
three categories. The quartiles of the last category follow automatically. Although the expert

is not a statistician, he had no problems in assessing quartiles after a brief discussion about
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the method of bisection.

Now, you have finished with this category. You may press 'Next’ to proceed
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Figure 8.5: Assessing conditional quartiles

Next, the expert gave conditional median assessments of 0.41, 0.16, 0.12, 0.33 for the
remaining four categories, conditional on the probability of the first category being 0.25. The
number of conditions was then increased in stages. Conditional on 0.25 and 0.20 being the
probabilities for the first and second categories, respectively, the expert revised his probability
median assessments for the last three categories to 0.13, 0.18 and 0.25, respectively. See
Figure 8.6. Finally, he gave the conditional medians of 0.19, 0.30 for the last two categories

given that the probabilities of the first three categories were 0.25, 0.20 and 0.07, respectively.
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Figure 8.6: Revised conditional medians

It is worth mentioning that the suggestions given by the software played a crucial role in
helping the expert choose medians that satisfy the unit sum constraint. During the elicitation
process, obviously the sums of expert’s assessments never equalled one exactly. When sug-
gestions were offered by the software, he normally revised one assessment and then accepted
the second round of offered suggestions. After making his conditional median assessments,
the expert was then éhown the unconditional medians and ﬁnconditional quartiles that were
implied by all his assessments. See Figure 8.7. During this feedback stage he was invited
to accept or revise these quantities. The unconditional medians that were offered were ac-
cepted by the expert as an adequate representation of his opinion. However, he decided to
use the change quartiles button to revise the unconditional quartiles and then reduced the

interquartile range of the last category.
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Figure 8.7: Software suggestions for marginal medians and quartiles

The elicitation process took about 20 minutes to complete. The expert commented that
although the elicitation problem was quite tricky, the software gave a helpful form of visual-
ization. He also mentioned that he had found it hard to make his median assessments sum
to one, so that the software’s suggestions had been very welcome. He also advised that it
would be helpful if the different categories were ordered according to their importance, i.e. in
a descending order according to their median probability values. He thought that this order
would make it easier for him to think about conditional assessments.

The software output the following elicited hyperparameters of the logistic normal prior

as in Tables 8.1 and 8.2.

Table 8.1: The elicited mean vector of a logistic normal prior

Yz =log(p2/p1) Yz =log(ps/p1) Yi=Ilog(ps/p1) Y5=log(ps/p1)

-0.5068 ' -2.4517 -2.0639 -1.5043
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Table 8.2: The elicited variance-covariance matrix of a logistic normal prior

Yy =log(2) Yz=log(E) Yi=log(Z) Y;=Ilog()

Y = log(22 0.3414 0.1511 0.1598 -0.3035
Y; = log(&2 0.1511 0.9087 0.3677 -0.5551
Yi=log(2) 01598 ' 0.3677 1.0906 -1.9076
Ys=log()  -03035  -0.5551 -1.9076 3.468

This output gives the mean vector and variance-covariance matrix of a multivariate normal
distribution of degree 4 for Ys, Y3, Y4, Y5. However, the marginal moments of each p; are not
given as output. Instead, marginal medians and quartiles are presented to the expert during
the feedback stage as discussed before, see Figure 8.7. The multivariate normal distribution
of Ys,Y3,Ys, Ys may be used as a prior-distribution in a Bayesian analysis. Details of the

additive logistic transformations are also needed: - -

1
z —, fori=1,
1+ exp(Yy)
pi = < j=2
Y.
e’;p( D for i =2,3,--- ,5.
1+ > exp(Y;)
\ Jj=

Of course, the extra variable Y] is omitted as it is a redundant variable due to the unit sum
constraint on p. The software has an option to implement this prior distribution in a Win-
BUGS file. After the sample data are obtained, the software produces a file for a WinBUGS
model that contains sample data, a multinomial likelihood and a complete specification of

the logistic normal prior distribution that the expert assessed.

8.7 Concluding comments

In Chapters 6 and 7, we introduced elicitation methods for Dirichlet, generalized Dirich-
let and Gaussian copula as prior distributions for the parameter vector p of the multi-

nomial model. Hence the logistic normal distribution is our fourth suggested prior dis-
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tribution for this model. Among these priors, the logistic normal prior gives the most
general correlation structure. The PEGS-Multinomial software, that is freely available at

http://statistics.open.ac.uk/elicitation, offers the option of eliciting any of these four prior

distributions.

As noted earlier, it is tricky to elicit assessments that satisfy all the necessary requirements
for multinomial models. For example, if there are only two categories, the lower probability
quartile of one category and the upper quartile of the other must add up to one. As the
number of categories increases the requirements that must be satisfied increases. In our
proposed elicitation method, we chose assessment tasks and a structure that led to a coherent

set of assessments, without the expert having to be conscious of the requirements.
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Chapter 9

Eliciting multinomial models with

covariates
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9.1 Introduction

With multinomial models, the membership probabilities of different categories may depend
on one or more continuous or categorical explanatory variables (covariates) that influence
these probabilities. The simpler well-known example in this context is the logistic regression,
where the probability of being in one of only two categories is related to a set of explanatory
variables through the logit link function.

