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Abstract

To incorporate expert opinion into a Bayesian analysis, it must be quantified as a prior distribution 

through an elicitation process that asks the expert meaningful questions whose answers determine 

this distribution. The aim of this thesis is to fill some gaps in the available techniques for eliciting 

prior distributions for Generalized Linear Models (GLMs) and multinomial models.

A general method for quantifying opinion about GLMs was developed in Garthwaite and Al- 

Awadhi (2006). They model the relationship between each continuous predictor and the dependant 

variable as a piecewise-linear function with a regression coefficient at each of its dividing points. How­

ever, coefficients were assumed a priori independent if associated with different predictors. We relax 

this simplifying assumption and propose three new methods for eliciting positive-definite variance- 

covariance matrices of a multivariate normal prior distribution. In addition, we extend the method of 

Garthwaite and Dickey (1988) for eliciting an inverse chi-squared conjugate prior for the error variance 

in normal linear models. We also propose a novel method for eliciting a lognormal prior distribution 

for the scale parameter of a gamma GLM.

For multinomial models, novel methods are proposed that quantify expert opinion about a conju­

gate Dirichlet distribution and, additionally, about three more general and flexible prior distributions. 

First, an elicitation method is proposed for the generalized Dirichlet distribution that was introduced 

by Connor and Mosimann (1969). Second, a method is developed for eliciting the Gaussian copula as 

a multivariate distribution with marginal beta priors. Third, a further novel method is constructed 

that quantifies expert opinion about the most flexible alternate prior, the logistic normal distribution 

(Aitchison, 1986). This third method is extended to the case of multinomial models with explanatory 

covariates.

All proposed methods in this thesis are designed to be used with interactive Prior Elicitation 

Graphical Software (PEGS) that is freely available at http://statistics.open.ac.uk/elicitation.

http://statistics.open.ac.uk/elicitation
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Chapter 1

Introduction



In many situations there is a substantial amount of information that is only recorded in 

the experience and knowledge of experts. To efficiently use this knowledge as an input to a 

statistical analysis, the experts must be asked meaningful questions whose answers determine 

a probability distribution. This process is referred to as elicitation and different forms of 

probability model require different elicitation methods.

Bayesian statistics offers an approach in which data and expert opinion are combined 

at the modelling stage, yielding probabilities tha t are a synthesis of the survey data and 

the expert’s opinion. To incorporate expert opinion into a Bayesian analysis, it must be 

quantified as a prior distribution. This should be accomplished through an elicitation process 

that asks the expert to perform various assessment tasks. These tasks include questions that 

the expert is able to comprehend and answer accurately according to her prior knowledge, 

without needing to know about mathematical and statistical coherence th a t is required in 

her assessments.

The elicitation of prior beliefs has been studied extensively in the statistical, psycho­

logical, decision and risk analysis literature. Elicitation techniques have been proposed for 

many probabilistic models including both univariate and multivariate probability distribu­

tions. However, achieving accurate elicitation is not an easy task, even for single events or 

univariate distributions. The difficulty increases for multivariate distributions in which many 

constraints must be imposed on the expert’s assessments to be statistically coherent. Due to 

this complexity, relatively little literature deals with elicitation techniques for multivariate 

distributions. O’Hagan et al. (2006) argued that the lack of elicitation methods for multi­

variate models and the lack of user-friendly elicitation software to implement them  constitute 

remarkable deficiencies in the existing elicitation research.

The aim of this thesis is to fill some gaps in the available techniques for eliciting prior 

distributions for multivariate models. We are mainly interested in eliciting prior distribu­

tions for the parameters of Generalized Linear Models (GLMs) and multinomial models. We 

extend some of the available methods of prior elicitation for GLMs param eters and propose



some original novel methods for eliciting different prior distributions for the parameters of 

multinomial models. All proposed methods in this thesis are designed to be used with in­

teractive graphical software that is written in Java and tailored to the specific requirements 

of each method. These pieces of software are freely available as Prior Elicitation Graphical 

Software (PEGS) at http://statistics.open.ac.uk/elicitation.

The elicitation methods for GLMs that are available in the literature focus mainly on 

logistic regression. A more general elicitation method for quantifying opinion about a logistic 

regression model was developed in Garthwaite and Al-Awadhi (2006). The method is very 

general and flexible and can be generalized to GLMs with any link function. The same authors 

proposed this generalization in an unpublished paper, Garthwaite and Al-Awadhi (2011). In 

their method, the relationship between each continuous predictor and the dependant variable 

is modeled as a piecewise-linear function and each of its dividing points is accompanied with a 

regression coefficient. However, a simplifying assumption was made regarding independence 

between these coefficients, in the sense tha t regression coefficients were a priori independent 

if associated with different predictors. One of the main purposes of this thesis is to relax 

the independence assumption between coefficients of different variables. Then the variance- 

covariance m atrix of the prior distribution is no longer block-diagonal. Different elicitation 

methods for this more complex case are proposed and it is shown that the resulting variance- 

covariance matrix is positive-definite. The method of Garthwaite and Al-Awadhi (2006) 

was designed to be used with the aid of interactive graphical software. It has been used in 

practical case studies to quantify the opinions of ecologists and medical doctors (Al-Awadhi 

and Garthwaite (2006); Garthwaite et al. (2008)). The software is revised and extended 

further in this thesis to handle the case of GLM with correlated pairs of covariates.

Available methods of prior elicitation for GLMs all concentrate on the task of quantify­

ing opinion about regression coefficients. For some GLMs, such as logistic regression, this 

determines the prior distribution completely. But with some other common GLMs, such as 

the normal linear model and gamma GLMs, prior opinion about an extra param eter must

http://statistics.open.ac.uk/elicitation


also be quantified in order to obtain a prior distribution for all model parameters. For this 

reason, we extend the method of Garthwaite and Dickey (1988) for eliciting an inverse chi- 

squared conjugate prior for the error variance in normal linear models. We also propose a 

novel method for eliciting the scale param eter of a gamma GLM.

The other multivariate model for which we develop original elicitation methods in this 

thesis is the multinomial model. Multinomial models consist of items that belong to a number 

of complementary and mutually exclusive categories. These models arise in many scientific 

disciplines and industrial applications. The multinomial data  are well described using the 

multinomial distribution, say with parameter vector p. In Bayesian analysis of multinomial 

models, an im portant assessment task is to elicit an informative joint prior distribution for 

the multinomial probabilities p. It is well-known th a t the Dirichlet distribution is a conju­

gate prior for the parameters of multinomial models. A limited number of attem pts have 

been made to introduce elicitation methods for Dirichlet parameters. However, the Dirichlet 

distribution has been criticized as insufficiently flexible to represent prior information about 

the parameters of multinomial models [e.g.Aitchison (1986), O’Hagan and Forster (2004)]. 

Its main drawback is tha t it has a limited number of parameters. A fc-variate Dirichlet distri­

bution is specified by just k parameters tha t determine all means, variances and covariances. 

Dirichlet variates are always negatively correlated, which may not represent prior belief.

Several authors have been interested in constructing new families of sampling distributions 

to model proportions. Some of these distributions can be used as prior distributions for 

the probabilities of multinomial models. See, for example, Forster and Skene (1994) and 

Wong (1998). However, elicitation methods tha t give these more flexible families as prior 

distributions for multinomial models have not been proposed. It is tricky, in the case of 

multinomial models, to elicit assessments th a t satisfy all the necessary constraints. Some 

of these constraints are obvious; the probabilities of each category must be non-negative 

and sum to one, for example. Others are less obvious. For example, if there are only two 

categories, the lower quartile for one category and the upper quartile of the other category



must add to one. As the number of categories increases the constraints that must be satisfied 

increase and become less intuitive.

Partly because of these difficulties, no doubt, elicitation methods and software for multi­

nomial sampling seem to have been constructed only for modelling opinion by a Dirichlet 

distribution. In this thesis, we propose novel methods tha t quantify expert opinion about 

a Dirichlet distribution and additionally about three more general and flexible prior dis­

tributions. First, an elicitation method is proposed for a generalized Dirichlet distribution 

as a more flexible prior distribution. The generalized Dirichlet distribution, introduced by 

Connor and Mosimann (1969), has a more general covariance structure than the standard 

Dirichlet distribution and a larger number of parameters. Second, another method elicits the 

Gaussian copula as a multivariate prior that expresses the dependence structure between the 

marginal beta priors of multinomial probabilities using a multivariate normal distribution. 

Third, a further novel method quantifies expert opinion about the most flexible alternate 

prior, the logistic normal distribution, Aitchison (1986). W ith this distribution, the multi­

nomial probabilities are transformed to variables tha t (by assumption) follow a multivariate 

normal distribution, using a multivariate form of the logistic transformation. These different 

elicitation methods are each implemented in interactive graphical software.

The logistic normal distribution has a large number of parameters and gives a prior 

distribution with a much more flexible dependence structure. Moreover, assuming a logistic 

normal prior for multinomial models enables us to extend the elicitation method to the case 

of multinomial models with explanatory covariates. For these models, we proposed a method 

for eliciting a multivariate normal prior distribution for the regression coefficients based on 

the multivariate logistic transformation.

The assessment tasks and the task structure implemented in all the proposed methods 

lead to coherent assessments without the expert having to be conscious of coherence con­

straints. Using the interactive software, the expert is only required to assess conditional 

and/or unconditional medians and quartiles for the elements of the probability vector p. For



each of the available prior distributions, the expert does not need to be conscious of the con­

straints on her assessments. Instead, through the software we suggest coherent values that 

are close to her initial assessments, which she may accept or modify.

This thesis consists of 10 chapters. After this introductory chapter, Chapter 2 first gives a 

brief review of the main findings and considerations from psychological literature that should 

influence the construction of elicitation methods. Then the most relevant methods of eliciting 

prior distribution for normal linear models and GLMs are reviewed and discussed. Interactive 

computer software for these purposes is also listed with some of the different applications for 

which they have been used. In addition, the limited literature of prior elicitation methods 

for multinomial models is also reviewed, together with its implementing software. We also 

discuss some recent interactive graphical computer programs tha t have been reported in the 

literature for some other problems.

In Chapter 3, the piecewise-linear model of Garthwaite and Al-Awadhi (2006), for eliciting 

multivariate normal priors for regression coefficients in GLMs is reviewed in detail and the 

assessment tasks tha t the expert performs to quantify her opinion are discussed. Also, we 

describe the software tha t implements it and detail improvements to the implementation that 

were made by the author of this thesis.

As mentioned earlier, the elicitation method of Garthwaite and Al-Awadhi (2006) makes 

the simplifying assumption tha t the regression coefficients associated with different predictors 

are independent in the prior distribution. In Chapter 4, we propose 3 new methods for eliciting 

positive-definite variance-covariance matrices of a multivariate normal prior for regression 

coefficients that do not require this simplifying assumption. Each method is a trade-off 

between flexibility and the number of assessments tha t must be made by the expert.

The first method proposed in Chapter 4 is an extension to the method of Garthwaite 

and Al-Awadhi (2006). It is the most flexible of the methods but it needs a large number of 

assessments. The second method requires fewer assessments but assumes a restricted correla­

tion pattern  between regression coefficients. The third method first uses one of the other two



methods to obtain the correlations between the regression coefficients of two predictors. Then 

all other correlations are induced through some assessed weights that reflect the magnitude 

of correlations relative to each other. The expert assesses these weights and then an imple­

menting software presents interactive graphs tha t help her review and revise assessments to 

her satisfaction.

In Chapter 5, we introduce two elicitation methods tha t aim to complete the prior struc­

ture of the normal and gamma GLMs. The methods quantify expert opinion about prior 

distributions for the extra parameters of these models. The first proposed methods elicits 

a conjugate inverted chi-squared prior distribution for the error variance in normal models. 

Our proposed method is based on the expert’s assessments of medians and conditional me­

dians of the absolute difference between two observed values of the response variable at the 

same design point. It extends the method of Garthwaite and Dickey (1988) by using more 

than one data  set of hypothetical future samples.

The second proposed method in Chapter 5 is a novel method for eliciting a lognormal 

prior distribution for the scale parameter of gamma GLMs. Given the mean value of a gamma 

distributed response variable, the method is based on conditional quartile assessments. It 

can also be used to quantify an expert’s opinion about the prior distribution for the shape 

param eter of any gamma random variable, if the mean of the distribution has been elicited 

or is assumed to be known.

Chapter 6 proposes two methods for eliciting a standard Dirichlet prior distribution for 

multinomial probabilities, using either a marginal or a conditional approach. The main 

difference between the two proposed approaches is in the assessment tasks th a t they require. 

In the marginal approach, the expert assesses unconditional medians and quartiles for each 

multinomial probability pi. Then we use these quartiles to obtain a marginal beta distribution 

for each pi. The parameters of these marginal betas are reconciled to form a standard Dirichlet 

distribution. Three different forms of reconciliation are used, each based on least-squares 

optimizations. For each optimization method, the medians and quartiles of the consequent



Dirichlet distribution are computed and graphically presented to the expert, who chooses 

which of the Dirichlet distributions best represents her opinion. She is also offered the option 

to change the medians and quartiles if none of the offered sets is an adequate representation 

of her opinions.

The other approach proposed in Chapter 6 is the conditional approach. Using this ap­

proach, the expert is asked to assess the median and quartiles of the first probability. For 

each of the remaining probabilities, she assesses conditional medians and quartiles, where 

the conditions state values for the preceding probabilities that the expert should treat as 

correct when making her assessments. These conditional assessments are then used to form 

conditional beta distributions that are also reconciled into a standard Dirichlet distribution.

New elicitation methods for two more general prior distributions for multinomial models 

are proposed in Chapter 7. The first method uses the same conditional assessments, as 

obtained in Chapter 6, to elicit a flexible generalized Dirichlet prior, a Connor-Mosimann 

distribution, through its conditional beta distributions. The flexibility of the generalized 

Dirichlet distribution means that the elicited parameters of these conditional betas are exactly 

the same hyperparameters of the elicited generalized Dirichlet prior; no reconciliation is 

required. This elicitation method and the elicitation methods proposed in Chapter 6 are 

compared in an example in Section 7.3. In the example, a prominent medical expert in M alta 

quantified his prior opinions about obesity misclassification in health surveys in Malta.

The second proposed method in Chapter 7 elicits a Gaussian copula prior for the multino­

mial probabilities. To do this, marginal beta distributions for the multinomial probabilities 

are obtained from their assessed unconditional medians and quartiles. Then the correla­

tions between the multinomial probabilities are elicited using extra sets of assessments of 

their conditional medians and quartiles. The proposed Gaussian copula prior assumes that 

the dependence structure between the multinomial probabilities can be represented by a 

multivariate normal distribution, where the marginal prior distribution of each multinomial 

probability is still expressed as a beta distribution. In Section 7.5, the proposed elicitation



method and its implementing software are used by an environmental engineering expert to 

quantify his opinion about the fuel used by waste collection vehicles in the UK.

In Chapter 8, a novel method is proposed for eliciting a logistic normal prior distribution 

for the probabilities of a multinomial distribution. The method requires conditional medians 

and quartiles of multinomial probabilities to be assessed. No beta distribution is elicited, 

instead, a monotonic multivariate logistic transformation is used to transform these assess­

ments into medians and quartiles of a multivariate normal vector. Then a mean vector and a 

positive-definite covariance m atrix of the multivariate normal are determined using the trans­

formed quartiles. The adopted structural method of getting assessments guarantees tha t the 

elicited variance-covariance matrix is positive-definite. Chapter 8 also gives an illustrative 

example in which prior knowledge of a transport expert is quantified to elicit a logistic normal 

prior distribution for a multinomial model about a transportation problem.

The elicitation method proposed in Chapter 8 for logistic normal priors of multinomial 

distributions is extended further in Chapter 9 to handle multinomial models tha t contain 

explanatory covariates. Our extended method in Chapter 9 elicits a multivariate normal 

prior distribution for the regression coefficients associated with different covariates in a form 

of the base-line multinomial logit model. For k categories and m  covariates, the model tha t 

contains a constant term  has exactly (k — l ) ( m +  1) free parameters. In Chapter 9, we show 

that the same assessment tasks of Chapter 8 can be repeated for each covariate to elicit a 

mean vector and a positive-definite variance-covariance m atrix of a multivariate normal prior 

distribution for the (k — l){m  +  1) regression coefficients.

Concluding comments are given in Chapter 10 where some directions for future research 

are also considered.
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Chapter 2

Literature review
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2.1 Introduction

Relatively recent comprehensive reviews of eliciting probability distributions in its theory, 

methods, techniques, software, applications and case studies are found in Garthwaite et al. 

(2005), O’Hagan et al  (2006) and Jenkinson (2007). The aim of this chapter is to review 

the recent literature on quantifying expert opinion th a t is most relevant to eliciting prior 

distributions for Bayesian GLMs and multinomial models. The emphasize here is on the 

different statistical formulations of elicitation models as well as on the design of the software 

pieces available in the literature as elicitation tools.

A brief review of some important elicitation topics, ideas and psychological aspects is 

given in Section 2.2. The im portant elicitation method of Kadane et al. (1980) for normal 

linear models is reviewed in Section 2.3, where some other elicitation methods for these 

models are also reviewed briefly. Im portant and recent elicitation methods and software 

tools available in the literature for the prior distributions of Bayesian GLMs are reviewed in 

Section 2.4. However, most of these methods and their accompanying computer programs 

were devoted to prior elicitation of the Bayesian logistic regression models with anticipated 

extensions to the more general family of GLMs. Section 2.5 reviews available methods and 

computer programs for quantifying expert’s opinion about priors for multinomial models. As 

expected, the majority of these methods and tools are quantifying opinions about the simple 

conjugate prior, the Dirichlet distribution. Some of the recent graphical interactive software 

tha t quantifies expert opinion about different problems other than  GLMs and multinomial 

priors are reviewed in Section 2.6.

2.2 Psychological aspects in eliciting opinion

Psychological research on human performance in assessing probabilities dates back to the 

1960’s. Peterson and Beach (1967) in their paper “Man as an Intuitive Statistician” studied 

human statistical inference for estimating proportions, means, variances and correlations.
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Their results conclude tha t man can use probability theory and statistics intuitively in per­

forming these inferential tasks. In the same year, Winkler (1967) stated that, in assessing 

prior distribution for Bayesian analysis, the expert has no ‘true’ built-in prior distribution 

tha t can be elicited. Instead, an elicitation process only “helps to draw out an assessment 

of a prior distribution from the prior knowledge” . This prior distribution is affected by both 

the assessor and the assessment techniques.

Garthwaite et al. (2005) reviewed a body of psychological literature about some of the 

main mental operations, heuristics, th a t an expert may perform in his mind to give a specific 

numeric assessment and biases that may influence these operations. A recent comprehensive 

review of psychological research on assessing probabilities including heuristics and biases is 

given by Kynn (2008). She also provided some guidelines for eliciting expert knowledge 

based on human biases and inadequacies in assessing probabilities given in the psychological 

literature. Other useful discussions on psychological aspects in the elicitation context may 

be found in Hogarth (1975), Wallsten and Budescu (1983) and O’Hagan et al. (2006).

The main interest of this thesis is to elicit multivariate probability distributions. Mul­

tivariate distributions require more quantities to be elicited than  univariate distributions. 

Beside the usual summaries of each random variable, the dependence structure between all 

variables must be also assessed. In the rest of this section, we briefly review psychological 

aspects involved in assessing quantities required for multivariate distributions.

As a measure of central tendency for each random variable, we have decided to elicit 

its median value from the expert. Experimental work in the literature reveals th a t people 

are better at eliciting medians rather than means, especially for skewed distributions. See 

Garthwaite et al. (2005) and references therein. The median value can be assessed through 

one step of the bisection method, see for example Winkler (1967), Stael von Holstein (1971) 

and P ra tt et al. (1995). The expert is asked to determine her median as the value tha t the 

random variable is equally likely to be less than or greater than. For more discussion about 

bisection tasks and their usage, see for example Garthwaite and Dickey (1985), Hora et al.
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(1992) and Fischer (2001).

To elicit variances, we have chosen to assess the two quartile values of each univariate dis­

tribution. By assuming a smooth unimodal distribution, such as the normal or approximate 

normal distribution, quartiles are transformed to elicit the variances. Quartiles can be easily 

assessed using the bisection method, which is also called the successive subdivision method, 

as follows. The upper quartile is assessed by asking the expert to assume th a t the random 

variable is above her assessed median value. She is then asked to assess her upper quartile as 

the value th a t the random variable is equally likely to be less than or greater than. Similarly, 

the lower quartile is assessed as the value tha t divides the range below the median into two 

equally likely ranges.

The assessed quartiles represent a central 50% credible interval. People can perform the 

task of assessing credible intervals reasonably well. However, there is a clear tendency for 

people to be overconfidence in assessing central credible intervals; they tend to give shorter 

intervals [Garthwaite et al. (2005)]. Some other quantiles were found to reduce the degree of 

overconfidence, such as the 33 and 67 percentiles. O ’Hagan (1998) suggested using the central 

66% interval, and mentioned tha t experimental work about different quantile assessments had 

not revealed any single choice to be the best in all cases. For more details, see Hora et al. 

(1992), Garthwaite and O’Hagan (2000) and Kynn (2005, 2006).

To complete the elicitation process of a multivariate distribution for dependent variables, 

summaries of dependence structure must be elicited. Typically, determining correlations 

is the trickiest part in a multivariate elicitation, especially when there are more than  two 

random variables and a variance-covariance m atrix must be assessed. Such a m atrix must 

be positive-definite for mathematical coherence. We will make extensive use of the method 

of Kadane et al. (1980) to elicit positive-definite variance-covariance matrices. The method 

is described in the next section. It relies on assessing conditional medians and quartiles 

to compute conditional variances and covariances. Conditional quartiles are assessed in a 

structural way tha t guarantees positive-definiteness.
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Assessing conditional quartiles is not, however, the only way to elicit correlations. Other 

methods were suggested in Clemen and Reilly (1999) and Clemen et al. (2000). These meth­

ods include direct assessment of a correlation coefficient, and assessing conditional percentiles 

or probabilities of one variable given percentiles or probabilities of the other variable, either 

for one or two items from the population. These assessments were used to calculate Pear­

son, Spearman and Kendall’s r  correlation coefficients. Although Clemen and Reilly (1999) 

discussed building copula functions as joint distributions, tha t can be elicited using marginal 

distributions and elicited correlations, they did not attem pt to obtain a positive-definite 

variance-covariance matrix for multivariate distributions.

In summary, in building our proposed elicitation methods throughout this thesis, we take 

into account the following considerations. These were mentioned by Kadane and Wolfson 

(1998) as the points of agreement among most of the statistical literature on how elicitation 

should be carried out.

1. Expert opinion is the most worthwhile to elicit.

2. Experts should be asked to assess only observable quantities, conditioning 

only on covariates (which are also observable) or other observable quantities.

3. Experts should not be asked to estimate moments of a distribution (except 

possibly the first moment); they should be asked to assess quantiles or prob­

abilities of the predictive distribution.

4. Frequent feed-back should be given to the expert during the elicitation pro­

cess.

5. Experts should be asked to give assessments both unconditionally and con­

ditionally on hypothetical observed data.
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2.3 Prior elicitation  for norm al linear m odels

Although it was introduced as an elicitation method for the parameters of a normal linear

model, the work of Kadane et al. (1980) has been an im portant step towards eliciting prior 

distributions for GLMs, and even for eliciting many other multivariate distributions. See, for 

example, Dickey et al. (1986) Al-Awadhi and Garthwaite (1998), Garthwaite and Al-Awadhi 

(2001, 2006). The ideas of Kadane et al. (1980) are utilized, modified and implemented 

extensively throughout this thesis. A detailed review of their elicitation method is given 

below.

Suppose the normal linear model is given by

where X_ = ( ^  . . .  } x r)' a vector of r  explanatory variables, and • • • , (3rY

is the vector of regression coefficients. Kadane et al. (1980) introduced an elicitation method 

for the natural conjugate prior distribution structure of the parameters in model (2 .1 ) as

The hyperparameters to be elicited are thus a mean vector 6 , the two positive scalars 

5, w and a positive-definite matrix R. The expert cannot be asked about these quantities 

directly as they are not observable. Instead, the prior distributions are induced from expert 

assessments about the response variable Y ,  which is an observable quantity, at some given 

values of the explanatory variables. Hence, a number of m  realizations X i , ■ • • , 2Lm selected. 

Kadane and Wolfson (1998) discussed how these design points can be selected efficiently.

At each design point X_^i = 1, • • • , m, the expert assesses a median value 0 .5 , an upper 

quartile 0.75 and a 0.9375 quantile 0.9375 of the explanatory variable Y{. The quantile 

yi,0.9375 can be obtained using two bisection iterations above y^0 .7 5 . These assessments were 

used by Kadane et al. (1980) to elicit b and S as follows.

Y  = X!f3 + e, £ ~ N ( 0 , c t 2) (2 .1)

(2 .2)

w5 (2.3)



To elicit the mean vector b, the assessed medians were treated as observations of Y ,  and 

b was elicited as the least-squares estimate

(2.4)

where y Q5 = (yi.o.5,2/2.0.5, • • • ,2/m,o.s)', and X  is the design matrix, which is given by X  =

Under the prior structure in (2.2) and (2.3), the predictive distribution of (F |X ) is a 

multivariate t  distribution with 5 degrees of freedom. To elicit S, Kadane et al. (1980) 

pointed out th a t the ratios

, v , s  Vi ,0.9375  -  Vi,0.5  / 0
a»C£i) =  —--------- — , (2-5)

Vi,  0.75  —  Vi,  0.5

depend only on 5 as a measure of the thickness of the distribution tails. Since the standard 

normal distribution has the minimum value of this ratio as 2.27, Kadane et al. (1980) used 

a* instead of a; to elicit <5, where a*(X{) = max{ai(Xi),  2.27}. Then S was elicited as the 

nearest value of degrees of freedom that gives the closest ratio ij(0.9375)/^(0.75) to

-* =  l a i ( X i )  (2.6)
m

We propose a different method for eliciting a degrees of freedom hyperparameter in Chap­

ter 5 of this thesis. Our proposed method is an extension of the approach given by Garthwaite 

and Dickey (1988), which is described later in Chapter 5.

Although the method of Kadane et al. (1980), for eliciting a positive definite m atrix R  and 

a value for w, is complicated and requires substantial mathematical notation and details, we 

review it here because its structural elicitation approach is essential in our proposed methods 

for eliciting positive-definite matrices throughout this thesis.

The method is based on the properties of the multivariate t distribution. The center 

and spread of the distribution are defined as follows. For any constant vector a , and any 

constant m atrix B, if Y_ has a standard multivariate t  distribution, then the center of the 

vector Z_ = a +  BY_ is defined as C{Z) = a. The spread of Z_ is defined as S (Z )  = B B ' . If

5 > 1, then the mean exists and B (Z )  = C(Z).  If S > 2, then the variance exists, and is
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given by Var(Z_) = jz^S(Z_). Expert’s assessments were used to compute centers and spreads 

to elicit R  and w , as detailed below.

The conditional elicitation structure suggested by Kadane et al. (1980), for i =  2, • ■ • , ra, 

involved assessing conditional medians and upper quartiles of Yi given sequences of hypo­

thetical values Vi, - ' - The conditions tha t were imposed on these hypothetical values

insured discrepancy between conditional and unconditional centers, in the sense that

y°i ?  C (U ), (2.7)

y H C ( Y i \ y l - -  t =  (2.8)

These conditions guarantee the existence of the elicited positive-definiteness m atrix R , as will 

be shown later.

Centers and conditional centers were assessed using medians and conditional medians. 

For example, C{Y\) was taken as the unconditional median assessment yifi.5 . For j  < i, 

C (Y i\y i ,’ "  ,y j)  were taken as the conditional medians of Yi given tha t Yi =  y \ , • • • ,Yj = y®, 

which are denoted by (j/i.o.sls/ij • ■ • ,Vj)- Similarly, conditional upper quartiles of Y; given 

y \ , • • • ,y® are denoted by (^ ,0 .7 5 \Vi, ■ • • , Vj)- Spreads and conditional spreads were computed 

by dividing the assessed semi-interquartile range by the corresponding semi-interquartile 

range t(5 ,0.75) of a standard multivariate t distribution with 5 degrees of freedom. This 

gives

S(Yi)
2

y  1,0.75 — y  1,0.5

t(5 ,0.75) 

and, for i = 1,2, • • • , m  — 1,

(Z/i+1,0.7512/l > ‘ ' , V i )  ~  (2 / t+ l ,0 .5 |2 / i> -"  , y i )

(2.9)

(2 .10)
t(5 + i, 0.75)

To elicit a positive-definite m atrix R, the approach of Kadane et al. (1980) is to successively 

elicit the spread matrices Ui of (Yi, • ■ • , Yj) in a way tha t guarantees the positive-definiteness 

of the final matrix, Um. The value of U\ equals S'(Yi) >  0 as given in (2.9). Then, supposing 

that Ui has been estimated as a positive-definite matrix, the aim now is to elicit Ui+i, and
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show it is positive-definite. Ui+\ is partitioned as

Ui+1 =
Ui Uiii+ 1  

£  Ui S(Yi+1)
(2 .11)

Conditional median assessments were used to estimate g as follows. The partition in

(2.11), with the properties of the multivariate t  distribution, gives

C(YiJrl\ y l - - - ,!/,■) -  C (yi+i) =  (v\ -  C(Yi), ■ ■ ■ ,y? -  C(YJ) g.+y  (2.12)

Moreover, for j  < i , taking the center of both sides of (2.12) given tha t Y\ = y \ , - • • , Yj = Vji

gives

Vi ~ C(Yi)

C(Yi+1 \ y l . . .  ,Vj) — C(Yi+i) =
Vj ~  C (yj)  

C(Yj+1 \ y l - - -  >ŷ - C ( Y j+1)
(2.13)

C iY i ly l - - -  , y ? ) - C ^ )

Since j  — 1,2, • • • , i, Kadane et al  (1980) ended up with a system of % equations of the form

— i+1 1’ (2.14)

where

and

Mi+1 —

c ( y i+i | y f ) - c ( y i+i)

C(Yi+1\yly°2 ) - C ( Y i+1)
hi+i —

C(Yi+l\ y l - - -  ,</;) — C(Yi+i)

^ - c ( Y i )  c ( y 2 \y? ) - c ( y 2) ••• c u ^ ? ) - c ( y )

2 /? -C (U )  V° -  C(Y2) < 7 (^ 2 ,° ,^ ) -C (Y i)

-  C(Yi) y\  -  <7(Y2)

(2.15)

(2.16)
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Multiplying both sides of (2.14) from the left by the m atrix

1 0 0 . . .  0

- 1 1 0 . . .  0

Qi+l — 0 - 1 1 0 :

0

0 0 - 1  1

(2.17)

gives an upper diagonal system that can be solved for g as follows,

—i+i

C (5% ?) -  C{Yi)

-1

Z i + i i (2.18)

Vi~C{Yi)  C(Y2\y0l ) - C ( Y 2) ■

0 2/20 -  c ( y 2|y?) ■

: 0 :

0 ... 0 2/?-C'(yj|22?,... .;/?_,)
where 9i+1 =  Qi+ihi+1.

Under conditions (2.7) and (2.8), the upper diagonal m atrix in (2.18) is nonsingular and hence 

a unique solution for g exists. It remains now to elicit the value of the spread 5 (Y + i) in 

(2.11). Kadane et al. (1980) used the elicited conditional spread, with the properties of the 

conditional spread of multivariate t distribution, to get a formula for S'O'i+i) as follows,

SW+ilff?,--- ,»?)[l +  i/<5]S(Yi+1) = (2.19)

where

H i ^ i f i - C i Y , ) ,  •••,  ^ - C { Y i ) ) U t (y f -C (y i) ,  •••,  yf -  C(Yi))'-

Using Schurr complement, the matrix Ui+i as partitioned in (2.11), is positive-definite if 

and only if Ui is positive-definite and

S(Yi+1) -  tfi+1Uig.+1 >0, (2 .20)

which is guaranteed from (2.19). Then, using mathematical induction, the final m atrix Um 

is positive-definite.
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To elicit R  using Um, properties of the multivariate t  distribution were used to yield the 

following formula

R - 1 =  !̂ { X ' X ) - 1X '(U m -  w l ^ X i X ’X ) - 1, (2.21)

where Im is the identity m atrix of order m. See Kadane et al. (1980) for details.

The formula requires w to be elicited first. To elicit w, the expert is asked to suppose that 

two independent observations Yi and Y* are taken at the same design point JL — 2Q- Given 

Vi> • • • > Vi-1 > the expert assesses the median of Yi which is used to estimate C(Yi\i/i, • • • ,

Then the expert is given a hypothetical value y° for Yi and is asked to assess the conditional 

median of Y* given y \ , • • • , y? to be used as an estimate of C(Y*\yi, • • • ,y f) .  The conditional 

distribution of the two observations is a bivariate t, and its properties were used to elicit Wi 

as

wi =  [5 ( ^ 1!/;, • • • , y U )  -  K *]Ss + l r  (2,22)

where

Ki = [c {y ; \ vl ■ ■ ■ , y? ) - c ( Y i \ v l ■ ■ ■ < y li )]vo S{c m v a y
Vi i) ■ ■ ■ iVi-i)

and

L ' = • •• .  v U - x ! i^ b ) u r - \ ( y Ql - x ! 1b_, v t i -

Different values wi, ■ • • ,w m, were then averaged to get a final elicited value w. Our exten­

sion of the method suggested by Garthwaite and Dickey (1988) for eliciting w, as proposed 

in Chapter 5, makes the same assumption of getting two independent observations at the 

same design point. But we require a median assessment of the difference between the two 

observations, which is due only to the random variation.

The method of Kadane et al. (1980) has been extensively reviewed in the literature. See 

for example Kadane and Wolfson (1998) and Daneshkhah and Oakley (2010), where two 

extra examples for its implementation were also discussed. Two drawbacks of the method 

were mentioned by Garthwaite et al. (2005). The assessments it uses are likely to be biased

by conservatism as the expert is asked to revise her opinion based on hypothetical data.
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Eliciting the spread using the median and upper quartile may not reflect both halves of the 

distribution, hence masking any asymmetry of expert opinion.

Some other alternate methods for eliciting the parameters of normal linear models are 

available in the literature. See, for example, Oman (1985), Garthwaite and Dickey (1988, 

1992) and Ibrahim and Laud (1994). Oman (1985) used empirical Bayes methods to estimate 

both 5 and R  instead of eliciting them from the expert. The method of Garthwaite and 

Dickey (1988) is similar to th a t of Kadane et al. (1980) in tha t both of them make use of 

repeated assessments that are reconciled and utilize a structural set of conditional questions 

to guarantee the positive-definiteness of the covariance matrix.

However, instead of asking about Yi, Garthwaite and Dickey (1988) suggested asking the 

expert about the mean Y{ of Y  that may be observed in a large number of experiments at 

the design point X^. In this way, the expert’s assessments do not include random variation. 

On the other hand, the design points tha t are used in Garthwaite and Dickey (1988) are to 

be selected by the expert. This enabled the method to be extended to the variable selection 

problem in linear models, see Garthwaite and Dickey (1992). Nevertheless, the method of 

Kadane et al. (1980) is more flexible than tha t of Garthwaite and Dickey (1988). The latter 

is not designed to handle categorical explanatory variables nor polynomial regression models 

that contain interactions between explanatory variables. A more detailed review of normal 

linear models elicitation can be found in Garthwaite et al. (2005) or O’Hagan et al. (2006).

2.4 Prior elicitation  for GLMs

Starting from the idea tha t it is more efficient and easier to elicit expert opinion about

observable quantities, rather than about parameter values, Bedrick et al. (1996) were the first

to elicit priors for some arbitrary generalized linear models. Their work switched from normal

linear regression elicitation (Kadane et al. (1980); Garthwaite and Dickey (1988); Garthwaite

and Dickey (1992)) into GLM. Their specification of informative prior distributions for the

regression coefficients of a GLM is based on expanding the idea of conditional means priors
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(CMP).

The idea of the CMP is that the expert is asked to give his assessment of the mean 

of potential observations conditional on given values at some carefully chosen points in the 

explanatory variable space. This information is used to specify a prior distribution at each 

location point. These priors are conveniently assumed to be independent for the various 

locations. A prior distribution for the regression coefficient vector is then induced from the 

CMP.

To clarify this idea, consider for example the binomial GLMs, with n  independent obser­

vations Y{, each with a corresponding vector X_{ of p explanatory variables. Let N{Yi\X_i ~  

Binomial(Nj,pi), hence pi — E{Yi\X_j). The probability of success p  is related to the vector 

X_ through a monotonic increasing link function g(.) as

g(ti) = x l p ,  (2.23)

where (3 is a p  vector of regression coefficients. Common choices for the link function g(.) 

yield logistic, probit and complementary log-log regressions. The likelihood function for /3 is 

given by

L(0) (X n < r 1Q d £ ) '',,1'i [l -  S -1G £g)]JVi(1- y‘). (2.24)
i=l

Bedrick et al. (1996) induced the prior on /3 from a CMP on pi = E(Yi\X_i), the suc­

cess probability for a “potentially observable” response Yi a t the vector X_i of explanatory

variables. They assume that the p  vectors X_i are linearly independent and assume that

P i  ~  b e ta (a i)i ,a 2)i). (2.25)

Hence, from independence, the prior on p  is given by

7 T @ c x f[A °M' 1( l - M i r ' i“ 1- (2.26)
1

Under the independence assumption and from (2.23), (2.26), they gave the induced prior 

on (3 as

tt(£) oc (2.27)
i= 1
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Although the above example is only valid for binomial GLMs, Bedrick et al. (1996) gave 

generalization and examples where their method is applicable to common GLMs including 

Poisson and exponential regression. However, for normal and gamma regression models they 

were only interested in eliciting priors on the regression coefficients (3 assuming that the 

dispersion parameters of these models are known.

The power of this approach as they stated is tha t “it is much easier to elicit information 

about success probabilities such as E ( Y |X) =  p, which are on the same scale as the data, 

than to attem pt the extremely difficult task of eliciting prior knowledge about /?.”

In their work, the use of data  augmentation priors (DAP) was also proposed to induce 

priors on (3. They showed that DAP’s are closely related to CM P’s and can be induced by 

particular cases of CM P’s. A DAP on /3 has the same functional form of the likelihood and can 

be obtained by specifying “prior observations” and their weights. These prior observations 

must be taken at specific locations in the predictor space. Hence, a DAP also needs some 

locations in the predictor space to be specified as in the case of a CMP.

The good choice of the predictor space location should be in the expected range of X , 

spread enough so tha t the corresponding probabilities can be reasonably assumed to be 

independent and they should also be accepted by the expert. It is straightforward, however, 

to let the field expert choose these locations. Bedrick et al. (1996) noted tha t the independence 

in CM P’s does not mean tha t the component of the vector will be independent too.

After selecting a proper JQ, i = 1, • • • ,p, to determine the value of Li in a DAP, it can 

be thought of as a typical prior observation associated with X_{. For example, in binomial 

GLMs, it can be thought of as a prior estimate of the mean number of successes at JQ. If 

the beta prior in (2.25) is reparameterized such that

aiti = WiYi and a2)i =  Wi(l -  Yi), (2.28)

then, for the logistic model, the CMP in (2.27) is exactly a DAP since it takes the same 

functional form of the likelihood in (2.24). The CMP in (2.27) induces a DAP for the logistic
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model as the logit link function is such that

d[9 - \ Z p ) \  =  g - \ £ m  ~  JT 1 (£ '£)]• (2.29)

The induced DAP in (2.27), using (2.28) and (2.29), is proportional to a likelihood based on 

the “prior observations” (1^-,XZ- , ^ , :  i = 1, • • • ,p ). The weight param eter W{ in (2.28) can 

be interpreted as the prior number of observations associated with Yi. Consequently, large 

values of Wi reflect more confidence in the prior belief which means that the prior is relatively 

more informative. However, these extra parameters need to be quantified, the m atter which 

may make the CMP easier to be elicited.

Although the resulting priors are not necessarily members of any specific family of dis­

tributions, Bedrick et al. (1996) argued tha t the CMP and DAP priors lead to tractable 

posteriors for GLMs through importance sampling and Gibbs sampling techniques.

Another approach for eliciting different classes of priors for GLM parameters started with 

the work of Ibrahim and Laud (1994) for normal linear models. Their work was then extended 

to prior elicitation and variable selection for logistic regression models by Chen et al. (1999). 

A further extension to GLMs was given by Chen et al. (2000), who proposed the class of 

power priors for GLMs.

The main idea of the above series of papers is th a t a prior prediction vector T 0 can 

specified for the response vector Y, either using historical data  or an expert’s opinion. A 

scalar 0 < ao < 1 needs also to be elicited to quantify the expert’s confidence about her 

best guess Y0 relative to the actual data. Hence the scalar ao reflects the contribution of the 

prior information in the posterior relative to the information given by the current experiment. 

Together with the design m atrix X , Y0 and ao are used to specify an informative prior for 

regression coefficients.

In the class of power priors, the prior density is raised to the power ao, which is considered

as a precision parameter that controls the heaviness of the tails of the prior distribution. For a

random ao, a beta distribution was assumed by Chen et al. (2000) as a prior for ao. Although

the class of power priors cannot be expressed in a closed form, Chen et al. (2000) discussed
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its theoretical properties and propriety together with its required computations.

Different extensions to this class of priors have been proposed in the literature. For exam­

ple, based on the same ideas, Chen and Ibrahim (2003) proposed a class of conjugate priors 

for GLMs and discussed its elicitation. Moreover, Chen et al. (2003) introduced an informa­

tive class of priors for generalized linear mixed models. Extensions to variable selection were 

suggested by Meyer and Laud (2002), Chen and Dey (2003) and Chen et al. (2008).

Garthwaite and Al-Awadhi (2006) developed an elicitation method for piecewise-linear 

logistic regression. The method is also valid for other GLMs and Garthwaite and Al-Awadhi 

(2011) extends the idea to GLMs with any link function. They assumed a multivariate 

normal distribution for the regression coefficients; its parameters can be determined from the 

expert assessments. One of the main aims of this current thesis is to extend this piecewise- 

linear elicitation method in the context of GLMs to treat the case of correlated regression 

coefficients. The method is reviewed in detail in Chapter 3 and the proposed extensions are 

given in Chapters 4 and 5.

The piecewise-linear elicitation method was designed to be used with the aid of interactive 

graphical software written for this purpose. Older prototypes of the software were used 

in practical case studies for threatened species in Garthwaite (1998) and Al-Awadhi and 

Garthwaite (2006). A more recent version of the software has been written by Jenkinson 

(2007), this version of the software has been reviewed, modified and extended further in 

Chapters 3, 4 and 5 of the current thesis.