Suppose there are k categories, let p1,p2,--- ,pr denote the membership probabilities
and let X = (X1, X2, ,Xm) be a vector of m explanatory variables. Relating X to each
probability p; using separate logit link functions is not the best choice. The inverse link

functions gives

Pi(_)i) _exp(oi + X'B)

= = 1
1+exp(ai+_X_léi)’ 1727 7k1 (9 )

in which case, it will not be easy to investigate the conditions under which the constraint

f=1 pi(X) = 1 is fulfilled. Some other link functions are available in the literature [e.g.
Aitchison (1986)]. However, the additive multinomial logistic link function is the most con-
venient, as it automatically accounts for the unit sum constraint. It links the classification

probabilities to linear predictors in the form,

' 1
k , =1,
3 !
J 1+ Zzexp(aJ +X'B)
pi(X) = = (9.2)
exp(ai + X'B,)
A ) = 2: ) :k
. !
1+ Zzexp(a] + X éj)
\ Jj=

Expressing the model in the form of (9.2) helps to generalize results obtained in the previous
chapter to the current case.
For the Bayesian analysis of the multinomial logit model, a multivariate normal prior may

be assumed [e.g O’Hagan and Forster (2004)] for the parameter'vectbr

* _ /
ﬁ _(012, -'QIZ’ Tty Oy é;c)’



where the vectors of coefficients, (ou, [_5‘:)’ , are category specific, for ¢ = 2,--- ,k, i.e. each
category has its own vector of regression coeflicients. We select the first category as the fill-up
category, hence, its regression coeﬂﬁcients, (a1, g'l)’ , are not included in the pripr distribution
for identifiability.

In this chapter we propose an elicitation method for eliciting a mean vector and a
positive-definite variance-covariance matrix of the normal prior distribution of §*. Our
proposed method is based on the results obtained in the previous chapter for the logis-
tic normal prior distribution of the multinomial model. The proposed method has been
implemented in the PEGS-Multinomial with Covariates software that is freely available at

http://statistics.open.ac.uk/elicitation.

In Section 9.2, we define the underlying model, namely, the base-line multinomial logit
model, in terms of the additive logistic transformation. The required assumptions, notation
and theoretical framework are discussed in Section 9.3. Elicitation methods and assessment
tasks required for eliciting a mean vector and a positive-definite variance covariance matrix
for the regression coefficients are proposed in Sections 9.4 and 9.5. Final concluding comments

of this chapter are given in Section 9.6.

9.2 The base-line multinomial logit model

The model that uses the link function in (9.2) is known as the multinomial logistic (logit)
model, since it has multinomial responses with a number of k > 2 categories. The model in

(9.2) is usually given in the more general form
exp(a; + X'B.
pi(X) = p p(os é’) , t1=1,2,-- |k, (9.3)
> expla + X'B))

Jj=1

which is called the base-line multinomial logit model. See, for example, Agresti (2002) or
Powers and Xie (2000). In the rest of this chapter; for ease of notation, each classification

probability p;(X), as defined in (9.2), will be just denoted by p;, for i =1,2,--- , k.
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To attain the unit sum constraint in the base-line model, an identifiability constraint must
be imposed by equating the coefficients of the “base-line” category to zeros. The selection of
the base-line category is arbitrary. If we select the first category as the base-line category,
then, under the identifiability constraint (0q, g’l)’ = 0, it can easily be shown that the model
in (9.3) is equivalent to that in (9.2). Thus, the model has exactly (k — 1)(m + 1) free
parameters. ’

From (9.2), the linear predictor, Yj =05+ X ’_ﬂ_j, can be written in terms of the logistic

transformations in classification probabilities as
Y3" =Gy +X’éj = lOg(pj) - IOg(pl)a for .7 = 273: e >ka (94)

where the regression coefficients for the jth category are

B;= B3 Bagy s Bmg)

We define an extra variable, Y7, as
Y1 = log(p1) — log(1 — p1). (9.5)

This extra variable is required to be used as a conditioning value in the elicitation process,
as shown in the previous chapter. We do not assume Y7 to be a linear predictor, since the
trivial parameters, o1 and g, will not appear in the elicited prior distribution. We adopt

the conventions a; = 0, gl = 0, for identifiability of the base-line model.

9.3 Notation and theoretical framework

We assume that the prior opinion about the linear predictors Y3, - -, Y:, can be adequately
represented by a multivariate normal distribution of degree k£ — 1. Then from equations
(9.4), (9.5) and Section 8.2.1, Y¥; has an approximate normal distribution. In addition, the
classification probabilities, p1,p2, - ,pr, have a logistic normal distribution as defined in
Section 8.2. Following O’Hagan and Forster (2004), we assume a multivariate normal prior

distribution for the regression coefficients.
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For tractability in the elicitation process, the expert is asked to give her assessments
for the classification probabilities, p1,--- , Pk, and consequently for Ys,--- , Yy, for only one
covariate at a time. All other covariates are assumed to be at their reference values / lévels. By
doing this for each covariate in turn, the expert can concentrate on revisihg her assessments
as a result of the éhénge in just one explanatory covariate.

The relationship between each Y; and each continuous covariate X, is not necessarily
linear.' A piecewise-linear reiationship as discussed in Chdpters 3 and 4 might be a reasonable
choice here thét can model many types'of relationships. However, in dealing with k categories
and m explanatory covariates, a piecewise-linear relationship will seldom be practical as it
imposes a large number of dividing points (knots) at which the expert must give assessments.
This would lead to a lengthy elicitation process. So, to simplify the elicitation process, we
assume that relationships are linear. Specifically, we assume a linear relationship between

each continuous covariate X, r =1,2,--- ,m, and each Y}, j = 2,--- , k, of the form
szaj+XTﬂT,j7 'r=1,-~,m, j=27""k7 (96)

given that all other covariates are fixed at their reference values/levels. That is, equation
(9.6) holds when X; = z;0, for ¢ = 1,2,--+ ,m, i # r, where z; is the reference value/level
of X;. If, all covaria£es are at their reference values/levels, i.e. X; =z;9, fori=1,2,.--,m,
then

}/j“_“aj’ J=2,- k. (97)
To achieve this, for 7 = 1,2,--- ,m, if the covariate X, is a factor (categorical variable), with

a reference level .o and any number §(r) of levels, 1, Tr2, - , Tr,5(r), then X, is split into

d(r) new factors, X, ; defined as

1 X, =z
Xri= , (9.8)

0 otherwise,

fori=1,2,---,6(r).
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If X, is a continuous covariate with a reference value z,g, then we define a new variable
*
X as

X} =X, — o, forr=1,2,---,m. (9.9)

With the new covariates defined by (9.8) and (9.9), the value of each covariate is equal to
zero at its reference value.
Hence, if m consists of m; factors and mqy continuous covariates, we get a new set of, say,

m* explanatory variables, where

m
m* = Z(S(j) + ma.

j=1
To simplify the notation, with no loss of generality, we keep the notation X1, X, ---, Xm,
for the set of covarigtes, while keeping in mind that m actually denotes m* and that each
X, is of the form of (9.8) for a factor or (9.9) for a continuous covariate. In this sense, the
models in (9.6) and (9.7) are equivalent to (9.4).

It is convenient to rearrange the regression coeflicients into a matrix, say 8, of the form

231 (£%) (072
ﬂ = ’ y T . (910)
B, B, By,
Then we define the new set of vectors o, 8 ")’ for r = 1,2,-.-,m, as the rows of 8, of the
form
a= (031, Q9, ., ak)” (911)
g(,,.) = (ﬁr,h :BT,27 Tty ﬁr’k),i‘ : ‘ : (912)

and the same set with the first zero elements removed, as

Ql.1=(a2>, ag, -, ak),: (9.13)

1 /
é('r) =(Bra, Bra, oy Bri) (9.14)
Since each column of the B matrix in (9.10) contains regression coefficients that correspond

to one category, it is more convenient to work with the rows, which each correspond to one

covariate. In this case, elements of a single row correspond to classification probabilities, and
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hence these elements must be inter-related in a way that reflects the unit sum constraint
of the probabilities. Therefore, we assume that the elements of o are correlated, and that
the elements of each g (r) are also correlated, hence statistically dependent, a priori, for all
r =1,2,---,m. While elements from different rows of 3, that corresponds to different
covariates, are assumed to be independent a priori, so as to simplify the elicitation process ‘
and obtain a block-diagonal variance-covariance matrix.

If we let él =(gY  pY BY )’ then the multivariate nérmal prior distribution

- =(1) E(m) :

By

to be elicited is thus of the form,

Q»—\
™
R
\g]
Q
©

U
~ MVN , . (9.15)
g Hg Yo 2B

9.4 Eliciting the mean vector
To elicit the mean vectors p_ and p 5 in (9.15), we proceed as follows

e The expert is asked to assume that all covariates are at their reference values/levels, i.e.
X,=0,r=1,2,--- ;m. We call this situation as the reference point. She then assesses
a median value, say mj g, for thé probability p; of the first category. As discussed
in the previous chapter, since the choice of the first category is arbitrary, it is chosen
by the expert as the most common category. Then the expert assesses median values

mMio0 J =2, ,k, for all the remaining categories.

o As proved in Theorem 8.1 in the previous chapter, these unconditional median assess-
ments are equal to the conditional medians of (pjlp1 = mj ) for j = 2,3, - ,k.
For convenience, we denote both conditional and unconditional medians by m},
j=2,---,k Lemma 8.1 in the previous chapter étates that Iﬁedian assessments must
sum to one, so they are normalized by the PEGS-Multinomial with Covariates software

to fulfill this condition.
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* For each covariate in turn, the expert is asked to assume a specific value of the current
covariate, say Xr» = xr, while all other covariates are assumed to be at their reference
values/levels. Under these assumptions the expert starts by assessing a median value
for pi, say m \Qr. Then she assesses a new set of median values, say ra*(ilo f°r 3 =
2,3,--- ,k, for all the remaining categories. Again, these assessments are normalized
to satisfy the unit sum constraint. This process is repeated for each covariate, i.e. for

r= 1,2, ee¢ ra.

* Figure 9.1 shows the assessed probability medians when only one of the covariates, age,
has changed from its reference value to a new value (40 years). To help the expert during
this stage, the software gives the previously assessed medians when all covariates were
at their reference values/levels. This is presented by the upper right graph of Figure 9.1.
The reference value/level of each continuous covariate/factor is also listed in the upper

left table as in Figure 9.1.

Probability medians atthe reference point

Now, you have finished with this frame. You may click 'Nextl1

File Ectt Tools Help
Eliciting Medians of Probabilities for Each Category when the covariate (age;

Categories

THniBi

Hde ~ |

9i

Figure 9.1: Assessing probability medians at age = 40 years
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Now, let the conditional median of Yj, given that all covariates are at their reference
levels, be denoted by m;g0, for j =1,2,--- , k. Also, let the conditional median of Y}, given
that X, = x, and all other covariates are at their reference levels, be denoted by mj o, for
i=42,--- k,andr=1,2,--- ;'m.

As the transformations in (9.4) and (9.5) are monotonic increasing, medians and con-

ditional medians are transformed. Hence we can write, for r = 0,1,2,--- ,m, and j =
2,3,---,k,

my 0, = log(mig,) —log(l —mig,), (9.16)

mjor = log(mjo,) —log(mi ). (9.17)

It is worth mentioning here that the validity of (9.17) is a result of defining m},, as the
conditional median of (pj|p1 = mj ), which implies that m;or is a conditional median of
(Y;]Y1 = my,). That is why we need the redundant variable, Y1, to be defined in (9.5).