Another prototype of the interactive graphical software was given by Kynn (2005, 2006) 

to elicit expert opinion for the Bayesian logistic regression model. The software is called 

ELICITOR and appeared as an add-on to WinBUGS. Kynn extended the program written by 

Garthwaite (1998) and rewrote it in a more robust programming language. The software was 

originally developed as a user friendly tool for quantifying environmental experts’ knowledge 

while studying the presence or absence of endangered species. It adopted the same approach 

of Al-Awadhi and Garthwaite (2006).
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Following Garthwaite (1998), the elicitation scheme adopted in ELICITOR is based on 

the logistic regression model in which the probability of the presence of an endangered species 

is represented by a Bernoulli distribution and can be related to a number of environmental 

variables via a logit function. The expert is asked to give conditional probability assessments 

at the preferred or optimum site of species presence as the intercept. Then assessments are 

made at other sub-optimum levels of each other covariate.

The choice of the “optimum” value or level of each covariate to be its intercept, also called 

the reference value, is made by Garthwaite (1998) and thoroughly justified in Kynn (2006). 

She discussed tha t it is psychologically meaningful to the expert to be asked about conditional 

probabilities given tha t all or all except one covariate are at their optimum level. In this case, 

conditioning on all other covariates can be translated in the expert’s mind as conditioning on 

one event where everything is optimal. Kynn mentioned also some ecological concerns that 

make the optimum point a good selection, a noticeable concern is th a t the species responses 

distribution is usually considered to be unimodal. However, in our extensions to the piecewise- 

linear model, the expert freely chooses the reference level, although she is advised to select 

the optimum one.

While categorical covariates are related to the probability of presence, or generally of 

success, through a bar chart in both ELICITOR and the prototype and its extensions, 

representing continuous covariates is clearly different. ELICITOR does not only assume 

a piecewise-linear relation between continuous covariates and the presence probability, bu t it 

also offers the options of linear and quadratic functions to model this relation. Nevertheless, 

Kynn (2006) stated th a t the fully linear form is not realistic and that the quadratic form can 

be too restrictive. We believe that the piecewise-linear relation is a very general form that 

can model many other forms as special cases.

The main critical point in the statistical model of ELICITOR is th a t the regression 

coefficients are assumed to be independent a priori, an assumption th a t may not be true in 

many situations. Thus, only univariate normal priors were elicited and no attem pt was made
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to elicit covariances even for the coefficients at the dividing points of the same piecewise-linear 

curve or at the different levels of each single categorical covariate.

The idea of successive sub-division, also called the bisection method, as a technique to 

assess the three quartiles from an expert, has been generally accepted as a comparatively 

easy task for the expert to perform. The prototype software in Garthwaite (1998) and its 

extensions apply the bisection method to obtain expert’s assessments. However, Kynn (2006) 

has a detailed discussion about available alternatives to assess percentiles, and cites results 

of studies comparing these methods. But in designing ELICITOR, she decided to use a quite 

different technique by letting the expert give her two boundaries of a credible interval, then 

give the probability of this interval. Despite being easy to perform, this method does not 

seem to be efficiently tested or justified.

Rather than assessing probabilities as numbers, the users of ELICITOR have more in­

teractive visualizations for estimating probabilities. These include a probability wheel, a 

probability bar and other visualizations to help experts assess probabilities closer to their 

knowledge. The feedback provided after the assessment process are alternative credible in­

tervals and probability distribution functions for the intercept and categorical variables.

ELICITOR was intended to be extended to encompass other GLMs, with flexible options 

of the link functions and prior distributions, not only the logistic regression. The software 

documentation mentioned that this and other extensions were being tested, but we do not 

know of any version of the software where these extensions have been implemented. For more 

details on ELICITOR see Kynn (2005); Kynn (2006) and O ’Leary et al  (2009), although the 

software and its documentation no longer seem to exist as an open source on the web.

Denham and Mengersen (2007) introduced a method and developed software to elicit 

expert opinion based on maps and geographic data  for logistic regression models. Elicit­

ing information on observable quantities, such as values of the dependant variable at given 

values of the predictors, (referred to as the predictive procedure) is usually preferred and 

easier than direct assessment of the regression parameters (structural procedure). However,
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they argued that each procedure is more convenient for a specific type of experts. For ex­

ample, they considered two types of ecological experts: the ‘physiologist’, who has a good 

understanding of the physical requirements of each species, is more likely to respond well to 

a structural elicitation. The ‘field ecologist’, who has more knowledge about the places of 

existence for each species, may be better at responding to a predictive elicitation. Denham 

and Mengersen (2007) proposed a new approach tha t combines both strategies. In their 

combination approach, the expert may use either method or the two methods simultaneously 

with each variable, according to his preference and background.

They adopted the usual logistic regression for species modelling,

Yi ~  Binomial(n^, ^ ) ,

with the logit link function Yi =  g{^i) =  lo g (^ /( l  — /2Z)), and Y_ = X/3, where Yi is the 

number of observations of a species at site i, and X  is the m atrix of explanatory variables. 

The aim is to quantify the expert’s opinion about the prior distribution of in the form

£ ~ M V N (6 ,E ).

They stated tha t the methods of Kadane et al  (1980) and Garthwaite and Dickey (1988, 

1992) can be used in this context to estimate the hyperparameters b and S  by asking the 

expert to assess some quantile information for the value of Y  at particular values of X. 

However, they referred to the difficulty of this predictive elicitation procedure for the ‘field 

ecologists’ who may have knowledge about the presence of a specific species at a located site 

map rather than the explanatory variables affecting this presence.

To help this type of experts, Denham and Mengersen (2007) suggested two alternatives. 

The method of Kadane et al. (1980) can be used, with the expert choosing the design points 

based on location, without specific reference to explanatory variables. Or, instead, the design 

points could be selected as in the method of Kadane et al. (1980), and then transformed to 

map locations tha t are displayed on the map for the expert.

Their proposed combination approach as an elicitation method is not only a hybrid ap-
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proach tha t combines both the predictive and structural procedures together, but it also 

offers the opportunity to use either of the two procedures simultaneously for each single 

variable. The basis of their method is to use the standard elicitation method with maps as 

discussed above, to derive a “first pass” elicitation of b. A structural elicitation procedure is 

then applied. The latter is implemented by presenting a univariate graph for each of the p 

explanatory variables. In each graph, they fix all the other p — 1 variables a t their mean or 

median value, i.e. for the j th  variable, j  = 1, • • • ,p, they display the graph of

p
Y  = bQ + bjXj  +  frfcXfc.

k=l,k^j

These univariate graphs are automatically updated once the expert updates the map 

by adding new points or editing values. Moreover, the expert can directly manipulate the 

graphs, which cause the map to automatically change as well. The expert is meant to keep 

changing the map and/or the graphs until they all represent her prior knowledge. To elicit 

S, The expert is asked to provide a 95% “envelope” around the displayed regression lines by 

assessing upper and lower 95% quantiles.

To apply this approach, Denham and Mengersen (2007) developed elicitation software 

under a Geographic Information System (GIS), in which design points were actual location 

on interactive maps. They listed the benefits of the elicitation procedure using the software 

with interactive maps over the usual elicitation with paper maps. The new procedure is more 

flexible, it allows the expert to access information at any point in a convenient manner. The 

scale dependency of the hard copy maps could be removed by using the feature of zoom in 

and out. Using the software allows the visualization of the responses and provide feedback 

to the expert. In which case, the expert can revisit and/or modify any previous assessment 

on the interactive map.

Denham and Mengersen (2007) implemented their software in two case studies for mod­

eling the median house prices in an Australian city and for predicting the distribution of an 

endangered species in Queensland. In their first case study, they modelled the median house

prices using a piecewise-linear regression to a tta in  flexibility and maintain the simplicity of
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the linear regression. They chose the dividing knots of the piecewise-linear relations as the 

0.33 and 0.66 quantiles of each explanatory variable. Their model takes the form

Yi =  (3o + (3\Xi\ + faX'n + foX'ii + (3aX i2 + (3§X[2 + fieX1̂,

where X \  is the distance from city center in kilometers and X 2 is the distance from the river 

in kilometers. For j  =  1,2, they defined X[j and X ”- as

Xij — Xo.33j if Xij > Xo.33j, 

0 otherwise,

and /

X ij XofiQj if Xij X()'Q6j ,
X'lj = <

0 otherwise,

where Xo.33j  and Xo.66j are the 0.33 and 0.66 quantiles of X j ,  respectively.

They meant to simplify the Bayesian prior structure of the model compared to tha t of 

Kadane et al. (1980) or Garthwaite and Dickey (1992), to be of the form

Y \X . ,P ,a 2 ~ N (X . 'P ,a 2),

P ~ M V N  (6,E),

a 2 ~  Inverted Gamma(^o/2, vqSq/2 ),

In this case study, they specify a prior for the regression parameters /?. However, it does 

not seem that they implemented any procedure to elicit the two extra hyperparameters uq and 

So. The results suggested th a t the experts managed to elicit quantifications of their opinions 

of the house prices in the city that were consistent with the actual house prices. The priors 

appeared to be relatively consistent. All participant experts in this case study reported tha t 

they preferred the combined approach over the map or the standard approach. Most experts 

elicited slightly different priors under the different elicitation methods they used.

The second case study in Denham and Mengersen (2007) was devoted to eliciting two

experts’ opinion about the distribution of the brush-tailed rock-wallaby in Queensland. The
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explanatory variables were chosen by one of the experts to be X \\  a measure of terrain, X 2 ' 

a moisture index, X%\ aspect and X 4 : a 4-category variable representing the rock type. They 

were interested in the following logistic model

Yi ~  Bernoulli (pi), 

logit (pi) ~  N(/ii,(72),

Hi = P0 +  Pi X u  +  /?2^ 2z +  PzX\i +  ^ 4 X 3^

+ PsX^i + peX^u + P-jX^2i + PsX^u  

P_ ~  MVN(6, E).

They aimed to elicit the multivariate normal prior of p. The experts were allowed to 

choose the design points. The expert chooses a design point by clicking on a map, then an 

interactive dialogue pops up giving a plot of a beta distribution of the probability of presence 

at the selected design point. The given plot has three adjustable points at the median and the 

0.05 and 0.95 quantiles. The expert is asked to adjust the three quantiles, or the computed 

beta parameters, until the presented beta curve is the best representation of the expert’s 

belief about the probability of the specie presence at the selected point. This procedure is 

repeated for a number of design points.

Once the expert has selected a minimum number of points, a logistic regression model 

is fitted by the software at each design point. Then the univariate relation between the 

probability of presence and each of the explanatory variables is presented to the expert in a 

separate graph, a response curve. Each curve is drawn assuming that the other variables are 

kept fixed at their means. The categorical variable X 4 is represented by box-plots rather than 

a curve. The expert can review and modify the design points to get the autom atic impact 

on the response curves. The elicited beta distribution at each design points could be used to 

elicit the multivariate normal distribution of the regression parameters P through weighted 

logistic regression or a simulation based approach, see Denham and Mengersen (2007) for more 

details. They stated that the priors elicited from the experts were reasonably informative,
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with corresponding posteriors that are clearly different from those posteriors obtained from 

a uniform improper prior.

Although the software is specially designed for geographical data  elicitation of a logistic 

regression model, they indicated tha t the concepts can be generalized to any GLM. However, 

Denham and Mengersen (2007) wrote the software explicitly for each of the two case studies 

separately, tailored for the given cases and sets of explanatory variables. In its present form 

their software is thus limited and cannot be used as a general elicitation tool. Moreover, 

they used the R  language to code statistical functions, with Visual Basic and other software 

for interactive graphs embedded in the GIS system. The latter limits the usability of their 

software.

Jenkinson (2007) re-wrote the software of Garthwaite and Al-Awadhi (2006) in Java 

to provide a more transportable and stable version. He gave a detailed description and 

documentation of both the software and the piecewise-linear theoretical model behind it 

[Jenkinson (2007), p .215-251]. Further modifications of the theoretical model and the software 

are given in this current thesis in Chapters 3, 4 and 5.

An important medical application of the GLM elicitation software is given in a case 

study reported in Garthwaite et al. (2008). Aiming to estimate the costs and benefits of 

current and alternate bowel cancer service in England, a pathway model was developed, 

whose transition parameters depend on covariates such as patient characteristics. D ata to 

estimate some parameters were lacking and expert opinion was elicited for these parameters, 

using the indicated software and under the assumption th a t the quantity of interest was 

related to covariates by the generalized piecewise-linear model given by Garthwaite and Al- 

Awadhi (2006). The assessments were used to determine a multivariate normal distribution to 

represent the expert’s opinions about the regression coefficients of that model. One conclusion 

of this work was tha t quantifying and using expert judgement can be acceptable in real 

problems of practical importance, provided tha t the elicitation is carefully conducted and 

reported in detail.
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A thorough detailed comparison has been conducted by O’Leary et al. (2009) for three 

relatively recent elicitation tools for logistic regression. The comparison included the interac­

tive graphical tool of Kynn (2005) and Kynn (2006), the geographically assisted tool under 

GIS of Denham and Mengersen (2007) and a third simple direct questionnaire tool with no 

software. These tools were compared in an elicitation workshop (see O’Leary et al. (2009) 

for more details on the third method). The paper discusses and gives a detailed description 

for each of the three methods used, showing advantages and disadvantages of each of them. 

Methods were compared according to their differences in the type of elicitation, the proposed 

prior model, the elicitation tool and the requirement of a facilitator to help the expert. Prior 

knowledge of two experts was elicited to model the habitat suitability of the endangered 

Australian brush-tailed rock-wallaby. The comparison revealed that the elicitation method 

influences the expert-based prior, to the extent tha t the three methods gave substantially 

different priors for one of the experts. Some guidelines were also given for proper selection of 

the elicitation method. This work of O ’Leary et al. (2009) is part of a large body of applied 

research which shows the importance of eliciting expert knowledge when modeling rare event 

data, see also Kynn (2005); Al-Awadhi and Garthwaite (2006); Low Choy et al  (2009) and 

Low Choy et al. (2010).

Although they are interested mainly in designing the elicitation process for ecological ap­

plications, Low Choy et al. (2009) give a framework for statistical design of expert elicitation 

processes for informative priors which may be valid for Bayesian modeling in any field. The 

proposed design consists of six steps, namely, determining the purpose and motivation for 

using prior information; specifying the relevant expert knowledge available; formulating the 

statistical model; designing effective and efficient numerical encoding; managing uncertainty; 

and designing a practical elicitation protocol. Other im portant stages in the elicitation pro­

cess may be found in Garthwaite et al. (2005), Jenkinson (2007) and Kynn (2008). Low Choy 

et al. (2009) validated these six steps in a detailed discussion and comparison of five case stud­

ies, revisiting the principles of successful elicitation in a modern context.
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The recent work of James et al. (2010) is very interesting and im portant in the current 

review for two aspects. First, it introduces and describes a general elicitation tool for quan­

tifying opinion in logistic regression using interactive graphical stand-alone software, called 

Elicitator. Second, the software is based on a novel statistical methodology to elicit a normal 

prior distribution for regression parameters.

Their work is an extension to that of Denham and Mengersen (2007) as applied on nor­

mal prior elicitation for logistic regression in a geographically-based ecological context. As 

mentioned before, Denham and Mengersen (2007) did not introduce a general purpose tool; 

their software was tailored to the requirements of specific case studies. Motivated by that, 

James et al. (2010) developed the Elicitator software as a stand-alone elicitation tool that 

can be used for a wide range of applications.

Although the Elicitator software is based on the same interface and protocol as its pro­

totype in Denham and Mengersen (2007), the statistical method adopted to transform as­

sessed values into elicited priors is a novel one inspired from the CMP ideas of Bedrick et al. 

(1996). James et al. (2010) argued that the CMP is more tractable and more applicable in 

general compared to the predictive approach used by Kadane et al. (1980) and Denham and 

Mengersen (2007). The novel modification in the Elicitator design to the approach of Bedrick 

et al. (1996) is tha t it relaxes the assumption tha t the number of chosen points a t which the 

expert assesses her priors is exactly equal to the number p  of explanatory variables in the 

logistic model. This is the assumption that leads to the induced prior on j3 as in (2.27).

Relaxing this assumption allows the number of elicitation points, say k, to exceed the 

number p of explanatory variables, the situation tha t is commonly encountered. Although the 

prior on /3 can no longer be induced as in (2.27), James et al. (2010) proposed a measurement 

error model in which elicitation points represent data  in a beta regression model. In this 

sense, increasing the number k of elicitation points will lead to a more accurate prior.

Specifically, they assume a standard logistic regression model with a Bernoulli distribution 

and a logit link function as used by Bedrick et al. (1996). A main criticism is th a t they
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assume that the explanatory variables are independent a priori, in the sense that independent 

univariate normal priors were assumed for (3, i.e.

(63-,a?), j  = l ,  (2.30)

Although they mentioned the possibility of assuming a multivariate normal prior distribution, 

no attem pt has been made for its implementation in Elicitator.

For i = 1, • • • , k, the expert assesses information about the probability of success pi at 

a geographical site i, selected by the expert, with a known combination of the explanatory 

variables X i j ,  X 2,i, ■ • • , X Pti. For example, the expert may assess information about the 

probability of presence of a species at a known combination of environmental predictors at 

site i. Following Bedrick et al. (1996), expert’s assessments are used to elicit a beta prior 

on p,i as in (2.25). However, in situations where k > p, a beta prior on m  would not help 

induce the normal prior for (3. Instead, James et al. (2010) assumed a beta prior on the 

expert’s probability of success, say Zi, which is different from the actual probability pi. As 

in a measurement error model, pi is the conditional expectation of Z{ in the sense that

logit (pi) = X!iP

Zi\pi ~  be ta (a i>t ,a 2>»), (2.31)

Ei^Zi\pi) = pi.

James et al. (2010) discussed the expert’s assessments about Zi th a t are required to

elicit beta distributions as in (2.31). They argued that the required best estimate of the

probability Zi in the measurement error model is the arithmetic mean, however it is difficult

to assess. They were also against the idea of assessing the median, claiming th a t it needs

more effort from the expert to assess. Hence, Elicitator requires the mode of Zi as its

best estimate. Then, following the well-established practice of assessing several quantiles for

beta elicitation, Elicitator requires the four bounds of the 50% and 95% credible intervals.

Although two assessments are mathematically sufficient for eliciting the two beta parameters,

it is better to elicit more assessments and reconcile them, especially for skewed distributions.
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A simple numerical procedure is used to elicit beta parameters from the mode and either two 

or four assessed quantiles.

To elicit the hyperparameters bj and cr|, j  = l , - - -  ,p in (2.30) using the elicited beta 

parameters a\^ and <22 ,i, i — 1, • • - , A; in (2.31), James et al (2010) proceed as follows. 

In principal, the beta regression in (2.31) is performed using the expert’s data on Zi and 

the known values of the explanatory variables to provide the expert-defined estimates of ft. 

However, due to difficulties in implementing any beta regression package in Elicitator, the 

beta regression problem has been approximated by its discrete version, a binomial regression. 

An R software package is used to perform the binomial regression, where point estimates 

(3j and their corresponding standard errors s.e.(Pj) are obtained. The prior distributions in 

(2.30) are finally elicited using these estimates as

f t  ~  N (f t,s .e .( f t)2), j  =  1, • • • ,p. (2.32)

Two criticisms of the proposed measurement error model in this context are as follows. 

First, it adds additional sources of uncertainty, namely, the discrepancy between the expert’s 

probability Z{ and the conceptual probability fii. Second, it imposes difficulties in compu­

tation and implementation in the software, requiring a binomial regression approximation. 

However, these criticisms do not seem to be a high price compared to the increased accuracy 

gained by increasing the number of elicitation points of CMPs. Moreover, the use of beta or 

binomial regression make it easy to represent standard regression diagnostics to the expert 

as feedback.

Interactive graphs tha t are given by Elicitator to the expert as feedback fall in three 

main groups. The first group includes a box-plot, a pdf curve and some numeric statistics 

of the elicited beta prior at each site. These are all interactive in the sense th a t they are 

automatically modified if the expert changes her assessments of the mode value or the credible 

interval bounds of the probability of success at each site.

The second group involves the univariate graphs th a t highlight the main effect of each

explanatory variable associated with each of the elicitation sites. These graphs plot the
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elicited probability against the value of the site predictor with a standard regression fit. The 

categorical predictors are drawn as bars to emphasize their discrete nature. Various regression 

diagnostics graphs are given in the third group. These graphs help the expert consider how 

the estimated prior model elicited from her assessments corresponds to her knowledge overall.

The Elicitator software is written in Java and uses open source libraries. It does not 

require a commercial GIS, in contrast to the prototype of Denham and Mengersen (2007). 

All statistical calculations are performed using the R statistical package. Elicitator uses a 

Java package to communicate with R, without needing to run an actual instance of the R 

software. This greatly increases the generality and flexibility of Elicitator as a stand-alone 

tool tha t can be used by a wide range of experts with different backgrounds.

According to James et al. (2010), Elicitator is highly extensible and one of the main 

extensions they are willing to handle is the ability to implement more GLMs rather than 

only the logistic regression model. But they did not mention or discuss how this can be done 

for other distributions and link functions under their proposed model for measurement error.

2.5 Prior elicitation  for m ultinom ial m odels

An early attem pt to elicit a Dirichlet prior distribution for multinomial parameters was 

suggested by Bunn (1978). He argued that the usual fractile assessment procedure tha t 

has been used for eliciting beta priors may be difficult and tedious to be applied on their 

multivariate extensions, the Dirichlet priors, when more conditions and restrictions must 

be taken into consideration. As will be shown on Chapter 6  of this thesis, developments in 

computing techniques and tools make it easy to implement fractile procedures in user-friendly 

software tha t assess quartiles and elicit Dirichlet priors effectively and interactively.

However, the approach suggested by Bunn (1978) as an alternative to the fractile method 

for Dirichlet elicitation was the method of ‘imaginary results’. He used two versions of this 

method, namely, the Equivalent Prior Samples (EPS) and the Hypothetical Future Sample
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(HFS), to quantify opinions about a Dirichlet prior. Specifically, let p  =  p2) . . .  } pk),

be the vector of multinomial probabilities, with a Dirichlet prior distribution of the form

/(g )  =  £ ( E k ]5 i i n k P i l I i 2 > .  =  Xi a . > 0 . (2 .3 3 )
1 Ii=l yQ'i) 1

It can be shown that the posterior mean of pi , say pi , after sampling N  data is given by

di +  rii , .
K  =  Z Z v ^ — ’ (2'34)N  +  E i= l ai

where rii is the number of items, out of N , that falls in category i.

In the EPS method, the expert is asked to assess a set of prior means p?, i =  1,2, • • • , k. 

She also assesses the equivalent sample size of her subjective belief tha t would empirically 

give this set of probabilities. This sample size gives direct information on ai• Thus, the 

prior hyperparameters can be elicited as

k
a i = p * Y ,a i -  (2.35)

i—1

The main criticism to the usage of the EPS method here is tha t the expert cannot easily 

give an assessment for ai directly. The assessed value does not necessarily represent 

her opinion accurately and may contain sources of assessment bias. Therefore, Bunn (1978) 

proposed the alternate HFS method, in which the expert also assesses the set of prior expec­

tations p*,i = 1 , 2 , • • • , k, but, in addition, she is asked to assess her posterior expectations, 

say p**,i — 1,2, •• • , k, given that a hypothetical future sample of size M  has resulted in a 

number of mi items in category i , where 1 < mi < M .  Hence, the hyperparameters can be

elicited, using (2.34) and (2.35), as

_* mi -  Mpl*
ai =  Pi — 7,;---- • (2-36)

Pi - P i

The main source of bias in the HFS method is ‘conservatism’; the expert tends to revise

her probabilistic beliefs from prior expectations to posterior expectations as a result of the

new data ‘insufficiently’ if compared with the revision indicated by Bayes theorem. The

strong assumptions of the HFS method, tha t the expert can be an ‘intuitive Bayesian’ and
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can modify her prior beliefs in the light of new data sets, turned out to be poorly satisfied in 

the case study of Bunn (1978) and other studies mentioned therein. For example, in eliciting 

beta priors, Winkler (1967) found tha t the methods of imaginary results gave greater bias 

than the usual fractile methods.

Another problem with the two methods suggested by Bunn (1978) is tha t probability 

means are directly elicited from the expert. We believe tha t medians are easier to assess 

and, by using the bisection method, the expert will represent her beliefs more accurately. 

Although the unit sum of the probability assessments can be directly fulfilled by assessments 

of means (the means must sum to one), median assessments of these probabilities can be 

elicited for beta marginal or conditional distributions. Methods for reconciliation of beta 

elicited distributions into a Dirichlet prior are proposed in Chapter 6 .

In the HFS method of Bunn (1978), he did not give any suggestion about the selection 

of the hypothetical sample. Instead, in a case study, he used an actual sample based on a 

survey, and called his method an Actual Future Sample (AFS). To investigate the feasibility 

of this method and its possible biases and subjective inconsistencies, the AFS method was 

implemented in a case study reported in Bunn (1978). In this study, a publisher quantified 

his opinion about the expected market attitudes towards a new product. Different possible 

attitude events were summarized in three categories, for which he assessed their expected 

prior probabilities as

p\ = 0.20, pi = 0.30, pi = 0.50. (2.37)

From his EPS assessment, Y h=i ai was se  ̂ eQual to 10.

Then, a survey of 20 customers revealed that the number of customers in each category 

were 6 , 7, 7, respectively. Based on this survey, the publisher was asked to revise his prior 

probability expectations. He gave the following posterior expectations

$*04 ) =  0.25, $*(A ) =  0.30, pl*(A) = 0.45. (2.38)

To investigate the conservatism of the publisher, the posterior expected probabilities were

39



computed as in (2.34). Since, a\ =  2 , <22 =  3, 0 3  =  5, the computed posterior expectations 

given by Bayes theorem are

Pi*(C) = 0.27, $;*(<?) =  0.33, #5* (C) =  0.40. (2.39)

Comparing the assessed posterior probabilities p**(A) in (2.38) to the computed ones in 

p*i*{C) in (2.39) reveals the conservatism of the publisher, who did not revise his prior prob­

abilities by as much as Bayes theorem would revise them.

Bunn (1978) discussed the possible reasons of the revealed bias and inconsistency in using 

the methods of imaginary results for eliciting a Dirichlet prior. He argued tha t the expert 

should complete several iterations with these methods to achieve consistent results. However, 

he did not discuss how this might be done through feedback given to the expert, nor did he 

suggest any method of reconciliation. These drawbacks of the imaginary results methods 

suggest that a fractile method is to be preferred, especially in multivariate cases where more 

inconsistency can be expected.

Using the same idea as the HFS method, and consequently the same forms of equation as 

in Bunn (1978), Dickey et al. (1983) reintroduced the elicitation method with a different case 

study. The mathematical formulation of the two methods is identical. However, two main 

differences in the elicitation process can be identified.

In assessing the expected prior probabilities i =  1,2, • • • ,k ,  Bunn (1978) assumed that 

the expert is coherently aware that these assessed expected probability must sum to one. 

In contrast, in the work of Dickey et al. (1983), the expert was free to assess the expected 

probabilities without being conscious of any probabilistic constraints. Instead, Dickey et al. 

(1983) suggested normalizing the initial assessed probabilities to get the following normalized 

set

(2.40)

that is guaranteed to add up to one. We use this simple normalization procedure extensively 

for our proposed logistic normal prior in Chapters 8  and 9. An im portant property of a good
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elicitation method is tha t the expert is not overly conscious of the mathematical constraints 

on her assessments. Methods tha t include normalization and reconciliation procedures are 

generally better than those that ask the expert to make assessments tha t meet specified 

constraints.

The second difference between the elicitation procedure of Bunn (1978) and tha t of Dickey 

et al. (1983) regards the reconciliation of an expert’s assessments. As mentioned before, 

given the hypothetical sample, one expected posterior probability suffices to elicit the full 

vector of the Dirichlet hyperparameters. But it is usually better to assess several posterior 

probabilities and then reconcile the different results. Bunn (1978) regarded discrepancies in 

results as inconsistency on the part of the expert and suggested asking the expert to resolve 

inconsistency by doing many iterations of the elicitation process. On the other hand, Dickey 

et al. (1983) suggested reconciling different hyperparameter values by averaging them. They 

also advised tha t large discrepancies may indicate tha t the Dirichlet distribution is not a 

suitable prior.

The case study in Dickey et al. (1983) quantified a social psychologist’s opinion about 

the attitudes of potential jurors in law trials where the death penalty was available. Their 

attitudes were classified into 4 categories, and the psychologist’s assessments of the prior 

probabilities of the categories were:

Pl =  0.02, pi = 0.08, pi = 0.15, p\ = 0.75. (2.41)

The psychologist was then told that a hypothetical sample of 200 potential jurors had 

been distributed between the four categories as 16, 20, 32, 132. Given this information, the 

expert revised her prior probabilities and gave the following expected posterior probabilities:

PI* = 0.05, p*2* =  0.09, pl* = 0.16, pl* = 0.70. (2.42)

Using each of these values in (2.36) gives an initial value of ai, which can then be used

in (2.35), together with the corresponding prior probability, to get an estimate of Y lt= iai-

These estimates were averaged in Dickey et al. (1983) and gave a value of 140. This gives
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the final hyperparameter elicited values, again from (2.35), as ai =  2.8, 0,2 =  1 1 .2 , 0 3  =  21, 

a4 =  105.

In contrast to the case study in Bunn (1978), the expert here was not conservative; her 

posterior probabilities were closer to the relative frequency of the hypothetical data, 0.08, 

0.10, 0.16, 0.66, rather than to her prior probabilities. A lack of conservatism is also shown 

by the small value of J2i=i ai = 140, compared to the hypothetical sample size of N  = 200. 

Using (2.35), the posterior probabilities in (2.34) can be considered as a weighted average of 

the prior probabilities and the relative frequency of the hypothetical sample, since

f,** _  ______ ^  Ui 4 .  ^ i = l ai f* (0 4Q')

Pi - N  + Z t 1 ai N  + N  + T t= 1 a ! ’'- ^

If the expert assesses Y a =i ai t°  be less than the hypothetical sample size N , then she gives 

more weight to the relative frequency of the hypothetical sample. If Y^l=  1 ai = N ,  then the 

expert has given her prior opinion and the data equal weight. As in Bunn (1978), Dickey 

et al  (1983) did not suggest a way to generate the hypothetical sample.

Another method for eliciting a Dirichlet prior distribution was developed by Chaloner 

and Duncan (1987) as an extension of their method for eliciting beta distributions (Chaloner 

and Duncan, 1983). Their approach relied on assessing the mode vector for the predictive 

distribution, and some probabilities for other vectors around the mode. These assessments 

were used to elicit a Dirichlet-multinomial predictive distribution tha t was then used to 

induce a Dirichlet prior distribution for multinomial sampling. The approach thus differs from 

other Dirichlet elicitation methods in using mode assessments and in utilizing the predictive 

distribution rather than the prior distribution.

The predictive distribution of a multinomial likelihood and a conjugate Dirichlet prior 

is a Dirichlet mixture of multinomial distributions. This distribution is referred to as a 

Dirichlet-multinomial distribution and its probability mass function takes the form

r(n + i)r(7\r) [ n j u r f a + <.()'
f ( x i , x 2i- "  , x k) =  --------------r - --------   y r ——  ---=r, (2.44)

r ( «  +  N )  [n jL j r ( z ;  + 1 )] [ n t i i W

x i > 0) E iL l x i = n > ai >  0, E i= l  CLi = N. 
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Chaloner and Duncan (1987) proved that the Dirichlet-multinomial predictive distribution 

in (2.44) is a unimodal distribution for large values of n. They also gave sufficient conditions 

under which a vector, with components greater than or equal to one, is the unique mode of the 

Dirichlet-multinomial distribution. These conditions are mainly related to the probabilities of 

a set of vectors that are coordinate adjacent to the mode vector. Moreover, the identifiability 

of the Dirichlet prior distribution from the Dirichlet-multinomial predictive distribution was 

also proved.

The above results were used in an elicitation scheme that was implemented in a computer 

program, in Chaloner and Duncan (1987), as follows. The expert specifies a large value of 

n  as the sample size. Then she specifies a mode vector m  =  ( m i ,m 2 , • • • ,m k ) that satisfies 

]Ci=i m i = 71 and mi > 1. The computer program then uses a multinomial probability vector 

of n~ lm  to compute probabilities at some points tha t are component adjacent to the mode 

vector. These probabilities are presented to the expert and she is given the option of changing 

them if they do not represent her opinion adequately. The modified set of probabilities, 

together with the mode vector m, determine an initial value for the parameter vector a of 

the Dirichlet-multinomial predictive distribution. This is also taken as the elicited param eter 

vector for the Dirichlet prior distribution.

The elicitation scheme of Chaloner and Duncan (1987) does not stop there. Instead, they 

chose to use the initially elicited vector a to compute the Dirichlet-multinomial probabilities at 

the same points where assessments had been elicited and give them as feedback to the expert, 

offering her the possibility of revising them to more closely represent her opinion. Moreover, 

Chaloner and Duncan (1987) believed that more replications were required. Therefore, the 

expert was to repeat the whole process again for a number of S  different sample sizes n\,  

n 2 , • • •, n s • The resulting parameter vectors a1, a2, • • •, as  were to be reconciled to give 

one final elicited vector of parameters. Chaloner and Duncan (1987) argued th a t it might be 

“dangerous” to use an automatic specific reconciliation method, instead, they recommended 

that the expert should examine the inconsistencies and “reconcile them  introspectively” .
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However, the method requires direct assessment of the sample size n, this might lead to 

improper representation of an expert’s opinion and incur more bias [Bunn (1978)]. On the 

other hand, Chaloner and Duncan (1987) did not mention how large the assessed value n  

should be, neither did they discuss whether the expert should keep in mind the constraint 

HiL=i m i = n > on the mode vector m,  or whether it may be corrected by the program if 

necessary. Nevertheless, it seems from their reluctance to apply any reconciliation that they 

preferred to leave it to the expert to make sure tha t the constraints were satisfied. Repeating 

the elicitation process for S  different sample sizes may constitute an extra burden on the 

expert, especially if she is responsible for the final reconciliation. Unfortunately, the computer 

program implementing their method does not seem to be available for reviewing and testing.

Instead of using means or modes, van Dorp and Mazzuchi (2000, 2003, 2004) introduced 

a numerical algorithm and software to specify the parameters of a beta distribution and its 

Dirichlet extensions using quantiles. The motivation for their work was to quantify expert 

opinion as beta and Dirichlet distributions for subjective Bayesian analyses. They favored 

assessing quantiles rather than means or modes, as betting strategies can be used by the 

expert to make their assessments. They started by solving for the two parameters of a beta 

distribution using two quantiles, as follows.

First, to ease the generalization to Dirichlet extensions, the beta distribution with two 

parameters a and b was reparameterized in terms of a location parameter fi — a/{a  +  6 ), and 

a shape param eter N  = a +  6 . Given the values of any two quantiles, say L  and U, L  < U : the 

two parameters fi and N  can be obtained, although solving for these two param eters involves 

the use of the incomplete beta function, so tha t no closed form solution can be obtained, van 

Dorp and Mazzuchi (2000) utilized the limiting forms of a beta distribution as N  tends to 0 

and oo to prove the existence of at least one solution for the beta param eters in terms of any 

two quantiles.

They gave a numerical algorithm to determine the beta parameters using a bisection 

method as a numerical search procedure. If multiple solutions were found, the algorithm
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selects the solution with the lowest value of N ,  i.e. with the highest level of uncertainty. The 

algorithm was implemented in software called BETA-CALCULATOR that inputs any two 

beta quantiles to output the corresponding values of the beta parameters.

To extend the numerical algorithm to Dirichlet parameters, van Dorp and Mazzuchi 

(2003, 2004) used quantiles tha t were assessed through direct specification of marginal beta 

distributions. A Dirichlet distribution as given in (2.33) was also reparameterized in terms of 

its mean values /n = cn/N,  as location parameters, and N  = ^2i=l ai as a shape parameter. 

The extended algorithm was designed to use two quantiles for one of the Dirichlet variates, 

say Li and Ui, Li < Ui, for the ith  variate, and just one quantile for each of the remaining 

variates, say Qj, j  ^  i. Hence, the number k of quantile equations that they had is exactly 

equal to the number of required parameters.

Following similar lines to their arguments for the beta distribution, van Dorp and Maz­

zuchi (2003, 2004) showed theoretically tha t at least one solution of the resulting system of 

equations always exists. The two quartiles Li and Ui were first used to elicit the marginal 

distribution of the ith  Dirichlet variate as Xi  ~  beta(/Xi, N ) .  The value of N  is then used 

with the quantiles Qj  to elicit the remaining beta marginal distributions as X j  ~  beta(/Ltj, N ) ,  

j  7  ̂ i. If more than one solution exists, they decided to choose the solution with the smallest 

N ,  which is again the solution with maximum Dirichlet variance, hence giving the highest 

level of uncertainty. In addition to the Dirichlet distribution, they also gave another numer­

ical algorithm for the ordered Dirichlet distribution, which differs from the Dirichlet in the 

domain of its variates, see Wilks (1962).

A criticism of the algorithm regards the selection of the Dirichlet variate for which two 

quantiles are assessed. No comment regarding the selection of this special variate was given in 

the published paper. The importance of its choice is tha t it determines the value of N  for all 

other variates and hence determines the variances of the Dirichlet distribution. If substantial 

bias is made in assessing these two quartiles, all elicited param eters will be highly affected as 

a result.
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In addition, to get a better representation of an expert’s opinion in the elicitation context, 

it is better to use over-fitting (Kadane and Wolfson (1998)). We believe tha t it is preferable to 

assess more quantiles than the minimum necessary and then apply a reconciliation technique 

to estimate parameters. The expert may then be given feedback and questioned as to whether 

the feedback corresponds to her opinion, with re-assessment made when necessary.

A possible general multivariate distribution, that can serve as a prior distribution for 

multinomial models, is constructed through using a multivariate copula function. A copula 

is defined as a function tha t represents a multivariate cumulative distribution in terms of 

one-dimensional marginal cumulative distribution functions. Hence, it joins marginal distri­

butions into a multivariate distribution tha t has those marginals. The importance of the 

copula function is due to Sklar’s Theorem, which states that any joint distribution can be 

written in a copula form. The marginal distributions can thus be chosen independently from 

the dependence structure th a t is represented by the copula function. For an introduction to 

copulas, see for example Joe (1997), Frees and Valdez (1998) and Nelsen (1999).

The use of copula functions to elicit multivariate distributions has been considered in the 

literature, see Jouini and Clemen (1996), Clemen and Reilly (1999) and Kurowicka and Cooke 

(2006), among others. The joint distribution can be elicited by first assessing each marginal 

distribution. Then the dependence structure is elicited through the copula function. Different 

families and classes of copula functions have been defined for both bivariate and multivariate 

distributions. Jouini and Clemen (1996) used bivariate and multivariate Archimedean and 

Frank’s families of copulae to aggregate multiple experts’ opinions about a random quantity. 

However, the simplest and most intuitive family of copulae is the inversion copula [Nelsen 

(1999)], of the form

C[GiOn),-- - , G k ( x h)} =  F(1,..,t) {•F’i"1[Gi(:ei)],• • • .F ^ G * ^ * ) ] }  , (2.45)

where G{ are the known marginal distribution functions, tk) is the assumed multivariate

distribution function and its marginals are Fi. Hence, the marginal functions GiS  are coupled

through into a new multivariate distribution given by the copula function C.
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The distribution F ( i s  usually selected as a multivariate normal distribution, which 

gives a Gaussian copula [Clemen and Reilly (1999)]. It has also been taken as a m ultivariatei 

distribution, [Demarta and McNeil (2005)], or even as a Dirichlet distribution [Lewandowski 

(2008)]. The Gaussian copula function is given by

,G t ( ^ ) ]  =  $ M {<6-1[Gi(x1)],--- .S-HGkOr*)]}- (2-46)

where $k,R is the cdf of a fc-variate normal distribution with zero means, unit variances, 

and a correlation m atrix R  that reflects the desired dependence structure. $  is the standard 

univariate normal cdf.

For eliciting a multivariate distribution, the Gaussian copula is the most appealing, see 

Clemen and Reilly (1999), as it is parameterized by the correlation m atrix R  of the multi­

variate normal distribution; hence it only requires pairwise correlations among the variables. 

To elicit the Gaussian copula, any assessed positive-definite correlation m atrix R  can be used 

together with the elicited marginal distributions G i(x \ ) ,  • • • ,Gk(%k)- As with any other in­

version copula, any univariate distributions are allowed as marginal distributions Gi s in the 

Gaussian copula.

To elicit R,  Clemen and Reilly (1999) suggested tha t a pairwise rank-order correlation 

between each and X j ,  such as Spearman’s pi j  or Kendall’s Tij,  should be assessed. 

Then properties of the multivariate normal distribution are used to transform them  into 

the product-moment Pearson correlation r y  as follows:

Tij = 2 sin(7T/0i ,j /6 ), or n j  = sin(7rrtJj / 2 ). (2.47)

Then the product-moment correlation matrix R  is formed from the elements

Clemen and Reilly (1999) suggested that only rank-order correlations should be elicited,

not product-moment Pearson correlation, as the latter cannot necessarily be transformed

through the function 4>- 1  [£?*(.)] - while rank-order correlations transform regardless of the

choice of the marginal distribution function Gi(.).  To elicit these correlations, Clemen and

Reilly (1999) mentioned three methods that can be used either separately or together. The
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first method involved the direct assessment of the correlation coefficient. Although people are 

not good at such direct assessment (Kadane and Wolfson, 1998), experimental evidence in 

Clemen et al. (2000) suggested tha t it can be a reasonable approach. The other two methods 

were based on assessed conditional probabilities or conditional quantiles tha t can be used to 

compute Kendall’s r  or Spearman’s p correlation coefficients, respectively.

The method proposed by Clemen and Reilly (1999) for eliciting a correlation matrix is 

not guaranteed to yield a positive-definite matrix. They cited two other studies in which 

dependence measures were assessed in a hierarchical way using dependence trees tha t require 

a fewer number of assessments. These studies use entropy maximization to guarantee the 

positive-definiteness of the resulting correlation matrix. However, Clemen and Reilly (1999) 

criticized this approach for the relatively constrained nature of its dependence structure 

modelling. Instead, they suggested that the expert should be asked to revise her assessments 

if the resulting correlation matrix is not positive-definite. For large problems with many 

variables, this revision method would generally be very tedious and confusing.

In Chapter 7, we propose a method for eliciting a Gaussian copula function, as a prior 

distribution for multinomial models. Our approach overcomes two problems of the method of 

Clemen and Reilly (1999) simultaneously. First, we transform the assessed conditional quar­

tiles of X i  and X j ,  through 4>- 1  [(?*(.)], then product-moment correlations can be computed 

on the normal scale with no need for the rank-order correlations. Second, the conditional 

quartiles are assessed according to the structural elicitation procedure of Kadane et al. (1980), 

which guarantees that the elicited correlation m atrix is positive-definite.