The computed assessments from (9.16) and (9.17), together with the linearity assumptions

in (9.6) and (9.7), enable us to determine u; = E(a;), for j =2,--- |k, as
Wi = E(leXz =0,Vi=12,... ,m) = mM;0,0. (9.18)

We must determine p,; = E(G,;) forr =1,2,---,m, j = 2,--- , k. If X, is a factor, then

from (9.6) and (9.7), and utilizing the assessments in (9.16) and (9.17), we put
prj=EY;| X, =1,X;=0,Vi#7) - E(Y;|X; =0,Vi=1,2,--- ,m)
= m;0,r — M},0,0- (9.19)
If X, is a continuous covariate, then 8, ; is the slope of the linear relation in (9.6), so
prj=EY;|Xr =20, Xs =0,Vi# 1) - E(Y;|X; =0,Vi=1,2,.-- ,m)]/:cr
= [mjo,r — mj00l/Tr (9.20)

forr=1,2,---,m,and j =2,--- ,k.
Finally, we put

By =(ug, pa, -y ) (9.21)
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and

— /
Bg=(u1g, -+, Bk M2z, -0y Hog Hm2s s Hmk) - (9:22)

9.5 Eliciting the variance matrix

To elicit a positive-definite matrix for the multivariate normal prior distribution of the re-

gression coefficients in (9.15), we proceed as follows.

9.5.1 Eliciting the variance-covariance sub-matrices
We denote ¥, = Var(a!) by 2y, and put
Erjo = Var(8, o) (9.23)
and
g = Var(gl’ gV ... gv |ab). 9.24
e = Vol Blgy o B (824
In order to develop a method for eliciting positive-definite matrices o and ¥, (r =
1,---,m), we proceed as follows.

From (9.7) we put

Yo = Var(YYX; =0,Vi =1,2,--- ,m) =V, (9.25)
where Y' = (v,, v3, ..., Y;)-
For continuous covariates, if we assume that X, = z, and X; =0, for i = 1,2,--- ,m, i #r,
we have from (9.6) that
Var(Y| X, = z,0! = p_) = Var(é%r)lgl =p)=V. (9.26)
Hence, for r =1,2,--- ,m
Sria = 22 Vo (9.27)

For factors, (9.27) is reduced to
S = Vi (9.28)
Each matrix V, (r =0,1,---,m) can be elicited as a positive-definite matrix in the way

used to obtain the variance matrix of the logistic normal prior in Chapter 8.
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Remark 9.1

The main difference between this chapter and Chapter 8 is that here the process of assessing
the conditional medians and quartiles must be repeated m + 1 times. In the initial step, the
expert is asked to assume that X; = 0, Vi = 1,2,--- ,m. Then, in each successive step number
r,for r =1,2,--- ,m, the expert is asked to assume that the rth covariate has changed from
0 to z,, i.e. X, = x,, while all other covariates are at their reference values, i.e. X; = 0,
fori=1,2,--- ,m, i # r. During these remaining m steps, another key assumption is made.
The expert is also conditioning on ot = By

Under these main assumptions at step r, r = 0,1,--. ,m, ’the assessment tasks can be

detailed as follows.

9.5.2 Assessing conditional quartiles

e Under the assumptions listed in Remark 9.1, the expert is asked to assess a lower quartile
1, and an upper quartile U7, for p;. She is then asked to assume that p1 = mj,

and gives a lower quartile L3 . and an upper quartile Uj . for ps.

e For each remaining pj, j = 3,--- ,k — 1, she assesses the two quartiles L7, and U;,

given thazt p] = mI,O,T" p2 = m;,O,T’ Tty pj-l = m;f—l,O,r‘

e Using the interactive PEGS-Multinomial with Covariates software, and due to the unit
sum constraint, the lower (upper) quartile Ly . (Ug,) of py is automatically shown to

the expert once she assesses the upper (lower) quartile Uy_; . (Lj_;,) of px-1.
e With the aid of a lognormal curve produced by the software, the expert is advised to
make sure that her assessed interquartile range gives an almost zero probability of p;

exceeding 1 — Z{;ll m; .. For more details on this, see Section 8.3.2 in the previous

chapter.
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9.5.3 Assessing conditional medians

o Under the assumptions listed in Remark 9.1, for » = 0,1, -+ ,m, the expert is asked to
assume that the median of p; has been changed from mj,, to mj;, = mj g, + 0,
Given this information, the expert is asked to change her previous medians mj, . of

J

each p;. Her new assessment, m})lw, may be written as

m;f’ly,,. = m;’o’,r + 9;’1’,,,, fOI‘ J = 2, ey k. (9.29)
e In each successive step 4, for i = 2,3, -+, k — 2, the expert is asked to suppose that the
median values of p1, p, ..., p; are m’{’l’r = m’{’o’rﬁ—ni‘,r,m;’z’r =My, FM0 ,m;‘,i,r =

m; 1, + 7, respectively. These are shown as red bars in Figure 9.2.

Given this information, she is asked to revise the medians that she assessed at the
most recent previous step miiy; 1, Miya; 1, """ Mf 1, shown by black lines in
Figure 9.2. Her new assessments are denoted mj ;. =mj ;. +07 ;. My, =
Miyoi1r+ Oihairm 70y Miip = Miiy, + 0, respectively, which are shown as
the blue bars in the main graph of Figure 9.2. In other words, for i =1,2,--- ,k — 2,

and j=1+41,i+2,--- ,k, we can write

m*

Tir =Mji1, + 07, is the median of (pjlp1 =mi 1, -, pi=m{;,;).  (9.30)

e For mathematical coherence, as proved in Lemma 8.3, Section 8.4.2 in the previous

chapter, we have to make sure that

i ) k
% .
Zm;frj”r—l- Z mj,i,'l‘zl" 1:1,2,"',1‘:_2.
Jj=1 j=i+1

The software suggests new normalized conditional medians satisfying the above con-

straint.

e As mentioned in Remark 9.1, the expert assesses her conditional medians assuming that
only one of the covariates, age, has changed from its reference value to 40 years, and

assuming at the same time that her previously assessed medians at the reference point
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are correct. Probability medians at the reference point are presented to the expert in
the upper right graph of Figure 9.2. The expert is asked to assume these medians are

the true values while assessing her conditional medians on the main graph of Figure 9.2.

Cwvart ' : e IR LA T
: : Probabiiity medians at the reference point
age 208
gender e
weight 1]

Maw, you have finished with this frame. You miay cick ‘Wext’ now. &

: s =

N N~ g T}
Eficiting medians of for Each Category when the Cevariate

Probablities
>

Categories

TS s sagpeinens | b sapsseis | = T |

‘;nMI R g = szmml | 137 A Rencer <] Q3 rastromai nah covee.. | ‘g!m-fm)n:uu.- g]w:mrl[l_e_j;\‘fﬁ

Figure 9.2: Assessing conditional medians at age = 40 years

Assessment tasks in Sections 9.5.2 and 9.5.3 will be repeated m + 1 times, for r =
0,1,--- ,m. Then, as detailed in the previoﬁs chapter, the normalizing one-to-one functions
in ‘(9.4) and (9.5) are used to transform the assessed conditional quartiles of p into condi-
tional quartiles of Y and, hence, into conditional expectations, va,riances‘ and covariances of
the multivariate normal elements.

The method of Kadane et al. (1980) is modified, as in the previous chapter, to estimate
a positive-definite variance-covariance matrix V, for Y'!|X,, from the assessed conditional
medians and quartiles. So, because of the unit sum constraint, each positive-definite matrix
V; is of order (k —1).

Under the assumptions leading to (9.15), and in view of (9.23) and (9.24), the diagonal

blocks of the block-diagonal matrix ¥, are X, where each X, is given by (9.27), for
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r = 1,2,---,m. Hence, L is a positive-definite matrix. The unconditional variance-
covariance matrix Xg will be obtained from Xg, using the covariance matrix Y4 g. The

latter is elicited as follows.

9.5.4 Eliciting the covariance matrix X,z

The covariance matrix of o! and 8' is the matrix Xq g of order (k — 1) x m(k — 1). To elicit

this matrix, it is convenient to conformally partition ¥, g as

Eaﬁ:(z%ﬂl’ Ea,ﬂz’ M Za,ﬂm)’ (9'31)

where, for r =1,2,--- ,m,

a6, = Cov(a', B)- (9.32)
We denote the rows of each X, g, by g:x,ﬂr,t’ fort=2,---,k, where
Tofrt = COV(at,E%T)) (9.33)

For any specific value of satisfying a} # pq, for t = 2,--- ,k, it can be seen from (9.15),

(9.32), (9.33) and the theory of multivariate normal distribution that

— 1 — %) — o — |
Bojo, = BB(pyloe = i) =g + [“—Var(at)} Do frt- (9.34)
From this
Var(at)
! fraeny ——————— f—
%o prt = [O@ _— (Bt — Eg,)- (9.35)

Since Var(a) is the (¢ — 1)th element of the main diagonal of ¥¢ as in (9.25), then, from
(9.32) and (9.33), L4, can be elicited using (k — 1) assessments of g e fort=2,---,k.
Under the normality assumptions, these conditional means of the regression coefficients can
be computed from the conditional median assessments of the classification probabilities. This
can be detailed as follows. For each covariate X? (r=1,2,--- ,m) in turn, the expert is asked
to assume that each single a; (¢ = 2,---,k) in turn has changed from p; to of, i.e. she is
asked to assume that the true value of (p;|X; = 0,Vi = 1,2, ,m) has changed from mj,

to a new specific value, m},0,0,t' This is shown by the change from the black lines to the red
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bars in the upper right graph of Figure 9.3. Given this information, the expert then assesses

her median of (p;|X; = ,,X; = 0,9 =1,2,--- ,m,i # r), which we denote by m; for

,0,r]at?

j=2,---,k. These are assessed as the blue bars in the main graph of Figure 9.3.

, , T kg
i T atthe point
age 20 -
geoter i
weighe Y
e — T SAN 55
Haw, you have finishad with this frame. Yau may cick ‘Mext’ now
T T e
Fle ER Tous bl
- o
Eliciting Conditional Medians for Each Category when the covariate {age) I
© oes } g : ¥ Categorles
0.90 : L)
085
08
ors -
B 070} -~
0.6
R 050 -
2
; éﬂ.ﬁ
HIT)
guss i i
040 :
038 : :
025 ey ;
0] — e :
N X 1] SO § e pe— ]
010
005 i
0.00 ST i _—
1 2 K} 4
Categories
e sunesiins | Rt el | e Frawrer]
sed] BB WG E O FHrvecmromn. |32 .| €37 Lo &S eI L+ @) coarments ... | ) Bocumenta -ter. | [ @) 3 *3

Figure 9.3: Assessing conditional medians given changes at the reference point

The choice of the specific values of is arbitrary, provided that of # u:;. However, we

select each of them to be the upper quartile of the normally distributed variable oz, namely,

o = pt + 0.674+/Var(ay), fort=2,--- k. (9.36)