Copula functions were used extensively in the literature for building multivariate distri­

butions based on known marginals. This includes, of course, building joint prior distributions 

for Bayesian analysis using copulae. For example, Yi and Bier (1998) utilized some copula 

families to construct a joint prior distribution tha t reflects inter-system dependencies between 

accident precursors in a Bayesian study to estimate accident frequencies. A Gaussian cop­

ula has not been widely used in the literature as a prior distribution for multinomial models.
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However, the need for a flexible joint prior distribution tha t effectively combines the marginal 

beta prior distributions of multinomial probabilities makes the Gaussian copula an attractive 

choice as it gives a more general dependence structure than  the usual Dirichlet distribution. 

An applied Bayesian study by Palomo et al. (2007) used a Gaussian copula to model external 

risk in project management. In one of their adopted scenarios, they assumed th a t any of 

k potential disruptive events might occur, one at a time, according to a multinomial distri­

bution. The multinomial probabilities were assigned beta marginals, and a Gaussian copula 

function was used as a multivariate distribution to parameterize the dependence structure 

between these probabilities.

2.6 Other general graphical elicitation  software

This section reviews other interactive graphical elicitation software th a t has been reported in 

the literature. Software projects that are reviewed below cover general elicitation problems 

apart from those for GLMs and multinomial models. These have already been reviewed in 

Sections 2.4 and 2.5.

Chaloner et al. (1993) aimed to quantify experts’ opinion in the form of a prior distribution 

about regression coefficients in a proportional hazards regression model. In a clinical trial, 

prior distributions from five AIDS experts were elicited. To compare two treatm ents with 

a placebo, experts were asked to elicit the joint and marginal distributions of the survival 

probability under each treatm ent. This could be done by assessing some probabilities and 

quantiles to elicit a joint extreme value prior distribution for the proportional hazards model 

parameters.

For this purpose, they developed an interactive computer program th a t uses interactive 

graphs to elicit experts’ opinion and give them feedback. The curves of the two marginal 

distribution and the contour representing the joint distribution were presented to the experts. 

This feedback was given in the form of dynamic graphical displays of probability distributions 

tha t can be adjusted freehand.
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Some of the main “lessons” learned about this elicitation process, as stated by Chaloner

et al. (1993), can be summarized as follows. They stressed the importance of the dynamic 

graphical displays in helping experts to visualize probability distributions and in giving useful 

instant feedback. They also noted tha t it is necessary to have a clear well-defined outline 

and explanation of the questions that will be addressed to the expert. In cases where an 

expert had to assess her best guess of a specific probability, they wanted her also to report 

her uncertainty about it. In assessing approximate bounds, experts found extreme percentiles 

easier to think about than quartiles. However, there is substantial empirical evidence that 

people are poor at assessing extreme quantiles [e.g. Winkler (1967); Hora et al. (1992)] and we 

believe that quartiles provide a more faithful representation of an expert’s opinion, especially 

if they are assessed using the bisection method.

A comparatively simple elicitation computer program was developed by Kadane et al. 

(2006) for the generalized Poisson distribution. In their paper, they explored the properties 

of the Conway-Maxwell-Poisson (COM-Poisson) distribution, in particular, the conjugate 

family of prior distributions associated with it. A computer application has been created to 

elicit the hyperparameters of the conjugate prior distribution of the COM-Poisson parameters.

The COM-Poisson distribution is a two param eter generalization of the Poisson distribu­

tion th a t allows for over- and under-dispersion. It has the following probability function

The distribution indicates over-dispersion (under-dispersion) if u is less (greater) than 1. It 

is the usual Poisson distribution if v — 1 . Since the COM-Poisson distribution is a member 

of the exponential family, it has a conjugate prior of the form

Pr{X  = x\X,v} =
Xx 1

a; =  0 , 1 , 2 , . . . ,( x \ y '  z ( \ , v y

where
O O

h(X,v) = Xa l e ubZ(X,v)  Ck(a,b,c)} X > Q , v > 0 ,

where k(a,b,c) is the integration constant.



The computer program, available at http://w w w .stat.cm u.edu/CO M -Poisson/, is de­

signed to elicit the values of the hyperparameters a, b and c from the field expert. It computes 

and plots the histogram of the predictive distribution at allowable selected values of a, b and 

c. Specifically,

roo roo
Pr{X  = x\a, 6 , c} =  fc(a, b, c) /  /  A‘*+ I- 1e - ‘/(i,+log(l!))Z(A, v)~[c+1)d\dv.

Jo Jo

Kadane et al. (2006) pointed tha t it may be difficult for the expert to give meaningful 

values for the hyperparameters a, b and c, since the distribution is likely to be new to her. 

They assumed that the expert may have some knowledge about Pr{X  =  x}. Thus, the 

program plots the predictive distribution as feedback to the expert. She can type in or 

modify the values of a, b and c using sliders and see the direct impact on the predictive 

histogram.

However, it does not seem that the expert will be able to adjust three values simulta­

neously to assess a histogram that represents her prior belief. Also, some combinations are 

not allowed because of mathematical incoherence, and some others need large numbers of 

iterations to produce the histogram. A lot of adjustment may be needed before the expert 

is happy with the histogram, since no specific combination of the hyperparameter values is 

known in advance for any intended appearance of the histogram.

2.7 Concluding com m ents

In this chapter, we have reviewed some of the relevant research work on eliciting prior distri­

butions for the Bayesian analysis of GLMs and multinomial models. We have also discussed 

and reviewed the main psychological aspects tha t are usually involved in making the assess­

ments to elicit these prior distributions. In addition, we commented on some of the recent 

interactive graphical software tha t have been reported in the literature for implementing and 

facilitating the elicitation processes in some other statistical problems. However, this review 

has been restricted to work that is directly relevant to the elicitation methods proposed in
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this thesis. There is a huge body of research that handles elicitation problems and tech­

niques in general. As noted earlier, psychological concerns and recommendations for efficient 

elicitation techniques will be taken into consideration while developing the elicitation meth­

ods proposed in this thesis. Available elicitation techniques and computer software will feed 

into the methods developed in the next chapters and will help in building the software to 

implement these proposed methods.
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Chapter 3

The piecewise-linear m odel for 

prior elicitation in GLMs
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3.1 Introduction

Generalized linear models (GLMs) constitute a natural generalization of classical linear mod­

els, where the linear predictor part is linked to the mean of the dependent variable through 

some link function. The distribution of the dependent variable is not necessarily assumed to 

be normal. The model is determined by a combination of the link function and the family 

of distributions to which the dependent variable belongs (see McCullagh and Nelder (1989) 

for an introduction to GLMs). Being very common in both frequentist and Bayesian data 

analysis, GLMs have attracted much research.

An im portant task in the Bayesian analysis of GLMs is to specify an informative prior 

distribution for model parameters. Suitable elicitation methods play a key role in this task of 

representing expert knowledge as a prior distribution (see, for example, Bedrick et al. (1996) 

and O’Leary et al  (2009)).

A method of quantifying opinion about a logistic regression model was developed by 

Garthwaite and Al-Awadhi (2006). They mentioned tha t the method is very flexible and can 

be generalized to GLMs with any link function, not just the logistic link. This generalization 

has been introduced by the same authors in an unpublished paper, Garthwaite and Al- 

Awadhi (2011). Their method has been used to quantify the opinions of ecologists (Al-Awadhi 

and Garthwaite (2006)) and medical doctors (Jenkinson (2007); Garthwaite et al. (2008)). 

However, the method makes simplifying assumptions regarding independence between the 

regression coefficients. One purpose of the current thesis is to extend the elicitation method 

so tha t these assumptions are unnecessary. Different methods for this extension are proposed 

in Chapter 4. This will significantly increase the range of situations where the m ethod is 

useful.

The original method for logistic regression was developed and implemented in user-friendly

interactive software. The software was re-written in Java by Jenkinson (2007) who also

extended it to elicit expert opinion about some other GLMs. It has been modified and

extended further by the author of the current thesis.
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The software is interactive, requiring the expert to either type in assessments or plot points 

on. graphs and bar-charts using interactive graphics. An executable stand-alone version of 

the current software is available as a java executable (jar) file and a Windows executable 

file (with .exe extension). The stand-alone versions together with the user manual and the 

source code are freely available as Prior Elicitation Graphical Software for Generalized Linear 

Models (PEGS-GLM) at http://statistics.open.ac.uk/elicitation. The software is aimed to 

be executable on any machine regardless of its operating systems and without need of any 

other software packages.

The current modified version of the software is more flexible in determining the options 

available for the user, especially for data input and results output. Some im portant modifica­

tions involve broadening the scope of available models and the range of the link functions, and 

giving the user many suggestions, help notes and video clips, questions, warning messages and 

directions aimed at making the software more interactive and easy to use for non-statistical 

experts. Useful feedback has also been added.

In this current chapter, the piecewise-linear model of Garthwaite and Al-Awadhi (2006) 

is reviewed, and we describe the elicitation method they propose together with the above 

modifications. The assessment tasks that the expert performs quantify her opinion about 

the regression coefficients as a multivariate normal prior distribution. The largest extension 

to the current version of the software is a new section for assessing expert knowledge about 

correlated covariates. This will be introduced in Chapter 4. Im portant options have been 

added to the method tha t quantify opinion about the extra param eter in GLMs that involve 

gamma and normal distributions. The theoretical derivation and implementation of these 

options are proposed in Chapter 5.
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3.2 The elicitation  m ethod  for piecew ise-linear m odels (G A  

m ethod)

For quantifying expert’s opinion about GLMs, Garthwaite and Al-Awadhi (2011) proposed a 

method to elicit expert opinion about the prior distribution of regression coefficients and its 

hyperparameters. As mentioned before, the method, which will be referred to here as GA, is 

a generalization of the same authors’ piecewise-linear model tha t they used for quantifying 

opinion for logistic regression (Garthwaite and Al-Awadhi (2006)).

In their work, the relationship between each continuous predictor variable and the link 

function (assuming all other variables are held fixed) was modeled as a piecewise-linear func­

tion. Figure 3.1 illustrates a piecewise-linear relationship between the quantity of interest 

Y, and a continuous covariate “Weight” ; the relationship correspondence to a sequence of 

straight lines tha t form a continuous line. The endpoints of the straight lines are refereed to 

as knots.

Hour, you have finished with this continuous covariate (Weight), you m ay press 'Next Covariate' to  proceed

F8o Edit Tools Help

Eliciting M edians of Y fo r v a lu es  of W eight

W eight [Revised median at 1 oO ]

Figure 3.1: A piecewise-linear relationship given by median assessments

If the predictor variable is a categorical covariate, it is referred to as a factor. Its relation­

ship with Y corresponds to a bar chart as in Figure 3.2, where the factor takes four levels:



Very large, Large, Normal and Small.

The aim of the elicitation process is to quantify opinion about the slopes of the straight 

lines (for continuous variables) and the heights of the bars (for factors). In the GA method, a 

multivariate normal distribution was used to represent prior knowledge about the regression 

coefficients. These coefficients were allowed to be dependant if associated with a single 

variable. A detailed discussion of their model is given next.

Now, you fiava finished with this factor (X I). you m ay press Tfoxt covaria te ' to  proceed

Fie Edft Tools Help

Eliciting M edians of Y fo r values o f X1
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Figure 3.2: A bar chart relationship for a factor given by median assessments

3 .2 .1  T h e  p ie ce w ise -lin ea r  m o d e l

Consider a response variable £, with m  continuous covariates R \ , R 2 : - ■ ■ , R m and n  cat­

egorical variables (factors) R m+i , R m+2 , • • • , R m+n- Each variable R{ has 6 (i) +  1 knots, 

ri,Q, riti, • • • , ritS(i), where r* j_ i <  ri}j for j  = 1,2,-** , 8 (i) and i = 1,2, • • • , m  +  n. These 

knots represents the dividing points of the piecewise-linear relation for the continuous vari­

ables, or levels for factors, with r^o taken as the reference point of each continuous covariate 

Ri, i =  1, • • • , m, or the reference level of each factor R{, i — m  +  1, • • • , m  +  n.
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Let r 0 be the overall reference point, where all variables are at their reference values, i.e.

“  (>"1,0 , r2,0 , rm+n,0) • (3.1)

For the response variable £, the expert is asked about its mean values given points on the 

space of the explanatory variables, i.e. about

M(r) = S(CIS = r). (3.2)

where R  =  ( /£ 1; . . .  5 J7Tn+n) / ) a n d  r  is any specific value of R.

Let

Y  = ffKr)] = “ + £=£i + 0 2X 2 +  --- +  0 m+nX n+n, (3.3)

where </(.) is any monotonic increasing link function. If g(.) is monotonic decreasing we 

multiply it by -1, then change the sign of the resulting regression coefficients. We put

2L = (Xi,u X (,2 , X iAi)y ,  i = 1 .2 ,- "  , m  + n,

= A.2, / W ' >  i =  +

The relation between Ri  and X_{, for continuous covariates is that:

n.

(3.4)

(3.5)

X hJ

0 if Ri < n j - i

Ri  -  n j - i  if n j - 1 <  R i <  r itj

dij  if r i j  < R i ,

(3.6)

for i = 1,2, • • • ,m , and j  — 1,2, • • • , 5(i), where

di,j — r i j  r i j - 1. (3.7)

For factors, Xi  j  is defined by:

X i j  —

1 if Ri = r
(3.8)

0 otherwise,

for % =  m +  l ,m  +  2, • • • ,777  +  77, and j  =  1,2,*** , <5(i).

Note that, if Ri — r^o, then X_{ is a zero vector {i =  1, • • • ,777  +  77) .
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The method concentrates on an expert’s opinion about each covariate Ri  separately, one 

at a time, assuming that all other covariates are kept at their reference values. Hence, for 

any specific value r, Yi(r)  is defined as

Yi(r) = g[m(r)],

where

tH{r) = M (rij0, ••• ,  n - i,o, r, ri+i.o, • •• ,

denotes the mean value of £ when Ri  has a value of r, and Rj  = r+o, j  ^  i. 

Then

Yi(r) = a  + {Y.J(_i, i =  1,2, ••• ,m  +  n.

Now, for i =  1, • ■ • , m  + n, j  = 1,' ” , 6 (i), let

Y{j = Yi(r ij ) .

For (3. as in (3.5), if Ri  is a factor and r — r i j , then, in view of (3.8),

Y i j  — ex. -f- P i j ,

hence, for factors, where i =  m  +  1, • • • , m  +  n, j  = 1, • • • , S(i), we have

Pi,j = Y i j  — Y ^q.

For continuous covariates, from (3.6) and (3.7), for i =  1, • • • , m, j  = 1, • • •

Yi,j ~  Y i j - i
Pi,j ~ dhj

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The values of f a j  are the slopes of the piecewise-linear relation in Figure 3.1.

The prior distribution of a  and (3 =  {r' r' . . .  r' )' is assumed to be the follow-
— t—V tL2’ ’ t-m+n

ing multivariate normal distribution,

( \ / (  \
a bo

~  MVNw IKb~J
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The elicitation of the hyperparameters bo, b, <7 0 ,0 , £ 1  and S  is reviewed in the next section. 

The matrix S  is assumed to have a block-diagonal structure, as the vectors (3^,(3'2, • • • >/3m+n> 

are assumed to be independent a priori. We propose three elicitation methods tha t relax this 

assumption in the next chapter.

3.2.2 Eliciting the hyper param eters of the m ultivariate normal prior

The assessments tha t are required for eliciting all the prior hyperparameters are only medians 

and quartiles of Pi(r).  The monotone increasing function g(.)  in (3.9) is then used to transform 

these assessments into medians and quartiles of Yi(r).  Two main properties of the assumed 

normal distribution of Y  are used extensively to elicit the hyperparameters from medians 

and quartiles. Namely, these properties are equating means to medians and getting variances 

from interquartile ranges.

It is well-known that, for normally distributed Y ,

where Q\  and Q3 are the lower and upper quartiles of Y ,  respectively, as 1.349 is the in­

terquartile range of a standard normal distribution.

Using the above approach, the elicitation of each hyperparameter is detailed below.

E liciting 6 0  and 0 0 , 0

Let 7/10,0,5, m o ,o .25  and 7710,0 .7 5  be the median, lower and upper quartiles, respectively, of 

yu(r0). Recall that r 0 is defined in (3.1) as the reference point of all variables, in which case, 

Y  is equal to the constant term  a. The expert assesses 7710,0 .5 , 7710,0 .2 5  and mo,0 .7 5  > which are 

then transformed into the corresponding quartiles of Y , using the monotone increasing link 

function g{.) in (3.3), as

(3.17)

yo,q =  g{m  0 ,9)1 for 9  =  0.25,0.5,0.75.
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So, bo and <to,o are elicited, in view of (3.17), as

bo =  t/0,0.5, (3.19)

(3.20)0 o ,o  =

2
7/0,0.75 — 7/0,0.25

1.349

E liciting b

The expert is asked to assume that her previously assessed value mo,o.5 is the true value of 

the mean of £ at the reference point r^o, i.e. assume th a t /ii(r;,o) =  mo,0 .5 , for each covariate 

% in turn, i =  1,2, ••• ,m  + 71. Given this information, she then assesses the conditional 

median of Pi ( r )  at all other knots of Ri .  These conditional medians are denoted by m ^ j y0 .5 , 

for j  = 1,2, - • • ,5{i).

Hence

m j , 0 .5 =  The Median of [/ii(ri,j)|/ii(ri,0) =  m 0,o.5]- (3.21)

The use of the software to assess these conditional medians is reviewed in detail in Sec­

tion 3.3.3.

From (3.16),

b =  E((3)  =  E ( P \ a  =  bo), (3.22)

but, from (3.1), (3.10), (3.18) and (3.19), we have

b =  E[P\m(r i ,o )  = m 0,0 .5 ]- (3-23)

From the conformaly partitioning in (3.16), each element of b in (3.23) is of the form

bitj  =  = m 0,o.5]- (3-24)

Applying g{.) on both sides of (3.21), in view of (3.9) and (3.12), we get

,0 ) =  mo,0 .5] =  Vi,j, 0 .5 , (3.25)

where

7/i, j, 0.5 =  0 .5 ). (3.26)
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Now, from (3.24) and (3.25), bij can be elicited for factors, in view of (3.14), as

K j ~  Vi,j,0-5 -  2/0,0.5, (3.27)

for i =  m  +  1, • • • , m  +  n, j  =  1, • • • , J(i), and for continuous covariates, in view of (3.15), as

bid = —J’0-5 ~  V' j - 1’0-5 , (3.28)
di,j

for i =  1, • • • , 771, j  =  1, • • • ,5(i).

Eliciting

For any value a* satisfying a* ^  bo, it can be seen, from (3.16) and the theory of multivariate 

normal distribution, that

E{§_\a = â ■) = b + a l (7a l(a•- b 0), (3.29)

from which

[E{§\a = a *) -  6]cr0 ,0 , 0
£ 1  = ----------- j — 7 • (3-30)

a* - b 0

So, g_x can be elicited using assessments of — E((3\a = ck*), or equivalently, the expert is 

asked to assess

77iijj)0.5|a* =  The Median of =  g ' 1^*)] ,  (3-31)

Following the same approach as in (3.27) and (3.28), equation (3.31) implies, for factors, that

bi7j\a* Vi,j,0.5|a* ^  > (3.32)

for % =  771 +  1, • • • , 771 +  7i, j  = 1, • • • , 5(i), while for continuous covariates it implies that

i _  Vi,j,0.5|a* Vi,j- l,0.5|a* / Q Qq\
®i,j\a* i > (.o .o o j

hj

for i = 1, ■ ■ • , 77i, j  = 1, • • • , £(i), where

Vi,j, 0.5|a* 9(V^i j,0 .5 |a*) • (3.34)

Using the interactive software, a * is taken as 2/0 ,0 .7 5 , and the task of assessing 77i ĵ o.5 |y0 0 75 

is detailed in Section 3.3.5.
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E lic itin g  E

For eliciting the variance-covariance matrix E of the multivariate normal prior distribution of 

/?, the method of GA adopts a structured approach tha t recursively elicits conditional lower 

and upper quartiles given incremented sets of the previously assessed median values. The 

aim of using this structural elicitation is to be able to ensure tha t assessments yield a m atrix 

E that is positive-definite, as required for mathematical coherence.

The idea is that assessed conditional quartiles are transformed, under the normality as­

sumption, into sets of conditional variances that determine all elements of E. The positive­

definiteness of E is guaranteed under a very logical condition that is quite simple to recognize 

and which the expert can fulfill during the elicitation process. Specifically, the expert is 

asked to keep reducing her uncertainty as a set of conditional values is increased. Condition­

ing on more information should increase her confidence in her assessed values, especially as 

the conditions say that her previous median assessments were accurate.

In what follows, we review the method of GA for eliciting E, using the same notations 

and equations of Garthwaite and Al-Awadhi (2006). In the next chapter, we propose a 

generalization of the method for the case of correlated vectors of regression coefficients.

Let the conditions that /^(r*,o) =  rao.o.s and 0.5 be denoted by m °0 and

respectively, for i =  1,2, • • • , m  +  n, j  = 1,2, • • • , S(i).

For each covariate R4 , % =  1,2, • • • , m  +  n, the assessment process consists of 5(i) steps. 

At step k, k — 1,2, • • • , 5(i), the expert is asked to assume that conditions m ^ 0, m -l5 • • •, 

m i k - 1 hold. Given this information, she assesses the conditional lower and upper quartiles of 

denoted by 771* ,̂0.25 |77i°0, * ■ • and 771^ , 0.75 |77iJi0, • • • ,m ^ k_ v  respectively, for

j  =  k, k + l , - - -  ,S(i).

The use of the interactive software to obtain the assessments of these conditional quartiles 

is discussed in Section 3.3.6.

For i =  1,2, • • • , m +  n, fc =  1,2, • • ■ , S(i), j  — k, k + 1, • • • , £(z), using (3.17), the assessed
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conditional quartiles are used to elicit the conditional variance:

where y denotes the condition tha t Y^i — 0 .5 , which is equivalent to from (3.10),

(3.12) and(3.26).

For mathematical coherence, conditioning on more values at each further step must reduce 

the value of the conditional variance in (3.35). Consequently, the expert must steadily reduce 

her uncertainty when she moves from one step to another. In view of (3.35), this means that 

the assessment of the interquartile range in step k must be less than tha t in step k — 1 , which 

guarantees that

For i = 1,2, • • • ,m  + n, k =  0,1, • • • , S(i) — 1, let the conditional variance-covariance 

m atrix be defined as

To elicit the full m atrix A^o in the last step and investigate its positive definiteness, 

mathematical induction is used to obtain a positive-definite matrix A j^ -i from A^k th a t has 

the same property.

To achieve this, let

for k =  1 , 2 , • • • , <5(z), where is a scalar, fc is a vector and 4 ^  is a square matrix. 

In particular, the scalar <p̂ k,k in (3.38) is given by

(3.36)

(3.37)

(3.38)

The scalar 4>i,k,k can thus be directly elicited using (3.35).

The vector d)., takes the form: —%,k

(3.40)



From the theory of conditional multivariate normal distributions, and for j  — k + 1 , • • • ,S(i), 

we have

V a r ^ -I^ o , • • • , yf)k) =  V a i ( Y i t j \ y l 0 , • • • , y - ^ )  -  (3-41)

Hence, from (3.36) and (3.41), $i,k,j > j  — k +  1, • • • , £ (« )5  i*1 (3.40) is given by

= {hk,k[y&TiYi j \ y i ^ y i , i r  •' ’Vi,k-1) -  V a r ^ j l ^ o , ^ ! ,  • • • ,2/i>fc)]}2- (3.42)

W hat is left to be elicited in (3.38) is the m atrix $ i fk, which can be computed, using the

conditional multivariate normal theory, as

$i,k =  A  ijk +  ( 3 ,4 S )

Hence, the m atrix A ^ - i  in (3.38) can be obtained from A ^ , for k = 1,2, • • • ,S(i) — 1. 

Finally, A^o is the result of applying the same routine recursively, starting with A ^ j - i

as

Ai,S(i)-i =  Var(Yi,S(i) A > 2/?,i’ • • • ’ V i m - 1)- ( 3>44)

It can be seen, from (3.35) and (3.44), that

Ai,5(i)_i > 0. (3.45)

From (3.38) and (3.43), we can write the determinant of A ^ - i  as

|A i ,fc - l | =  4>i,k,k\$i,k ~

— 0i,fclfc|AiIfc|. (3.46)

Hence, from (3.45) and (3.46), A^o is positive-definite.

Under the independence assumption between the elements of different vectors of regression 

coefficients, the m atrix A can be defined as
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A

D ^ A i . o ^ r 1)' O 

O

O

O

\

I O D - 1Am)0(D -1)' O : :

• • O Ajn4.ito O

• : : o •. o
O • • • • • • • • • O Am+n,Q

where, for i = 1,2, • • • , m, each Di is a lower triangular matrix given by

^ , i  0 0 ••• 0 ^
di, l dit 2 0 • • • 0

di, i <̂ 2̂ c?i,3 0 :

(3.47)

Di = (3.48)

ydi,i d{, 2 d{,3 • • • d{,$^ J

W ith d{,j as defined in (3.7), di,j 0, and hence D r 1 exists. Since, for continuous covariates, 

from (3.15), we have

(YiA, yj,2, Yi m )' = (a, ■■■, aY +  DiPi, (3.49)

then

V ar(C i^ .|a) =  Var((yi l j  yj2i YiMi)Y\a ) = A>,o, for * =  1,2,■ ■ ■ ,m . (3.50)

vm<*) =

Hence,

D ^ 1 A i ^ D ^ Y , for i =  1,2, • • • , m,

A^o, for i =  m +  1 ,m  +  2, • • • , m  + n.

In view of (3.16), the matrix S, as the unconditional variance of (3, can be given by

£  =  A +  f l j t r ^ i .

(3.51)

(3.52)

The full variance-covariance matrix of (q  ̂ p')'  is thus positive-definite, from (3.16), (3.47)
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and (3.52), since

— ^o,o|S £i0-O)o£il — °o,o|A|. (3.53)
a i S

The needed assessment tasks in order to elicit all the hyperparameters bo, b, <ro,o, Q_\ and S, 

are given in detail with the software description in Section 3.3.

3.2.3 Com puting values for the suggested assessm ents

For larger elicitation problems, with many covariates or large numbers of knots per covariate, 

the number of required assessments increases and may represent an overload on the expert. To 

reduce this number of assessed quantities and help the expert to go through the elicitation 

process more easily, the method of GA suggests some values of assessments tha t can be 

presented by the software to the expert, as a guide for her possible assessed conditional 

medians and quartiles.

The expert may accept these suggestions if she finds them a reasonable representation of 

her opinion. Or, instead, she may change or modify them  to the best of her knowledge and 

experience. The method of GA chooses values to suggest by extrapolation from the previously 

assessed medians and quartiles, assuming some patterns of dependence or independence at 

different knots of each covariate. The derivations of these suggestions are reviewed below.

Suggesting conditional m edians

Assuming independence between a  and /?, the conditional medians ra^o.sla*  in (3.31) tha t 

are required for eliciting a 1} can be suggested as follows.

Conditioning on a  =  o*, and under the independence assumption, we have

Taking a* =  2/0 ,0 .7 5 > and equating the right hand sides of (3.27), (3.28) to those of (3.32), 

(3.33), respectively, equation (3.54) implies that

— bi j , Vi, j. (3.54)

{Vi , j ,0.512/0,0.75) — 2/0,0.75 =  2/i,j , 0.5 “  2/0,0.5
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for % — m  +  1, • • • , m  +  n, j  = 1,2, • • • , 6 (i), and

{Vi , j ,0 . 5 12/0,0.75) “  —1,0 .512/0,0.75) =  Vi, j ,0.5 -  V i , j —1,0.5 (3.56)

for i = 1,2, • • • , m, j  = 1,2, • • • , 8 (i).

Now, from both (3.55) and (3.56), we have

( Vi j',0.512/0,0.75) -  2/z,j,0.5 =  2/ 0 ,0.75 -  2/0,0 .5 , (3.57)

for i =  1,2, • • • , m +  n, j  = 1,2, • • • , 5(i).

Hence, from (3.34), (3.57) and the independence assumption, a reasonable suggestion denoted 

by 771̂ ,0.512/0,0.75 for 77 ,̂0.512/0,0.75 is given by

for i =  1, 2, • • • , m  +  n, j  = 1, 2, • • • , £(2).

All the components in the right hand side of (3.58) can be computed from the previous 

assessments as in (3.18) and (3.26). Of course, accepting these suggested medians by the 

expert will lead to a zero vector as a value of a^ .

Suggesting conditional quartiles for factors

The simple idea here is to assume that the expert’s opinion at one factor level is independent 

of her opinion at other levels. These lead to conditional quartiles that are unchanged as the 

number of conditions increases.

In particular, let rhij^0 .2 5 |t77°0 5 "  ' > m i,k an(f ™'i,j,o.75\m i,o>' '  ’ > m i,k b e the suggested values 

of the conditional lower and upper quartiles, 777^ ,̂0.25 • * * > m ik  anh m /j,o.75|77i®o> • • • , 77i°fc,

respectively, as required in (3.35), for i = m  +  I , -- - , m  +  n, k = 1,2, - • • ,S(i) — 1 and 

j  =  fc +  l,fc +  2, ••• ,S(i).

Under the independence assumption, the suggested values are

777i,j,0 .5 12/0,0.75 =  g  1 ( 2/ 0 ,0.75 -  2/ 0 ,0.5 +  Vi,3,0 .5 ) , (3.58)

(3.59)
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and

(3.60)

for i =  m  +  1, • • • , m  +  n, k =  1,2, • • • , J(i) — 1 and j  = k +  1, k +  2, • • • , 5(i).

Again, the expert can change any of these suggestions should she wish.

Suggesting conditional quartiles for continuous covariates

In offering suggestions for the conditional quartiles, ' '  ’ ’m i,k an<̂  m *J,o.75lmi,o>

• • • as required in (3.35), the method of GA distinguishes between two cases, the case

where k — 0, and the case where k > 0.

In the case of k =  0, the assumption is tha t the relation between Y  and Ri  is approximately 

linear, instead of being piecewise-linear. Hence, we may imagine three lines emerging from 

2/o,o.5 at the reference knot r^o- The middle line connects all the medians while the

lower (upper) line connects all the lower (upper) quartiles # (^ , .7,0 .2 5 I ^ q )  (fl,(flitj,o.75lrrii>o))> 

at all other knots, r^j,  for j  =  1 , 2 , • • • , £(z).

The linearity assumption ensures that the slopes of each of these three lines are equal at 

all knots r i j ,  j  — 1, 2 , • • • , <5(i). This implies that, for any value I — 1, 2  • • • , S(i), I 7  ̂j ,

Vi,j,0.5 -  g(w»ij,0.25|n»°o) _  3/i,i,0.5 -  g(ra»,l,0.25|ra°o) (3.61)

and

0(rat,j,o.75|ra?>o) -  Vi,j,0.5 _  9(m,i,o.75\ml0) - ^ , 0,5 (3.62)

Once the expert has assessed one conditional quartile, 777^ ,0.25 l ^ o  or m i,l,0.751mi,o> equation

(3.61) or (3.62) can be used to suggest conditional quartiles as

(3.63)

or

7 7 ^ ,0 .7 5  |77l?i0 =  5 M  2/i j , 0.5 ~  [Vi,l, 0.5 ~  0 .751™

respectively, for j  — 1,2, • • • , $(i), j  ^  I.
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Suggestions for all conditional lower (upper) quartiles are extrapolated from only one 

assessed value of the conditional lower (upper) quartile. This helps a lot in saving the expert’s 

time and effort during the elicitation process.

For the remaining assessment tasks, where k = 1,2, •• • ,S(i) — 1, a new assumption is 

imposed to obtain the suggested quartiles 771* ,̂0 .2 5 \m lo, m i,k an<̂  ’ "  m i,k-

The conditional correlation coefficient between Yij  and for j  =  k +  1, k +  2, • • • , 5(i), is 

assumed to be of the form

Corr (YtJ , Yi<k\yl0, ■■■, y ^ )  =  (3.65)

From which, using theory of bivariate normal distributions, the conditional variance is given 

by

V ar(Y y|2/?,o, • • • , & _ „ ! & )  =  (1 -  • ■ , 3 / ^ ) , '  (3.66)

for j  = k +  1, fc +  2, • • • , 5(i).

Once the expert has assessed both a lower and an upper conditional quartiles at any one 

knot, say r^fc+i, the value of V a r ^ ^ + i l^ o ,  • • • ^y^k-vVlk)  can be elicited from equation 

(3.35). Since V a r^ ^ + il^ Q , • • • ,y®k-i) bas already been elicited in step k — 1, then the 

value of pitk- 1 can be computed from (3.66) for j  = k -f-1.

Substituting with p i^ - i  again in (3.66), and using the already elicited values of Var(Y^|7/?Q, 

‘ ’ * »Vi,k-i)> ôr j  =  k +  2, • • ■ , S(i), the value of V&r(Yitj \y?0, • • • , i »2/?,fc) can be obtained

for all j  = k +  2, • • • , 5(i).

After the value of Yar(Yi j \y f0, • • • , y®k) has been elicited, we can solve the following two

equations for mj,0.25^ 0 , • • ■ , 2/°fc and Wj,0.75^ 0 , • • • , 2/°fc,
2

Var(y)j |yf0, ■ ■ ■ , y f k) ~

and

1.349
(3.67)

(2/ij,o.75l2/z9,o, • • • , y l k) ~  yi,j,0.5 _  P ( ^ , j ,0,75|m?0, • • • , m ? ^ )  -  yiJt0,5 

Vi,j,0.5 -  (yi,j,o.25\ylo, • • • ,  ylk) yij,0.5 -  g(mitj,o.25\mlo, • • • ,  ^ 9 fc_ x) '
(3.68)

The use of equation (3.68) aims to ensures tha t asymmetry of the suggested quartiles around

the median at step k is the same as any asymmetry of the assessed quartiles at step k — 1.
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Finally, in view of (3.26), the suggested quartiles are given by

(3.69)

and

(3.70)

for « =  1,2, • • • , m, A: =  1,2, • • • ,5(i) — 1 and j  =  k +  1, k  -f 2, • • • ,S(i).

3.3 A ssessm ent tasks and software description

The assessment procedure divides naturally into five stages, which are described in turn. A 

description of the method and theory for using the assessments to estimate the hyperparam­

eters of the prior distribution was reviewed in Section 3.2.2.

3 .3 .1  D e fin in g  th e  m o d e l

The modified version of the software, PEGS-GLM, offers the expert different options for the 

model to be fitted. The choices available are ordinary linear regression, logistic regression, 

Poisson regression and any other user defined model. Ordinary linear regression assumes 

a normal distribution for the response variable with the identity link function. For the 

logistic regression the assumed distribution is Bernoulli with the logit link function. Poisson 

regression assumes a Poisson distribution with the logarithm link function.

The expert can choose to define any other model, in which case she will be asked to 

give a distribution and a link function. Available distributions are the normal, Poisson, 

binomial, gamma, inverse normal (inverse Gaussian), negative binomial, Bernoulli, geometric 

and exponential. The user is also asked for some param eters of the selected distribution 

where appropriate. However, the expert has the option to elicit the extra param eters of the 

normal and gamma distributions. Novel methods for eliciting these parameters are proposed 

in Chapter 5.
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Available link functions are the canonical, identity, logarithm, logit, reciprocal, square 

root, probit, log-log, complementary log-log, power, log ratio and user defined link function. 

For a detailed definition of these link functions see McCullagh and Nelder (1989). For the 

power link function the software expects the exponent of the power function to be entered by 

the expert, a value of (-2) is suggested as a default. On choosing the distribution the software

suggests the suitable canonical link function so as to help the expert (see Figure 3.3).

  " ~~~
Hunger tfcorariates in fteniGde£ j?

Chocsatte regression modefc {Qtfisrmotel 31

Gnosettedstiftu&xc {Binomial ~  33 Dist. 2nd parameter. |l

anosetteinkfunc&ixc |otfierlinf; function 3J ErpMentva.’ue: |-2

Write your function here: y=|log(x} Help? |

Writs your irwefse function here: x=jesp&)

<Back { fieri > j Help? |

Figure 3.3: The dialogue box for defining the model

An im portant modification to the software (made by the author) is tha t it offers a large 

range of GLM’s. It also lets the expert write her own link function and its inverse. The 

programm can parse both formulas and check their validity as mathematical expressions.

Moreover, the program can help by checking whether the functions are valid inverses of each

other.

3.3.2 Defining the response variable and covariates

The expert determines the dependant variable with its minimum and maximum values in 

a dialogue box. The modified version of the software suggests the maximum and minimum 

values of the response variable whenever possible. The expert may still change them , but, in 

the light of the chosen model with the specified link function, invalid values are not accepted, 

and the expert is shown a warning message (For example, the range for a binomial proportion 

must not extend outside the interval (0,1)).

A set of explanatory variables (covariates) are chosen by the expert. Each covariate is
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treated as either a continuous random variable or a factor. Continuous covariates are specified 

with their minimum and maximum, factors are specified with their levels. For each continuous 

covariate, knots are chosen by the expert or suggested by the software. A reference point is 

chosen for each covariate, while the origin is the setting for which every covariate is at its 

reference point. After determining the number, names and types (continuous covariate or 

categorical factor) of the variables, the expert has only to give the maximum and minimum 

for each of her continuous covariates together with the value of its reference knot, and the 

modified software then suggests a suitable number of knots and the position of the reference 

knot relative to the other knots. The software can then divide the range and gives the value 

of each knot. This process is done automatically to reduce the burden of data entry, but, 

again, the expert can change any of these.

The fractional part of each single numeric value is always being rounded to four decimal 

places, so as to avoid large decimal numbers which are not easily readable nor suitable for 

graph axis. If higher precision is to be used, measurement units can be modified to use data 

values of no more than four decimal places. For categorical factors, the expert gives the value 

of each level. In some cases, when the factor levels are ordinal data, for example, the expert 

may wish to keep the order of the factor levels, while still being able to select any level as 

the reference level. The author’s modification of the software gives an option to select the 

reference level of each factor without restricting it to be the first knot (see Figure 3.2).

Using a dialogue box, the median, lower and upper quartiles of l^i{r0) a t the origin are 

assessed, namely, rao,o.2 5 > ^ 0 ,0.5 and rao,o.7 5 , as denoted in Section 3.2.2. These values must 

be inside the previously specified range of the response variable; if not, the software warns 

the expert and asks her to resolve this conflict. In the expert’s opinion, the true value of 

/iji(r0) is equally likely to be bigger or smaller than  the assessed median. Together with the 

median, these quartiles should divide the range into four equally likely intervals. The expert 

is encouraged to modify her median and quartile assessments until they divide the range 

into four intervals tha t each seem equally likely to her. These assessed values are used as in
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equations (3.18), (3.19) and (3.20), in Section 3.2.2, to estimate &o and cro.o-

3.3.3 Initial m edians assessm ents

In the remainder of the elicitation procedure, the expert is separately questioned about

each covariate in turn. She is asked to assume the other covariates are at their reference

values/levels and forms a piecewise-linear graph or bar chart to represent her opinion about 

each separate covariate.

The previous stage elicited the expert’s median estimate, rao,o.5 , of ££i(r0) at the origin 

r = r 0. The software plots this value on the reference vertical line and the expert is told 

to treat it as being correct. The expert then plots her median estimates, 5 , of /^(r^-), 

as given in equation (3.21), to form the remainder of the graph. She does this by using

the computer mouse to ‘click’ points on the vertical lines. Straight lines are drawn by the

computer between the ‘clicked’ points, which the expert can change until she feels the graph 

corresponds to her opinions.

As an illustration, Figure 3.1 shows a software graph for the variable “Weight” . The 

horizontal axis gives values for the variable and the vertical axis gives values of Y. Thus the 

graph plots the effect on Y as the value of “Weight” varies. The experts is told that, if the 

graph is fairly flat, then the variable has less influence on Y than if the graph is more curved. 

The axes and vertical lines are drawn by the software.

For factors, bar charts are formed to represent the expert’s opinion. The value of Y has 

been elicited earlier for the reference level and this gives the height of the reference bar. The 

expert is told to assume that this bar is correct and to judge the appropriate heights for 

other bars relative to it. These heights give the value of Y for each level when the other 

covariates are at their reference values/levels. The software draws thin vertical lines for each 

level and the expert specifies the height of a bar by clicking on the line with the mouse. This 

is illustrated in Figure 3.2 where all bars have been specified.

The expert could change an assessment by re-clicking on a line. These median assessments,
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m i,j,0.5) for the continuous covariates and factors yield estimates of the hyperparameter b, the 

mean of the regression coefficient vector (3. Theoretical derivation of this estimation is given 

in detail in Section 3.2.2, equations (3.26), (3.27) and (3.28).

3.3.4 The feedback stage

It is important to help the expert check that her assessments have resulted in a prior distri­

bution that is a reasonable representation of her opinion. This is done through a feedback 

stage, in which the expert is informed of some other measurements that are inferred from her 

assessments. She can review and revise her original assessments, in the light of this feedback, 

if necessary. The current elicitation method has quantified the relationship between the re­

sponse variable and each covariate in turn, while assuming that all other covariates are at 

their reference points. Hence, it is im portant tha t the expert has feedback tha t shows her 

implied predictions of the response variable when all covariates are simultaneously changed 

from their reference points.

The software computes the values of the response variable at some suggested design points 

and presents these values to the expert to check tha t they are reasonable representation of her 

opinion about the response variable at each suggested design point. Figure 3.4 illustrates a 

feedback screen, in which the software suggests 6 design points, each of which is a combination 

of the values and levels of all covariates. Combinations 1 and 4 are the covariate values that 

gives the minimum and maximum response values, respectively. Combinations 2 and 3 consist 

of the values tha t divide each covariate range into one-third and two-thirds, respectively. 

Minimum and maximum values of each covariate are suggested in combinations 5 and 6, 

respectively. The expert is asked to specify other design points of interest and to revise any 

design points offered by the computer tha t are unrealistic combinations of covariates.
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Figure 3.4: The feedback screen

The expert is asked to check th a t the row of “Graph values of Y ”, as given in Figure 3.4, is 

an acceptable representation of her opinion at each design point. These values are predicted 

from the graphs of medians tha t were assessed by the expert in Section 3.3.3. The values 

tha t are outside the range of the response variable, which was specified at the s ta rt of the 

elicitation process, are flagged in red. The expert can change the unacceptable values by 

varying the “Overall scale factor” until the row of the “Scaled values of Y n , in Figure 3.4, 

represents her opinion reasonably well in terms of the predicted values a t each design point. 

The scaled values of Y  are computed by multiplying all regression coefficients, except the 

constant term, by the selected value of the overall scale factor.

The expert may choose to review and revise the scaled median assessments again as in 

Section 3.3.3. Then she will be shown an updated feedback screen. The process will continue 

until the expert is happy with the graph values of Y  as presented in the feedback.

3.3.5 Conditional m edians assessm ents

During this stage the expert is asked to assess her conditional medians, 772^ , 0 .5 17720,0.755 f°r

each covariate in turn, i =  1,2, • • • ,772 +  72. This is done by changing the conditioning value

at the reference point from the median, 7720,0 .55  to the upper quartile, 7720,0 .7 5 - See Figure 3.5
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in which median assessments made in the previous stage axe given together with the upper 

quartile a t the reference point. The expert assumes th a t the true value of Y at the reference 

point is the given upper quartile and she is asked to change the median values at other points 

to assess rriijfi,5\mo,o.75 in the light of this new conditioning value. Conditional medians for 

all values have been assessed by the expert in Figure 3.5.

These assessments are needed to elicit a part of the covariance m atrix A, namely, a 1, 

the covariances between a  and each of the components of /?, see equations (3.32), (3.33) and 

(3.34), in Section 3.2.2. Suggested values of these conditional medians, are

given by the software, assuming tha t a  and /? components are independent, see equation

(3.58) in Section 3.2.3. The expert can change these suggested values if she wishes.

1: .... .'Tia*i
Now, you have finished with this continuous covariate (Weight), you ntay p ress 'Next Covariate' to  proceed

FBe E d t Tools Help

Eliciting Conditional M edians of Y fo r values of W eight

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

>- 0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

43.333310.0 23.0 71.6667 100.0

We'9h* iRevised median at IQ.'ol

Figure 3.5: Conditional median assessments for the continuous covariate “Weight” 

3.3.6 Conditional quartiles assessm ents

The median assessments provide point estimates of the relationship between different covari­

ates and the variable Y. The remaining task is to quantify the expert’s confidence in these 

estimates and their interrelationship, i.e. how accurate she believes the estimates to be and

the correlations between them  for each covariate individually. Correlations between coeffi­
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cients of different covariates are estimated in three different methods proposed in Chapter 4.

In this stage, assessments of conditional lower and upper quartiles, 771^ 0 .2 5 ! 777° o and 

j,o .75 0 ’ respectively, are elicited. Assessing quartiles is a harder task for an expert

than assessing medians, and quite a large number of quartile assessments are required. To 

assist the expert, the software suggests some quartile values by extrapolating from other 

quartile assessments of the expert. The theoretical procedure for getting these suggested 

values, rhijfi,25 \m^0 and as reviewed in Section 3.2.3, was programmed into the

software to effectively help the expert during the current stage. The expert can change these 

assessments and commonly does so but, even then, a starting value to consider seems to make 

the task easier.

For each continuous covariate in turn, the software displays the graph of the medians 

tha t had been assessed earlier, tu ^ o .5 , and then sets of conditional quartile assessments, 

m i,j,o.2 5 |tu°o and 777̂ 0.75 |m?0, are elicited. For this first set of assessments, the condition is 

tha t the value of Y at the reference value/level equals the median assessment, i.e. /^(r^o) =  

7770,0.5-

Now, you have finished with the continuous covariate (Weight) a t  step (1). you may press 'Next step* to proceed'
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Figure 3.6: Quartile assessments for a continuous covariate 

In an interactive graph like Figures 3.6 and 3.7, the expert is asked to give her lower



and upper quartiles for Y at one point on each side of the medians for each value/level of 

the covariate except for the reference value/level. The lines joining quartiles look similar 

to confidence intervals and it is emphasized to the expert tha t there should only be a 50% 

chance tha t the value of Y is between the lines at any point. The expert uses the computer 

mouse to make assessments or change values suggested by the software.

• You a ssessed  your lower quartile a t  (Very large) to  be • (a.476). Please complete for o ther points

Very large L a r g e

I Lower Quartile at Q.o]

Figure 3.7: Quartile assessments for a factor

For the second set of conditional assessments, the expert is asked to assume th a t the me­

dian estimates of Y are correct at both the reference value/level and the nearest points 

on each side of it, i.e. conditions m?0, m ^ ,  •••, in Section 3.2.2. The expert

gives lower and upper quartiles at another point, r^k+i, and the software suggests quar­

tiles, • • • ,m -fe and miJ;o.7 5 |m °0,m °i, • • • , for the remaining points,

j  — fc + 2, • • • , <5(z). In Figure 3.8 lower quartiles have been assessed while upper quartiles are 

to be assessed. The expert modifies quartile values so as to represent her opinion, subject 

to the restriction th a t the current values must be within the previous set of quartile assess­

ments, m i o , m ^ i ,  • • • ,m°i k_ x and • • • , 7 1 ^ ^ .  The idea is th a t as

conditions increase, uncertainty should reduce. As detailed in Section 3.2.2, this condition



guarantees tha t the covariance m atrix of correlation coefficients is positive definite.

Figure 3.8 illustrates the graph formed at th a t stage. The two red lines (the outer lines) 

represent the previous set of quartile assessments, the second highest (black) line gives the 

median assessments, and the second lowest (blue) line joins the new lower quartile assess­

ments. The black line joining the median at the right two bold points represents the condition 

tha t these medians should be treated as being correct. In assessing quartiles, the expert is 

told to consider the points to which she thinks the blue line may reasonably extend.

You assessed  your lower quarti'e a t (190.0) tu b a  (0.306). ptease complete for o ther points

mmrnammm
H e  Edit Tools Help

Eliciting Q uartiles of Y fo r values of H eight

[Lower Quartile at 19Q!o|Heigh!

Figure 3.8: Assessing quartiles conditioning on two fixed points

Conditional assessments are also needed for factors. The software displays the bar chart 

th a t was formed during the assessment of medians. Conditional on the value of the bar a t the 

reference level being correct, i.e. on m- 0, the expert assesses a lower and an upper quartile, 

0.25 and 77̂ ^ 0 .7 5 I ^ q ,  respectively, for other factor levels.

For each further set of conditional assessments, for both continuous covariates and factors, 

the expert is asked to assume that a further median given by another value/level was correct 

and to give her opinion about quartiles for the remaining values/levels. This is continued 

until the condition includes all but one of the values/levels at one side or one a t bo th  sides,



when the expert gives her opinion about just the last one or two values/levels (see Figure 3.9).

H i a t m s  tb s  L a«  s te p  of thK  factor, P lease P ress "Hex* Covrartore’ hi the. Current Menu of Sectfnn Three
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Figure 3.9: Assessing conditional quartiles for the last level of a factor

As in other parts of the elicitation procedure, the expert uses the mouse to make assess­

ments. Figure 3.9 illustrates the bar chart when conditioning values are specified (indicated 

by the solid squares); quartiles for the last level are marked with short horizontal blue lines 

(the inner two lines), while the highest and lowest (red) lines represent the previous quartiles 

conditioning on fewer medians. Again, current conditional quartiles are not allowed to lay 

outside these red lines. The conditional quartile assessments, 771^ 0.25 ' ' '  j m ik  and

yield estimates of the variance, E, of the hyperparameter /?, see

Section 3.2.2.

The conditional assessments complete the elicitation procedure for the case of independent 

coefficients as required in Section 3.2.2.

3.4 C oncluding com m ents

The piecewise-linear elicitation method for logistic regression introduced by Garthwaite and 

Al-Awadhi (2006), as reviewed in this chapter, is widely applicable for GLMs with any



monotonic increasing link function. The method only requires conditional and unconditional 

medians and quartiles to be assessed from the expert, these assessment tasks are easy to 

perform using the bisection method. The number of assessed quantities is sufficient to elicit 

a mean vector and a positive-definite variance-covariance m atrix for a multivariate normal 

prior distribution of the regression parameters of any GLM. The available modified software 

has increased the applicability of the method and made its implementation easier for the 

expert. However, the independence assumption between different regression coefficients that 

is imposed by the method is sometimes unrealistic and need to be relaxed. Extended methods 

tha t relax this assumption are proposed in the next chapter.

82



Chapter 4

Eliciting a covariance m atrix for 

dependant coefficients in GLMs
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4.1 Introduction

For quantifying expert’s opinion about generalized linear models (GLM), Garthwaite and 

Al-Awadhi (2011) proposed a method of eliciting opinion about the prior distribution of the 

regression coefficients. This method, which will be referred to here as GA, is a generalization 

of the same authors’ piece wise-linear model tha t they used for quantifying opinion for logistic 

regression (Garthwaite and Al-Awadhi (2006)). A detailed description of their method has 

been given in the previous chapter.

In their work, the relationship between each continuous predictor variable and the depen­

dant variable (assuming all other variables are held fixed) was modeled as a piecewise-linear 

function. They used a multivariate normal distribution to represent prior knowledge about 

the regression coefficients. These coefficients were allowed to be dependant if they were asso­

ciated with a single variable. However, they assumed that there was no interaction between 

any variables, in the sense tha t regression coefficients were a priori independent if associated 

with different variables.

Our aim in this chapter is to relax the independence assumption between coefficients of 

different variables. In fact, in many practical situations, it may be thought tha t regression 

coefficients of different variables should be related in the prior distribution, if the prior dis­

tribution is to give a reasonable representation of the expert’s opinion. The expert may be 

asked to state which variables this applies to. We propose three different elicitation methods 

that are implemented in interactive graphical software. The software is freely available as 

PEGS-GLM (Correlated Coefficients) at http://statistics.open.ac.uk/elicitation.

In the first method, after assessing additional conditional quartiles, GA’s method of es­

timating the variance-covariance matrix is generalized and used to estimate the variance- 

covariance m atrix in generalized linear models where pairs of correlated vectors of coef­

ficients are not necessarily independent in the prior distribution. The second m ethod is 

designed to require a smaller number of assessments. Its generalization to the case of var­

ious vectors of correlated coefficients is straightforward, where the required conditions for
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positive-definiteness can be easily investigated. A third flexible method is proposed in which 

the expert assesses the relative correlation structure for all pairs of vectors, then chooses one 

of the other two methods to specify the coefficient for the highest correlated vectors. This 

method automatically fulfil the requirement that the whole variance-covariance matrix must 

be positive-definite. The three proposed methods are detailed below.

4.2 A  proposed m ethod for eliciting th e  variance-covariance 

m atrix of a pair o f correlated vectors of coefficients

In this section, we propose an elicitation method that generalizes the method of GA to 

handle correlated coefficients in GLMs. We start by generalizing the equations given in 

the previous chapter to make them applicable to the case of correlated coefficients. The 

underlying mathematical framework is given in Section 4.2.1. The equations given there show 

how the required conditional assessments are mathematically treated to elicit the variance- 

covariance matrix. Our approach to assess these conditional quartiles from the expert using 

interactive software is detailed in Section 4.2.2.

4.2.1 N otations and theoretical framework

Consider the piecewise-linear GLM of GA, with m  continuous covariates R i,  1?2, • • • , Rm and 

n  categorical variables (factors) Rm+h Rm+2 , • • * >-Rm+n- The model has been defined in 

Chapter 3, equations (3.1) to (3.15).

Recall that the prior distribution of a  and (3 = ( r ' r ' . . .  R1 )'  is assumed to be
— l_1 ’ £12’ ’ !—m + n

a multivariate normal distribution

The elicitation of the hyperparameters &o> k, cr0)o, g_i and E has been reviewed in Section 3.2.2.

\
a

(4.1)~M V N
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Equation (3.52) states tha t E =  A +  (Li O'qq(t!i , where A has been assumed to have the
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block-diagonal structure
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where, for i = 1,2, • • • , m, each Di is a lower triangular matrix given by

^dki 0 0 • • •  0 ^

dn di 2 0 • • • 0

dii di2 diz 0 :

0

\d i i  di2 diz • • • dis(i)

Renee, for continuous covariates

V

Di =

(4.2)

(4.3)

and

V a r ( D i /? . |o ! )  =  V a x ( ( y .>1> y . >2j . . .  , yi>5(i))V) =  A.o, for i = 1,2, ■ • • ,m ,

where

Yi,j = 9[K(rifi, ••• ,  r i - 1)0, r*j, ri+i.o, ••• ,  Tm+n.o)7)]-

As required, V is a continuous piecewise-linear function of the variable Ri, if all other 

variables are kept at their reference values. Hence,

V a r ( / ? . |a )  =  < (4.4)
Di 1Ai)0(Di 1)/, for i = 1,2, ,m ,

A ito, for 2  =  m  4 - 1 ,  m  +  2 , • • • , m  +  n .

Formulae for A^o are given in GA as reviewed in the previous chapter, see equations (3.37) 

to (3.44).
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Instead of assuming the block-diagonal structure given by (4.2), we will conformally par­

tition A as

S l.l ^1,2 • ’ • E i , m + n

A =
^2,1 S 2)2 S 2)m + n

(4.5)

where

y ^ m + n , !  ^ r o + n ,2  ' * ' ^ m + n , m + n  J

£'i,i =  Var(/+|a:), for z =  1,2, • • • , m  +  n, (4.6)

and the submatrices £ S)* are not necessarily zero matrices (s =  1 ,2, • • • , m  +  n, t  =  1 ,2, • • • , 

m  +  n  and s ^  t). We will estimate the S S)t matrices in (4.5) by generalizing the method of 

GA.

Assume that the expert believes tha t (3 and (3t are correlated. For s < t, we must 

estimate the upper diagonal covariance submatrix VSyt of V , where,

V  = Var[(/3' p.)'\a} = (4.7)

Vt,t J

As a variance-covariance matrix is symmetric, VttS = V'}t.

The correlation relationships are handled one pair at a time. Suppose we are currently 

interested only in the pair (3 , (3 , and tha t these are correlated in the prior distribution. 

(The same procedure can be followed for each pair tha t is correlated.)

For s = 1,2, • • • , m  +  n, t = 1,2, • • • , m  +  n, and s < t, let Sst = S(s) +  S(t), and for 

k -  0 ,1, • • • , S s t -  1, put

V a r ( y s ^ + i ,  • • • , Y s ^ s ( s ) i  ^ , i  j ’ ’ ’ > 1 ^ 5 ,0 ’ ’ V s y k ) ’

for 0 < k < 5(s) — 1. 

Vax(yM._J(s)+1, • ■ • , Yt m \y°S)Q, • • • , y°s>6{s), y°0, • • • , ^°fc_<5(s))’

for 5(s) <  k < 5st — 1.
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Specifying conditional values j/? •, is equivalent to conditioning on the corresponding assessed 

medians as detailed in the previous chapter.

We start with

A-st,5st —1 V ^ ( Y t , 5 ( t ) l?/s,0> »^ s ,5 ( s ) ’ Vt,0i  > y t , 5 ( t ) —l ) j  (^ - 8 )

which can be computed from the conditional quartile assessments of the covariate Rt at 

£(£). The conditioning specifies the values of Y  a t all previous knots of Rt and all knots of 

R s as well. Given these conditions, the expert assesses conditional quartiles m tjs(t),0.25 and 

m t,S(t),0 .7 5 - The method of assessing these quartiles is detailed in Section 4.2.2. The formula 

for computing the variance ensures tha t A g t^ t - i  >  0, since

A * t ,6 a t - 1 ~  [ 9 ( m t ,5 ( t) ,0.75 I ^ q ,  • • • 0> ' * * > m t , 5 ( t ) - l )

~  9{mt,6(t),o.25\m%, • • • ,m°sAs), m l Q, • • • ,m j>*(t)_1)/1.349]2. (4.9)

We put

A-st ,k—1
$ s t , k ,k  0—st,k (4.10)

\  ^ s t ,k  ^ s t , k  J
for k =  1,2, • • • ,Sst, where <pst,k,k is a scalar, <fist is a vector and $ st,k is a square matrix. In 

particular, the scalar <f>st,k,k in (4-10) is given by:

Var(Yajfc|y°0, • • • for 1 <  k < 5(s),

<i>st,k,h = 1 Var(Kti*_iW|2/°0, ■ • • , i y l 0t • ■ • ,

for <5(s) +  1 < k < 5st. 

Recall from the previous chapter that, for j  = k +  1, • • • , 5(i),

Vai(Ylj\ylu, ■ ■ ■ , ] / ( , . )  = Varfy jlt^o , • • • ,y'ik-l) ~  <P7,k,k ĥ , j <

(4.11)

(4.12)

as a result of the theory about conditional multivariate normal distributions. Equation (4.12) 

can be generalized for the case where there are two correlated vectors of coefficients. Then, 

the vector (f)st in (4.10) takes the form:

s t ,k  ^4>s t , k , k + 1) ' ’ ’ 5 $ s t ,k ,S st ̂  ’



where

[0 «t,fc,fc{Vax(y^^|2/Oo, - - - “  Var(YS|j| ^ )0,--- ,y ° fc)}]2 ,

for 1 < k < S(s),

j  = k + 1 , " ’ , S(s). 

[05i>fc>fc{Var(YtJ_J(a)|y°o, • • • , y j ^ )

-V ar(Y t|i_*(a)|y°0, • • • ,y ;>fc)}]5, 

fistfij =  < for 1 < A; <  <5(s), (4-13)

j  -  5(s) +  1, • • • ,5st.

y >st,k,kV^&T0^tj-S(s)\y$,Oi > 2 / s , 5 ( s ) ’ 2 /* ,0»  ’ ^ ? , f c - 5 ( s ) - l )

-V aj(Y t>J-_J(a)|y°0,--- ,y ° 5(s),y?i0, • • • ,2/t°>fc_5(a))}]^  

for £(s) +  1 <  k < 5st, 

j  — k T  1, • • • , Sst.

The main constraint needed here is tha t conditioning on more values at each further step must 

reduce the value of a conditional variance. The expert must therefore reduce her uncertainty 

as the elicitation process progresses. It means tha t her assessments of each interquartile range 

must steadily decrease. This will ensure that, for i = 1,2, • • • , m  +  n, j  > k, 1 <  k < 5st,

Var(Yij|j/°0, ■ ■ • ,y°k- 1) > Var(Y;j|2/?0, • • • (4.14)

Conditional variances in (4.11) and (4.13) can be written in terms of the assessed conditional

quartiles as

Var(YSJ-|y°0,- - . ,y£>jfc) =
g{msd,o.75\m0S)o, • • • , m° fc) -  g(m sJ)o.25|m°0, • • • , m° fc)

1.349

for 0 < k < S(s), j  = k +  1, • • • , 6(s), (4.15)

Var(YtJ-|y°0,--- ,y°s,k) = g{mt,j,o.75\m l0, • • • , m °  fc) -  y  ( 7 ^ 0 . 2 5  | t o ° 0 , • • • , m °  fc)

1.349

for 0 <  k < S(s), j  = 1, ■ ■ • , 5(t), 
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V a x ( y ^ | y ° 0 , ■ • • , y ° 5 ( s ) , y t0| 0 , • • • , y ° fc)  =  { 9 ( r n t j , o . 7 5 \ m % ,  ■ • • , rn°a A a ) , r r ^ tQ, • • •

- ^ ( m t j >o.25k°o»-”  ^ ? ,fc ) /L349]2>

for 1 <  k < 5(t), j  =  1, • • • , S(t). (4.17)

W hat is left to be estimated in (4.10) is the matrix <&sttk, which can be computed, using the 

conditional multivariate normal theory, as

$ s t , k  — K t , k  +  ^ s t ^ s t X k ^ s t i k (4.18)

Hence, the m atrix in (4.10) can be obtained from A st}k, for k — 1,2, • • • , Sst — 1.

Finally, Astyo is the result of applying the same routine recursively, starting with Asttsat- i  as 

in (4.8).

If A ^o is conformally partitioned as ■

Ast,o —

.  .  \AS)S AS)t
(4.19)

^a^)S A tj  j

then its submatrices can be used to obtain the required conformally partitioned m atrix in 

(4.7), as follows. Take

V  =

( \ 
Vs,s Vs,t

\ K t  V t t )

where Vs,s is the variance of given a. Clearly, VStS — S SiS of equation (4.5), also Vs,s = ASjS 

of equation (4.19). Hence, from (4.2),

Va,a =
D s 1A St0{Ds 1y, for s =  1 ,2 ,-•• ,m ,

AS)o, for s = m  +  1, m  +  2, • • • , m  +  n.

90



The submatrix Vsj  is the covariance of (3g and ]3 given a , of the form

D s 1ASit(Dt 1y,  for s =  1 ,2,-•• ,m ,

for s = 1,2, • • • ,m ,

t =  m +  l ,m  +  2, ••• , m  +  n

for s = m  +  1, m  +  2, • • • , m  4- n.

t = m  +  1, m +  2, • • • ,m  +  n.

Noting tha t At,t in (4.19) is the conditional variance of ^  given /?g and a , another version 

conditional only on a  can be taken as

W ith this construction, in Section 4.2.3 below, the m atrix V  is shown to be positive-definite.

4.2.2 A ssessm ent tasks and software description

The modified elicitation software PEGS-GLM (Correlated Coefficients), th a t is freely avail­

able at http://statistics.open.ac.uk/elicitation, elicits the expert’s conditional quartiles tha t 

are needed to estimate the covariance m atrix of correlated pair of covariates. The mathe­

matical details have been given in Section 4.2.1. The expert is asked whether the regression 

coefficients of any pair of covariates are dependent in her prior distribution. If so, she will be 

asked to name the two variables th a t have such dependence. Then she will be shown a panel 

that simultaneously displays two graphs (see Figure 4.1 or Figure 4.2).

D ^ k t it( D ^ y  +  V ^ V s-JVSlu  for t =  1,2, • • ■ , m,

for t  = m  +  l ,m  +  2, • • • ,m  +  n.
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Figure 4.1: Assessments needed in the first phase for correlated covariates

The upper graph of the panel is for one variable of the correlated pair. It shows the 

previously assessed median values for that variable, denoted by i = 1,2, •• • , m  +  n, 

j  = 1,2, ••• ,S(i), as in equations (4.9) and (4.15)-(4.17). The expert is asked to assume 

that these median values are the correct values of Y  at the given knots. T hat is, they are 

accurate estimates of the mean response for the specified covariate values. Conditional on 

this information, the expert clicks on the lower interactive graph to assess new conditional 

quartile values, denoted by 0.25 and r a ^ 0 .7 5 , * =  1,2,**- ,m  +  n, j  =  1,2, ••• ,£(«), in 

equations (4.9) and (4.15)-(4.17).

The procedure consists of two phases; in the first phase the expert assesses quartile 

values for the variable in the lower graph given sets of medians for the variable in the upper 

graph. Specifically, these medians are denoted by m °0, • ■ • ,m ° fc in equation (4.16). The set 

of conditioning values of the first variable in the upper graph are incremented by one extra 

value at each new step. The expert is asked to take account of the additional information and 

re-assess conditional quartiles. This gives the assessments denoted by m t j to.25 and mt,j,0.75 

in equation (4.16).
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Step 1 of the first phase is shown in Figure 4.1, where the expert is asked to assess con­

ditional quartiles for different knots of the “Weight” variable in the lower graph conditioning 

on the previously assessed medians m ^0, of the “Height” variable at its reference knot 

and one other knot. These two medians are connected by the rightmost (black) line in the 

upper graph. The conditioning set includes also the median of the “Weight” variable at its 

reference knot (23.0).

The upper and lower (red) curves in Figures 4.1 and 4.2, represent the previous quartile 

assessments conditioning on fewer medians. Current conditional quartiles are not allowed 

to lay outside these red lines. This fulfils condition (4.14), which guarantees the positive­

definiteness of the variance-covariance matrix, as discussed before. Specifying these conditions 

by drawing boundary lines on the graph makes it easier for the expert to absorb what the 

conditional values are and what they imply. This helps her apply the idea of reducing 

uncertainty as conditions increase.

The second phase starts after conditioning on the median values at all knots in the top 

graph, denoted by m® 0, • • • , mP, §^  in equation (4.17). Each further step in this second phase 

adds an extra median value from the lower graph to the conditioning set. These additional 

values are m j0, • • • , m ^k in equation (4.17). Further conditional quartiles m^o.25 and mt,j,0.75 

are assessed in the lower graph and used in equation (4.17).
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Figure 4.2: Assessments needed in the second phase for correlated covariates

This phase is very similar to the assessment of conditional quartiles in the GA method, as 

reviewed in the previous chapter, where incremented sets of medians of the same variable are 

used as conditioning sets for assessing conditional quartiles. However, in this phase previously 

assessed median values at knots for a different variable (R s) are also taken into consideration 

when assessing conditional quartiles of Rt, where s < t.

One of the steps of the second phase is shown in Figure 4.2. In this step, the expert 

is asked to assess conditional quartiles mt,j,0.25 and m t j )0 .7 5 , for j  =  I ,- -  - ,4 , for different 

knots of the “Weight” variable in the lower graph. Some of the conditioning values are the 

previously assessed medians, m ^ ,  • • • ,m®3, of the “Height” variable at all of its four knots. 

These are connected by the black line in the upper graph. The other conditioning values are 

the median, m °0 of the “Weight” variable at its reference knot (23.0).

Suggested conditional quartiles are computed by extrapolating from other quartile assess­

ments in the same manner as in GA method; see the previous chapter. The middle (green) 

lines in the lower graph in Figure 4.2 represent these suggested values.

On finishing all phases of the assessment for this pair of explanatory variables, the user is
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asked about other correlated pairs, and the process starts again for the new pair, if there is 

one. The modified software outputs data in three different files, one containing the basic setup 

data, the second containing all assessments made by the expert, and the third containing the 

resulting mean vector and covariance m atrix of the hyperparameter vector, which are in a 

form suitable for further Bayesian analysis.

4.2.3 On the positive-definiteness of the elicited covariance m atrix

After generalizing GA’s method, as shown in Section 4.2.1 above, to estimate the variance- 

covariance m atrix of and (3_t , we ended up with

V = Var((£ i t)'\a) = (4.20)

S?,( = Var(£|£ , ,«) = <

where S s>s is estimated using the method of GA. Now Vt,t r1 £(,(■ Instead, 

with
/

D ^ 1At,t {D ^1y,  for t = 1,2, • • • , m,

At,t, for t =  m  + 1, m  +  2, • • • , m  +  n.

To check the positive-definiteness of the variance-covariance matrix Var((/3^ f^t)'\a), we

proceed as follows. First, we will show that V  in (4.20) is positive-definite. Then we will find 

a transformation to replace the sub-matrix 14,t of V  by the directly elicited unconditional

variance m atrix This transformation replaces V  with a new matrix, say A, which will

be shown to be positive-definite.

Now, in the matrix V, we have:

• From (4.4) and (4.6) ESiS is positive-definite, since AS)o is positive-definite as shown in 

the previous chapter, and from (4.3), D s are lower triangular for s — 1,2, • • • ,m .

• ££ t is positive-definite since it was computed in the manner of BS)S, above.
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• Since E SiS is positive-definite, so is E s *, and VgtEs lVSft is sure to be positive semi- 

definite. In fact, Vx ^  0,

from the positive-definiteness of E s ].

• Vtyt is thus the sum of a positive-definite and a positive semi-definite matrix, hence V^t 

is positive-definite.

For V  to be positive-definite, we use the Schurr complement (Abadir and Magnus, 2005, 

p.228) to show that

is positive-definite, which is the case.

We believe tha t the submatrix E^t is better than  Vtyt as an estimate of Var(/3Jai). Note 

that Vt}t was computed by conditioning on both a  and /^ .

Our aim now is to introduce a new matrix, A, conformally partitioned as,

to replace V, where we believe A  will generally be a better estimate of the variance-covariance

A  =

s t,tJ

m atrix of (/? £ ') '|c r

To this end, put
/

I  O
\

B  =
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and take A = B V B ' . Then

/

A  =

V

o

o

\
£ S)S VSit 

\ K t  y t , t j

(
o

o  v ? z l

\

( W 4

[O

\

\ Z 2tVt,t 2v j tt E l t \V tft2v tltv u 2J  Ety  

s S)S A S£
)

y A S,t j

_ 1 1
with A Syt — VS)tVt t 2'E2t . We next investigate whether A  is necessarily positive-definite.

Since ES)S and E ^  are positive-definite, A  is positive-definite, using the Schurr comple­

ment again, if and only if

S s,s -  A s t ,

is positive-definite. But

Ss,s -  A s^ A ' s , t  =  £ SlS -  I Vs,tVt/ E l t ] Et7  ( E l t v t/ v : >tt - i

= sS)5 -  va,tv -*  (E^S^eM v j v ' , t

^ s - V s M f v ^ .

Thus E S)S — A sf^ t-A -s  t is positive-definite from the positive-definiteness of the m atrix V. It 

can be simply seen also from the m atrix equation A  — B V B '  th a t A  is positive-definite since 

V  is positive-definite, and B  is non singular (Abadir and Magnus, 2005, p .221).

Now, although each variance-covariance m atrix A  for any pair of correlated vectors of 

coefficients, has been shown to be positive-definite, some extra conditions must be imposed for 

the whole variance-covariance matrix A in (4.5) to be positive-definite. For that, a structural 

elicitation method should be applied to the whole matrix. In which case, a huge number of 

conditional assessments will be needed to inter-relate all pairs, even though many of them  

may be slightly correlated. This puts an extra assessment burden on the expert and there 

may be no real gain.
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However, the power of this method is apparent when only one pair of vectors is highly 

correlated. Another good situation for its application is when there are only a few correlated 

pairs and the whole variance-covariance matrix can be re-arranged so tha t these are 2 x 2  

partitioned matrices on the main diagonal and off-diagonal covariance matrices are zeros. 

The whole matrix is sure to be positive-definite in this case. The expert should, of course, 

be willing to use the proposed method to elicit each main diagonal 2 x 2  partitioned m atrix 

by assessing all the required conditional quartiles.

Although the variance-covariance m atrix cannot be guaranteed to be positive-definite 

when there are many correlated pairs of vectors, it can still be checked for positive-definiteness. 

The expert may be asked to review her assessments, if needed, to fulfil the property. How­

ever, we propose another elicitation method in the next section th a t not only fulfils the 

positive-definiteness of A in (4.5), but which also requires a smaller number of assessments.

We also combine the two methods to give a flexible approach in which the expert assesses 

the variance-covariance m atrix for the highest correlated pair of vectors using the current 

method. She then assesses the relative correlation of other pairs of vectors in comparison 

with the most highly correlated pair of vectors. These relative correlations are scaled to give 

the whole matrix. The details of this approach are presented in the next two sections.

4.3 A nother elicitation  m ethod  for the variance-covariance  

m atrix o f correlated coefficients

One possible drawback of the elicitation method proposed in Section 4.2 is th a t the num­

ber of conditional quartiles that the expert must assess will become uncomfortably large, if 

many pairs of covariates are thought to be correlated. For such situations, another method 

is proposed here to elicit the off-diagonal covariance matrices. It uses a small number of 

coefficients to reflect the pattern  of correlation between pairs of vectors and this reduces the 

number of assessments that are required. At the same time, the assessments can be used to



induce all the elements of the covariance matrix and, under suitable conditions, the resulting 

variance-covariance m atrix is positive-definite. These conditions can be translated into allow­

able ranges shown to the expert on an interactive graph; the expert will be asked to restrict 

her assessments so that conditional medians lie inside these ranges. The mathematical details 

of the proposed method are given in Sections 4.3.1 and 4.3.2 below. The required assessments 

for the equations in these two sections are discussed in detail in Section 4.3.3, where the use 

of the interactive software to obtain the conditional medians is also discussed.

4.3.1 The case of two vectors of correlated coefficients

To reduce the number of required assessments for estimating the covariance m atrix of any 

correlated vectors (3 and /^ , we assume a fixed pattern  of correlation between the elements 

of these two vectors. We must make some simplifying assumptions about the correlation 

between these vectors. If the variance-covariance m atrix of /5̂  were the identity m atrix and 

the same were true for (3 , then it might be reasonable to assume that any component of 

/3 had the same correlation with each component of (3 , and vice-versa. Of course, the
— 5  — £

variances of {3 and (3 are not identity matrices. Instead, we transform and /3f into £s 

and £ , respectively, for which, Var(£s) =  Var(£t) =  Is(t)- Then we assume th a t the 

correlation coefficient between any element £S)i (i =  1, 2 , • • • , £(s)) of £s and any element £t,j 

(j =  1,2, • • •', 5(t)) of £ is a fixed number, cs>t. We elicit the value of cS}t using a small 

number of conditional assessments.

The matrices Var(/?s) =  ES)S and Var(/3 ) =  E*^ may be estimated using the method 

of GA that was reviewed in Chapter 3. These matrices are positive-definite, so there exist 

non-singular matrices A  and B  such that

AE SiSA ' = I 5(s),

=  l$(t).

In fact, we take A  and B  as the inverse of the two unique symmetric positive-definite square

roots tha t can be obtained from the eigenvalue decomposition of ES)S and E^t, respectively,
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i.e.

A  = S sJ ,

Let £s =  A(3_s and £t =  B 0 t , then

We assume that

So that

C m (iS’Q = c >* =

\
Cs,t ' ' ' Cs,t

\ c s ,t ’ • • CS)t J

— Cs,t i<5(5) ^5( t ) '

( \  
£

U < /

MVN
A6S

\Bbtj

S(s )xS( t )

l 8(s) CS)t

Ŝ{t) J
Assume further that

E (Lt \is = A - s +  n ) = B ^ t + !L>

(4.21)

(4.22)

(4.23)

where

r)s =  (^s ^  . . .  T^y =  T)s 1, for an arbitrary chosen value rjs >  0,

fit = (et ot ■■■ et)’ = fit I-
But it is known, from the conditional multivariate normal theory, th a t

£ (! ,!£ , =  ^ + 2 ,)  =  -  c < A w  K  -  (Ab-s +  2 ,)] =  B h  + (4-24)

Thus, from (4.23) and (4.24), we get

fit =  G 's,tlIs (4.25)

The expert will be asked to determine the conditional mean of £ given a specific value of 

£ , hence the value of Qt will be computed from the expert’s assessment of -^(£J£5)- I*1
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fact, the expert assesses only conditional medians of Y, which are then transformed, under 

normality assumption, into conditional means of the slopes of the piecewise-linear relation, 

or bar heights for factors, as will be detailed in Section 4.3.3.

From (4.25), the value of csj  is simply estimated as

c s, t 5(s) x rjs '
(4.26)

It will be shown that Var(^' p')'  is a positive-definite m atrix if, and only if,

v ' w  x m

Using (4.26), this condition can be written in terms of 9t, as

(4.27)

\9t \  <  r j s ‘

To prove (4.27), note that

V  = Var =  Var

(  i  \

(4

M
s(ty

^s,s
1 1

S 2 V*2
t , t  ° S,t

(4.28)

Csj  S

s t , t

Since, ES)S and E^t are both positive-definite matrices, V  is positive-definite, using the Schurr 

complement, if and only if

E S)S -  s i  Cs,tC'sj  Ei  -  E i s  (IS(S) -  Cs,tC ')t) s i  (4.29)

is positive-definite, or equivalently

Sm-S*5, sit = sit (im -  CSitc.,t) sit (4.30)

is positive-definite.

In other words, from (4.29) or (4.30), V  is positive-definite if and only if

\
h { s )  C a , t

h ( t )  J

is positive-definite.



and note tha t G is a symmetric idempotent m atrix with rank(G) =  trace(G) =  1. Then F  

can be written as

F  = h { s ) - c s,t c ; it 

= I 5{s) -  5{s)5(t)c\tG 

= h ( s )  — G -f- G — 5{s)5(t)(?s t G 

= (l8{s) - G )  + ( l - 5 ( s ) 5 ( t ) c l t)G 

=  a i { I s ( s )  ~  G) +  CX.2G ,

with

oil 1 ,

a.2 =  (1 -  5(s)S(t)c2).

As both G and (Is(s) — G) are idempotent matrices summing up to /<5(s), the eigenvalues of 

F  are 0:1 =  1 , with multiplicity rank(/6(s) — G) =  trace(/5 (s) — G) =  <5(s) — 1 and 0:2 =  

(1 — 5(s)5(t)c11) with multiplicity one. Hence, the necessary and sufficient condition for the 

m atrix F,  and consequently for V, to be positive-definite is tha t both a\  and 0:2 must be 

positive. Since aq =  1, the m atrix V  is positive-definite if and only if (1 — 5(s)5(t)c^t) > 0, 

which gives the condition (4.27).

The same condition can also be deduced from the quadratic form of the m atrix F.  First, 

recall, from Cauchy’s inequality, that

/  n  \   ̂ n

( X > i )
\ i = l  /  i=  1
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Then \/x ^  0,

5 ( 5 )
x 'F x  =  ^ ( 1  -  S(t)cl t)x2i +  Y ^ ( - 5 ( t ) c 28tt)xiXj

#3i= 1 
5(5)

= Y ^ x i  -  5{t)c\t
i=1 

5(5)

= '5 2 x i - 5(t)<Z,t
i=1
5(5) 5(5)

> 5 ^ ® ? -  5{t)S{s)clt Y ^ ^
i—1 i=l

5(5)

=  (l-< 5(s)£ (t)c2* ) ^ : r ? .
t=i

5(5) 

i=l

5(5)  ̂ 2

Y ^ x i
i=1

Since ]T)i=i x2 > 0, F  is positive-definite if and only if (1 — 5(s)6(t)c*j) >  0.

4.3.2 The case of various vectors of correlated coefficients

When there are more than two correlated explanatory variables, the method given in Sec­

tion 4.3.1 is still valid. We next obtain a set of n(n  — l) /2  conditions th a t are necessary 

and sufficient for the full variance-covariance m atrix to be positive-definite, for any number 

n  > 2 of correlated explanatory variables. The number of assessments required for eliciting 

a variance-covariance matrix using this proposed method when n > 2 is only n (n  — l)/2 . 

The case of n = 2 has been considered already. For n = k >  2 explanatory variables, let

Vi = Var &i = E , for % =  1,2,

W  W

Assume that Vi, i —  1 , 2 , . . . ,  A: — 1 , have been obtained and tha t they are known to be 

positive-definite matrices.

103



Let

V
Pn

, for i = 1 ,2 ,..., k — 1,

W
i-k ~  ^k,k d k ’

with

Sfc,fc =  Var(/3fc) .

We assume that

1  Ck.i ^

Ck,2
(4.31)

\ C k , k -1 y
where Ck is a matrix of order (X)i=i ^(0) x ^(^)> an(l th at each Cfc.i is a submatrix of order 

£(z) x 5(k), taking the form

Ck,i =

( \
Ck,i ' ’ ’ Ck,i

\^k,i ' ’ ‘ Ck,i J

, for i = 1 ,2 ,..., k — 1. (4.32)

Then

U  Aifc-i

u <j

MVN
(  (  - i  \  

* U  Sfc-1

\  \  S fc,fc -A: /

/ \ \
(4.33)

Now suppose that

E (L \L  = V P  et + r M) =  S “ * 6* +  0_k<i, for % =  1 ,2 ,..., k -  1, (4.34)

where

~ kj ~  (Tlk,j Vk,j

2* / ’
r}k .)' =  I k j  1, j  =  1,2, for arbitrary chosen rjk,j >  0, 
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—k,i ~  (flfc.i Ok,i ' 1 ' Ok^y — Qk,i !■

_  1
The process will consist of k — 1 steps, at the «th step, an elicited value of E(£k \£. = Vi 2 ei + 

r k i ) will be obtained. This can be done by asking the expert to assess conditional median 

values of Y  th a t can be transformed, under the normality assumption, to conditional means 

of the slopes of the piecewise-linear relation, or bar heights for factors, as will be discussed
_ i

in Section 4.3.3. We can then obtain the conditional medians E (£k|£ =  Vi 2 e{ +  r k)i) in 

(4.34) from E ( ^ k \P1, P2, • • • ,0.).  The conditional values of displayed

through a set of i graphs, each of which gives a value for a different 0  , j  = 1 ,2 ,..., i. 

Moreover, from the conditional multivariate normal theory, equation (4.33) gives

E ( i k\ =  &i + rk,i) = ^ k  h  + (c'kil c 'ki2 ■■■ (4-35)

Then, from (4.34) and (4.35), we get

c 'K2 ■■■ qpa,<■ (4.36)

Hence, after finishing the k — 1 steps, the following system of equations can be formed

0fc,i =  K ^ ) ck,lT]k,l,

Ok, 2 =^(l)Cfc,l7/jfe,l +  5(2) Ck,2Vk,2,

Ok,k-1 = 5(l)cfc,ir/fc,i + 5(2)cfc)2?7fc,2 +  h 5(k -  l)ck^i7]k,k-i-

To solve for c k}i ,  i = 1,2, ...,k — 1, the system can be written as

n
C/c,2

\Ck,k-i y \Qk,k-i J

Ok, i 

0 k ,2
(4.37)
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where

n =
6(l)rik)i S(2)r)kt2 0

(4.38)

^(2)^,2 ••• S{k -  l ) 7 ] k , k - i  J

Provided tha t r)kj  ^  0, \/ i = 1,2, ...,k — 1, the matrix is non-singular and hence

/ \
Ck, 1

Ck, 2
= n - i @k,2

(4.39)

\ c k>k- 1  y y^fc,fc-i y

Now, the variance-covariance m atrix Vk can be estimated as follows:

Vk = Var

'a'
&

\ i k /

=  Var

I \  I

S M  fib /

U - :  C*

\ ^k ,k  C'k Vk- 1

I  \  

/

(4.40)

We define the matrices E^fc, for i = 1,2, • • • , k  — 1, tha t conformally partition V]fc2_ 1 Ck E | fc

as
!  v  \^i,fc

■<2̂
fc-i

1 Ck,1 ^

Ck ,2
n , k = v h c k (4.41)

\ p k - l , k  y yCjfc,fc-l y

Following the same steps as in the case n = 2, and since Vk- \  and Hkjk are positive-definite

matrices, equations similar to (4.29) and (4.30) show th a t Vk is positive-definite if and only

if the matrix

( l  C  \

\  Ck J5(k) J
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is positive-definite. Putting

Fk =  h{k) — CkCk
k- 1

i=l

— <5(&)

where Gk is idempotent of rank 1, it can be shown that

Fk = (h(k) -  Gk) + ^1 -  £ > (* 0 ( 5 ( 0 4 ,^  Gk

is positive-definite if and only if

 ̂~  > 0 - 

This condition implies A: — 1 conditions for ck,i, i = 1,2, ...,k — 1, of the form

(4.42)

l - ^ 2 $ ( k ) 5 ( j ) cK
■3=1_____________
<S(i) x 5(k)

(4.43)

These k — 1 conditions guarantee that the elicited m atrix Vk in (4.40) is positive-definite, 

provided that Vk- i  is positive-definite. Since V2 is known to be positive-definite from Sec­

tion 4.3.1, we can use mathematical induction to prove tha t the full variance-covariance 

m atrix Vn is positive-definite, as follows. For any number (n > 2) of correlated vectors ^  , 

0 2, • • •, (3 , the whole m atrix

(  ~ \  I  y ,  y ,  „  \•̂ 1,1 -̂'1,2 ’ • • -̂ 1,1

Vn = Var

a
& £ 2,1 ^ 2,2 ^2 , r

\JLn) ^n,2 ' ’ ‘ Sn,n J

is certain to be positive-definite if (a) the n — 1 conditions in (4.43) hold and (b) Vn- \  is 

positive-definite. This imposes an extra i — 1 conditions on each m atrix Vi, (i = 2, • • • , n  — 1), 

so that each Vi is positive-definite. Then Vn is positive-definite under a number of J2k= 2 ^ ~
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1 =  ]Cfc=i k =  n(n  — l) /2  conditions of the form:

i—1

Using these conditions, the range of each 6k,i, for i = 1,2,...,&  — 1, k =  2 , 3 can be 

computed and shown to the expert who can ensure that her assessed values fall within these 

ranges. This will guarantee tha t the estimated variance-covariance m atrix is positive-definite. 