This leads, from (9.4), (9.5) and (9.7), to sets of conditioning probabilities, ™ 00,40 that are

given by
exp(al)
1+ iy explaf)

where ati =0, ag = a; and ag = p;, for j #1t.

m;f)():O)t = ? for j = 17 st 7k7 (9-37)

Since, as in (9.34), we condition on changing oy, for t = 2,--- , k, one at a time, we have
to compute the resulting conditioning probabilities from this change as in (9.37). If we had
chosen to first change the conditioning probabilities, the desired change for a; would not have

been guaranteed.
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As in (9.17), the corresponding median assessments for Y; can be computed, for j =

2,0 ,k,r=0,1,--+,m, andt=2,---,k, as
M30,rjes = 108(M 0,1a,) = 108(M g 11, )- (9.38)

Hence, we denote E(8;jla: = af) by fiy jjo, and compute it as follows.

If X, is a factor, then as in (9.19), we put
/‘LT,jIOlt = mj)(];'rlat - mj,0,0]at' (9-39)

If X, is a continuous covariate, then as in (9.20), we put

m; —m;

— ])O)T]at J)Ololat

Hrjlay = e ) (940)
T

forr=1,2,---,m,j=2,--- k,and t =2,--- ,k.

Putting

= /
Egla, = (Nr,2|aw Hrglags s ‘ur,klat) ) (9.41)

all the components of g;, 5 ; as in (9.35), and hence of £, 5, as in (9.32), are elicited. Then
Ya,p as in (9.31) is fully determined.
After obtaining the covariance matrix X, g, and utilizing the elicited matrix 2ig]as We get

Y from the conditional variance
Eﬁla — 25 —_ z’a,ﬂzglza,ﬂ, (942)

which gives

58 = Sgja + T 555 Sas- (9.43)

Since Xg| and ¥, are positive-definite, so is X 3. Also, from (9.43) and using the Schurr
complement, the full variance-covariance matrix of the multivariate normal prior distribution
in (9.15) is positive-definite. It is of order (kK — 1)(m + 1) and does not contain variances
or covariances of a, nor the elements of §,. This is equivalent to the usual identifiability
assumption of the base-line multinomial logit models, where the regression coefficients of the

base-line category are set equal to zeros.
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9.6 Concluding comments

A novel method has been introduced for eliciting a multivariate normal prior distribution
for the regression coefficients in a multinomial logit model with explanatory covariates. The
method is an extension of our proposed method in Chapter 8 for eliciting a logistic normal
prior for classification probabilities in a multinomial model. Specifically, under a base-line
multinomial logit model containing k categories and m explanatory covariates, assessment
tasks of a standard multinomial model are repeated m + 1 times. The expert assesses con-
ditional medians and quartiles for the multinomial probabilities at specific values of each
explanatory covariate. This determines a mean vector and a positive-definite variance-
covariance matrix of a multivariate normal prior distribution for (k — 1)(m + 1) regression

coefficients.
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Chapter 10

Concluding comments
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This chapter summarizes the main results and conclusions of the thesis. We give a brief
review of the elicitation methods proposed throughout this thesis, commenting on the main
assumptions, strength and weakness points of each proposed method. In addition, the inter-
relationships between related methods are mentioned and clarified. The proposed methods
divide naturally in two groups: methods of quantifying expert opinion for GLMs and methods
of prior elicitation for multinomial models. The proposed methods in each group are briefly
discussed in order. Some extensions for further future research are given.

The method proposed by Garthwaite and Al-Awadhi (2006) and its extension in Garth-
waite and Al-Awadhi (2011) can be considered a general tool for eliciting a multivariate
normal prior for the regression coeflicients in any GLM. In their method, opinion about the
relationship between each continuous predictor variable and the response variable is modeled
by a piecewise-linear function. This gives a flexible model that can represent a wide variety of
opinion. Expert opinion about each categorical predictor variable (factor) is elicited through
a bar-chart. Each slope of the piecewise-linear relationships and each level of the factors has
a corresponding regression coefficient. The expert assesses conditional medians and quar-
tiles of the response variable at different selected design points. In this sense, the method
applies the idea of conditional means prior proposed by Bedrick et al. (1996). Conditional
assessments are transformed, under the normality assumption of regression coeflicients, to
estimate a mean vector and a variance-covariance matrix for the multivariate normal prior
distribution. Conditional quartiles are assessed in a structural way that ensures that the
resulting matrix is positive-definite.

The method proposed by Garthwaite and Al-Awadhi (2011) has been implemented in
interactive graphical user-friendly software, in which the expert draws piecewise-linear curves
and bar-charts by clicking on interactive graphs on a computer screen to give her assessments.
The software computes and offers suggestions to the expert to help reduce the burden of
making assessments. A prototype of this software was written in Java by Jenkinson (2007)

and has been modified and extended in the current thesis to be more flexible and to include
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more options. A detailed description of the method and the current modifications to the
software has been given in Chapter 3. Previously the software could only handle logistic
regression but now it handles a wide range of GLMs. As noted earlier, an important feedback
option has been added to the software. As each covariate is assessed separately, this feedback
option is very useful for helping the expert see the joint impact of all explanatory covariates
that her assessments imply.

A simplifying assumption in the method of Garthwaite and Al-Awadhi (2011), that has
been relaxed in this thesis, is that regression coefficients had been assumed to be indepen-
dent, a priori, if attached to different explanatory variables. This yielded a block-diagonal
variance-covariance matrix and reduced the number of required assessments for its elicita-
tion. However, this independence assumption can be unrealistic in many practical situations.
We proposed three elicitation methods for a multivariate normal prior distribution that do
not impose this simplifying assumption. The proposed methods elicit full variance-covariance
matrices, but additional assessments are needed in order to estimate the off-diagonal elements.