For i = 1,2, ...,k — 1, from (4.36) and (4.43), the range of 6^  is given by

This formula for the allowable range of 6k,i has a drawback: we cannot calculate these ranges 

until quite late in the assessment procedure, so the expert may sometimes be asked to revise 

assessments tha t she made some time earlier. Hence, we decided to find a different approach 

tha t gives a more direct range for each 6kti, and which only asks the expert to modify recent 

assessments tha t she has made. At step z, when conditioning on the value of .£ , the expert 

may be asked to modify the assessment she has made in step z — 1, but she will not be asked 

to modify assessments she gave at stages before that. This can be formulated as follows. 

Instead of equation (4.34), let

^ 2  5 U)ck,jVk,j ±  Vk,-, 1 -  5 (k )s U)cl

(4.46)

(4.47)
j =i

where

■ ■ ■  r t k / ’

%k,j = (Vkj Vkj  • • • Vkj)' = =  -1’2’ for arbitrary chosen r)k,j > 0,

Qk,i = idk î Qk,i ' ' • ®k,i) ~  ®k'i -
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In this case, using standard results of conditional expectations, we get

S fc.fc h  +  F a ,  -  s k.k h  +  C'kZk'i, for z — 1 ,2 ,..., k — 1. (4.48)
j =i

Then equation (4.36) becomes

(4.49)

which gives

Hence

(4.50)

The positive-definiteness of the whole variance-covariance m atrix Vn is still guaranteed under 

the same conditions in (4.44). But the allowable range for each O^i (i =  1,2, — 1,;

k = 2,3, ...,n) has the simplified form,

This represents a simple range for 6^ ,  in comparison with (4.45). The range in (4.51) 

depends only on the change rjk,i in the zth variable, £ , not on the changes rjkj in all variables 

i j ,  3 = V "  ) * -  as in (4.45).

4.3.3 A ssessm ent tasks

• The current assessment tasks start after eliciting all variance matrices E ^  (i =  1 ,2 ,..., k).

• For any pair of correlated vectors (/?s, Pt), we assume that

where Cs>t is given in (4.21) and ESjS and E t,t are the variances of Ps and £1 , respectively.

• The expert will be shown a panel th a t simultaneously displays two graphs and a slider 

(see Figure 4.3). For continuous covariates, the upper graph of the panel shows the 

piecewise-linear relation between Y  and X s. The slopes of the black (lower) curve

l-^ c5(fc)S(j)c | (4.51)

(4.52)
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represent bs =  i?(/?s), while the slopes of the blue (upper) curve represent the change

i i
of E(Ps) by S | )S77s, i.e. the slopes of the blue (upper) curve are bs +  £ | )S?7s. The 

black (lower) lines represent the expert’s original median assessments but she is asked 

to suppose tha t the correct values are actually the blue (upper) lines. Given this 

information, the expert is asked to use the slider to change the position of the black 

(middle) curve in the lower panel so tha t it gives her new opinion about the median 

value tha t Y  will take as X t varies. The magnitude and direction of the change reflects 

the correlation between @s and ^  .

Figure 4.3: Assessments needed for two correlated variables

• The two red (outer) piecewise-linear curves in the lower panel of Figure 4.3 represent the

allowable boundaries for the change of /? ; these boundaries ensure th a t the resulting

variance-covariance m atrix is positive-definite. The boundaries are calculated from

the condition given in equation (4.28). Moving the slider simultaneously changes the

position of all the medians of Y  in the lower panel. W hen the expert is happy with the

new position of the curve on the lower panel, the corresponding value of the slider is
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used to compute cS)t, as will be shown later.

• The expert is asked to assume that the slopes of X s, in the upper panel of Figure 4.3,
i

have changed from bs to bs +  Es)S?7s. Conditional on this information, she revises the
i

slopes of Xt,  in the lower panel, changing them from bt to bt +  E f2̂ .  The exPert 

changes all the slopes simultaneously using the slider.

• The size of the change, 7]s, in the conditioning variable, X s, in the upper panel, is 

chosen such tha t the vertical distances between the two piecewise-linear curves in the 

upper graph do not exceed the upper quartile at any of the knots of X s. This ensures
i

tha t the new conditioning values bs +  E f)S77s are not too far from bs, as they have to 

be values tha t the expert finds plausible. This choice is also not too close to bs, so it 

should prompt a measurable change in bt in the lower panel of Figure 4.3.

i
The software calculates medians to draw a piecewise-linear curve with slopes bs + 'Es,sVs- 

For i =  1,2, ••• ,S(s), the median value of Y  at each knot i, m s,i, 0 .5 , is changed to 

m li ,0.5> as follows.

First, let

m s ,0,0.5 =  m s, 0,0 .5 ,

and

d i , i—1 — 1"s,i Ts , i—1-

Then, for i =  1,2,- • • , 6 (s), we put

K i , 0 . 5 - < i - l A5 = ^  +  

d i , i - 1

M s,* ,0.5 — 7715,1-1,0.5 . / v ,5  \=  ---->_!-------   *->---- +  rjai^lsH ,
d i , i - i

I  I
where (EJ,s)j is the sum of the elements of the ith  row of E f)S.

Hence,
i

m s, i ,0.5 =  ^ 5,1—1,0.5 "i-  m s, i ,0.5 ~  1,0.5 T  1 ( ^ s , s ) i -  (4.53)
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If X s is a factor, then
i

m s,i, 0.5 =  m s,i, 0.5 +  r]s( E l s)i. ( 4 .5 4 )

In view of ( 4 .5 3 )  and ( 4 .5 4 ) ,  r)s can be chosen as

I  ™>s,i,0.75 -  771a,i,0.5 \  , A CEvr)s =  m in i  — — ------------------r —  , ( 4 .5 5 )

\  J 2 j = i  d j , j - 1  ( E s , s ) j  J

for continuous covariates. For factors, it can be chosen as

I  m g  i 0.75 -  »,0.5 1
T)s -  m in i  — - ---------1-------- LJ—  • (4 .5 6 )

V ( £ ? « ) <  1

In order to draw the red (outer) boundaries in Figure 4 .3 ,  we require upper and lower 

bounds, m^i,0.5 an(  ̂m t,i,0 .5 - From ( 4 .2 8 ) ,  if X t  is a continuous covariate, we put

m t,i,0.5 = m t,i-1,0.5 +  "li,1,0.5 -  mt, i - 1,0.5 +  Vs J ^ y d i , i - i ( S ^ ) i ,  (4.57)

and

S(s) -
^ M ,0 .5  =  ^ M -1 ,0 .5  +  " it ,i ,0.5 -  mt, i -1,0.5 -  W  (4.58)

If X s is a factor, we put

" l M,o.5 =  ™M,o.5 +  (4 -5 9 )

and

m t,i,0.5 = m t,i,0.5 ~  V s ] J j ^ { ^ l t ) i -  ( 4 -6 ° )

Using the slider, in view of (4.27), the expert changes the value of cS)t between its two

boundaries, ± l / y /S(s) x S(t). To be interpretable by the expert, the slider presents a 

scaled range between -1 and 1 as a measure of correlation between /3 and ^  . Hence

cSft = The slider value /  \ /S(s) x 5(t).

The corresponding new curve, say Tn't i 0 5, is interactively changing with each movement 

of the slider. For continuous covariates, m't i Qi5 is computed after m 't ^ _ 10  5 has been 

calculated:

i
m t,i,0.5 =  m 't,i-i,0.5 +  m t,i,0.5 -  m t, i -1,0.5 +  Csjd i ' i - i&lJ i .  (4.61)
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For factors

m t,i,0.5 =  +  Cs,t(E t,t)i- (4 -62)

When the expert is happy with the new position of the curve, the value of cStt is used 

in (4.21) and (4.52) to calculate the covariances between @s and (3 .

• For k > 2 correlated vectors of coefficients, the process will consist of — 1 steps. At the 

zth step, the expert will be asked to change the conditional medians of ((3k\(31 , /?2, • • • ,

by a value of 9 ^  given a set of i graphs, each of which shows a change with a different 

fixed value rjj for each /? , j  — 1 ,2 ,..., z.

• However, we choose not to offer this general case as an option in the interactive soft­

ware. Although it has been shown to have a consistent mathematical framework and 

adequate theoretical properties as proposed in Section 4.3.2, its practical implementa­

tion may raise some critical issues in the elicitation process. Conditioning on simulta­

neous changes in many graphs for different variables gives too much information for an 

expert to readily absorb. She may not be able to assess the direct conditional impact 

of these changes on the variable of concern.

• Another difficulty arises in choosing the different values rjj, j  = 1,2, • • • , 2 , th a t control 

the change in the conditioning set used in step 2. These values must be carefully 

specified so th a t the resulting simultaneous change represents a valid combination of 

values that is acceptable by the expert to condition on.

• A general problem in successive increment of variables in the conditioning set is th a t the 

allowable range of medians at the variable of concern gets tighter as we approach the 

last variable in the list. This problem is not only a practical one, but it has also been 

shown that variances, and hence covariances, of the last variables in the list are usually 

over estimated by the expert due to incremental conditioning (Garthwaite, 1994). These 

drawbacks constitute the motivation for the third elicitation method proposed in the 

next section.
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4.4 A  general flexible elicitation  m ethod  for correlated coef­

ficients

The aim here is to form an elicitation method suitable for GLMs that contain a large num­

ber of correlated vectors. We propose the following elicitation method as a promising new 

approach for eliciting the whole variance-covariance matrix. It uses only a small number of 

assessments that directly reflect the pattern  of correlations between all pairs of vectors.

The method avoids the previously mentioned disadvantages of using incremented condi­

tioning sets of variables. Instead, the method treats all variables symmetrically. As with 

the method proposed in Section 4.3.1, it assumes a fixed correlation structure for the ele­

ments of each pair of vectors. The current method differs from the generalization proposed 

in Section 4.3.2, in tha t it avoids incremented conditioning and assesses all covariances si­

multaneously.

The main idea is that the expert assesses the relative magnitudes of the average corre­

lations between each pair of vectors. She is asked to ensure tha t these weights reflect the 

strength of the average correlation of each pair relative to each other pair. The expert need 

not be conscious of conditions that are required for mathematical coherence. Instead, the 

assessed relative weights will be scaled to ensure tha t the assessed variance-covariance m atrix 

is positive-definite.

The current method can be used alone or together with one of the two methods proposed 

before in this chapter. In the latter case, the current method needs an assessment of the 

correlation of only one pair of vectors, then all other correlations are computed using the 

relative weights. This correlation assessment may be obtained using the method proposed 

in Section 4.2 or the method proposed in Section 4.3.1. W ith the latter m ethod the expert 

might use a slider to adjust the slopes of one vector of a highly correlated pair.

In what follows, the method is introduced in detail and the scaling needed to obtain a 

positive-definite m atrix will also be investigated.
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Assuming that all the k covariates are correlated, let

t =  1 ,2 ,- ..  ,fc, (4.63)

then

Var( 0  =  h(i), i =  1,2, •••,&.

For all z =  1,2, • • ■ , k, j  = 1,2, • • • ,k,  i ^  j ,  we assume that

=  CiJ =

( \
CiJ ' • • Ci n1,3

\°i,j  ••• * j j 6(i)x5(j)

with Cjti = Cij.

Then

and hence

C ov(g.,£  ) =  X f - C i j Z l j ,

V  =  Var =  AJ Ga I  ,
" z . z  " z , z

(4.64)

(4.65)

(4.66)

(4.67)

i i
where A £ .. is a block-diagonal matrix with S?i as the zth main diagonal block and

C =

C\ tkI 6(1) Cl ,2 

C2,l I 8(2) ' • :

• • • Ck—l,k

\Ck, i • • • Ck,k-1 h(k)

(4.68)

with

C u  =  C ij.

1 1 
Since each EA is positive-definite, so is A |.. .. Hence, we can state tha t V  in (4.67) is positive-

definite if and only if C  in (4.68) is positive-definite.
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For i =  1,2, • • • , k, j  = 1,2, • • • , k, i ^  j , let

Cij =  cwij, (4.69)

where w^j  are the relative weights to be assessed from the expert and c > 0 is a fixed scaling 

constant tha t adjusts to ensure tha t C  is positive-definite.

The main assessment task with this method consists of one dialogue box. An example 

is shown in Figure 4.4. The expert assesses the relative magnitudes (weights) and signs 

of different correlations between all pairs of vectors. Since the correlation m atrix must be 

symmetric, we just require the elements below the main diagonal to be assessed. Hence, when 

there are n  vectors of coefficients, we require n ( n — l ) /2  assessments for this stage. The main 

diagonal elements are necessarily set equal to ones, as C  is a correlation matrix.

E n te r  y o u r  r e la t iv e  c o r r e c t io n s :

C cw arta te : X1 X2 X3 X4 x sXI 1
X2 f 1 1
X3 [ 1 ! 1
X4 r 1 .. . . . . . 1. . . . . . . .  l 1
X5 [ 1 I j 1

r n  c  i N e x t» j~HeipTj

Figure 4.4: Assessments needed for five correlated variables

The relative weights tha t are assessed in this task need not be coherent correlation co­

efficients. For example, they are not necessarily restricted to be between -1 and 1. Instead, 

any assessed numbers are accepted; they must simply reflect the magnitude of the correla­

tion between any pair of vectors relative to other pairs. Negative values are allowed and are 

appropriate when an expert believes a correlation is negative. The expert is asked to assess a 

single weight for each pair of vectors. The weight should reflect her opinion about the average 

correlation between all pairs of elements in th a t pair of vectors.
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The relative weights assessed in Figure 4.4 will be denoted by w*j, where w*j corresponds 

to the fixed average correlation between all elements of and (3 . The expert is asked to 

ensure tha t the relative magnitudes of w*j, i = 1 ,2 , • • • ,k,  j  =  1 ,2 , • • • ,k,  i > j ,  model her 

opinion about the relative correlation of each pair compared to the others. As mentioned 

before, wf 4■ will be scaled later to attain  mathematical coherent values of correlations.

For mathematical simplicity, we use the weights, Wij, of correlations between and £.

when investigating the conditions required for the scaling constant c in (4.69). However, we 

assess the weights w*j in terms of (3. and , as the expert cannot think about correlations 

between the transformed vectors £. and £.. Hence, we need an explicit relationship between—i —j

Witj  and w*j. We obtain one as follows.

For i =  1,2, • • • ,k,  j  = 1,2, • • • , k, i > j ,  let

< j  =  » g  (4 '7°)

be the scaled average correlation between (3. and (3.. Then—i —j

r*  -  £ r = l  S S l[C o v (A ,r ,f t> )/o -r^ ]
5(i)5(j) ’ 1 ;

where, as in (4.66), Cov(/lyr ,/3j)S) is the (r, s) element of CovQT,/T), and oy and as are the 

square roots of the r th  and sth  main diagonal elements of E^i and Ej j , respectively.

Hence, from (4.65), (4.66) and (4.71),

E 2 ? i E £ S K . / < v r . ]
' : : ' r  <5

1 i
where ar>s is the (r, s) element of E ^ l ^ j ^ E j C ,  i.e.

(4.72)

Ci i =  S i   . (4.73)
1, 3 S ( i )  ^ S ( j )  r /  1

X]r'=l H2s=l\.ar>s/arVs]

So, in view of (4.69) and (4.70), we have

IVii = w „• (4.74)
Jh 3  -  1,3  ^ 8 ( i )  ^ 6 ( j )  r ,  !  *

X 3s= 1 [°rr',s/crr'Crs]

It remains now to investigate the allowable range for the positive scaling constant c, so that

C  in (4.68), and consequently V  in (4.67), are positive-definite.
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First, from (4.69), we write C  in (4.68) as

C =  I  +  cW, (4.75)

where I  is the identity m atrix of order X3j=i 5(j), W  is a conformally partitioned matrix with 

main diagonal zero block matrices, and all the elements of each ( i , j)  off-diagonal block are 

equal to Wi j .

Let Aw, i ,  i — 1) 2, • • • , Y l j = i ^C?)j b e the eigenvalues of W .  We have that

min(Avy,i) < 0,
i 1

since if not, W  with zero main diagonal elements will be a nonnegative-definite matrix, in 

which case

wf j  < WijWjj  =  0, Vi ^  j ,  

which is true if and only if W  is a zero matrix.

Since I  and W  are symmetric, C  in (4.75) is positive-definite if and only if all its eigenvalues, 

say Ac , i ,  i =  1,2, • • • , Yj)= i are strictly greater than  zero.

But
k

^C,i = 1 +  i — 1,2, • • • , S(j). (4.76)
j=i

Consequently, C  is positive-definite if and only if

min(Ac'i) > 0,
%

i.e. if and only if

C <  . 7 ' 1  V  ( 4 - 7 7 )
min(Aw,i).i

The condition in (4.77) guarantees tha t C  and V  are positive-definite, and also tha t 

Cij = c w i j , i j ,  are coherent correlation values, since, from the positive-definiteness of C ,

c i,j  <  ci, icj , j  ~  1-

The software obtains the value of using the eigenvalue decomposition of the m atrix

W.  Then the boundary of c in (4.77) is computed.
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W ith the software, different options are available to the expert for assessing a value of c 

th a t fulfils condition (4.77). The default option is to use a slider. The expert chooses the 

value of c th a t represents her opinion on the basis of interactive graphs. Specifically, the 

software displays a panel with k  graphs, as illustrated in Figure 4.5.

Given th e  ch an g e s of (Y) on  th e  u pper panel, g ive  you r new  as se s s m e n ts  on  a ll th e  low er p a n e ls  using th e  s lider.

tntdi&ns of (Y) a t valuos of <X4) conditional on  tfio above change* of (XI).

Figure 4.5: Assessments needed for various correlated variables

The upper graph shows the slopes for one continuous covariate after each of its slopes 

has been changed by a fixed amount, 77. This covariate is one of the mostly highly correlated 

pair of vectors. In the same manner as in Section 4.3.3, the expert is asked to assess the new 

medians of all other k — 1 covariates (factors) given the change in the above graph. Apart 

from the condition in (4.77), other equations needed for drawing the graphs are exactly as in 

Section 4.3.3.

Instead of using the slider and all graphs in Figure 4.5, another two options are also 

available to the expert after assessing the relative weights w*j. As the first option, the expert 

can choose to use the method proposed in Section 4.2, to elicit different covariances for the 

elements of the highest correlated pair, say and (3 . An averaging argument as in (4.71)
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is then used to get c*>t. As the second option, the expert might use the method proposed in 

Section 4.3.1 to obtain c* t . In both cases, the value of c may be taken, for a small e > 0, as

The expert may choose the option tha t suits her most. For example, the option that

more conditional assessments. However, we favour the default option as it gives the expert a 

good chance to see how all the other covariates are affected by her choice of c.

The expert can, of course, go back in the software to change her assessed values of w*j, 

if she finds tha t the allowable range of c is not a reasonable representation of her opinion.

4.5 C oncluding com m ents

Three different methods for eliciting expert opinion about the variance-covariance matrix of 

correlated coefficients in GLMs have been proposed.

The first method is the most flexible for modelling correlations between pairs of vectors 

- it is a good method if correlations are only substantial between a few pairs of variables, 

while the other correlations are near zero. However, it needs lots of assessments if there are 

lots of variables tha t are inter-related, and the number may become uncomfortably large. 

The positive-definiteness of the resulting m atrix has only been investigated in the case of 

two vectors of correlated coefficients. No clear conditions have been investigated for the 

positive-definiteness of the whole matrix if many vectors of coefficients are thought to be 

correlated.

The second proposed method requires fewer assessments and has been shown to be a valid 

method for any number of vectors of correlated coefficients. Also, the required conditions for 

positive-definiteness of the covariance matrix in this method have been investigated. These 

were translated into boundaries for conditional assessments on the interactive graphs, which 

helps the expert fulfill the conditions. The disadvantage of the method is th a t it makes

c =  mm
min(Aw;i)

(4.78)

combines the current method with the one in Section 4.2.1 is flexible although it requires
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strong assumptions about the correlation structure between two vectors of coefficients, and 

sometimes the assumptions will be inappropriate.

The third proposed method requires a smaller number of assessments. For n > 2 cor­

related vectors of coefficients, the expert is required to make only n(n  — l) /2  assessments 

of relative magnitudes of correlations between pairs of vectors. This leads to coherent es­

timates of correlations and a scaled variance-covariance m atrix tha t is guaranteed to be 

positive-definite. The needed conditional medians can be easily assessed from the expert by 

the movement of one slider using the available user-friendly software. The method has been 

shown to give flexible options to the expert as an extension of the first or the second proposed 

methods. This third method is very promising. It also avoids incremented conditioning and 

treats all covariates symmetrically.

121



Chapter 5

Eliciting prior distributions for 

extra parameters of some GLMs
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5.1 Introduction

So far, we have completed the process of eliciting the multivariate prior distribution for the 

vector of regression coefficients of any GLM. However, in some common GLMs, such as the 

normal and gamma regression models, the regression parameters are not the only parameters 

in the sampling model. The other parameters in these GLMs must be either assumed known 

or expert opinion about them must be quantified in a suitable way.

In normal GLMs, prior opinion about regression coefficients can be quantified using the 

methods discussed in the previous two chapters. However, prior opinion about the error 

variance in normal GLMs must also be quantified to complete the prior distribution of all 

the model parameters.

A limited number of elicitation methods for error variance in normal linear models has 

been proposed in the literature. See, for example, Kadane et al  (1980), Garthwaite and 

Dickey (1988) and Ibrahim and Laud (1994). However, these available methods have been 

criticized for using assessment tasks that the expert may not be very good at performing 

(Garthwaite et a l , 2005).

The method of Garthwaite and Dickey (1988) elicits a conjugate inverted chi-squared 

prior distribution for the error variance through conditional assessments tha t depend only 

upon the experimental error. The expert is required to assess her median of the absolute 

difference between two observed values of the response variable at the same design point. 

Then conditional medians of the same difference is assessed given a set of hypothetical data. 

These two assessments are sufficient to elicit the two hyperparameters of the inverted chi- 

squared prior of the normal error variance. However, it is better to specify several da ta  sets 

and get a conditional median for each data  set, then different assessments can be reconciled 

to elicit the two hyperparameters. In this chapter, we propose an elicitation method based 

on more than one data set of hypothetical future samples.

The second task addressed in this chapter is to assess prior distributions for the shape

parameter of a gamma distribution and the scale param eter of gamma GLMs. Prior dis-
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tributions for these parameters have been proposed in the literature [see for example Miller 

(1980), West (1985) or Chen and Ibrahim (2003)], but no prior elicitation method for these 

parameters has been suggested. To fill this gap, we propose a new method for eliciting log­

normal prior distributions for such parameters. The proposed method is based on conditional 

quartile assessments given that the mean of the gamma distribution is known or has already 

been elicited.

In Section 5.2 of this chapter, we extend the method of Garthwaite and Dickey (1988) for 

eliciting the variance of random errors in normal GLMs. A novel method for eliciting a lognor­

mal prior distribution for the scale parameter in gamma GLMs is proposed in Section 5.3. The 

two methods have been implemented as extra options in our elicitation software PEGS-GLM 

(Correlated Coefficients) that is freely available at http://statistics.open.ac.uk/elicitation.

5.2 E liciting a prior d istribution for the error variance in nor­

mal GLMs

The method of Garthwaite and Dickey (1988) is based on conditional assessments tha t depend 

only on the random error to elicit a conjugate inverted chi-squared prior distribution for the 

normal error variance. In their method, the expert is asked to assume th a t two observations 

are taken at the same design point. Then she assesses her median of their absolute difference 

- the two observations differ only because of random variation.

The method has been also used to quantify experts’ opinion about multivariate normal 

distributions [Al-Awadhi and Garthwaite (1998, 2001), Garthwaite and Al-Awadhi (2001)]. 

However, it has been criticized for eliciting only the minimum number of assessments that 

are required to determine the hyperparameters. To overcome this, Garthwaite et al. (2005) 

suggested that it is a good idea to elicit more than  one estimate of the hyperparameters and 

to then reconcile these estimates in some way.

The aim of this section is to extend the method of Garthwaite and Dickey (1988) by
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increasing the size and frequency of the hypothetical (virtual) sample data  tha t are used as 

the conditioning set on which the expert is modifying her opinion. Our extended method 

is designed to elicit a conjugate prior for the error variance in normal GLMs. This will 

complete the prior distribution structure of these models when the prior distribution of their 

regression coefficients is elicited using the piecewise-linear model discussed in the previous 

chapters. However, the method developed here can be used to elicit the prior distribution of 

error variance in any normal model where the prior distribution of its regression coefficients 

is totally known or has been elicited using any other elicitation method.

The theoretical derivation of the proposed extension is detailed in Section 5.2.1. The 

implementation of the method has been programmed as a new option in the PEGS-GLM 

(Correlated Coefficients) software. The assessment tasks and the description of the procedure 

tha t implements our proposed method are discussed in Section 5.2.2.

5.2.1 The m athem atical framework and notations

The normal GLM assumes tha t the link function g(.) in (3.3) is the identity link function, 

which means, in view of (3.2), that

£ =  a  +  (3\Xi +  P2X 2 +  h /3^+nXm+n +  e, (5.1)

where e is assumed to be a normal random error with zero mean and an unknown variance

i.e.

e~N (0,< r*). (5.2)

A conjugate prior for u\  is the inverted chi-squared distribution [see, for example, P ra tt 

et al  (1995), Kadane et al  (1980) or Garthwaite and Dickey (1988)]. Equivalently, we assume 

that

<jg.~ Inverted Gam m a(z//2,vw/2) ,  (5-3)

125



The aim now is to elicit the values of the hyperparameters v and w of the pdf in (5.4). To 

attain  this, the expert should preferably be asked to assess values that depend only on the 

random variation. For that, the method of Garthwaite and Dickey (1988) requires the expert 

to assess a median value, say <70, of the absolute difference, |£i — C2 I, between two observed 

values of the response variable (  at the same design point (X i, X 2 , • • • , X n+m).

The expert is then asked to assume that the true value of this absolute difference is a 

suggested value z. Given this piece of information, she gives her new median assessment , say 

<71, of the absolute difference between two observations for any new hypothetical experiments 

at the same design point (X\ ,  X 2 , • • • , Xn+m). The difference between qo and the new median 

assessment, <71, reflects the expert’s confidence in her first median assessment qo. Then both 

qo and q\ were used in Garthwaite and Dickey (1988) to calculate the two hyperparameters 

v and w.

To extend their method, instead of conditioning on only one hypothetical datum  z, we 

repeat the assessment of the conditional median for a number of s steps. At each step, 

the condition is on a steadily increasing set of hypothetical data representing the response 

differences for pairs of experiments at the same design point.

At each step j ,  j  = 1,2, • • • , s, the expert is asked to assume that a number k ( j ) =  2J_1 

of experiment pairs at the same design point has given a hypothetical data  set of absolute 

differences, zi, Z2 , • •• , Zk(j)- She is then asked to give her conditional median qj of the absolute 

response difference of a new pair of experiments at the same design point. In what follows, 

we show how to use these assessments to estimate a number of elicited values th a t can be 

reconciled to give a better assessment of v  and w.

For i = 1, • • • ,k,  where k > 1 is any integer number, let Z{ be the difference between the



two observed values, £^1 and (^2 , of the response variable (  in any two experiments at the 

same design point ( X v  • • • , X m+n), i.e. Z{ = Q,i -  0 ,2-

Clearly, from (5.1) and (5.2), given of, the random variables Zi, ■ ■ ■, Z k are independent 

and identically distributed normal variates, i.e. for i — 1,2, • • • , k,

ZiWe ~  N(0, 2(7^), (5.5)

with the joint distribution

f ( z i , ---  , z k \cr2e)

— 0 0  <  Zi < 0 0 , a 2 > 0. (5.6)

From (5.4) and (5.6), the joint distribution of Z\,  • • •, Z k and a2 is given by

/(•*!.• •• ,Zk,ae',v <w)
{uw/2 ) v !2  / _ 1 \

~~ r ( i / / 2 ) ( 4 7 r ) fc/ 2  W /
^ + 1

exp { - 4 ^ [ T , zi +2,' w
vi=1

— 00  < Z{ < 0 0 , <j2 i ' ,w >  0. (5-7)

Integrating cr̂  out from the RHS of (5.7), we get

v +  k

f { z  , Z k \ U , W ) =
r ( ( ^  +  fc)/2) 

r( i//2 )K (2 « ))]fe/ 2

~2
1  j .  ^

v( 2w)

— 0 0  < zi < 0 0 , w >  0, (5.8)

which is the ft-variate version of the general three-param eter Student-i distribution with v  

degrees of freedom, zero mean vector and a diagonal scale matrix 2w l k, where I k is the 

identity m atrix of order k , i.e.

Z h  ' ■ ’ > ~  2w l k). (5.9)

Now, the conditional distribution of a 2 given Z\  =  zi , - -  - , Zk = Zk, can be obtained by 

dividing the RHS of (5.7) by that of (5.8) to get

f { p l \ Z x = z l r -- , Z k = zk\v,w)  =
1

+  1
exp < -

T((v + k ) / 2 ) 

k

2 = 1

(v +  k ) / 2

2 vw  +  zj
i=l

<T2 , V, W  > 0. (5.10)
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Since the inverted gamma distribution is a conjugate prior for erf, comparing (5.10) with 

(5.4), we can write

(of |Zi =  Zi, • • • , Z k = zk) ~  Inverted Gamma ^   ̂ (5.11)

where

vw  +  2-1 1 (5.12)
2

For j  =  0,1, • • • , s, define a new set, Z ^  = C(j),i ~  C(j),2 > °f the response variable differences

for two further experiments at the same design point (X lt • • • ,X m+n). The variates in this

new set are iid with the same normal distribution as in (5.5).

The conditional distribution of ( Z ^ j Z i  = z \ , ••• , Z k^  = zk(j)), with k(j )  =  2J~1, for 

j  = 1, • • • , s, is given by

1^1 ^1) ’ ^k(j) zk(j))
r oo

/  / ( % ) k e )  X / ( ^ l ^ l  =  *1> ' • • » =  ZHj))dc7e ■ (5-13)
J <jf =0

Using the normal distribution in (5.5), and putting k = k ( j ) in (5.11), the integrand in (5.13) 

is similar to the RHS of (5.7) with k set equal to 1, v  replaced by v  +  k( j)  and w replaced 

by 'iOfc(j) with k set equal to k ( j ) in (5.12).

As in (5.8) and (5.9), integrating erf out from (5.13) gives

(^(j ) \^ 1  ~  i ^k(j) Zk(j))

for j  = 1, • • • ,s.

Similarly, for j  = 0, the marginal unconditional distribution of Z(q) is obtained, from (5.4) 

and (5.5), as

Z {0) ~ tv (0,2w).  (5.15)

As will be discussed in the next section, under reasonable choices of the conditioning values 

zh  ’ •1 ’ zk(j) j the expert assesses her median of the absolute value for each of the Student-i 

distributions in (5.14) and (5.15). These are exactly the upper quartiles of the t-variates, 

from symmetry about zero.
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Let the assessed upper quartile of and ( Z ^ \ Z \  — z i ,  • • • , Z k(j) = z k(j))  be denoted 

by go and for j  — R • • • respectively. If we denote the upper quartile of a standard 

Student-t distribution with is degrees of freedom by Q u, then we have

Qo =  (2w)1/ 2 Q„, (5.16)

and

Qj ^ ^ k { j ) }  ^ Q v + k { j ) i (5.17)

for j  =  1, • • • ,s.

The aim now is to solve the above pairs of equations for is and w. By division, for each pair, 

we get

Q" r W l V 2 . (5.18)qo

qj Qv+k(j)
w

-Wk(j).

Using (5.12), (5.16), we can eliminate w from (5.18), to get

qo Qi
qj Qv+k(j)

v +  k{j) (5.19)
L^ +  « E S ( V ? o ) 2J

for j  = 1, • • • , s.

For each value of j ,  the assessed ratio of qo/qj is used by the software to search for the 

value of the degrees of freedom is, say isj, that solves equation (5.19).

To guarantee the existence of a unique solution for v  using this approach, two conditions 

must be imposed on the function in (5.19). It must be strictly monotonic in v on the interval 

of concern. For statistical coherence, the assessed quartile, qj, must also be above a lower 

limit, say aj, for j  = 1,2, • • • , s.

To satisfy the latter condition, we assume that there is a reasonable minimum value of 

the elicited degrees of freedom, say min(z/). Since go has already been assessed, using the 

extreme value min(z/) in the RHS of (5.19) gives the lower limit of qj, as follows:

aj  =  g o
m in{is) +  Q2min(t/) Y!t=Kzi /go?  

min(z/) +  k{ j )
(5.20)

for j  = 1,2, , s.
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Setting this limit, we can now investigate the monotonicity condition. In fact, the mono­

tonicity of (5.19) as a function of v is required to ensure tha t there exists a unique value 

Vj > min(^) that satisfies (5.19) for qj > a j,  j  = 1,2, • • • , s.

In (5.19), if we put
HJ)

C 3 =  X ^ / 2 ° ) 2> (5 -21)
i=1

then the first derivative of qo/qj with respect to v will take the form

3 ( g o / g j )  V 2 f e / g O ) Q v Q v + m  r r  p S r p  - h d W O '  1
dv Qi+k(j)(cjQi + ^ 2  ̂ )̂)Qv+k{j)]

+  2 v(y  k^j^^QyQv+kti) ~  QuQv+k{j)) ~  k'U)QvQi'+k(j)}'

So, for all v > min(^),

9(qo/qj)
dv

if and only if

< 0

I "  k { j ) Q v Q v + k { j )  +  k ( j ) ) { Q v Q v + k ( j )  Q v Q u + k( j ) )  \  _  p / r  o o N

QllQv+m-^ + mQWkU)} J j’0'Cj  < min

Since there does not exist a closed form for the derivative of a Student-t quantile with 

respect to its degrees of freedom, the values of Cjto cannot be found analytically. Instead, 

these values have been computed numerically using Maple 14 Software, for s =  5, v  G [1,50]. 

Figure 5.1 lists these values of Cjto, where the derivative d(qo/qj)jdv  is plotted against v  and 

Cj,  for j  = 1,2, ••• ,5.

130



0J3&-
0.0?J
OOH
O.Q5-,'
0.04-140U34 1

0 .02-1 
0.0 i-J

0.03-/

J 0 .02 -J

For fc(l) =  1, C i ;0 =  1.626. For k(2) =  2, C2,0 =  3.367.

For k(3) =  4, C3,0 =  6.950.

dv

For k(4) =  8, (74,0 =  14.222.

For j  =  1,2, • • • ,5, Cj,o is such that:

50 40 20 .;

d_
c)v

/ - 0.1

-0.0(
- 0 .00!

-0.01C

—  ( — J < 0, for all 1 < v < 50, 
dv  \  qj J

if and only if Cj  < Cj,o-

For k{5) =  16, C5,o =  28.846.

Figure 5.1: Three dimension plots of d(qo/qj)/dv  against v and Cj  for various sample sizes

k ti)-

0.0 i4
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It can be seen from Figure 5.1 that

C i , o < % £ ,  for j  = 2 ,3 ,4 ,5 . (5.23)

Now, from (5.21), (5.22), (5.23) and Figure 5.1, we can state tha t the function in (5.19) is 

strictly monotonic decreasing in v, for all 1 <  v < 50 and j  = 1,2, • • • ,5, if and only if

1.626. (5.24)
K j )

Although we have not examined the case where v >  50, Figure 5.1 suggests tha t (5.24) holds 

for v >  1 .

In the implementation of the method, the software generates the values of zi th a t satisfy 

(5.24). Hence, for j  = 1 ,2, • • • , 5, a unique solution Vj can be obtained from (5.19), then the 

corresponding Wj can be obtained by substituting Vj for v in (5.16). We then reconcile the 

five different values of the degrees of freedom parameter v by taking their geometric mean.

When averaging different assessments of a degrees of freedom parameter, taking their 

geometric mean is favored, by empirical evidence, rather than  their arithmetic mean. See for 

example, Al-Awadhi (1997), Al-Awadhi and Garthwaite (1998) or Garthwaite et al. (2005). 

The elicited value of w can then be obtained from (5.16) by substituting for v  with the 

geometric mean of v\, • • • ,u5 .

Finally, we assume that the regression coefficients vector of parameters (3 = (a,/?i, • • • , 

(3m+n) is independent from a priori, and give the full prior structure of the normal GLM 

as

/ ( £ , ^ )  =  / i ( £ ) / 2 (<7e2), (5.25)

where f i  (/?) can be taken as the multivariate normal prior distribution elicited in the previous 

chapters, and f 2 (&e) =  as given in (5.4) with the elicited hyperparameters v  and

w.

132



5.2.2 Im plem entation and assessm ent tasks

The elicitation method proposed in the previous section has been programmed into the PEGS- 

GLM (Correlated Coefficients) software by the author of this thesis. The option of eliciting 

the prior distribution of the random error variance is given to the expert once she selects 

her model as an “ordinary linear regression” model. The same procedure has also been 

programmed in a separate piece of software that can be used as an add-on to any other 

elicitation software for normal models. This developed software is freely available as PEGS- 

Normal at http://statistics.open.ac.uk/elicitation.

In a dialogue box, the expert is asked to assume that two independent experiments have 

been conducted at the same design point, i.e. at the same values of the explanatory variables. 

She then assesses her median value, go, of the absolute difference, |£(o)|» between the observed 

values of the response variable after these two virtual experiments.

Since the distribution of Z(q) is symmetric about zero, see (5.15), the assessed median 

go of |Z (0)| is exactly the upper quartile of Z(0). In fact, Pr{|Z(0)| <  go} — 0.5 implies 

that P r{-go < Zyy <  go} =  0.5, which implies from symmetry th a t P r{Z(0) <  go} =  0.75. 

Similarly, from (5.14), each upper quartile qj,  for j  = 1, • ■ ■ ,s  will be assessed as the median 

of the absolute difference \ Z ^ \  given that Z\ = z\, • • • , Z ^  = z ^ y

In assessing the remaining conditional medians qj,  the choice of the conditioning values 

zi,  Z2 , • • • , Zf-yy for j  = 1,2, • • • , 5, is an im portant issue. As mentioned before, the method 

of Garthwaite and Dickey (1988) uses only one hypothetical data  point z\,  for which they 

suggested a value of z\ = qo/2 . They argued that, this choice will give a conditioning value 

that is not too close to go, so as to prompt a significant change in the expert’s opinion in 

assessing gi. This value of z\ is, at the same time, not too far from go, so as to represent an 

acceptable value for the expert to condition on.

In our implementation of the extended method, the above two criteria will be considered 

in choosing values for Z{, i > 1. This means th a t the values should result in a considerable 

change in the expert’s opinion, while the expert still find them  plausible values. To atta in
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this, we take z \  —  q o / 2 , following Garthwaite and Dickey (1988). Then we generate four extra 

sets of hypothetical data, for j  — 2, • • • , 5, the j th  set consists of k( j )  = 2J_1 data points.

of the previous data set, while the new extra elements z 2 j - 2 + 1 , • • • , ,  z 2 j - i ,  are generated as 

follows.

For i = 2J-2 + 1, • ■ • , 2-7-1, we generate Zi as random variates from a population with a

mean and a variance of (go/1-349)2. Thus, the interquartile range of this normal distribution

ones, is exactly qo/2.

For any data  set j ,  j  = 2, • • • , 5, if the generated values fail to satisfy the following 

condition

we resample the new elements z 2 j - 2 + 1 , • • • , ,  z 2 j - i ,  from the same normal distribution, until

(5.26) is satisfied. This guarantees tha t the generated data  should prompt the expert to 

revise her opinion by a substantial amount.

To implement the proposed procedure, The expert is asked to perform an assessment 

task tha t consists of s =  5 steps. In each step j ,  for j  =  1, • • • ,5, the software presents an 

interactive graph to the expert. The graph in Figure 5.2 is an example of the graph presented 

to the expert by the software at step j  = 3.

The first 2J 2 data points of each set, namely z i ,  ■ ■ • ,, z 2 j - 2 ,  are taken as the same elements

median of qo/2.  Hence, we choose each zi as the absolute value of a normal variate with zero

is go, and the upper quartile of the signed variates, which is also the median of the unsigned

(5.26)
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The thick black Brce marks your original assessment of the median diffenenoe betxieen two responses at the same design point.

But suppose two experiments mere conducted aft e a *  of a number of design points.
The difference between each pair Of response s is marked by an arrow in the diagram -
the new differences are marked by green arrows and earlier ones (or the earlier one3 by black arrows.
The median value Of these arrows is also matted -b y  a downward-pointing arrow.

If we again ran another two experiments at one design point, their values are again likely to differ, 
how how big do you think their difference would be?
Please giwe your median assessment by <£ddng on the horizontal fere. 
fYour assessment should be between the red marksj

Eliciting Conditional M edians of The Absolute  Difference of two re spon ses  at th e  sam e design point

This graph shows the expert’s first unconditional median qo drawn as the thick black long

z i ,  • • • ,Z4 , represented by upward arrows, together with a downward arrow that shows the 

sample median of this virtual data set.

The upward arrows of the data points from the previous set of hypothetical data, z \  and 

Z2 , are shown in the green color, while the upward arrows of the new generated data points, 

Z 3  and Z 4 ,  are shown in the black color.

Given the virtual data set (displayed as arrows), the expert is asked to assess her current 

median value <73 by clicking on the horizontal line between the two short red lines. These 

are the lower limit <23 computed as in (5.20) with min(i/) =  1 and the initial assessment qo. 

The expert’s median must lie between the red boundaries, otherwise she will get a warning 

message asking her to re-assess her median and satisfy this condition.

To assess <7 3 , the expert has two obvious strategies. The first strategy (the black one) is 

to look at the black line that shows her initial assessment qo, and decide where to revise this 

value in the light of the new information given by the black downward arrow that shows the 

median of the whole hypothetical data set z \ ,  • • • , 2 4 . The other strategy (the green one) is

I-------------1------------- j]-----------------   1---L)---------------------------1------------- 1------------- ,-------------1------------- 1------------- ,
0.0 1.0 2.0 | :  4.0 5.0 0 |0  7.0 8.0 9.0 10.0 11.0 12.0

M edian  of 4 d a ta  po in ts <

Absolute Difference lAssessed median a t4 .8926 |

Figure 5.2: Assessing a median value conditioning on a set of data

line and the more recent assessed median in the second other thick

green long line. The graph also shows a number generated data points



for the expert to look at the green line tha t shows her most recent median assessment which 

has been based on the hypothetical data set in green arrows z\ and 2 2 . She then decides 

where to revise this median assessment in the light of the new generated points 23  and 24  

shown as the black arrows.

W ith both of these strategies, if the expert is confident about her previous assessment, 

then her new median assessment should be near to this value rather than  near to the new 

hypothetical data. When the expert gives her new median assessment #3 , its value is first 

used by the software to compute z/3 from (5.19), and then to compute W3 from (5.16) using

^3-

The final output of the procedure, as illustrated in Figure 5.3, gives the five different 

elicited pairs of v  and w, together with the geometric mean of 1/  and its corresponding value 

of w. The expert is asked to check whether the different elicited values are close to each 

other and represents her opinion well. If not, she has the option to change any of them  by 

going back to reassess a specific qj through pressing the corresponding ‘Change’ button  for 

this step, see Figure 5.3.

   — .....  “ - a n
Step EScited value of DF EBtited value of W

1

2

3

4

5

Average 3.6136 32.1419

| Head> d jrHejp?(t7r|

Figure 5.3: The output table showing the elicited hyperparameters

After the expert has finished making any revision, the hyperparameters v  and w  are set 

equal to the two values in the last row of the table illustrated in Figure 5.3.

3.6740 32.2546 [C h a n g e

3.0870 30.9910 j ' Change

4.5280 333489 t Change

4.3840 333635 f  Change

2.7370 30.0095 ( Change

]|fi| GIM tUCITATION (eliciting the distribution of the normal error variance) .. ̂
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5.3 E liciting a prior d istribution for th e scale param eter in 

gam m a GLMs

In this section, we propose a novel method for eliciting a lognormal prior distribution for the 

scale param eter of a gamma GLM. It is well-known th a t the scale parameter of a gamma 

GLM, which is the reciprocal of the dispersion parameter, is in fact the shape param eter of 

the gamma distribution. Our new method is a valid means of eliciting the shape parameter 

of any gamma distribution once the distribution’s mean has been elicited (or the mean is 

assumed to be known).

Bayesian methods have been developed for analyzing data  to estimate the shape pa­

rameters of a gamma distribution, or the scale parameters of a gamma GLM. Miller (1980) 

proposed a general conjugate class of priors for the two parameters of the gamma distribution, 

but he gave no method of eliciting its hyperparameters. Sweeting (1981) introduced some 

suggestions for the Bayesian estimation of the scale parameters in exponential families. The 

problem of unknown scale parameters in GLMs was examined by West (1985). In his work, 

he discussed general ideas concerning scale parameters and variance functions in non-normal 

models including gamma GLMs, (see also West et al. (1985)). However, there does not seem 

to be a good method of eliciting a prior distribution for such parameters. Ibrahim  and Laud 

(1991) suggested a Jeffreys’s prior for the regression coefficients and an independent marginal 

informative prior on the scale parameter of gamma GLM, but they did not suggest any fam­

ily of distributions for this informative prior. The method of Bedrick et al. (1996), which 

is considered as the first elicitation method of informative prior distributions for GLMs, as­

sumed the scale param eter to be known and elicited priors only for the regression coefficients. 

Chen and Ibrahim (2003) proposed a novel class of conjugate priors for GLMs. They also 

discussed elicitation issues and strategies of these conjugate priors. Their proposed prior 

structure involves the dispersion param eter as well. However, no explicit elicitation method 

was introduced for the dispersion parameter.



5.3.1 GLMs w ith  a gam m a distributed response variable

For a continuous, positive, skewed distributed response variable £ in a GLM of the form,

Y  = g(fi )= g (E ( ( ; \X ) )  = a + p 1X 1 +(32X 2 + --- + PmXm,  (5.27)

the observations are often assumed to follow a gamma distribution, say

Gamma(A,0),

where A and 0 depend on X.- Its pdf is

/(C IA  e) =  C, A, e >  0, (5.28)

where A is the shape parameter, 0 is the rate param eter or the inverse of the scale parameter. 

It is well-known that

// -  E(C} -  A/d/. ^  -  V » r '0  -- A/ft". (5.29)

For the gamma GLM in (5.27), with any monotone increasing link function <?(.), the 

methods discussed in Chapters 3 and 4 can be used to elicit the prior distribution of the 

regression coefficients

£ = ( « ,  A ,  A ,  0m>’ (5’3°)

which represents the prior distribution of fi, i.e. reflects the prior knowledge about the ratio

A/0. We assume that the prior distribution of this ratio has already been elicited as

g ( \ / e )  ~  N ( r Qb,X!QX X 0), (5.31)

where b = E((3), S  =  Var(/3), have been assessed using methods given in the previous

chapters, and the vector 2Lo denotes all explanatory variables to be at their reference points.

Having elicited this prior for the ratio A/0, the prior expert’s opinion about one of the

hyperparameters A and 0 must be quantified to complete the prior structure of the gamma

GLM model. In what follows, expert opinion about the scale param eter A is modelled by

a lognormal prior distribution and we propose an assessment method for determining the
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hyperparameters of this distribution. As discussed before, the proposed method can be also 

used to elicit a shape parameter A of any gamma distribution.

We base our method on a gamma distribution with A as the only unknown parameter, 

assuming fi to be already assessed or completely known. For gamma GLMs, the elicited 

vector b can be used to obtain a single value of /i, say /iq, from (5.31). As we assume that 

the link function g(.) is monotonic increasing, the median value of X/ 6  is then

Mo =  0-1CXo&). (5-32)

We take the gamma distributed random variable £ defined in (5.28) and change parameters 

by putting 6 =  \ / f i  as in 5.29. This gives

/ ( C|A,m) =  j ~  G )  C,A,M > 0, (5.33)

We let

W  = - ,  (5.34)

and then the pdf of W  will depend only on A, i.e. W  ~  Gamma(A, A). This has the form

/ H A )  =  - L w , \ >  0. (5.35)

Our aim now is to find some meaningful strictly monotonic function in A, such tha t the 

expert can quantify her opinion about this function effectively. The expert cannot answer 

questions about A directly, as a gamma distribution param eter has little meaning to an 

expert because it is not an observable quantity. Instead, the expert should be asked about 

an observable quantity that directly relates to the observable gamma variate, and which can 

be monotonically transformed to A. The expert can thus be asked about any quantile of 

the gamma distribution as an observable quantity, provided tha t it is a strictly monotonic 

function in A. In what follows, we show that quantifying the expert opinion about the lower 

quartile of the gamma distribution in (5.35) will lead to a full prior distribution for A, and 

that this quartile is a strictly monotonic function in A.
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To check the monotonicity of different quantiles in A, let F ( w , A, A) be the cdf of W ,  then

it can be written in the form of a regularized gamma function as follows

\  X) = ~  , (5-36)

where 7 (A, A,w)  is a form of the lower incomplete gamma function,

rw
' y ( \ , \ , w ) =  / A xtx~1e~^tdt. (5.37)

J t =o

Note tha t it differs from the usual lower incomplete gamma function 7 (A, w ) in tha t the latter 

does not contain Aa in the integrand.

It is clear that the function F(w,  A, A), as a cdf of IT, is strictly monotonic increasing in 

w. But, as a function in A, the usual cdf

•F ( w , A )  = 2r ^ ’ ( 5 ' 3 8 )

as a regularized gamma function is strictly monotonic decreasing in A. The proof of this fact 

is given in Tricomi (1952), see also Gautschi (1998).

We next show that the same type of monotonicity is true for the function F(w,  A, A) in 

(5.36). This helps in finding a range of quantiles tha t are monotonic functions in A.

In fact, following the note of Koornwinder (2008) for F(w,  A), we can write

\ ^  _  t (a, a, w) _  7(A,A,u;) , ,
F  (w j A, A) ,. v f \  \ \ i t>/'\ \ \> (p.oyjT(A) 7 (A, X,w ) +  r(A, X,w)

where j (X ,X ,w )  takes the form in (5.37), and T(X,X,w)  is a form of the upper incomplete

gamma function, i.e.
r co

r(A, X,w) = / A (5.40)
J t = w

Differentiating (5.39) with respect to A, we have

dF(w,  A, A) —1 f N$r(A , X,w) , ^ 7 (A, AjU;)! , .
a \  =  r n \ )  \ ^ x ’x ' w ) ax  ~ r { x ' x ' w ) a x \ ' {5A1)

The quantity in curly braces can be written, after getting the derivatives as,



So, the function F ( w , \ , \ )  is monotonic decreasing in A if log{t/u)  — (t — u) >  0 in the 

integration domain, i.e. if
roo rw
/ t e ^ d t  > / t e ^ d t .  (5.43)

J  t = w  J t= 0

Apparently, the above condition is fulfilled if

w <  median of G am m a(2,1) =  1.678. (5.44)

Hence, from the positive skewness of a gamma distribution, and for all 0 < a  < 0.5,

wa < w0,5 < E ( W )  = 1 <  1.678, VA > 0, (5.45)

where wa is the a-quantile of W .

Prom (5.44) and (5.45) we can see tha t F(w,  A, A) is strictly monotonic decreasing in A 

for all quantiles w, such tha t w < wq^.  However, we believe th a t the expert can efficiently 

quantify her opinion about quartiles more easily by using the bisection method, see for 

example P ra tt et al. (1995). So, we choose the lower quartile, u>o.2 5 > as a monotonic function 

in A since the function F(ico.2 5 > A, A) is decreasing in A. Note th a t the opposite is not true, i.e. 

if w > iuo.5 then w is not necessarily greater than 1.678, and no monotonicity is guaranteed 

for wo.7 5 , for example.

Another reason for choosing the lower quartile and not the upper quartile, beside mono­

tonicity as discussed above, is tha t the lower quartile is more sensitive than the upper quartile 

to changes in the the shape param eter A at any fixed value of the mean. Figure 5.4 illustrates 

this fact; it shows the changes in both the lower and upper quartiles of gamma distributions 

due to the change of its param eter value A, for different fixed mean values at 0.5, 5, 50, and 

500. It can be seen from Figure 5.4 that the lower quartile is more sensitive than  the upper 

quartile to the changes in A at fixed mean values.

141



Mean=0.5 Mean=5

COo
o
d
coo
CMo

2 4 106 8

co
in

co
CM

2 4 6 8 10

Mean=50

L a m b d a

Mean=500

o
O
CO

o
•>sf-

o
CO

o
CM

102 4 6 8

oo
CO

oo

oo
CM

2 4 6 8 10

L a m b d a

Figure 5.4: Changes in quartile values with the change of A at different mean values.

Now, since F(w,  A, A) is strictly monotonic increasing in w and strictly monotonic decreas­

ing in A, for w < iuo.5 , then fixing F(w,  A, A) =  0.25, the lower quartile itfo.25 is an implicit 

monotonic increasing function in A, say

W0.25 = h*( A). (5.46)

Hence, from (5.34), we have

Qi = M*(A) = MA), (5.47)

where Q 1 is the lower quartile of £, and h(.) is a monotonic increasing function of A.

The expert will be asked to assess three quaxtiles of her prior distribution for Q\.  Then, 

from the monotonicity of h{.) in (5.47), these quartiles can be transformed into the corre­

sponding three quartiles of A. We assume that the prior distribution of A is a lognormal 

distribution, and use the three transformed quartiles to solve for the two param eters of the 

lognormal distribution. The required assessment tasks to implement this m ethod using in­

teractive graphical software are detailed in the next section.
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5.3.2 A ssessm ent tasks

The expert is questioned about the lower quartile of the gamma distribution, Q\  say. However,

quantify her uncertainty about it. Specifically, she is asked to give her lower and upper 

quartiles for Q\  in addition to her median assessment of its value. Questions tha t make this 

a meaningful task tha t an expert can reasonably be asked to perform are suggested later.

• Three quartiles of Qi  will be assessed by the expert, say Qi,i, Q 1,2 and Qits, where the 

median Q \$ is a point estimate of Q 1 , and Q ^ 3  — Qi^i is its interquartile range. Details 

on how to ask about these quartiles are given later.

• Under the monotonicity of h{.) in (5.47), the three assessed quartiles Q i,i, Q i ,2 and 

Qi,3 of Qi  can be transformed to the three corresponding quartiles of A|/i, say Q \ t\ , 

Qx,2 and Qa;3 , respectively.

• Hence, we obtain the three quartiles Qa,i> Qa ,2 and Qx ,3 of the prior distribution of A 

given /i, as

where /i_1(.) can be implemented by numerically inverting the incomplete gamma func­

tion F(w,  A, A) via a simple search procedure.

• From (5.47) and (5.48), if the three assessed values Q i,i, Qi$  and (^1,3 are the three 

quartiles of Q \ , then Q\,\, Q \$  and Qa ,3 are the three corresponding quartiles of A|/i, 

respectively. Clearly

• We assume that the prior distribution of A given fi is a lognormal distribution with two 

hyperparameters a and b of the form

she is not simply asked to give a point estimate of Qi - she is asked to give assessments that

Qx,i — h ^(Qi,z), i — 1,2,3, (5.48)

Pr{Q i <  Qu ] = Pr{(A|/u) < h 1 (Qi,*)}

=  Pr{(A|/i) < Qx,i} = 0.25(f), i = 1 , 2 ,3. (5.49)

(5.50)
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The properties of the normal distribution are used to estimate a and b from the trans­

formed assessments Q \ j ,  i = 1,2,3.

• Since, from the assumed lognormal prior distribution in (5.50), we have

(In A|/x) ~  N(a, 6), (5.51)

and using the fact tha t b =  IQ R /1.349, then clearly

„ i \  L_ ln (Q Ai3) - l n ( Q A)1) , c
a — ln(Qx,2 j, b — l ~ 349  ’ (5.52)

• The prior structure of the gamma GLM parameters take the form

f ( v ,  A) =  f (f j )  x f ( \ \ n ) ,  (5.53)

where f{n)  can be obtained from (5.31), and / ( A|/z) is given as lognormal (a, b).

This elicitation method has been implemented in graphical user-friendly software tha t au­

tomatically estimates the two hyperparameters of the lognormal distribution. The soft­

ware has been developed as an add-on to the PEGS-GLM (Correlated Coefficients) soft­

ware for eliciting the scale parameter A of the gamma GLM. It is also freely available at 

http://statistics.open.ac.uk/elicitation as a stand alone version, PEGS-Gamma, for eliciting 

the shape param eter A of a gamma distribution with a known mean.

In the former case, the median n o  and and the lower quartile Q i of the response variable 

£ at the reference point have already been elicited, see (5.32). For the latter case, the expert 

is asked, in a dialogue box, to assess her mean value no and the lower quartile Q\  of the 

gamma random variable. In both cases, these two assessments represents the first assessment 

step, from which the software suggests reasonable initial values for the other two required 

assessments.

The median value Q\,i is set equal to the assessed value of Q i, while the other two quartile 

values Q iti and Q i )3 are suggested as

Qi,i = Q i ,2 -  ^min(<5i)2, no ~  Qi j ) ,  (5.54)
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These initial suggested values are used in (5.47) and (5.49) to get the three quartiles 1? 

Q \  2 and Q® 3 of the param eter A, respectively. The inversion of (5.47) is done by the software 

through a simple search procedure.

As in (5.52), these quartiles are used to compute the two hyperparameters a and b of the 

assumed lognormal distribution of A. Using a and b, the mean value of A, say fi\, is computed 

from the lognormal distribution of A:

f i \  =  ex p (a+  i&2). (5.56)

Then fi\  is used with the assessed mean value fio to draw the pdf graph of the gamma 

distribution, Gam ma(^,M A/^o)- A main panel is presented to the expert showing this pdf 

graph; see the upper graph of Figure 5.5. The thick black line on this graph represents the 

mean value /iq.

}[fij F ikitnqG cim nu Param eter

Condtional on the given value of the  m ean, adjust the  th ree  es tim ates  of the  tow er quartile of the re sp o n se  variable:

Eliciting Quartiles fo r QI of a Gamma distribution
0.09

-Q1 of The R esponse variable Y
0.08
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14,7288
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M ecSanofQI: |

Upper quartile of Q1:|5.8236
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j E en e  “InW S p T|
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Figure 5.5: The main software panel for assessing gamma param eter

For statistical coherence of the assumed normal distribution of ln(A), the two normal

quartiles ln(Q® x) and ln(Q° 3) should be symmetrical around the normal mean, a =  ln(QA,2 )-
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To attain  this, we assume that the expert is always more confident in assessing the median 

value, than assessing the other two quartiles. So we treat her original and transformed 

medians Q 1,2 and Qx,2 , respectively, as being correct. Then we suggest two coherent sets 

of quartiles Q i.i, Q 1,3 and Qx,i , Q a ,3 to replace the initial assessments Q i ,3 and 1? 

Q ° 3, respectively, as follows. First, Qa , i , Q a , 3  are computed as the actual first and third 

quartiles, respectively, of a lognormal distribution with the two elicited parameters a and b. 

Then Q i,i, Q 1,3 are computed from Qx,i, Q \ , 3 , respectively, using (5.47) and (5.49).

The first group of values in the right-hand side panel of Figure 5.5 gives the values of the 

three suggested coherent quartiles Q i,i, Q 1,2 and Q 1,3 . These quartiles are also drawn as the 

three blue lines in the upper and lower pdf graphs of Figure 5.5. The second group of values 

gives the three quartiles of A, Q a , i>  Q A,2 and Q a ,3 -  The elicited values of a and b are shown 

as the third group of values in the same panel.

The lower graph in Figure 5.5 represents the elicited distribution of the lower quartile 

Q 1 , with the three vertical blue lines representing Q i,i, Q 1,2 and $ 1,3 . The graph is intended 

to help the expert check that the distribution is a reasonable representation of her prior 

knowledge of Q\.  Although we do not assume any specific family of distributions for Q 1 , 

the pdf graph is drawn using pointwise numerical derivatives of the cdf of Q This cdf is 

obtained as in (5.49), not only for the three quartile points, but also for a sufficiently large 

number of points. A set of 1000 points covering the whole range of Q\  has been used.

Hence, Figure 5.5 shows all the assessed and suggested quartiles of Q\  and A, with the 

two corresponding values of a and b. The two pdf graphs of A and Q 1 are also presented 

to the expert to show her the impact of these quartile values and hyperparameters on the 

two distributions. The main assessment task tha t the expert is asked to perform uses the 

following type of question. Let us suppose tha t the variable tha t has the gamma distribution 

is the period of time that a patient with some medical disorder may stay in hospital. Then 

the expert will be asked to consider the length of time th a t a hypothetical patient, John, 

will spend in hospital. She is told, “John has this disorder and will spend a time in hospital.
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Suppose he is fortunate and does not spend as long as most people in hospital. Specifically,

suppose exactly 25% of patients with John’s disorder spend a shorter time in hospital than

John. Give your median assessment for the length of time th a t John spends in hospital. Now 

give your lower and upper quartiles for this length of time.”

suggestions a reasonable representation of her opinion, she can accept them, which finishes 

the assessment procedure. If they do not represent her opinion adequately, she has the 

option of directly reviewing the median value Q of Q i, or indirectly reviewing the quartiles 

Q 1,1 and Q ^ 3  by changing the value of the hyperparameter 6 . As discussed before, for 

statistical coherence, changes must be made first to the value of b and then transformed into 

corresponding coherent changes in Q i) 1 and Q 1,3 .

In principal, the expert can change Q 1,2 to any value in (0,^o)> and she can change b to 

any positive value. However, to get a unimodal distribution for Qi, some restrictions must 

be imposed on the values of a and b, as detailed below.

Although the relation between Q1 and A, as given in (5.47), is strictly monotonic increasing 

for all A > 0, the numerical second derivative of h(A) reveals a critical point of zero at 

A =  0.5045. Therefore, the pdf of Q 1 is not guaranteed to be unimodal if the elicited values 

of a and b lead to a non-neglectable probability of A < 0.5045.

To avoid an undesirable appearance of the pdf of Qi,  we restrict the elicited lognormal 

hyperparameters a and b to satisfy

This condition insures (from the standard normal distribution) that

The expert will be shown suggested coherent assessments and graphs. If she finds the

(5.58)

i.e. it guarantees that

Pr(A <  0.5045) < 0.001. (5.59)
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If condition (5.57) is not satisfied, the right hand side panel on Figure 5.5 will only allow 

the expert to increase the value of Qi,2 , hence increasing a =  ln(<3 i,2 )> or directly decreasing 

the value of 6.

A ‘Reset’ button is available for the expert to return at any time to the initial coherent set 

of suggestions and graphs and review them again if she needs to. When the expert is happy 

with the quartile values and the corresponding pdf graphs, she clicks ‘Done’ and obtains the 

two corresponding hyperparameters a and b as the output of her assessments.

5.4 Concluding com m ents

To elicit an informative prior distribution for normal and gamma GLMs, expert opinion 

must be quantified about both the regression coefficients and the extra parameters in these 

models. In this chapter, two elicitation methods have been proposed to quantify expert’s 

opinion about a prior distribution of the random error variance in normal GLMs, and a prior 

distribution for the scale parameter in gamma GLMs.

A method of assessing a conjugate inverted chi-squared prior distribution for the error 

variance in normal models has been proposed. The method quantifies an expert’s opin­

ions through assessments of a median and conditional medians of the absolute difference 

between two observations of the response variable at the same design point. Conditional 

assessments have been based on various sets of hypothetical future samples. These assess­

ments depend only on the random error and have been used to elicit the inverted chi-squared 

distribution. A computer program that implements the method is available as an option 

in the PEGS-GLM (Correlated Coefficient) software and also as an add-on to any other 

elicitation software for normal models, PEGS-Normal. Both versions are freely available at 

http: /  /  statistics.open.ac.uk/elicitation.

A novel method for eliciting a lognormal prior distribution for the scale param eter of a

gamma GLM, or the shape parameter of any gamma distribution, has also been proposed.

The method depends only on quantifying an expert’s opinion about the lower quartile of
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a gamma distributed random variable. This lower quartile is itself a random variable; for 

which the expert assesses a median value as a point estimate and an interquartile range. An 

example of questions tha t can be addressed to the expert has been given. The interactive 

graphical PEGS-Gamma software implementing this method is user-friendly. It gives coherent 

suggestions for all the required assessments and presents instant graphical feedback. To the 

best of the author’s knowledge, this is the first piece of interactive software that is designed 

for eliciting a prior distribution of the shape param eter of a gamma distribution or the scale 

parameter of a gamma GLM.
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Chapter 6

Eliciting Dirichlet priors for 

m ultinom ial m odels
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6.1 Introduction

Multinomial models, consisting of items tha t belong to a number of complementary and 

mutually exclusive categories, arise in many scientific disciplines and industrial applications. 

For example, they are frequently encountered in geology for different compositions of rocks, in 

microeconomics for patterns of consumer selection preferences, in political science for voting 

behavior. Other application areas include medicine, psychology and biology.

For mathematical coherence, the probabilities of each category must be non-negative and 

satisfy a unit-sum constraint. The multinomial distribution describes this model as a direct 

generalization of the binomial distribution to more than two categories.

It is well-known that the Dirichlet distribution is a conjugate prior for the parameters 

of multinomial models. The distribution preserves the unit sum constraint of multinomial 

probabilities and imposes a simple Dirichlet pattern  of dependency between them. This 

structure gives negative correlations between the probabilities of categories, as will be shown 

later.

A different way of thinking about prior distributions for multinomial models is to use the 

multivariate normal distribution as a large sample approximation to the Dirichlet distribution 

or to the distribution of the log contrasts of the multinomial probabilities. Another option is 

to estimate the exact distribution of log contrasts using a Monte Carlo sample. Generalized, 

nested or mixed forms of the Dirichlet distribution have been also introduced and suggested 

as suitable priors for multinomial models. For more details on possible prior distributions for 

multinomial models see, for example, O’Hagan and Forster (2004).

Eliciting parameters of multivariate distributions is not, in general, an easy task. It is

even more complex when the variates are not independent, in which case summaries of the

marginal distributions should be assessed, together with effective and reliable summaries of

the dependence structure of the joint distribution [O’Hagan et al. (2006)]. In this chapter, our

proposed method makes use of assessments of marginal beta distributions. Decomposition

of the Dirichlet elicitation process into the assessment of several marginal beta  distributions
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helps reduce the complexity of eliciting a multivariate distribution.

In Section 6.2, we develop a method of quantifying opinion about a beta prior distribution 

by the assessment of three quartiles. The method will be generalized to elicit a Dirichlet 

distribution in Section 6.3. The elicited beta univariate distribution will also be used to 

construct more flexible distributions in the next chapter, including the generalized Dirichlet 

prior and a Gaussian copula function for the prior distribution.

6.2 E liciting b eta  param eters using quartiles

6.2.1 Introduction

The beta distribution is widely used in Bayesian analysis as a conjugate prior for the proba­

bility of success in Bernoulli trials. The domain of definition for the beta distribution of the 

first type is the interval [0,1], which is appropriate for the probability param eter of Bernoulli 

and binomial distributions. Moreover, the beta distribution is also a conjugate prior for 

Bernoulli and binomial sampling distributions, so th a t the posterior distribution is obtained 

through simple arithmetic. The wide range of valid values of the two hyperparameters of the 

beta prior gives it great flexibility and its pdf has varied shapes. In this sense, the beta dis­

tribution is more likely to be a reasonable model of the expert’s opinion compared with other 

priors such as the uniform distribution over the interval [0,1] or the triangular distribution 

suggested by van Dorp and Kotz (2002).

It seems th a t eliciting beta parameters is. the most studied elicitation problem to date, 

whether it is a beta prior for Bernoulli or Binomial sampling distributions, a distribution 

of a probability of an event, or a proportion that ranges between zero and one. There 

are many methods available in the literature for eliciting beta  distribution parameters. A 

comprehensive literature review may be found in Hughes and Madden (2002), Jenkinson 

(2007) or O’Hagan et al. (2006).

The available methods for beta elicitation can be classified into two general classes of
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elicitation methods, variable interval and fixed interval. In the variable interval methods, the 

probability is fixed and the expert assesses an interval tha t gives this probability. In the fixed 

interval methods, the interval is fixed and the expert assesses the probability tha t the event 

of interest will be in that interval. Asking about quartiles is an example of the first methods, 

while assessing probabilities is an example of the second class of methods.

Beta elicitation methods vary in the quantities tha t the expert must assess. She may be 

asked to assess a location value such as the mean, the median or the mode. Also, a scale 

value must be assessed, such as the probability of being in an interval, the boundaries of an 

interval, or the mean absolute deviation about a location value. These quantities may be 

converted into the hyperparameters in exact forms or through numerical approximation.

Regarding the number of required assessments, most of the available methods use only 

two assessed quantities, usually one for location and the other for scale. These give estimates 

of the two beta parameters. Although only two assessments are mathematically needed to 

elicit two unique parameters, some methods use over-fitting through assessing three or more 

quantities, followed by some sort of averaging or reconciliation.

In this section we propose a new method of eliciting the parameters of a beta  prior 

distribution for the binomial success probability. Assessments of the median and two quartiles 

are elicited. A compromise is needed to reconcile these three assessments into two unique 

parameters. We use a normal approximation to the beta distribution to estimate initial 

values of the beta parameters, followed by a least-squares technique to optimize the two 

initial values. According to the classifications given above, the proposed m ethod is a variable 

interval method tha t uses three assessments, a median and two quartiles.

We believe tha t it is better to elicit a median as a location value and quartiles for scale, 

than, say, to elicit a mean and other quantiles. The median and quartiles are easier for an 

expert to assess as they are obtained by the first two steps of equally likely subdivisions (bi­

section method). The expert can be asked about the median as the value th a t the probability 

of success is equally likely to be above or below. Then we ask the expert to sub-divide the
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interval above the median into two equally likely intervals for the probability; her assessed 

value is her upper quartile. The same concept is used for the interval below the median in 

order to obtain her lower quartile.

van Dorp and Mazzuchi (2000, 2003, 2004) introduced a numerical algorithm and software 

to specify the parameters of the beta distribution and its Dirichlet extension using quantiles. 

They used the median as a measure of central tendency with any other single quantile as 

a measure of dispersion. Although they proved that this suffices mathematically for the 

existence of a unique solution for beta parameters, it is more useful in elicitation contexts to 

use over-fitting as a means towards better representation of an expert’s opinion.

6.2.2 Norm al approxim ations for b eta  elicitation

To estimate the two parameters of the beta distribution using three assessed quartiles, we 

propose a two step approach. In the first step, a normal approximation for the beta distri­

bution is used to transform and reconcile the three assessed quartiles as two initial values for 

the beta parameters. In the second step, a numerical least-squares m ethod is applied to the 

initial parameter values so as to optimize them. The aim is to find param eter values tha t give 

nominal quartiles th a t are as close as possible to the assessed values. This section is devoted 

to the proposed normal approximation, while the least-squares optimization is discussed in 

Section 6.2.3 below.

A method tha t directly fits a beta distribution to the assessed median and two quartiles 

is given in P ra tt et al. (1995). They used a normal approximation for the beta distribution 

together with averaging. The method was also used as the main assessment m ethod in a study 

of the effect of feedback and learning on the assessment of subjective probability distributions 

(Stael von Holstein, 1971). Our proposed method adopts the technique of P ra tt et al. (1995), 

but with a different normal approximation and a new compromise to get initial param eter 

values. We also add a least-squares optimization technique. In what follows, we summarize 

the argument of P ra tt et al. (1995) and then propose a different normal approximation and
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a different compromise.

Let p be the success probability of concern, and assume that p  has a conjugate standard 

beta prior distribution of the form

f{jp) = i - p ) 6" 1, 0 < p  <  1, a >  0 , b >  0 . (6 .1)

P ra tt et al. (1995) stated that the transformation

Z  =  2 { [ p ( 6 - l /3 ) ] 1/2- [ ( l - p ) ( a - l / 3 ) ] 1/ 2} (6.2)

has approximately a standard normal distribution. Let qi be the zth quartile of p th a t is

assessed by the expert, for i =  1,2,3. Using the assessed lower quartile qi and the assessed

median q2 , we get the following two equations from (6.2):

P r \ Z  <  2 {[?i(6 -  1/3)]1/2 -  [(1 -  qi)(o -  1/3)]1/2}} =  0.25, (6.3)

P r { z < 2 { [ © ( 6 - l / 3 ) ) 1/2- | ( l - ? 2) ( a - l / 3 ) ] 1/2}} = 0 .5 . (6.4)

Solving (6.3) and (6.4) for a and b gives

ai =  ci <72 +  g (6-5)

and

where

bi = c i( l  -  q2) +  (6.6)

- 2
ci =  0.112 {[g2(l -  q i )}1/2 ~  fei(l -  ©)]1/2}'

Similarly, the assessed upper quartile, qs, gives the equation

P r { z < 2 { f e ( 5 - l / 3)]1/2- [ ( l - © ) ( a - l / 3)]I/2} }  =  0.75. (6.7)

Solving (6.4) and (6.7) for a and b gives

«2 =  C2<?2 +  g (6-8)

and

b2 =  C2(l — 9 2 ) +  (6-9)
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where

c2 =  0.112 |[g 2(l -  <?3 )]1//2 -  [9 3 (1  -  ?2 )]1//2}

The compromise of P ra tt et al. (1995) is simply to estimate a and b as the average of (6.5), 

(6.6), (6.8) and (6.9), i.e.

a\ +  a2 
a = = _ ’ z (6.10) 

bi +  &2
6 =  ^ —

However, P ra tt et al. (1995) did not mention the theoretical derivation of the approx­

imation in (6.2), nor its accuracy. So, we tried to use another approximation tha t is still 

mathematically tractable, but whose justification and accuracy have been investigated. Pa­

tel and Read (1982) give a good review of some accurate normal approximations to beta 

variables. They describe the following normal approximation as a simple yet accurate ap­

proximation.

If p has a beta distribution of the form in (6.1), then the transformation

Z =  2 {[p(6 -  1/4)]1/2 -  [(1 -  p)(a -  1/4)]1/2} , (6.11)

has an approximate standard normal distribution. The absolute error of this approximation

is of order

We adopt the approximation (6.11) to propose a new elicitation method for the beta param ­

eters a and b using the three assessed quartiles <&, i — 1,2,3.

Instead of direct averaging, we introduce a new compromise, making use of the charac­

teristics of the normal distribution. In fact, it is well-known that

20.75 ~  2o.25 =  1-349, (6.12)

where zo.25 and zo.75 are the lower and upper quartiles of the standard normal distribution,

respectively.
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In view of the approximation (6.11), we have

[<n ib  -  1/4)]1/ 2 -  [(1 -  q2)(a -  1/4)]1/2 =  0. (6.13)

20.25 =  2 {[gi(6 -  1/4)]1/2 -  [(1 -  qi)(a -  1/4)]1/2} , (6.14)

*0.75 =  2 {fe(& -  1/4)]1/2 -  [(1 -  ®)(<t -  1/4)]1/2} . (6.15)

Substituting with (6.14) and (6.15) in (6.12) we get the new compromise between q\ and qs

as

{\q3(b -  1/4)]1/2 -  [(1 -  q3)(a -  1/4)]1/2} -

{[9 l(i>- 1/4)]1/2 -  [(1 -  qi)(a — 1/4)]1//2} =  (6.16)

Solving (6.13) and (6.16) for a and 6, we get

a = cq2 + ^  (6.17)

and

& =  c ( l - g 2) +  i ,  (6.18)

where

c =  (L M 9 f  { fc(1  _  5i)]1/2 _  fc(1  _  9j)]1/2 +

f e ( l - 9 2 ) ] 1/2- [ ? 2 ( l - ? 3 ) ] 1/2} ' '2 .

We argue tha t our method preserves the assessed median value and the only compromise 

is between the two quartiles. We believe this will represent the expert’s opinion better. The

expert usually assesses her median with more certainty and less bias than  her lower and

upper quartiles. By using the new compromise of quartiles in (6.16) and keeping the median 

equation (6.13) fixed, we reflect the probable greater accuracy of the median assessment.

According to the accuracy of the normal approximation, the proposed initial values of the 

beta parameters, given in (6.17) and (6.18), lead to nominal values for the beta  quartiles tha t 

are close to the assessed quartiles. However, they are not guaranteed to be the param eter
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values that minimize the differences between nominal and assessed quartile values. This is 

not ideal, so we just treat equations (6.17) and (6.18) as giving initial param eter values that 

can be improved upon.

6.2.3 Least-squares optim izations for b eta  param eters

Oakley (2010) gave a least-squares method for choosing beta parameters a and b th a t minimize

Q =  [F(qi ,a,b) — 0.25f  + [F(q2, a, 6) -  0.5]2 +  [F(q3, a, b) -  0.75]2 , (6.19)

where F ( x , a, b) is the cdf of a beta distribution with parameters a and b at the point x.

The same approach has been implemented in the SHELF elicitation framework developed 

in Oakley and O ’Hagan (2010). They introduced an R package of templates and software 

for conducting elicitation, within which minimizing Q in (6.19) was used to estimate beta 

parameters from assessed quartiles. However, they do not use any explicit normal approx­

imation to a beta distribution when deriving the initial estimates of the beta parameters. 

Instead, they just transform the assessed beta  quartiles into the mean and variance of a nor­

mal distribution, as if the quartiles were assessed for a normal distribution. The mean and 

variance are then assumed to be those of a beta distribution, from which initial values for 

the parameters can be computed.

Our accompanying elicitation software, PEGS-Dirichlet, implements programs written by 

Flanagan (2011) for the Java scientific library. These numerically minimize (6.19), which 

cannot be minimized analytically. They use a multidimensional technique called the down­

hill simplex method. The method was introduced by Nelder and Mead (1965) as a quick 

multidimensional minimization method tha t uses only function evaluations, not derivatives.

To constrain beta parameters to be positive, we transform them to a logarithmic scale. 

Hence we actually minimize

Q =  (F[gi,exp(a*),exp(&*)] -  0.25}2 +  {F[q2, exp(a*), exp(&*)] -  0.5}2

+  {F[g3, exp (a*), exp(&*)] -  0.75}2 ,
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for a* and b*, with initial values as in (6.17) and (6.18), but on the logarithmic scale, i.e.

log(a) and log (6). The final resulting beta param eter values are thus exp (a*) and exp(&*).

Our elicitation software, PEGS-Dirichlet, presents an interactive graph to the expert

showing the previously assessed probability medians of all categories. The expert is asked

to assess a lower and an upper probability quartile for each category by clicking on the

graph. Once the two required quartiles are assessed for any single category, the proposed

method of beta param eter elicitation is implemented by the software on the probability of

this category. A pop up window opens showing the pdf graph of the elicited beta  distribution

with the location of the three assessed quartiles. This gives instant feedback to the expert,

see Figure 6.1.

Tho Bota Distribution of P2
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Figure 6.1: Assessing probability quartiles of each category

If she is not satisfied with the fitted beta distribution, the expert can simply change her 

assessments of the two quartiles. The whole elicitation process is applied again whenever the 

expert changes her quartile assessments. The pdf curve is interactively changing to show the 

direct impact of changing quartiles.
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On finishing the elicitation process for all categories, the beta  parameters are then com­

promised to estimate the Dirichlet hyperparameter vector as discussed in Section 6.3, below.

6.3 E liciting a D irichlet prior for a m ultinom ial m odel

6.3.1 Introduction

A limited number of attem pts have been made to develop elicitation methods for Dirichlet 

parameters, see Chapter 2 for more details. Jenkinson (2007) and O’Hagan et al. (2006) 

discussed two methods for Dirichlet elicitation. Namely, the method of Dickey et al. (1983) 

and that of Chaloner and Duncan (1987).

The elicitation method suggested by Dickey et al. (1983) starts by assessing the probability 

of each category directly from the expert. She will then be given a hypothetical future sample 

of a fixed size and told the number of items in each category. She is asked to re-assess the 

probabilities given this hypothetical sample. The equivalent sample size th a t corresponds to 

her prior knowledge can thus be estimated using Bayes’ theorem.

Chaloner and Duncan (1983) give a method for eliciting a beta distribution. Chaloner 

and Duncan (1987) generalize this method and give an interactive graphical tool for Dirichlet 

elicitation. This is based on assessing the sample size and the modal values of Dirichlet 

variates, and then giving feedback to adjust the param eter values.

As mentioned before, van Dorp and Mazzuchi (2003, 2004) introduced a numerical algo­

rithm  that yields the Dirichlet parameters from quantile assessments. Their algorithm uses k 

quantile assessments to estimate all the parameters of a ^-dimension Dirichlet distribution. 

However, we believe tha t it is better to assess more than k quantiles and then apply some 

form of reconciliation to estimate the parameters.

Assuming a Dirichlet prior for the success probabilities is one way of reconciling separate 

marginal beta prior distributions. Eliciting a Dirichlet prior by using assessed beta  marginal 

distributions was outlined in Bunn (1978, 1979). However, his elicitation m ethod used the
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hypothetical future sample technique. He stated tha t the application of the usual univariate 

quantile methods may generally be difficult and tedious in practice because of the multivari­

ate nature of the Dirichlet distribution. However, the availability of interactive graphs and 

efficient computing enables us to use the quantile method in an elicitation method that is 

easy for the assessor and quick.

In what follows, we propose some reconciliation methods, based on the Dirichlet dis­

tribution, of combining beta marginals tha t have already been assessed using the method 

introduced in Section 6.2.

6.3.2 The m ultinom ial and Dirichlet distributions

Let the random vector X =  (x 1; X 2, • • • , Xf.) niultinomially distributed with k cat­

egories, n  trials and a vector of probabilities P = ( p 1, p2> • * • 9 Pk)’ f°rm

f  { x > x k)
Xi\x2\ ••■ajfc!

(6 .20)

0 <  Xi <  n, J2 x i = n > 0 < Pi < 1, J^Pi =  1,

or, equivalently, in the form

f ( x i , x 2, • • • ,Xk) = x \ \ x 2\ •••Xk'.-^pTpT • • - P ^ U  - P I  - P 2  P k - i T k, (6.21)

0 < xi <  n, l > *  =  n, 0 <Pi  < 1 , £ p * < l .

A conjugate prior for the parameter vector p  is the Dirichlet distribution, which has the form

7r(pi,P2,-- - ,Pk) = r(ai)r(a2) • • -r(afc) (6 .22)

0 < p i  < 1, J^Pi  =  b  ai >  0) N  = J2 ai,

or, equivalently, the form

n(pi,P2 , - '  ,Pk-1 ) =
T(N) p „ x - i p „ 2 _ i . . .  ( 1  _  pi _  p2 . . .  _  ( 6 . 2 3 )

r(a i)r(a2 )---r(a ifc)

0 < P * < 1 ,  J2Pi <  b  a-i >  0, N  = ^ 2 ai-
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It is well-known that the expectations, variances and covariances of the Dirichlet variates 

P i ,  for i = 1,2, • • • ,k,  are given by

To elicit the vector of hyperparameters a =  (ai) . . .  ? afc), we use the direct relation

between the Dirichlet distribution and its special univariate case, the beta distribution. We 

have already developed, in Section 6.2, a method of eliciting the two hyperparameters of a 

beta distribution. The hyperparameters of the Dirichlet distribution can be induced from 

those of the univariate beta distributions through some form of reconciliation. This can be 

done using either the standard marginal beta distributions of the multinomial probabilities, or 

the conditional scaled beta distribution of each of them. In what follows, these two proposed 

approaches are given in detail.

6.3.3 The marginal approach

Consider the form in (6.20) for the multinomial distribution with the conjugate prior Dirichlet 

distribution in (6.22). It is well-known that, from (6.20), the marginal distribution of each 

X{ is a binomial distribution with the two parameters

It is straightforward to show, using the Dirichlet pdf in (6.22), tha t the marginal distribution 

of each pi is a beta distribution:

(6.24)

(6.26)

(6.25)

rii -  n, pi, i =  1,2, • • • , k.

P i  ~  beta(ai,/%), for i = 1,2, • • • , k (6.27)

where



A ssessm ent tasks

Exploiting the beta marginal distributions, the elicitation process may be divided into k 

steps. At each step, the expert will be asked to assess three quartiles for pi, the binomial

probability of category i (i = 1,2, • • • ,k).  See Figure 6.1, where the lower and upper quartiles

have already been elicited for the first two categories. These quartiles can then be used to 

estimate the two hyperparameters a.{ and fa of the beta prior distribution of pi, as proposed 

in Section 6.2. Since we use the marginal approach, the categories here are interchangeable. 