As noted earlier, the three proposed methods differ in their flexibility and in the number
of additional assessments that they require. The first method is a direct extension to the
method of Garthwaite and Al-Awadhi (2011). It is the most flexible method among the three
and permits different correlations between regression coefficients attached to the same pair of
covariates. Consequently, it requires a large number of conditional assessments, but it should
prove useful when there are only a few pairs of variables that, a priori, have highly correlated
regression coefficients.

The second proposed method uses only one assessment to model the correlation between
all regression coefficients attached to any specific pair of explanatory covariates. This assump-
tion, of fixed correlations for all elements belonging to the same pair of vectors of coefficients,
is useful as it reduces the assessment tasks to just one task. The expert is asked to use a
slider to determine the correlation between two vectors of regression coefficients. This can

be attractive as an easy and quick method for eliciting correlations if only two vectors of
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regression coefficients are thought to be correlated. Moreover, for the case where more than
two vectors have correlated regression coefficients, we extended the method and showed it
will yield a full variance-covariance matrix that is positive-definite.

The third methdd we proposed is suitable for GLMs that contain a large number of
correlated vectors. It uses a few assessments that directly reflect the pattern of correlations
between all pairs of vectors. In a dialogue box, the expert assesses the relative magnitudes
and signs of the average correlations between each pair of vectors. Hence, for n vectors of
coefficients, n(n — 1)/2 assessments are needed. These relative magnitudes should reflect the
strength of the average correlation of each pair relative to other pairs. It is a comparatively
easy task for the expert as these assessments need not be coherent correlation coefficients; they
are scgled later to attain statistical coherence. The method avoids incremented conditioning
and assesses all covariances simultaneously.

After assessing the relative magnitudes, using the PEGS-GLM (Correlated Coefficients),
the third method can be used alone or together with one of the other two proposed meth-
ods, to obtain correlations. The default option, that implements this method alone, is to
use one slider to determine correlation coeflicients based on simultaneous interactive graphs
that show the changes of different variables according to their assessed relative magnitudes.
The other two alternate options need an assessment of the correlation of only one pair of
vectors, then all other correlation coefficients are computed from this assessment using the
relative magnitudes. The correlation assessment for one of the highly correlated pairs may
be obtained using one of the other two proposed methods. The first of them needs more as-
sessments, while the second method assumes a fixed correlation structure for the elements of
the highly correlated pair of vectors. Figure 10.1 shows the different options available to the
expert for choosing which method to use when she is assessing correlations between regression
coefficients in GLMs. These are the different options offered by our PEGS-GLM (Correlated

Coefficients) software that is freely available at http://statistics.open.ac.uk/elicitation.
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Figure 10.1: Options for assessing correlations between regression coefficients

To complete the prior structure of GLMs with normal and gamma response variables, we
proposed two methods of eliciting prior distributions for the extra parameters in these models.
One of these methods elicits a conjugate chi-squared prior distribution for the random error
variance in normal linear models. The expert is asked to revise her assessments conditibnal
on various sets of hypothetical future samples. A number of sets of hypothetical data are used
in order to obtain several estimates of the hyperparameter that is most difficult to assess,
namely, the degrees of freedom parameter of the chi-squared distribution. Reconciliation
of these estimates, using the geometric mean, ‘yieldsﬂa;n overall estimate of the number of

degrees of freedom. The second hyperparameter of the chi-squared prior distribution is also

determined from the same assessments. The use of interactive graphical software greatly
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facilitates the tasks that the expert must perform.

For a gamma response variable, the additional parameter that must be assessed is the
scale parameter. We assumed that prior opinion about this positive-valued parameter can be
reasonably quantified as a lognormal distribution. To determine the hyperparameters of the
lognormal prior distribution, the expert is asked to give a point estimate and an interquartile
range for the lower quartile of the gamma response variable. We proved that the lower
quartile is a monotonic increasing function of the scale parameter. The expert’s assessments
are thus transformed to quartiles of the lognormal distribution, and hence to the mean and
variance of the lognormal distribution. An example of the questions that can be asked in
order to obtain the expert’s assessments has been given. As noted earlier, no other reasonable
elicitation methods for the scale parameters of gamma GLMs seems to be available in the
literature.

Eliciting flexible prior distributions for the classification probabilities in multinomial mod-
els has been another important interest of this thesis. In this context, we started by proposing
two elicitation methods for the natural conjugate Dirichlet prior. The first method is based
on marginal quartile assessments of the classification probabilities. These assessments were
used to elicit separate marginal beta distributions of the Dirichlet prior distribution. A nor-
mal approximation and least-squares techniques have been used to obtain beta parameters
from the quartile assessments. From three reconciliations of beta distributions into a Dirich-
let prior distribution, the expert is asked to select the reconciliation that best describes her
opinions, based on graphical feedback. The second method elicits conditional quartile assess-
ments for the classification probabilities. These conditional assessments are used to determine
conditional beta distributions that are averaged to obtain a Dirichlet prior distribution.

The same marginal and conditional quartile assessments for classification probabilities
have been used to elicit two other ﬂexiblevprior distributions for multinomial models. Condi-
tional quartile assessments were used to elicit conditional beta distributions of a generalized

Dirichlet prior distribution. As noted earlier, this distribution is more flexible than the
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standard Dirichlet distribution for quantifying expert opinion. It has the same number of
hyperparameters as the total number of parameters in the conditional beta distributions that
determine it. Hence no reconciliation is needed. The generalized Dirichlet distribution has a
more general dependence structure than the standard Dirichlet. For example, its correlation
structure allows positive correlations between classification probabilities.