It does not m atter where to start assessing nor the order of the categories.

To reconcile these separate marginal beta distribution into a Dirichlet distribution, we 

use a least-squares technique as follows.

Least-squares techniques

It is clear tha t the system of equations in (6.28) does not have a consistent solution, a = 

(ai <22 ••• afc)' ■̂rom (6-28), each marginal step of the elicitation process provides

estimates of ai and N{, namely

for i = 1,2, • • • ,.fc, (6.29)

for i =  1,2, • • • , k. (6.30)

The estimated hyperparameters must fulfill the unit sum constraint of the probability expec­

tations, i.e. they must satisfy
k

X >  = 1,
i = 1

where

«  =  # .  * =  1 ,2 ,--- ,fe. (6.31)

Lindley et al. (1979) investigated the reconciliation of assessments th a t are inconsistent with 

the laws of probabilities (incoherent). They developed least-squares procedures as recon­

ciliation tools tha t may be used for any expert’s incoherent assessments. Following their
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approach, we propose the following options for reconciling different incoherent estimates of 

Hi and N,  yielding coherent estimates /r* and N *, respectively.

O p tio n s  for h*:

1. Normalize each Hi> as required for the Dirichlet distribution, giving

2. Minimize the sum of squares of differences between h* and /i*, i =  1,2, • • • , fc, subject to

However, the values of h* computed here using Lagrangian optimization are not guaran­

teed to be positive. If negative values are found, we replace the Lagrangian multipliers 

method with a numerical restricted minimization technique. The downhill simplex 

method of Nelder and Mead (1965) can also perform restricted minimization as follows.

To solve this restricted optimization problem, for /z*, i = 1,2, ••• , fc, our elicitation 

software, PEGS-Dirichlet, implements a program for minimization w ritten by Flanagan 

(2011). The initial values for this method are obtained from (6.32).

3. The option in (6.34) changes each value of Hi by adding a fixed amount. However, 

the precision of each estimate, i.e. the inverse of its variance, can be used as a weight

(6.32)

the constraint Y a =i Mi =  1- ^h is can be done using Lagrangian multipliers to minimize

Q as follows.
k k

Minimize Q =  ^ (m *  -  Hi f  +  M* ~  !)• (6.33)

Solve for ya*, giving

(6.34)

k
Minimize Q = ^^(Mi ~  Mi)2? (6.35)

such that

0 <  Hi < 1, i = 1,2, ••• ,k, (6.36)

k
(6.37)



to reflect the expert’s confidence in each of her assessments [Lindley et al. (1979)]. A

constrained weighted least-squares procedures can be formulated as follows.

k k
Minimize Q =  _  Mi)2 +  MX̂  ̂  ~  ^  (6.38)

z= 1 i—1

where

Wi = [Var(pi)]_1 =  

Solving for /i* gives

aiPi 1 1
Xa i +  Pi +  +  A )2.

, i = 1,2, • • • , k. (6.39)

1
H i = l H +  - V  * =  1.2, ---  ,fc.

Again, the minimization method implementing the restricted downhill simplex method 

is used if negative values of /i* are found:

k ■ ■ ■
Minimize Q = X ^ — fii)2, (6.40)

7 = 1

under the same constraints given by (6.36) and (6.37), using initial values as in (6.32). 

O p tio n s  for N *:

1. Since no constraints are imposed on N*,  minimizing the sum of squares

k
Minimize Q =  X^(-^* — Nj)2,

7=1

gives the average

N-
N* = ^ i=l \  (6.41)

k

2. Using the same weights as in (6.39) gives the weighted average

N* =  WiNi (6.42)

as a solution of
k

Minimize Q = — Ni)2.
7=1

Estimating fi* and N *, using any of the options listed above, makes it easy to estimate 

a{ by a*, where

a* = ntN*,  i =  l , .2 , . . . ,fc .
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Implementation and feedback

We use three different combinations of the options given above as follows:

1. Direct normalization of fi? as in (6.32) and the average N* in (6.41).

2. Least-squares optimization for /i* as in (6.33) or (6.35), and for N*  as in (6.41).

3. Weighted least-squares optimization for f.11 as in (6.38) or (6.40), and for N* as in

(6.42).

The software elicits three hyperparameter vectors of the Dirichlet distribution, one vector 

for each of the above combinations. Each vector is then used to compute the corresponding 

pairs of marginal beta parameters as given in (6.28). Three quartiles for each beta marginal 

are computed numerically for each different Dirichlet hyperparameter vector. The three sets 

of quartiles are then displayed to the expert and she is asked to select the set of quartiles 

that best represents her opinion. The vector with the selected set of quartiles will be taken 

as the final elicited hyperparameter vector of the Dirichlet prior. See Figure 6.2, where the 

first two combinations are shown and the expert has selected the second one.

H ere a re  y o u r unconditional a s s e s sm e n ts ,  you  m ay  c h a n g e  a n y  of th em !

Fie E<St Tods Help

U nconditional M edians and quartiles already a s s e s e d  fo r Each Category

B

1
i

Category 2 Category 3
C ategories 

r'; S ipw w i l  ’O o p o o n a r

Category t

Figure 6.2: A feedback screen showing 2 different quartile options
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The expert is still able, however, to modify any or all of the selected set of quartiles, 

in which case beta parameters are computed again as in Section 6.2, and the final Dirichlet 

hyperparameter vector is computed according to equations (6.29) - (6.32) and (6.41).

6.3.4 The conditional approach

Consider the form of multinomial distribution given in (6.21), with the form of conjugate 

Dirichlet distribution given in (6.23).

then it can be shown [e.g. Wilks (1962)] that the marginal distribution of any subset of P k _ x 

is again a Dirichlet distribution, e.g.

k

Pr =  (pi p2 • • ■ pr ) ~  Dirichlet (ai, a2, • • • , ar , Oj), 1 < r  <  k -  1.
i=r+1

For l < r < f c  — 1, we can get the following conditional scaled beta distributions

If

P k _ i  ~  i p i  p 2 • • • P k —i )  ~  Dhichlet(ai, 0 2 , • • • , &k)

(6.44)

(6.43)

which are the scaled beta distributions over the intervals (0,1 — 1 P i ) -  The distributions

in (6.44) are also known as three parameter beta distributions, i.e.

k r —1

for 1 < r < k — 1.
i = r + 1 i = l

Applying the transformation
(

for r  =  1

gives
k

for r  =  1,2, • • • , k — 1. (6.45)
i = r + 1

167



A ssessm ent tasks

The elicitation process is conducted as follows:

•  The expert chooses the most convenient category to start with; we denote its probability 

as p i .

• The expert assesses three quartiles for pi,  which are then converted into estimates of 

the two hyperparameters a\  and Pi of the beta distribution, beta(o:i, Pi).

• The expert is asked to assume that the median value she gave in the first step is the 

correct value of pi,  and she then assesses three quartiles for p2 - Figure 6.3 shows the 

graph after the median and lower quartile of the second category have been assessed 

by the expert, given the median of the first category as shown by the red bar.

:.r :z~z;.;:;i:zzzrziziz^^ " ~ ~
You a ssessed  th e  lower quartile probability of category (Category 2) to  be (0.213).

a — — .................. z — 1
fit Edt Tools Help

Eliciting Q uartiles of th e  probabilities of Category (Category 2)
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Figure 6.3: Assessing conditional quartiles for Dirichlet elicitation

•  Dividing each of the three quartiles of P2 by 1 — pi,  we get the quartiles of p\. Hence we 

obtain estimates of the hyperparameters a 2 and P2 of the marginal beta  distribution of 

P i
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• The process is repeated for each category except for the last one. For r  =  3,4■ • • , k  — 1, 

the expert gives quartiles for (pr \pi,P2> • * • ,P r-i)-  Dividing by 1 — J2i=i Pi gives the 

three quartiles of p*, which are used to estimate the two hyperparameters a r and (3r of 

its marginal distribution. (We do not require the marginal distribution of pk-)

•  To help the expert during this task, the software presents an interactive graph show­

ing the pdf curve of the conditional beta distribution of (pr \pi, "  for r  =

2,3, •• • ,k  — 1, see Figure 6.4. The expert is able to change her assessed conditional 

quartiles of pr until she finds the conditional pdf curve an acceptable representation of 

her opinion.

FM EdK T00t» Help

Tho Conditional Scalod Bota D litrlbutlon of P2
4.0
35

3.0

2.5

1.5

1.0

0.0
0.50 0 21 0.3 0.37

Eliciting Q uarttlot o f tfio probability* of Catogory (Catogory 2)

Category 1 Category 3 Category 4

Hw-.-f fwgrl

£0  i g  j j  io j ** | Q !■«!»»hgp_________ |  | |f f l  TUg C

Figure 6.4: Assessing conditional quartiles with scaled beta feedback

Eliciting the hyperparameter vector

Using (6.45), we get the following system of equations

(Xj*   Cby J

k

for r = 1,2, • • • , k  — 1,
(6.46)

Pr = a ir for r  =  1,2, — 1.
i = r + l
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Each elicited beta distribution has its own different estimate of N , given by

N r —  ^   ̂OL{ T Oir  T f i n (6.47)

based on ai, i — 1,2, • • • , r — 1, which has been estimated in previous steps.

The system of equations in (6.46), as in the marginal approach, might not be consistent 

nor have a unique solution for a =  (a1} a2 , • • • , a*,)- So, we try  to find a way of averaging

this system to get a vector of estimates a* = (a*; a*? . . .  ? a*) tha t is a good representa­

tion of the expert’s opinion. We believe tha t keeping the mean value fixed, where possible, 

while moving from different beta distributions to a Dirichlet distribution may be a sensible 

approach.

Using (6.24), put

Hence, in view of (6.46) and (6.47)

r r = 1,2, — , k -  1,

(6.48)
f i l e - 1 r = k.

k - 1

Since, for the Dirichlet Distribution, it is required that

k

k'r — 1)
r —1

we normalize the set of /ir , for r  =  1,2, • • • , k, to get

Moreover, let



and take

a*r = n*rN*, r =  1 ,2 ,-•• ,k.

It remains now to find a proper estimate of N*.  We take this as the average of all the 

denominators in (6.48):

Changing the expert’s selection of the first category, as well as the order of conditioning 

categories at each step, will lead to different estimates of a. To overcome this, one possibility 

is to repeat the whole process several times, using different starting categories and orderings. 

This will give sets of estimates a*’s, for which a simple averaging might give a suitable choice 

for a*. However, showing the marginal quartiles of the marginal beta distributions as a 

feedback to the expert and offering her the option of changing them seems another sensible 

option.

The feedback process for the conditional approach is similar to th a t for the marginal approach. 

The main difference is in the relationship between the Dirichlet hyperparameters and beta 

parameters in the two approaches. To present the quartiles of each probability pi, i = 

1,2, • • • , k, as feedback to the expert after applying the conditional elicitation approach, we 

must first compute the parameters of the marginal beta distributions.

The two parameters oci and of each marginal beta distribution of pi, i = 1,2, • • • , k, 

can be simply computed from the already elicited hyperparameter vector a* of the Dirichlet 

distribution:

k—1 f r k-1

E E a i +  &i +  Pk-1
  T—1 —1

k
i= 1

Feedback

k
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These can be used to compute numerically the three quartiles of each beta marginal distri­

bution. The computed quartiles are then presented to the expert as feedback, see Figure 6.5.

m

: T ie  B B  T orts (to p

-Ini x |

H ere  a r e  y o u r unconditional a s s e s sm e n ts ,  y ou  m ay  c h a n g e  a n y  of them !

W- JSlx}

U nconditional M edians and  quartiles already  a s s e s e d  fo r  Each C ategory

J j_
Category 4Category 3

Change I ta f ia n s j 

O  Change Quartiles
J fniuinr»~|

Figure 6.5: The feedback graph presenting marginal quartiles

The expert is asked to change any of the quartiles tha t do not satisfactorily represent her 

opinion. If any (or all) of these marginal quartiles are changed by the expert, we apply the 

marginal approach to re-elicit the Dirichlet hyperparameters as follows.

The new set of modified marginal beta  quartiles are used to elicit new pairs of beta 

parameters as proposed in Section 6.2. Using these new parameters, together with equations 

(6.29), (6.30) and (6.31), we apply the first combination proposed in the marginal approach 

in Section 6.3.3. We implement the first combination tha t uses simple averaging as a quick 

and straightforward way to recompute the Dirichlet hyperparameter vector using the new 

set of modified quartiles. The whole process can be continuously applied until the expert is 

satisfied with the quartiles in the feedback.
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6.4 C oncluding com m ents

A reasonable method for eliciting beta parameters using quartiles has been proposed. The 

method combines two different approaches tha t have been used separately in the literature. 

A normal approximation was used to compute initial param eter values, which have then been 

optimized using a least-squares technique. In order to elicit the hyperparameter vector of the 

Dirichlet distribution, we made use of both the marginal and conditional beta distributions 

in two different approaches. The two approaches are programmed in the PEGS-Dirichlet 

software tha t is freely available at http://statistics.open.ac.uk/elicitation.

As it is the simplest conjugate prior distribution for multinomial models, the Dirichlet 

distribution is very tractable. However, its lack of flexibility limits its usefulness as a prior 

distribution. In the next chapter, we discuss the drawbacks of the Dirichlet distribution and 

propose new elicitation methods that give more flexible prior distributions for multinomial 

models.
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Chapter 7

Eliciting more flexible priors for 

m ultinom ial m odels
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7.1 Introduction

Being a conjugate prior for the multinomial models, the standard Dirichlet distribution is 

widely used for its tractability and mathematical simplicity. However, the Dirichlet dis­

tribution in its standard form has been criticized as insufficiently flexible to represent prior 

information about the parameters of multinomial models [e.g. Good (1976), Aitchison (1986), 

O’Hagan and Forster (2004), Wong (2007)].

The main criticisms of the Dirichlet distribution can be summarized as follows.

1. It has a limited number of parameters. A fc-variate Dirichlet distribution is only speci­

fied with k  parameters. These determine all the k  means, k  variances and the k{k —1)/2 

covariances, as given in (6.24)-(6.26).

2. The relative magnitudes of each a2- determine the prior mean, while only the overall 

magnitude N  — Sa^ determines all the variances and covariances if the means are kept 

fixed.

3. Consequently, the dependence structure between Dirichlet variates cannot be deter­

mined independently of its mean values.

4. Dirichlet variates are always negatively correlated, as can be seen from the covariances 

formulae in (6.26), which may not represent prior belief.

5. Dirichlet variates tha t have the same mean necessarily have equal variances.

Motivated by these deficiencies, many authors have been interested in constructing new 

families of distributions for proportions to allow more general dependence structures [e.g. 

Leonard (1975), Aitchison (1982), Albert and G ubta (1982), Krzysztofowicz and Reese (1993), 

Rayens and Srinivasan (1994), Tian et al. (2010)].

Some of these new distributions are direct generalizations of the standard Dirichlet dis­

tribution [e.g. Dickey (1968, 1983), Connor and Mosimann (1969), Grunwald et al  (1993),

Hankin (2010)]. We select one of them and develop a method of eliciting its hyperparam ­
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eters as a prior distribution for the multinomial model. The selected generalized Dirichlet 

distribution shares some of the desirable properties of the standard Dirichlet distribution. 

It is conjugate, reasonably tractable and can be elicited via the beta elicitation procedure 

proposed in Chapter 6. The method of eliciting a generalized Dirichlet distribution is given 

in Section 7.2 and an example illustrating its use is given in Section 7.3. A Gaussian copula 

function is proposed in Section 7.4 as a flexible multivariate distribution th a t combines the 

marginal beta distributions tha t an expert has assessed.

7.2 E liciting a generalized D irichlet prior for a m ultinom ial 

m odel

7.2.1 Connor-M osim ann distribution

Connor and Mosimann (1969) introduced a form of the generalized Dirichlet distribution that 

is also known as Connor-Mosimann distribution. It has a more general covariance structure 

than the standard Dirichlet distribution and a larger number of parameters, 2(k — 1).

Its properties have been investigated by Lochner (1975) and Wong (1998), who used it 

as a prior distribution in a real life engineering application in Wong (2005) and addressed its 

maximum likelihood estimation in Wong (2010). The density function can be written in the 

form [Connor and Mosimann (1969)],

k- 1
*(pi ,P2,-” ,Pk) = n

»=i

 ̂ bi—i
r (a* +  bi) Dai-1 / y '
r(o i)r(6 j) Pi \ j =' P]

0 < Pi < 1, Y P i  = b  ai > 0, bi >  0, &o is arbitrary. 

Or, equivalently, in the form [Lochner (1975)]

f c - l  r

v t 1' 1, (7-1)

T (c ij  T  6 j)  —j .
---------------------P i 1 (1  P l  P 2 ---------------- P i ) 11
r  ( a i ) r ( f e i )

i = 1

0 < Pi < 1, Y,Pi  ^  a%> 0> bi > 0,

where j i  =  bi -  (ai+1 +  bi+1), for i =  1, 2, • • • , k -  2, and j k - i  = bk-i -  1.
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The standard Dirichlet distribution is a special case of the Connor-Mosimann distribution 

when b{ = a*+i +  fef+i, for i = 1,2, • • • , k — 2. Moreover, it is also a conjugate prior to the 

multinomial distribution. See, for example, Wong (1998).

This generalized Dirichlet distribution can be obtained by transforming (k — 1) indepen­

dent beta variates Zi, Z 2 , • • • , Z k - 1 , each with parameters ai and b{, for i =  1,2, • • • , k — 1, 

as follows

for j  = 1,

j  =  2 r - - , k - l .
\  i = l

The remaining variable pk can be also given, in terms of Z i, Z 2 , • • • Zk, as

Zi,

P j  =  3 - 1
(7.3)

fc—1

Pk =  I f ( l  _ (7.4)
i=l

where, by definition, Zk — 1.

The inverse transformations are given by

Pi,

Zj  — < Pj
3-1

1 -
i=l

for j  =  1,

for j  =  2, • • • , k.
(7.5)

The first two moments of the generalized Dirichlet variates can be computed, in view of (7.3) 

and (7.4), as

for j  = 1,
Sj  — E  (pj) — < j - 1

(7.6)

£ ( Z , ) J ] E ( l - . Z i ), for j  =  2, - - - ,fc,
i=l

and

Ti = E ( t f )  =
for j  =  1,

j - i (7.7)

£ ( Z f ) n  £ (1  -  Zi)2, for j  =  2, • • • , A.
i=l

Hence, using well-known formulae for the first two moments of the standard beta distribution,
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and since Zk = 1, we write

ai

S j  =

a i + b i '  

lj
j - i  ,

Cl-i j - j  Oi

CLj b j  .  ̂CLi T  b{J J i = l
k - 1n
i =  1

ai -f bi

for j  =  1,

for j  =  2, • • • , k -  1, 

for j  = k ,

a i(a i +  1)
(ai + 6 i)(o i + b i  +  1)

aj(aj  +  1) j - in +  1)
(%• +  bj)(aj +  bj +  1) (ai +  bi)(ai +  +  1)

bi(bi +  1)
1̂ 1 (cii +  bi)(ai +  bi +  1)

for j  = 1,

, for j  =  2, ••• , k -  1,

for j  =  k.

and

Var(pj) = Tj — S j ,  for j  = 1,2, • • • , k.

Regarding covariances, Connor and Mosimann (1969) showed that

E ( P j )Cov(pi,pj) =  -
E(1 - p i )

Var(pi), for j  = 2, ••• ,k,

j - 1

Cov(p j , p j +1) =  J2(Zj + 1)E[ Zj (  1 -  Zj)}  J ]  JS[(1 -  Z i f }
i= 1

-  E(pj)E(pj+1), for j  =  2, • • • , k -  1,

and

Cov(pj,pTlt) =
E ( Z m) m —1n

i= j'+ l

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

Cov(pj,pj+\), for 1 < j  < m  < k. (7.13)
E ( Z j+1)

Therefore, pi  is always negatively correlated with all other variates. However, any other

two successive variates can be positively correlated, as can be seen from equation (7.12).

Moreover, the correlation between any pj and pm, for 1 < j  < m  < k, has the same sign as

that of Cov(pj,pj+i). In this sense, the generalized Dirichlet distribution has a more flexible

dependence structure than the standard Dirichlet, which always imposes negative correlations

between all pairs of variables, as mentioned before. Similar results were found by Lochner

(1975), while Wong (2005) used these properties to select a generalized Dirichlet prior for

sorting probabilities of microelectronic chips that tend to be positively correlated.
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As in the case of the standard Dirichlet distribution, the conditional distributions of the 

generalized Dirichlet variates are still scaled beta distributions. This can be shown, using the 

marginal distributions of the generalized Dirichlet distribution, as follows.

If pfc_ 1 =  (pi j P2 i • • • ,Pk- 1) has a generalized Dirichlet distribution of the form (7.2), then 

the marginal distribution of any subset from pfc_ 1, say pr = (pi,P2 , • • ■ ,Pr), r  =  2,3, • ■ • , k —1, 

is again a generalized Dirichlet distribution with the corresponding parameters [e.g. Wong 

(1998)].

The conditional distributions of pr \pi,P2 , • • ■ ,Pr- 1 > for r  =  2,3, • • • , — 1, can be com­

puted from (7.2) as follows

. . .  '^'(P.r’ a2>’ ' ’ > Ur—1) bl i  2̂? > br —i) ,
i r (Pr\Pl ,P2 ,  ' ■ ■ , P r - l )  =    T— r-----7---- \ (7-14)

KWr- i ; a i >fl2’ ’ "  5ar-2,O i,62,-- - A - 2 )
1 / \  i>r 1

1 ' l - , ■■ 1 , (7-15)
/JK.MU-EtJpO"’-V i-EClw

which are scaled beta distributions over the intervals (0 , 1  — X)[=i Pi)’ They are also known 

as three parameter beta distributions, i.e.

r — 1

(Pr\pi>P2 5 ’ ■ ’ 5Pr—l) ~  beta(ar , 6r , l  -  ^ 2 Pi), for r  =  2,3, ---  , / c - l .
i= l

As in Section 6.3.4, applying the transformation

f

p u  for r  =  1 ,

^ r for r — 2 ,3, • • • , k — 1 ,
r — 1 

i= 1

gives

p* ~  beta(ar , 6r ) Vr =  1,2, • • • , k — 1. (7-16)

7.2.2 A ssessm ent tasks

The elicitation process given before in the conditional approach for the standard Dirichlet

case in Section 6.3.4 is still valid here. The main difference in the current case is tha t

the generalized Dirichlet hyperparameters (ai, a2 , • • • , Ufc-i, &i, &2 >• • • > k/c-i) are exactly the
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parameters (a*, bi) of the beta distribution of p* in (7.16), for r =  1,2, • • • , k — 1. Hence, the 

generalized Dirichlet hyperparameters are directly estimated using beta parameters tha t can 

be elicited using conditional assessments as in Section 6.3.4. Note tha t no compromise or 

averaging is needed here, since the total number of hyperparameters tha t are elicited is equal 

to the number of hyperparameters in the generalized Dirichlet distribution, namely, 2(k — 1). 

This extended number of parameters does not eliminate the benefits of feedback, but it gives 

the generalized Dirichlet distribution a more flexible structure than the standard one.

Positive correlations can occur in this generalized case, as discussed before, making it more 

useful and practical in quantifying expert’s opinion. However, Aitchison (1986) criticized the 

class of generalized Dirichlet distributions as being intractable, particularly with respect to 

statistical analysis. He also noted that, despite having a more general dependence structure 

than the standard Dirichlet, the class still retains a strong independence structure.

7.2.3 M arginal quartiles of the generalized D irichlet distribution

It is always useful to give feedback to the expert based on her elicited hyperparameters. This 

feedback makes the elicited quantities a better representation of the expert’s opinion. For the 

generalized Dirichlet prior, where the assessed probability quartiles are all conditional except 

for the first category, it is helpful to inform the expert of the corresponding marginal proba­

bility quartiles of each category. She should be given the opportunity to modify them  so that 

they are closer to her opinion, and the elicitation method should change the hyperparameter 

vector according to these modifications.

Unfortunately, marginal distributions of the generalized Dirichlet are not directly of the 

beta type. However, we make use of the independent beta random variables given in (7.5) 

to approximate the distribution of each P j ,  j  = 1,2, • • • , k , as a standard beta distribution. 

Detail is given in the remainder of this section.
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A n approxim ate d istribution  for th e  product o f independent b eta  variates

Fan (1991) introduced a beta approximation to the product of a finite number of independent 

beta random variables. His method is described in Johnson et al. (1994) and Gupta and 

Nadarajah (2004), who report favorably on the method based on Fan’s comparison of the 

first ten approximate and exact moments. The method equates the first two moments of 

the approximate beta distribution to the corresponding product moments of the independent 

beta random variables.

In what follows, we use the method of Fan (1991) to derive the marginal approximate beta 

distribution of each P j ,  j  = 1,2, • • • , k, from which the marginal quartiles are computed. The 

method can also be inverted to give a new elicited hyperparameter vector of the generalized 

Dirichlet distribution, based on the marginal quartiles, if any have been modified by the 

expert.

For j  =  1,2, •• • ,k,  using the method of Fan (1991), the distribution of each pj can be 

approximated by

Pj ~  be ta (aj,(3j), (7.17)

where

j ~  T j - S j  ’

and

Pj  -  Tj  -  S f  ’

with Sj  and Tj as given by equations (7.8) and (7.9), respectively.

Feedback

The three quartiles of the distributions in (7.17) are numerically computed and presented to 

the expert. She is invited to modify some or all of them  as she thinks necessary, in which 

case the modified quartiles are converted in the same manner as proposed in Section 6.2, to 

give modified pairs of parameters (a? ,flj)-
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The modified two moments of each pj, for j  = ' 1,2,--* , k , are computed as follows

s' = aj *»

and

rrJ +  ! )

J (aJ+^;)(aJ + /8; + l)

(7.18)

(7.19)

After obtaining Sj  and Tj, they are transformed into normalized values Sj  and Tj", respec­

tively, such that X)jLi -S’j  =  1-

In the manner of (7.8) and (7.9), we can write the two modified moments of each Zj ,

denoted by Uj = E * ( Z j ) and Wj =  E*(Z j ) ,  for j  = 1,2, • • • , k — 1, as

t j . — _______________

3 a*: +

st,
St

b*

and

j - 1

n a* +  I*
\  1 = 1  1 1

for j  = 1,

-, for j  =  2, , A; — 1,

a-(a - +  1)w . = --------- U J --------------
J (aj +  6j)(aj +  6* +  1)

rn*
j

j - 1n &*(&*+1)

for j  =  1,

-, for j  =  2, • • • , A: — 1,

L («? +  &:)(«?

The above system of equations can be recursively solved for the modified hyperparameters 

of the generalized Dirichlet distribution, aj and 6j, for j  = 1,2, • • • , k — 1, to give

. _  I ' l i U j - W j )
j  ~  Wj  -  uj ’

»J =
(1  -  Uj)(Vj  -  Wj )

W j - U f

These modified hyperparameters of the generalized Dirichlet distribution represent the final 

output of the method.

7.3 Exam ple: O besity m isclassification

Obesity and being overweight are serious public health problems whose adverse consequences 

can include diabetes, high blood pressure and cardiovascular disease. Obesity can be mea-



sured using the Body Mass Index (BMI) of adults, which is defined as body weight (in 

kilograms) divided by body height (in meters) squared. Obesity is defined as a BMI of over 

30 and overweight is a BMI over 25. Looking at the situation in Europe it is estimated that 

50% of adults between 35 and 65 years of age are overweight, of whom 10-25% are obese.

M alta reportedly has one of the highest levels of overweight people in Europe. According 

to the European Health Interview Survey (EHIS), November 2011, M alta recorded the highest 

proportion of obese men (24.7%) and women (21.1%) amongst the 19 EU Member States for 

which data  are available. The EHIS reports 36.3% of adults in M alta being overweight and 

a further 22.3% being obese. Obesity in M alta is indeed a major public health challenge and 

it is targeted as a priority action in M alta’s Strategy for Sustainable Development.

In interview surveys, the heights and weights of participating subjects are not measured. 

Self-reported values of these variables are normally used instead. However, self-reported val­

ues are less precise and have no guarantee of accuracy, specially when they are converted 

into BMI (Shields et al. (2008)). Indeed, the prevalence of overweight and obesity are gen­

erally underestimated when calculated from self-reported data  as compared with measured 

data. Adults have been shown to systematically overestimate their height, and underestimate 

their weight. The extent of weight underreporting increases with increasing measured weight 

(Shields et al. (2008)). As a result, significant misclassification occurs when BMI categories 

are estimated from self-reported data. Correcting interview data  for this misclassification 

bias is desirable but data to estimate the bias is lacking. Instead, quantifying expert opinion 

might be used to estimate the bias.

One aspect of the obesity misclassification problem in M alta was formulated in a multino­

mial model as follows. It relates to Maltese adults (16+) who self-report themselves as having 

a normal weight (18.5<BMI<25). Their actual clinical BMI classification may fall in one of 

the following multinomial categories: Underweight (BMI<18.5), Normal (18.5<BMI<25), 

Overweight (25<BMI<30) or Obese (BMI>30). A health information expert, Dr. Neville 

Calleja, used our PEGS-Dirichlet elicitation software to quantify his opinion about this
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model, first giving two separate sets of assessments, each of which determines the param­

eters of a Dirichlet distribution, so tha t his opinion could be represented by a Dirichlet prior 

distribution. The second set of assessments was also used to determine the parameters of a 

generalized Dirichlet distribution, so th a t his opinion could be modelled by a more flexible 

prior distribution. Dr. Calleja has been responsible for all health surveys in M alta for the last 

10 years. Currently, he is the director of the Department of Health Information and Research 

in the Ministry of Health, the Elderly and Community Care, Malta. His department leads 

the collection, analysis and delivery of health related information in Malta.

To elicit a Dirichlet prior based on unconditional beta marginals, the expert ordered 

the four categories as Normal, Overweight, Obese, Underweight. His unconditional median 

assessments for these categories were 0.65, 0.20, 0.10, 0.04, respectively. Then he gave his 

unconditional lower (upper) quartile assessments as 0.55, 0.15, 0.06, 0.02 (0.70, 0.30, 0.14,

0.07), respectively. See Figure 7.1. The four beta marginals were then reconciled into a 

Dirichlet distribution using three different ways; direct normalizing and averaging, least- 

squares optimization, and weighted least-squares. Since the expert’s assessed medians nearly 

sum to one, the three different ways gave sets of reconciled quartiles tha t were very close 

to each other. He selected marginal medians and quartiles tha t were computed by direct 

normalizing and averaging. The elicited hyperparameters of the Dirichlet prior distribution 

were obtained as a\ — 13.23, 0 2  =  4.71, 0 3  =  2.18, 0 4  =  1.08, with their sum N  — 21.20.
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Figure 7.1: Medians and quartiles assessments

Based on conditional beta distributions, the expert quantified his opinion again to elicit 

another Dirichlet prior for the same problem, but using a different elicitation method. His 

three quartile assessments of the first category were 0.60, 0.65, 0.72. Then, he was asked to 

assume that the probability value of the first category is exactly 0.65; given this information 

he gave his three quartiles for the second category as 0.17, 0.20, 0.25. Finally, conditioning 

on the probabilities of the first two categories being 0.65, 0.20, he gave the three quartiles 

of the third category to be 0.07, 0.09, 0.15. The three quartiles of the fourth category were 

automatically computed and shown to the expert as 0 .0 1 , 0.06, 0.08.
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Figure 7.2: Assessing conditional medians

Figure 7.2 is a screen shot after the expert had assessed his median for the third category. 

The median probability of the third category is in blue (it was assessed), while the fourth 

median is in yellow (it was calculated from other assessments). Figure 7.3 shows the condi­

tional quartiles tha t the expert assessed for the third category and the conditional quartiles 

tha t were calculated for the fourth category. The elicited hyperparameters of the Dirichlet 

distribution using this method were ai = 19.91, a2 =  5.00, az =  1.11, a4 — 0.65, with a sum 

of N  = 26.67.
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Figure 7.3: Assessing conditional quartiles

On finishing the elicitation process using conditional assessments, the expert was shown 

a software message offering him the possibility of using the same conditional assessments to 

elicit a generalized Dirichlet distribution. The expert chose to elicit this more general distri­

bution as well. The following hyperparameters of the generalized Dirichlet prior distribution 

were elicited, a\ =  19.29, a-i — 4.41, as =  0.91, b\ — 10.23, 62 =  3.15, 63 =  0.54.

To compare the three prior distributions elicited in this example, expected values and 

variances of multinomial probabilities were computed for each distribution as shown in Ta­

ble 7.1. The means and variances of the Dirichlet distribution were computed using the 

elicited values of the hyperparameters in formulae (6.24) and (6.25), respectively. The same 

was done for the generalized Dirichlet using formulae (7.6) to (7.10).
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Table 7.1: Probability assessments for different elicited priors

Marginal assessments Conditional assessments Generalized Dirichlet

Median E(Pi) V (Pi) Median E{pi) V(pi) E (Pi) V M

P i 0.65 0.624 0 .0 1 2 0.65 0.746 0.007 0.653 0.008

P2 0 .2 0 0 .2 2 2 0.008 0 .2 0 0.187 0.006 0 .2 0 2 0.006

P3 0 .1 0 0.103 0.004 0.09 0.042 0 .0 0 1 0.091 0.004

PA 0.04 0.051 0 .0 0 2 0.06 0.024 0 .0 0 1 0.054 0.003

It can be seen from Table 7.1 tha t the first Dirichlet prior, which was elicited using 

marginal assessments, and the generalized Dirichlet prior both gave expected values of the 

multinomial probabilities that are close to the assessed medians. The second Dirichlet prior 

that was elicited using conditional assessments gave a relatively higher mean value for the 

first probability than its assessed median, combined with a reduction in the expected values 

of all other probabilities. This is a little surprising as the generalized Dirichlet utilized the 

conditional assessments tha t give the second Dirichlet distribution, yet its hyperparameters 

are similar to the method that uses marginal assessments. The two elicited values of the 

hyperparameter N  were relatively close to each other, 21.20 and 26.67, in the two elicited 

standard Dirichlet priors. (There is no single value for N  with the generalized Dirichlet.) 

Moreover, variances of the multinomial probabilities were all small and also close to each 

other in the three elicited prior distributions.

After eliciting each of the three Dirichlet prior distributions discussed above, the software 

showed the suggested marginal medians and quartiles of each pair to the expert. He accepted 

the suggested marginal quartile values, saying th a t the suggested values were very close to 

his initial beliefs. Keeping the unit sum constraint in his mind, the expert remarked tha t 

assessing conditional medians and quartiles was easier than assessing marginal quartiles. He 

stated that he could not think about marginal assessments for each category independently 

of the others. However, he noted at the same time that the elicited generalized Dirichlet



distribution may be the most flexible prior of the three.

7.4 C onstructing a copula function for th e  prior distribution

Using the marginal elicitation process given before, we obtain a number of marginal beta 

distributions. Rather than assume these stem from a Dirichlet distribution, we would like to 

allow a more flexible dependence structure via their joint distribution, with the aim of better 

representing the expert’s opinion. A flexible tool for this task is given by the copula function, 

which allows us to choose the marginal distributions independently from the dependence 

structure between them. The latter structure is given by the copula.

A copula is best described as a multivariate distribution function tha t is used to bind 

together marginal distribution functions so as to form a joint distribution. The copula pa­

rameterizes the dependence between the marginals, while the parameters of each marginal 

distribution function can be assessed separately. See for example, Joe (1997), Nelsen (1999) 

and Kurowicka and Cooke (2006).

There are many types and classes of copula functions, but the most intuitive ones use 

inverted distribution functions as arguments in known multivariate distributions [Nelsen 

(1999)]. The general inversion form of a copula function C  is given by

C[Gi(z i), • • • ,G k(xk)] =  F(1,...ik) { F f 'IG U n ) ] , • • • , F ^ [ G k(xk)}} ,

where Gi are the known marginal distribution functions, Tp,... ,fc) and F{ (i =  1 , • • • , k) are the 

assumed joint and marginal distribution functions, respectively. The copula function C  works 

as the cdf of the multivariate distribution tha t “couples” the given marginal distributions.

7 .4 .1  G a u ssia n  co p u la  fu n c tio n

The best-known example of the inversion method is the Gaussian copula [Clemen and Reilly 

(1999)], which is given by

,Gfc(xfc)] =  ®it,,! { $ - 1[G1(x1)],--- .S -^G tO t*)]}. (7.20)
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Here <&k,R is the cdf of a fc-variate normal distribution with zero means, unit variances, and 

a correlation m atrix R  that reflects the desired dependence structure. is the marginal 

standard univariate normal cdf.

Since <&k,R and 4> are differentiable, the Gaussian copula density function can be simply 

obtained by differentiating (7.20) with respect to X{, i =  1,2, • • • ,k ,  giving

f ( x i , x 2, - "  ,Xk\R) = 9 l^  9k^  ex p { -^ Z fc (^ _1 ~ h ) Y k}. (7.21)

where

X t  =  ( $ - I [G1( s 1))) ^ - ' [ G s ^ ) ] ,  ® - 1[G?*(a:fc)])>

gi(.) is the density function corresponding to i — 1,2, ••• ,k , and Ik is the identity

m atrix of order k.

To construct a Gaussian copula function in the case of a multinomial model, we can 

think of each marginal distribution as a beta distribution whose two hyperparameters have 

been assessed. Then we can construct a Gaussian copula function for the multivariate dis­

tribution of pi,p2, • • • jPfc-i- According to the unit sum constraint, the remaining variable, 

Pk = 1 — Yli=i Pi> can t reat ed as a redundant variable tha t may be removed from the 

multivariate distribution to avoid singularity problems. Using the Gaussian copula function, 

the dependence structure of the multivariate distribution will have high flexibility rather than 

the limited dependence structure imposed by the Dirichlet distribution.

The Gaussian copula function is indexed by the correlation m atrix R, which needs to be 

elicited effectively and must be a positive-definite matrix. In what follows we introduce a 

method, inspired by Kadane et al. (1980), to elicit the correlation m atrix R  th a t is sure to 

be positive-definite.

Let Gi(pi)  be the cdf of the beta distribution of pi with hyperparameters cn* and fy, 

z =  l ,2, --* ,k  — 1, and assume that the joint density of P \ , P 2 , • • • , P k - i  is given by a Gaussian 

copula density, such that

,Pk-i\R) = 9liPl) X '|'^[vf*!~l(P*~l) e x p f - i i l - j t i r 1 (7-22)
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where

Z'k- i  =  te -^ G x fa ) ] ,  S -M G sfe )], ■■■, S - M G n f e - i ) ] ) .

and gi(.) is the beta density of pi, i — 1, 2, • • • , k — 1.

Note that the marginal distributions of this joint density are still the desired beta marginals. 

Since the hyperparameters of each beta distribution of pi, i = 1,2, • ■ • , k — 1, have already 

been elicited, the prior distribution is totally known except for the matrix R. Although the 

above density is not multivariate normal for p \ , p2 , • • • ,Pk-i  and the m atrix R  is not their cor­

relation matrix, we can still use the multivariate normal properties to elicit a positive-definite 

matrix R  by considering the following normalizing transformations,

Yi =  4>-1[Gi(p«)], i =  ,fc. (7.23)

We should stress tha t with this copula function, the marginal distributions of the pi are 

beta distributions that can be fixed independently of R. Thus the ability to specify R  gives 

added flexibility. The aim is to choose R  so as to model the expert’s opinion about the 

dependence between the pi.

According to the main assumption of the Gaussian copula construction, and from (7.23), 

the vector Ŷ k_ x = ( y 1) y 2) . . .  } Yk-\)  ^ as a multivariate normal distribution with zero

means, unit variances and a correlation m atrix R , i.e.

y fc_ !  ~ M V N (0 ,tf).

Following this assumption, together with the unit sum constraint of the elements of p, the 

full vector Y_' =  ( y 1? y 2) . y fc) has what is known as a singular multivariate normal

distribution, which will be discussed in more detail in the next chapter. However, we will be 

interested, during the rest of this chapter, in eliciting a non-singular correlation m atrix R  for 

the Gaussian copula function only for pi, p 2 , • • •, Pk-i-

Keeping in mind that the Pearson correlation coefficients, as elements of R, are not

transformation respecting, i.e. they are not invariant even under strictly monotone increasing

transformations as in (7.23). We do not attem pt to elicit any correlations between the
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elements of p. Even if a correlation m atrix for p  has been elicited it may be of no use in 

estimating R  as no explicit relationship between the two matrices is available. Moreover, the 

density function in (7.22) is indexed by R, the correlation m atrix of F fc_ 1, not the correlation 

m atrix of p.

An alternate method of estimating R  th a t has been proposed in the literature was reviewed 

in Chapter 2. In tha t approach, a transformation tha t respects non-parametric measure of 

correlation, such as Kendall’s r  or Spearman’s p, is computed for p. The monotonicity of a 

transformation like (7.23) is then used to impose the same correlations on Y_k_l . Pearson’s 

correlations are calculated using approximate relations between different correlation coeffi­

cients for the normal distribution. For more details see, for example, Clemen and Reilly 

(1999), Palomo et al. (2007) or Daneshkhah and Oakley (2010).

In our proposed approach, the m atrix R  is elicited as a covariance or correlation m atrix of a 

multivariate normal random vector Y_k- i  • However, we still utilize the monotone increasing 

property of the transformations in (7.23). We may assess conditional quartiles of p, then 

transform them into those of Y_ using (7.23). Correlation coefficients between the elements 

of Kfc_i can then be estimated using their conditional quartiles and utilizing the properties 

of the multivariate normal distribution. This is described in Sections 7.4.2 and 7.4.3.

Although the elicitation method of Kadane et al. (1980) has been designed to elicit the 

covariance matrix of a multivariate t-distribution as a conjugate prior for the hyperparameters 

of a normal multiple linear regression model, their m ethod can be useful in a variety of 

multivariate elicitation problems tha t require eliciting positive-definite matrices [Garthwaite 

et al. (2005)]. The method is modified here to elicit the correlation m atrix R  of the Gaussian 

copula function.

7 .4 .2  A sse ssm e n t ta sk s

Since the transformations in (7.23) are strictly monotonic increasing from p  to K, we can 

establish a one-to one correspondence between medians and quartiles of these two vectors.
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The required assessments are as follows.

A ssessing  in itial m edians and quartiles

1. To elicit each marginal beta distribution, the expert has already assessed a lower quar- 

tile, a median and an upper quartile for pi, i = 1,2, ••• ,k , say L*0, m*Q and U*0, 

respectively. The method proposed in Section 6.2 can be used to determine the two 

parameters a* and Pi of each marginal beta distribution, for i = 1,2, • • • , k.