Marginal assessments were used to elicit marginal beta distributions for multinomial prob-
abilities. Then, instead of assuming a Dirichlet prior, the beta marginals were used in a
Gaussian copula function to model the joint prior distribution of multinomial probabilities.
This required further conditional quartile assessments to describe the correlation structure
between these probabilities. The monotonicity of the Gaussian copula transformation allowed
conditional quartiles of the multinomial probabilities to be transformed into normal quartiles.
The latter were used to obtain product-moment correlations for normal variates. This power-
fui technique of transforming quartiles avoids the difficulties encountered when transforming
product-moment correlations. Structural assessment of the conditional quartiles has been
used to ensure that the elicited variance-covariance matrix is positive-definite.

The conditional quartile assessments that were used to elicit correlations for a Gaussian
copula prior were also used in a new method for eliciting a logistic normal prior distribution for
multinomial probabilities. Quantifying expert opinion as a logistic normal prior raised some
interesting points that do not seem to have arisen in elicitation contexts before. We made
use of the natural approximation of the lognormal sum by another lognormally distributed
random variable. In additipn, our proposed method has extensively used the notion of singular
multivariate normal distribution; available literature shows that conditional properties of
the singular normal distribution is nearly identical to their corresponding properties in the
standard normal distribution. These results were used to prove that the medians, not only the
means, of multinomial probabilities must sum to one, assuming they follow a logistic normal
distribution. This was critical in building the elicitation method as it enables assistance to

be given to the expert that leads to statistically coherent assessments.
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The four proposed prior distributions are interrelated regarding the assessments that they
use. Each type of assessments can be used to elicit more than one prior distribution. The
Prior Elicitation Graphical Software package for Multinomial models, PEGS-Multinomial,

that is freely available at http://statistics.open.ac.uk/elicitation, arranges the assessment

tasks that are required for the four proposed prior distributions. Software is also available
that elicits each of the prior distributions separately. The flowchart in Figure 10.2 shows the
options for prior distributions that are available in PEGS-Multinomial and the corresponding
assessments that they require. For example, it shows that a Gaussian copula prior is elicited
using two types of assessments, and that a standard Dirichlet prior is elicited using either
marginal or conditional assessments, as discussed before. Since conditional beta assessments
can be used to elicit both the standard and generalized Dirichlet distributions, the software

gives the option of eliciting both of them using the same conditional quartiles.
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software have been used in examples by real experts. In all examples, the experts suggested
the problem according to their fields of expertise. They understood the multinomial formula-
tion and were keen to participate in the elicitation process. After a brief discussion about the
ideas of the bisection method and conditional assessments they had no problem in assessing
quartiles and conditional quartiles. All the experts expressed the view that visualization of
the problem had helped them a lot in quantifying their opinions. They also made use of the
coherent suggestions given by the software and used the feedback options to revise some of
their assessments. Thus the software proved important in providing visualization, coherent

suggestions and feedback. It also helped the experts review and revise their assessments, and



reduced the time taken by the elicitation processes.

Future research in assessment methods for GLMs may include eliciting prior distribu-
tions for the overdispersion parameters in binomial and Poisson GLMs. In these important
GLMs, it is common that the data show a greater variability than the theoretical variability
assumed by the model. However, no elicitation method have been proposed in the literature
for quantifying opinion about overdispersion parameters. A reasonable approach might be
to assume a generalized binomial distribution or a generalized Poisson distribution for the
response variable, instead of the standard binomial or Poisson distributions. These general-
ized distributions have extra parameters that allow for overdispersion. Methods of assessing
suitable prior distributions for these extra parameters need to be developed.

Another extension to the proposed method for GLMs elicitation concerns the proportional
hazard model. This model, also known as the Cox regression model, is often used to model
survival data in medical research. See, for example, Collett (1994). Due to its wide practical
importance, a huge bulk of research has been devoted to investigating both theoretical and
applied aspects of Bayesian analysis of a proportional hazard model. See, Ibrahim and Chen
(1998) and Zuashkiani et al. (2008), among others. Quantifying opinion about these models
has also attracted some attention. See, for example, Chaloner et al. (1993) and Henschel
et al. (2009). Adaptation is needed for the current GLM elicitation methods to handle a
proportional hazard model.

The method of eliciting logistic normal prior distributions for multinomial models has
already been extended further in Chapter 9. The extended method treats the case of multi-
nomial models in which classification probabilities are influenced by explanatory covariates.
Specifically, we proposed a method that quantifies opinion about the parameters of a base-
line multinomial logit model as a multivariate normal prior distribution. The method uses
conditional median and quartile assessments for the classification probabilities at different
combinations of the explanatory variables. These assessments have been obtained in a struc-

tured way that yields the mean vector and positive-definite variance-covariance matrix of
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the prior multivariate normal distribution. Another desirable extension would be to elicit a
logistic normal prior distribution for the cell probabilities of contingency tables. The logistic
normal distribution is considered a reasonable prior for contingency tables, see for example
Goutis (1993). Hence, our proposed elicitation method for a logistic normal prior promises
to be useful in further contexts.

Other models for which elicitation methods still need to be developed include time series
analysis, extreme values analysis and modelling the spread of infectious diseases. These
models sometimes investigate cases for which data are scarce, the events are rare, or situations
are new and uncontrollable. Expert opinion is highly important in such situations, so the

need for appropriate elicitation methods is clear.
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