2. To help the expert assess the medians and quartile in (1), the PEGS-Copula software 

presents an interactive graph showing the pdf curve of the beta distribution of pr , 

for r = 1,2, • • • , k. The expert is able to change her assessed quartiles of pr until its 

pdf curve represents her opinion to her satisfaction, see Figure 6.1.

3. To attain  the unit sum constraint, the mean values of the elicited beta marginals must 

sum to one. The elicited parameters and Pi are thus modified to fulfill this condition, 

as follows.

The mean values pi are computed as

= for z =  1,2, • • • ,k.
+ Pi

The normalized mean values p* are given by

= ■ * =  1,2, ---  , fe. . (7.24)
1 N

We keep the variances fixed as

2 _  cr„- = (XiPi for i = 1,2, • • • , k. (7.25)
(ai +  Pi)2(ai +  Pi +  1) ’

Equations (7.24) and (7.25) give the modified set of parameters a* and P?, for i =  

1,2, - - - ,fc:

> ? ( ! - / * ? )  /
2 ’

. ct,? j

P t =  { 1 - r f )
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4. Before going further, the modified parameters of each marginal beta distribution are 

used to compute the corresponding quartiles numerically. These quartiles are presented 

as feedback to the expert, who is still able to change some or all of them, in which case 

the process is repeated again until the modified sets of quartiles are accepted by the 

expert.

A ssessing  conditional quartiles

5. To estimate the correlation m atrix R, the expert is asked to assume that p\ = m \  0 

and gives a lower quartile L \  and an upper quartile for p2 - For each remaining 

Pj, j  = 3, • • • , k  — 1, she assesses the two quartiles Lj  and Uj given th a t p\ =  m ^0, 

P2 = ^ 2 0 , •••, Pj-i  — irij-ifl- Figure 7.4 shows the process of assessing conditional 

quartiles, where the expert has already assessed the lower quartile of the th ird  category, 

conditional on the median values of the first two categories, which are shown by the 

red bars.

 —  ............    . .jsja
You a s s e s s e d  th e  low er q u artile  p robability  o f c a te g o ry  (C a te g o ry  3 )  to  b e  (0 .1 3 8 ).

   i, .
Flc E a t Tools Hotp

Eliciting Q uartiles of th e  probabilities of C ategory (Category 3)

I  0.45

Category 2 Category 3Category t Category 4
C ategories

( B̂ace 3 rifetV | f W f l

Figure 7.4: Assessing conditional quartiles for copula elicitation
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6. The lower (upper) quartile L k (Uk ) of pk will be automatically shown to the expert 

once she assesses the upper (lower), quartile Uk_ x ( L * ^ )  of P k - i -  The two quartiles 

L k and Uk are shown to the expert as a guide to help her choose L*k_ x and Uk_ v  See 

Figure 7.4, where the software has shown the upper quartile of the fourth category 

after the expert assessed the lower quartile of the third category. In fact, L k (Uk) is 

the lower (upper) quartile of ( p k \ p i  ~  m i  ' '  ‘ i V k - 2  =  m k - 2  0 ) instead of ( p k \ p i  =  

m i,o>' ‘ ’ t P k - i  — m k - i  o)’ as ^w0 quartiles in the latter case should be just equal 

to m*k 0, because of the unit sum constraint.

A ssessing  conditional m edians

7. Here we assume that the median of pi has been changed from m | 0 into

Given this information, the expert will be asked to change her previous medians r r i j  0 

of each p j  to be m * ^  1. We put

mj,i =  m lo  + ej , i ’ for j  =  2,--.* ,k . (7.26)

8. In each successive step i, for i =  2,3, • • • , k  — 2, the expert will be asked to suppose tha t 

the median values of p\, P 2 , •••, P i  are m \^  — 0 +  77̂ , ra22 =  ^ 2,1 "  > m i,i =

respectively. Given this information, she will be asked to update her assessed 

medians from the most recent previous step m*+l i_l5 ' im *ki-1- The UP“

dated assessments are ra*+M =  7n |+1)i_ 1+ ^ +l f, i =  m*i+2, i - \+ 0i+2,n • • • , m%A =  

rn% i_i + 0k,i’ respectively. In other words, for i = 1,2, • • • , k — 2, j  = i +  1, z +  2, • • • , As, 

we can write

m^i = +  0jti is the median of (pj\pi = m \ jl, • • • ,p» =  m*fi). (7.27)

On an interactive graph produced by the PEGS-Copula software, see Figure 7.5, the 

conditioning set of median values are shown as red bars. The conditional medians of 

the remaining categories at the most recent previous step are shown as black lines. The
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expert is asked to assess how her new median values will change based on the new 

conditioning set.

EE Unix!
You a s s e s s e d  th e  conditional p robability  m ed ian  o f c a te g o ry  (C a te g o ry  3 ) to  b e  (0 .3 7 4 ). P le ase  co m p le te  for o th e r  ca teg o ries !
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Category 2 Category 3 Category 4Category 1

'R evise Suggestion

C ategories

*cee p tS uggestroos fBSpTl

Figure 7.5: Assessing conditional medians for copula elicitation

9. For mathematical coherence, as will be proved in Lemma 7.1, we require

i k

1 2 m h + J 2  = * =  1 , 2 , " - ,fc —2.
j — 1 j —i+l

The expert has the option of changing her initial set of assessments m'i+l i , "  ' ■>

m'k i until she feels tha t the suggested normalized set m*+ li , m*+2i, •••,  m ki  gives 

an adequate representation of her opinion. The software suggests each normalized 

conditional median m ^ , given by yellow bars in Figure 7.6, as

m jti = r = l

J 2  m 'r.i
.  r = i + l

m for i =  1, • • • , k — 2, j  = i +  1, • • • , k.

10. The current assessment task stops at step k — 2, as we do not ask for any conditional

assessments for the last remaining category pi~. Since the condition of summing to one

should always be fulfilled, conditioning on specific values of all pi,P 2 , • • • ,Pk-1 gives a
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fixed value for pf~. In this case no upper or lower quartiles can be assessed for pk, as 

mentioned before.

liaBss^ :111:......1"  ............... ... ...."  ~~ ~~ _i_ ‘ . -iai*i
Now, y ou  h a v e  finished with th is  fram e . You m ay  p re s s 'N e x t1 to  proceed

j a a
; fie Effi Tods Rdp
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0 .9 5 .........................    -...... - ...........................- .................•........................................................ .̂...............................................................
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—.  . ■ . . ------------------------------------ *..< i. ..I----------------------------------
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Figure 7.6: Software suggestions for conditional medians

7 .4 .3  Eliciting a positive-definite correlation m atrix R

The normalizing one-to-one functions in (7.23) are used to transform the assessed condi­

tional quartiles of p into conditional quartiles of Y_, and hence, into conditional expectations,

variances and covariances of the multivariate normal variables. In particular, letting M ( X )

denote the median function of the random variable X ,  we proceed as follows.

For i = 1,2, • • • ,k, let m^o =  $ _ 1  [G i(m |0)].

For i =  l ,2, -*-  , k — 2, and j  = i +  1, • • • , k — 1, let

m jti = E(Yj\pi = m l t0 + rjl,P2 = m*2jl +  77I, • • • ,p{ =  +  77?).

Then

(7.28)

For 2 =  1,2, ---  , k — 2 define rji by letting rji = Yi — r a ^ - i  when Pi =  +  rj*. Then

'm jti = E(Yj \Y1 = m i f l  + rjuY2 =  m2,i +  772, • • • , Yi = ™i,i-i + Vi), (7.29)
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and

m =  4 +  „*)] _  for i =  1,2, ■ ■ • , k  -  2.

Analogous to mU =  +  77*, define

rriij = m ^ i- i  +  77*, for 2 =  1,2, • • • , k -  2, (7.30)

so tha t 17  =  rriij when pi =  .

For 2 =  1,2,-** , k — 2, and j  =  2 +  1 ,••• , fc — 1, analogous to 0 ^  = rrij^ define

0j,i = Trijj — rrijj-1 ,

so that

e,- 4 =  r ‘ [G,(m*(. i  +  < y ]  -  s - H e j K i - i ) ] -

For 2 =  1,2,-** , k — 2, and j  =  2 +  1, ■ ■ • , k — 1, let

Vk =  Var(Y)|Yi =  m i)0, U2 =  m 2>0, • • • , 1* =  m ij0),

so that

Vj j - 1 —
U j - L f 2

1.349
, for j  = 2,3,  • • • , k — 1, (7.31)

with

Uj  =  $ _ 1 [G^(£f/)], L j  =  $ _ 1 [G3-(l;)].

Having defined the above quantities, we are ready now to state and prove the following 

lemma.

Lem m a 7.1. Under the unit sum constraint of p,  and the multivariate normality o fY , , 

i k

m h  + mi,< = 1> i = 1,2, • • • , fc -  2.
j = 1 j = i + 1

P roof

A property of conditional expectations of singular multivariate normal distributions is given 

by equation (8a.2.11) in (Rao, 2002, p 522). Using this property, for 2 =  1,2, • • • ,k  — 2, we
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have

E[Yk \Yi =  m i , i ,  • • • ,Yi =  77ij,i] =  E[Yk \Yi — 7 7 2 1 ,1 , • • • , Yt = m ifi,

Yi + 1 =  E (Y i + 1 |Y i =  7 7 ii,i , • • • ,Yi = m i ti ) ,

y fc_ i  =  .E7(Yfc_ i |Y i  =  7 7 ii , i ,-  • • ,Yi = m i}i)],

then, from equations (7.29) and (7.30)

M (Y k\Yi = 772i,i,- • ■ ,Yi = m iti) = M (Y k \Yi =  m i,i, - •• ,Y{ =

Yi+1 — 772j+i,̂ , • • • , Ffc—1 =  772/5—1,1).

Hence

M  { $ - 1 [G fc(p fc )]b i =  772^1, • • • ,pi =  m li}  =

M  { $ - 1 [<?fc(pfc)]|pi =  772^ 1 , • • • ,pi = m liiP i+ i  =  TnJ+i^, • • • ,p k- i  = m k- i , i }  > 

which, utilizing equations (7.26) and (7.27), gives

$ -1 [Gfc(772^)] =  $ -1 {Gfc[M(pfc|pi =  772^ 1 , • • • ,pi = m li ,

P i + 1 ’ ' ' i P k —1 'TH'k—

i.e.

7 7 2 ^  =  M ( p fc|P l  =  m \ t 1 , • • ■ , P i  =  7 7 2 U , P i + i  =  772-+ l  i , • • • , p fc_ i  =

Since the condition in the RHS of the above equation is on all the pis except pk, applying the

unit sum constraint gives the conditional median in the form of the following complement

i k —1

=  1 ~ Y m h  ~  Y  m h ’
j = l  j = i + l

which ends the proof of Lemma 7.1.

• To elicit a positive-definite correlation m atrix R, let

Y-i — (>1 , Y2, - • - ,  Yi)> 2 =  1, 2, - - -  , A: — 1,
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where R\  =  Var(Yi) =  1 and the final m atrix R  = Rk-i-

Suppose tha t R i- i  has been estimated as a positive-definite matrix, we aim now to 

elicit R4 , and show it is positive-definite. R{ can be partitioned as follows

R i —l R i —lTLi
(7.32)R i  =

t iR i -1 Vi

where

R i - i u  =  C o v C y ^ y * ),

Vi = Var {Yi).

Although the Gaussian copula function implies that Var(Yi) — 1, we will find another 

estimate for Vi using the conditional variance of Yi elicited in (7.31). The reason for 

this, as will be shown later, is to follow the approach of Kadane et al. (1980) so as to 

ensure the positive-definiteness of the m atrix Ri. In what follows, we use the conditional 

median assessments to estimate r^.

Using the partition (7.32), it is well-known from multivariate normal distribution theory, 

since E(Y_) = 0, that

Moreover, for j  < i — 1, taking the conditional expectation of both sides of (7.33), given

(7.33)

that y_. — imifi  +  +  *72,- • • , gives

E  =  y}]  =  =  y.) U , (7.34)

i.e

^ « K J-= 1 /J.) =  (y1> . . . ,  Vj, E(Yj+1 \Y j ) i E i Y i ^ l Y j ) )  n .  (7.35)



From (7.29) and (7.35) we get

m i,j =  (mift +  771, m 2)i +  772, • • • , r r i j j - i  +  r}j t  m j+1:j, • • • , r r i i - i j )  U- 

Since j  — 1,2, • • • , i — 1, we end up with a system of i — 1 equations of the form

where

and

Q i —l  —

Ti  — Q i —lL-i

m i ,  1 

m it 2
Ti =

mi^i—i

771 1 7773,1

771 7772,1 +  772 7773,2

7/1 7772,1 +  772 7773,2 +  773

(7.36)

TTlz-1,1

T77i_i,2

777̂—1,3

7?1 7772,1 +  772 7773,2 +  773 • • • 7 7 7 i_ l , i_ 2  +  T ] i - \

Since m i:j -  m j - i  = 0id , j  = 1,2, • • • , z -  1, and 777*,0 =  0, multiplying both sides of

(7.36) from the left by the m atrix

M i_i =

1 0 0 . . .  0

- 1 1 0 . . .  0

0 - 1 1 0 0

1 0 
;

O 
;

- 1  1

the system can be written as

@i, 1 771 #2,1 • • • 0 z - l , l

0i,2 0 772 • • • 0 » - l ,2

0

@i,i—1 0 0  77i_i
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Provided that

Vj  7^ 0 ) 3 =  1 > 2 ,  • • • , i  — 1,

the upper diagonal matrix M i- iQ i- i  is non-singular. Hence

r - - l r- -|

m #2,1 • • • 0 i - i,i 01,1

0 rj2 * * * 01- 1 , 2 0z,2

0

0 0 77*—1 0*,i—1

• Since

V ar(y,|Z i_ 1) =  Var(yi)

we can now use the assessed conditional variance given by V^i-i in (7.31) to estimate 

the unconditional variance Vi as follows

Vi =  Vij- i  +

Using the Schurr complement, the m atrix Ri is positive-definite if and only if

Vi -  r^Ri-iZi >  0,

which is guaranteed from (7.31) since i >  0.

• Choosing the arbitrary values r/j ^  0, j  = 1,2, • • • , i  — 1, guarantees the existence of a 

unique solution for r{. It can be seen from the relation

V j  =  +  , ; ) ]  -

th a t r]j 0 as rjj ^  0, j  = 1, 2, • • • , i — 1.

• W ith the proposed method, Ri is a positive-definite m atrix if R i- i  is positive-definite 

(■i = 2,3, • •• , k — 1). Since R \ = 1 > 0, by mathematical induction, the full correlation 

m atrix R  =  R k - i  is guaranteed to be positive-definite.
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We have to note that, according to this method of elicitation, the variances on the 

main diagonal of R, say r ^ ,  i =  1, 2, • • • , k — 1, will seldom equal one, except for the 

first element r \^ .  It is easy, however, to transform R  into R*, where R* is a suitable 

correlation matrix for the Gaussian copula function, satisfying both the unit variances 

and positive-definiteness. R* can be obtained from f  using the transformation

R * = AR A .

where

A  =

1 0 

1

0

0

0
i,fc—i .

The unit variances in the correlation m atrix R* ensures tha t each marginal distribution 

Gi(pi) is still a beta distribution with the same marginal hyperparameters ai and fa 

that were elicited before (2 =  1,2,-** , k).

• The accompanying software outputs the elicited pairs of beta parameters ai and fa, for 

i = 1,2, • • • , k, together with the elicited covariance matrix, R*.

7.5 Exam ple: W aste collection

The Environmental Agency in the UK is currently interested in the fuel consumption of

waste collection vehicles. It is thought that substantial quantities of fuel are used to collect

recyclable waste and that local authorities are insufficiently aware of the amounts involved.

In this example, a waste management expert, (Dr. Stephen Burnley, The Open University)

used the PEGS-Copula elicitation software to quantify his opinion about the proportions of

waste collection trips according to the type of recyclable waste. Dr. Burnley is a fellow of

the Chartered Institution of Waste Management. He advised tha t two main types of the

waste are considered; urban recycle and rural recycle. Each of them  may contain bins, sacks,
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garden waste and recycle waste. Hence, each collection trip  is arranged by the local authority 

for only one of eight different waste types. Considering the proportions of collection trips for 

waste in each category, the problem can be formulated in a multinomial model with eight 

categories. Our method and software were used to quantify the expert’s opinion about a 

Gaussian copula prior for the parameters of this multinomial model.

After initializing the software and defining the model, the expert assessed his medians of 

the proportion of collection trips for each of the following 8 types of waste: urban-bins/ urban- 

sacks/ urban-garden/ rural-bins/rural-sacks/ rural-garden/ urban-recycle/ rural-recycle. Then 

the expert assessed lower and upper quartiles for the proportion of each category. His as­

sessed medians and quartiles are shown as blue bars and short dark blue horizontal lines, 

respectively, in Figure 7.7. These assessments are also given in Table 7.2 below.

You h a v e  a lre a d y  a s s e s s e d  alt c a te g o rie s  b efo re , b u t  still you  m ay  ch a n g e  it

Eliciting Quartiles of th e  probabilities of ea ch  category

0.95

0.90

0.85

0.80
0.75

0.70

0.65

0.60

0.55

§  0.50 

2  0.45

0.40

0.35

0.30

0.25

0.20

0.15;
0.10

0.05
0.00

U. garden U.recycle R. recycle
C ategories

f i'gt"*"]

Figure 7.7: The initially assessed marginal medians and quartiles
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Table 7.2: Expert’s assessments of medians and quartiles

P i P2 P3 P a P5 Pe P7 P s

Lower quartile 0.25 0.05 0.13 0.05 0.01 0.02 0.18 0.07

Median 0.30 0.08 0.20 0.07 0.03 0.05 0.25 0.09

Upper quartile 0.35 0.12 0.28 0.15 0.05 0.07 0.30 0.25

These assessments were used to elicit a marginal beta prior distribution for the proportion 

of trips in each category. For mathematical coherence, the expected values of these elicited 

beta priors must sum to 1, so, the software used the initial assessments to elicit beta  dis­

tributions th a t satisfy this condition. The median values and quartiles of the coherent beta 

distributions were computed and presented to the expert as feedback in Figure 7.8. During 

this feedback stage he was invited to accept or revise these quantities. The initial median 

values given by the expert have a sum that is nearly equal to one, so the coherent medians 

and quartiles suggested by the software in Figure 7.8 were close to his assessments and he 

naturally accepted them  as representatives of his opinions.

H ere o re  y o u r unconditional a s s e s sm e n ts ,  y ou  m ay  c h a n g e  a n y  o f them !

Unconditional M edians and  quartiles already a s s e s e d  fo r Each Category

_i

U. garden U. recycle R. recycle
C ategories

Figure 7.8: The coherent assessments suggested by the software
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To elicit a correlation m atrix for the Gaussian copula prior, the expert gave conditional 

assessments tha t quantified his opinion about the dependence structure between the marginal 

beta distributions. To do that, he assessed conditional quartile values, under the condition 

tha t the assessed medians for the previous categories were actually the true values. For 

example, he assessed his conditional quartiles of the proportion for the fourth category, given 

tha t the median values for the first three categories equalled their true values. This is 

illustrated in Figure 7.9.

You have already assessed  this category (R. bins) before, but stfll you m ay change It

FI* Ecfit Tods Help

Eliciting Q uartiles of th e  probabilities of Category (R. bins)

S 0.45

U. garden U. recycle R. recycle
Categories

I he* » |

Figure 7.9: Assessing conditional quartiles

The expert’s seven pairs of assessments for the lower and upper conditional quartiles are 

given in Table 7.3. The quartiles for the last category are shown in bold typeface in Table 7.3 

as they were automatically computed by the software when the expert assessed two quartiles 

for the seventh category. This is also illustrated in Figure 7.10.

Table 7.3: Expert’s assessments of conditional quartiles

P2 PZ PA Ps Ps Pi P8

0.03 0.10 0.03 0.01 0.02 0.20 0.19

0.13 0.23 0.08 0.04 0.08 0.28 0.27
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no«r„ yet* fcav a  fin ish ed  w flh th is  c a te g o ry . You m a y  p re s s  *Next’ t o  p ro c eed

sm

8  0.45

U . b in s U  s a c k s U . g a r d e n R . b in s R . s a c k s U .re c y c leR . G a r d e n R . re c y c le
C a te g o r ie s

Figure 7.10: Assessing conditional quartiles for the last two categories

Next, conditional on the proportion for the first category being 0.12, the expert gave 

conditional median assessments for the proportions of the seven remaining categories. The 

number of conditions was then increased in stages. For example, in Figure 7.11, the expert 

has assessed the conditional medians for the last five categories given th a t the proportions 

for the first three categories are 0.12, 0.04 and 0.08, respectively. Table 7.4 gives all the 

conditional median assessments, where the underlined values constitute the conditioning set 

at each stage.
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Figure 7.11: Assessing conditional medians

Table 7.4: Expert’s assessments of conditional medians

Pi P2 P3 P4 Pb P6 P7 P8

0.12 0.09 0.16 0.10 0.06 0.12 0.15 0.14

0.12 0.04 0.16 0.14 0.06 0.14 0.14 0.2

0.12 0.04 0.08 0.14 0.06 0.18 0.14 0.22

0.12 0.04 0.08 0.07 0.10 0.20 0.14 0.23

0.12 0.04 0.08 0.07 0.05 0.22 0.15 0.26

0.12 0.04 0.08 0.07 0.05 0.11 0.22 0.33

This was the last assessment task, after which the software output the elicited hyperpa­

rameters of the marginal beta prior distributions as in Table 7.5. The dependence structure 

between these beta marginals was quantified as a multivariate Gaussian copula function with 

an elicited covariance matrix as given in Table 7.6.
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Table 7.5: The elicited hyperparameters of marginal beta distributions

Pi P2 P3 PA P5 P6 P7 P8

a  3.7607 1.0661 1.6536 0.6951 0.5731 0.6344 1.2489 0.4545

b 12.0047 14.8133 8.6742 8.6012 19.5493 14.8684 3.3578 3.3669

Table 7.6: The elicited covariance m atrix of the Gaussian copula prior

Yi y 2 y3 Yi y5 y6 Y7

Yi 1 -0.1279 -0.2601 -0.7773 -0.55 -0.6192 0.5414

y 2 -0.1279 1 0.1328 0.1479 -0.4842 -0.3304 0.3326

y 3 -0.2601 0.1328 1 -0.082 0.042 -0.03 -0.0618

Ya -0.7773 0.1479 -0.082 1 0.2358 0.4632 -0.4406

y 5 -0.55 -0.4842 0.042 0.2358 1 0.5664 -0.5812

y 6 -0.6192 -0.3304 -0.03 0.4632 0.5664 1 -0.8354

y 7 0.5414 0.3326 -0.0618 -0.4406 -0.5812 -0.8354 1

The elicited matrix in Table 7.6 does not give covariances between the beta distributed 

proportions, pi , - - -  ,P8 - Instead, it gives the covariances between the transformed normal 

variates, Yi,-- - , Y7 . The eighth transformed normal variate is omitted so as to avoid the 

singularity of the elicited matrix, as discussed before. The Gaussian copula multivariate dis­

tribution is parameterized by both the marginal beta parameters and the covariance m atrix 

in Table 7.6. The software produces a WinBUGS file with the Gaussian copula prior distribu­

tion. Marginal beta parameters can also be used to compute the expected value and variance 

of the proportions of each category. These are given in Table 7.7, where the expected values 

are very close to the coherent median assessments in Figure 7.8, and even closer to the initial 

median assessments in Table 7.2 and Figure 7.7.

The elicitation process took about an hour to complete. The expert stressed the impor­

tance of the convenient order of categories when conditioning. During the task of giving

conditional assessments based on an increasing number of conditions, he commented tha t
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ordering the categories in a suitable sequence made it easier for him to think about these 

conditions according to his knowledge.

Table 7.7: Probability means and variances from marginal beta distributions

Pi P2 P3 PA P5 P6 P7 P8

E (Pi) 0.239 0.067 0.160 0.075 0.028 0.041 0.271 0.119

V(Pi) 0.011 0.004 0.012 0.007 0.001 0.002 0.035 0.022

7.6 C oncluding com m ents

The elicitation methods for beta parameters proposed in the previous chapter have been 

used in this chapter as the main tools for eliciting two more flexible prior distributions 

for multinomial models. A novel elicitation method for the generalized Dirichlet distribu­

tion has been introduced. The method makes use of the fact that the conditional dis­

tributions of the generalized Dirichlet variates are beta  distributions. The method has 

been implemented in user-friendly software tha t is freely available as PEGS-Dirichlet at 

http://statistics.open.ac.uk/elicitation.

The elicitation of copula functions for multinomial models faces two obstacles, as noted 

in the literature. The usual correlations cannot be transformed through the assumed cop­

ula transformation, which is one obstacle, and the need to elicit a positive-definite variance- 

covariance matrix is the other. Our proposed elicitation method for the Gaussian copula prior 

has overcome both problems. The assessed conditional quartiles could be transformed through 

the normalizing one-to-one transformation, making it possible to elicit correlations. Moreover, 

the method of Kadane et al. (1980) has been modified to elicit a positive-definite variance- 

covariance matrix for the Gaussian copula. The method has been implemented in the user- 

friendly PEGS-Copula software that is freely available at http ://statistics.open.ac.uk/elicitation.
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Chapter 8

Eliciting logistic normal priors for 

m ultinom ial m odels
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8.1 Introduction

The logistic normal distribution has long been used as a multivariate distribution for propor­

tions (Aitchison, 1986). The constrained proportions are obtained by transforming normally 

distributed unconstrained variables on the real space using some one-to-one transformation. 

Different multivariate logistic transformations are given in the literature, see for example 

Aitchison (1986). The most well-known and widely used logistic transformation, specially for 

multinomial logit models, is the additive logistic transformation.

We propose a method for quantifying opinion about a logistic normal prior for multinomial 

models. Our proposed method has been implemented in interactive graphical user-friendly 

software developed in Java. This is freely available as PEGS-Logistic at h ttp ://sta tistics.open . 

ac.uk/elicitation. The elicitation method proposed here is generalized in Chapter 9 to handle 

the case of multinomial models with covariates, or what are known as the multinomial logit 

models.

In Section 8.2 we define the logistic normal prior to be used and consider its assumptions. 

The required assessments with our structural procedure to elicit them using the software are 

given in Section 8.3. The use of these assessments to elicit the hyperparameters of the logistic 

normal prior distribution is proposed in Section 8.4. A method to obtain the prior’s marginal 

quartiles, which are useful as feedback, is proposed in Section 8.5. We finish this chapter by 

giving an example in Sections 8.6 and some concluding comments in Section 8.7.

8.2 The additive logistic norm al d istribution

The additive logistic transformation from V* to p is defined by

http://statistics.open


with inverse transformation

Yi =  log ( E )  =  log ( - ---------------- ----------------------1 ,  i  =  2 , 3 , ( 8 .2 )
\ P l J  V 1 ~ P 2  ~ P 3  P k J

where

r  =  (y2) y3, Yfc) ~  MVN(/xfc_ 1,Sfc_1). (8.3)

• The transformation is one-to-one from the k — 1 dimension random vector Y* into the 

k dimension random vector p. The definition of an extra random variable Y\ will be 

given later.

k

• For any values Y2 , • • • , Ffc, (8.1) gives E P i  =  1.
i= 1

• The matrix E/c_i is non-singular.

• The transformation is not symmetric in the p i , as we choose a fill-up variable

P i  = 1 ~ P 2  - P 3 --------- Pk-

• The transformation is used in the multinomial logit regression model when

Y i =  X %

• If (8.3) applies, the elements of the vector p are said to have the multivariate logistic 

normal distribution. Their joint density has the form

f ( S }  H k - v E k - i )  = (27r)fc21|Efc_ i|2 (p 1 x p 2 x ••• x p k)

ex p | - i  2*2 , p o g ^ j / P i )

k

where p ' ^  = (p2  p3  . . .  pk), 0 < p{ < 1, ^ P i  =  1.
i = 1

• This additive logistic normal distribution is said to be perm utation invariant. T hat is, 

whatever be the ordering of the elements of the vector p , the density function given 

above is invariant. For a theoretical proof of this property see Aitchison (1986). Under



the perm utation invariance, any order of the elements of p can be considered. Con­

sequently, the choice of the fill-up variable is arbitrary. Usually it is chosen as the 

probability of the most common category, the first category, or the last category. To 

elicit a logistic normal prior, we favour choosing the most common category as the first 

category and making pi the fill-up variable. This is more convenient for our method 

because of the order of conditioning we adopt later.

• For sampling compositional data, the problem of zero components has been reported by 

Aitchison (1986) as a critical irregular case tha t needs special attention in dealing with 

the logistic normal distribution. Clearly, the log transformation cannot be applied with 

zero components. However, we need not worry about this problem in our elicitation 

method, as categories with assessed zero probabilities can simply be removed from the 

analysis at the first early step without any loss.

We assume that prior opinion about Y_* can be represented by the multivariate normal dis­

tribution in (8.3). As will be shown later, for the assessments of p to be fully transformable 

to y*, a further normalizing transformation must be defined on the fill-up variable p\. We 

define an extra variable Yi such that

Based on the normality assumption of Y_* in (8.3) and the unit sum constraint of p, the

Although the sum of lognormal random variables has no simple exact distribution, it is 

common to approximate its distribution by another lognormal distribution. This is discussed 

in the next section.

(8.4)

random variable e Yl can be represented as a sum of k — 1 lognormally distributed random

variables, since
k
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8 .2 .1  A p p r o x im a te  d is tr ib u tio n  o f  th e  lo g n o rm a l su m

Fenton (1960) considered the numerical convolution of lognormal distributions and showed 

that the sum of such distributions is a distribution tha t approximately follows the lognormal 

law.. He added tha t the sum of two (or more) lognormal distributions can be assumed, as a 

first approximation, to have another lognormal distribution. Later, Schwartz and Yeh (1982) 

mentioned tha t there is an accumulated body of evidence indicating th a t the distribution of 

the sum of a finite number of lognormal random variables is well-approximated, at least to 

first order, by another lognormal distribution.

Several approximations have been introduced for the sum of lognormal random variables. 

Although the idea of approximating their sum using another lognormal distribution has been 

common in many studies, methods differs in approximating the moments of the lognormal 

distribution of the sum. Fenton (1960) matches the first two moments of the sum of lognormal 

random variables to the first two moments of an equivalent lognormal random variable. 

Schwartz and Yeh (1982) follow the same approach but compute the exact first two moments 

for the sum of two lognormal random variables; the procedure is then iteratively applied 

for the sum of more than two lognormal random variables. Their method of computing the 

distribution of a sum of independent lognormal random variables was extended to the case 

of correlated lognormal random variables by Safak (1993).

Recently, based on approximating the distribution of the sum of lognormal random vari­

ables by another lognormal distribution, a lot of work have been devoted to giving various 

approximation methods. For example, Beaulieu and Xie (2004) uses a linearizing transform 

with a linear minimax approximation to determine an optimal lognormal approximation to a 

lognormal sum distribution. Tellambura and Senaratne (2010) use the classical complex in­

tegration techniques to approximate the moment generating function of the sum. Mahmoud 

(2010) approximates the characteristic function and the cumulative distribution function of 

the lognormal sum by exploiting the recent Hermit-Gauss quadrature-based approximation.

It is thus natural to approximate the distribution of Y\ by a normal distribution with
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elicited mean and variance. (We do not require any approximations to obtain its parameters.) 

We can then state our main assumption:

ijc  =  (Yi, Y2, y fc) '~ M V N (Mt,E fc). (8.5)

The unit sum constraint of p  will always lead to a singular m atrix However, we assume 

that there is only one condition on the elements of p, namely the unit sum. In particular, 

we assume that there does not exist any subset of categories such th a t the sum of their 

probabilities is known with certainty.

Although no density function can be defined for the singular multivariate normal distribu­

tion, its theoretical properties and numerical results have been investigated in the literature. 

See, for example, Bland and Owen (1966), Kwong and Iglewicz (1996), Albajar and Fidalgo 

(1997) or Genz and Kwong (1999).

Usage of the singular normal is thus feasible and has been exploited in numerous mul­

tivariate methods. Khatri (1968) used the notion of a generalized inverse to utilize the 

singular normal distribution in multivariate regression. Styan (1970) discussed the distribu­

tion of quadratic forms in singular normal variables. West and Harrison (1997) defined the 

covariance matrix of the multivariate normal distribution as a non-negative definite matrix.

In Chapter 8 of his book on linear statistical inference, Rao (2002) did not use the density 

function to define the multivariate normal distribution. Instead, he characterized it by the 

property tha t every linear function of its elements has a univariate normal distribution. 

He could then list properties and characterizations of the multivariate normal distribution 

without using the pdf. The singular normal distribution is thus a special case of the standard 

normal distribution, and has similar properties, but with the usual inverse of the covariance 

m atrix replaced by its generalized inverse. Conditional properties of the singular normal 

distribution have been extensively used in the current chapter for eliciting a logistic normal 

distribution.

To this end, using (8.5), we assume that the prior distribution of p is the logistic normal
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distribution induced by the vector

r  =  ^ r fc~ M V N (& _ 1, s fc_ 1).

where

A — 0 j Ifc—i (8.6)

(8.7)

S&_1 — A E kA'. (8 .8)

We start by eliciting p,k and a m atrix E& of rank k — 1. In our approach, we modify the 

method of Kadane et al. (1980) and add a special treatm ent for the kth  row and column. 

This will give the and Y k- i  in equations (8.7) and (8.8). The m atrix E& is singular 

of rank k — 1, given tha t no other constraint can be imposed on subsets of probabilities 

except the unit sum. However, the matrix is shown to be positive-definite of full rank 

k — 1, since it is simply E^ with its first row and column removed. A formal proof of the 

positive-definiteness of E ^ -i will be given later in Section 8.4.2.

8.3 A ssessm ent tasks

Since the transformations in (8.2) and (8.4) are strictly monotonic increasing from p to Y fc, 

we can establish a one-to one correspondence between the medians and quartiles of these two 

vectors. The required assessments are detailed as follows.

8.3.1 A ssessing initial m edians

• The choice of a category to start with is arbitrary, as discussed earlier. Hence it may 

be chosen by the expert as the most common category and its probability is denoted 

p\. A  median value m \  for p\ will be assessed as a first step. Then the expert assesses 

median values rrij, j  = 2, • • • , k, for all the remaining categories. These assessed values 

are shown by the blue bars in Figure 8.1.
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Figure 8.1: Assessing probability medians for logistic normal elicitation

• The normality assumption of Y_k , together with the unit sum constraint of p, can be 

used in Lemma 8.1 and Theorem 8.1 (which are given in Section 8.4) to show that 

the unit sum constraint must be also fulfilled by the rrij. That is X]jLi m j  =  1- To 

attain  mathematical coherence, the software suggests a normalized set of assessments, 

given by the yellow bars in Figure 8.1, as follows. Suppose the initial assessments were

• • • , m'k. Then the coherent assessments tha t are suggested for the rrij are given

by
m'-

m 3 =  —------ . for i  =  1.2,••• ,k .

i 2 m 'i
i = 1

W ith our software, the expert can keep changing her assessed values until she is happy 

with the normalized values th a t are suggested.

8.3.2 A ssessing conditional quartiles

• In this assessment task, the expert is asked to assess a lower quartile L \  and an upper

quartile U£ for p\. She is then asked to assume th a t p\ = m \  and gives a lower quartile

L \  and an upper quartile U2 for P2 - For each remaining pj, j  =  3, • • • , k — 1, she
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assesses the two quartiles L*j and Uj given th a t pi — m i, P2 = m 2 , • • •, P j-i  = rrij-1 .

See Figure 8.2, where the expert has assessed the two quartiles of p% conditional on the

median values of p \  and P2 as given by the red bars.

• The lower (upper) quartile L k (Uk ) of pk is automatically shown to the expert once

she assesses the upper (lower) quartile Uk - 1  ( L ^ j )  of Pk-i, see Figure 8.2. The two

quartiles L k and Uk are also shown to the expert as a guide to help her choose L k_x and

Uk_ v  In fact, L k (Uk) is the lower (upper) quartile of ( p k \ p i  =  m i ,  • • • , P k - 2  =  m k - 2 )

as +  Uk =  +  L k =  1 — m i  — • • • — m k - 2 , from the unit sum constraint.

■ not*)

6

Now, you h a v e  finished w ith th is  ca te g o ry . You m ay  p re s s  'Next* to  pn
  ■■■  ..  ■■■■■ ■■■■■_■111    ■ ■ " 0

Flc E «  Toots Help P3

Eliciting Qusrdlos of tho  probabllltlos of category  (3)

I

2 3 4
Categories

F6aV| fsar| fTwp~l

IS @ 0  ^  S  tit p  *  ffim.T2£»Q*i.QJCTTA?... I Qawyahd? |  ffiootnoQiarUts ||g j  TheCootfPwatPtetrT j« ©  £  £  J-W»

Figure 8.2: Assessing conditional quartiles with lognormal feedback

o To help the expert during this current task, the software presents an interactive graph 

showing the pdf curve of the lognormal distribution of ( p j \ p i  =  m i, • • • , P j - i  — r r i j - 1) ,  

for j  =  2,3, • • • , k  — 1, see Figure 8.2. The expert is able to  change her assessed condi­

tional quartiles of pj until the conditional pdf curve forms an acceptable representation 

of her opinion. W ith the aid of the lognormal curve, the expert is advised to  make
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sure tha t her assessed interquartile range gives an almost zero probability of pj exceed­

ing 1 — i m i • This boundary is given by the red vertical line on the pdf graph of 

Figure 8.2. See Lemma 8.2 for the formal validity of the above results.

8.3.3 A ssessing conditional medians

• Here, the expert is asked to assume that the median of p\ has been changed from mi 

to =  m i +  rf[. Given this information, the expert will be asked to change her 

previous medians rrij of each pj. Her new assessment, rrij may be written as

rrij i =  rrij +  6j }1, for j  — 2, • • • , k. (8.9)

• In each successive step i, for % =  2,3, • • • , k  — 2, the expert will be asked to suppose that 

the median values of pi, p2 , • • •, Pi are m |^  =  m i +  Viim 2,2 — m 2 ,i +  v b  ' ' '  »m i,i =  

m*i_i -f 77*, respectively, shown as red bars in Figure 8.3. Given this information, she 

will be asked to change her assessed medians of the most recent previous step m *+ 1  i_ 1, 

m i+2 i-i> - •• i ^ k i - 1 > sh°wn by black lines in Figure 8.3. Her new assessments are

< f i , i  =  +  °i+hv m i+2,i = m i+2,i-i +  ei+2,v • • • > m U  =  m U - 1 +

respectively, which are shown as the blue bars in Figure 8.3. For i =  2,3, • • • , k — 2,

and j  = i +  1, i +  2, • • • , k, we can write

rriji = irij^i-i +  Oji is the median of {pj\pi =  m ^ 1, • • • ,pi =  mj^). (8.10)

• For mathematical coherence, as will be proved in Lemma 8.3, we have to make sure 

that
i k

. 2 3 roh +  H  m h  =  1< < =  i , 2 , - - , f e - 2 .
j=1 j=i+ 1

The expert has the option of changing her initial set of assessments rn'i+l i , 'rn,i+2)i, • • •, 

m'k the blue bars on Figure 8.3, until she feels tha t the suggested normalized set m*+l i ,

> m ki-> shown as yellow bars on Figure 8.3, gives the best representation of 

her opinion. The software suggests each normalized conditional median m ^  as
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m i,i =

i - E m r,r
r = 1

E m r
_ r = i + 1

mJ)i5 for i =  1, • • • , fc — 2, J =  ® +  1, * - - , fc.

EC
Now, you have finished with this frame. You may press 'Next* to  proceed
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Figure 8.3: Assessing conditional medians for logistic normal elicitation

• The current assessment task stops at step k — 2, as we do not ask for any conditional 

assessments for the last remaining category p&. As the condition of summing to one 

must be fulfilled, conditioning on specific values of a llp i,p 2 5 • • • ,P k-1 gives a fixed value 

for Pk- Then no upper or lower quartiles can be assessed for pk, as mentioned before. 

Conditional medians of Y& given specific values of Yf, I 2 , • • • , Tfc-i can be autom atically 

computed when needed, as will be shown later.

8.4 E liciting prior hyperparam eters

The normalizing one-to-one functions in equations (8.2) and (8.4) are used to  transform  the 

assessed conditional quartiles of p  into conditional quartiles of Y k and, hence, into conditional 

expectations, variances and covariances of the multivariate normal variables. In particular,
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letting M ( X )  denote the median function of the random variable X ,  we proceed as follows.

Let

mi, for j  = 1
ml o =  < (8 .11)

M(pj\p i=rr i i ) ,  for j  — 2,3, - - - ,k.

Since the normal variates, Yj =  log(pj/pi), j  = 2, • • • , k, depend on the fill-up probability 

p i , eliciting prior hyperparameters for Y_* is tractable if we condition on p i . That is why we 

define the extra normal variate Yi as in (8.4) and the conditional medians, m*jQ, as in (8.11). 

These conditional medians are required instead of the assessed unconditional medians, rrij, 

to elicit the hyperparameters of the logistic normal prior distribution. However, we chose 

to elicit the unconditional medians as they are easier to assess than conditional medians. 

Fortunately, under the normality assumption of Y f  and the unit sum constraint of p, we will 

show in Theorem 8.1 below that the marginal unconditional medians, rrij, are identical to 

conditional medians, m j Q, of pj, for j  =  1,2, • • • ,k , respectively, provided the lognormal sum 

is adequately approximated by another lognormal random variable.

For 2 =  1,2,-*- , k, let

R em ark 8.1

It is worth noting th a t Yi = m^o when pi = m \  Q, but, Yi =  o when both pi =  m*0 and 

Pi =  m \  0, for i = 2,3, • • • , k.

Extensive use is made of the fact that each Y{ follows a symmetric distribution (each has 

a normal distribution), so E(Yi) = M(Yi). This is a key assumption in proving the following 

lemma, which states an important result th a t is needed in the proof of Theorem 8.1.

Lem m a 8.1. Under the unit sum constraint of p, and the multivariate normality ofY_k,

k
X ^ K o  =  1-
i = 1

rriifi = E (Y i). (8 .12)
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P ro o f

As given by (Rao, 2002, p 522), the conditional distribution of any subset of singular normal 

random variables is normally distributed with the usual conditional mean and variance, but 

with generalized inverses of matrices. This property enables us to write, as in the non-singular 

case,

B(Yk) =  E[Yk \Y! =  E(Y!)}

=  £[Yfc|Yi =  £ (Y i) ,y 2 =  E(Y2), ■ ■ ■ , Yfc-i =  E{Yk_{j\.

Then, replacing means by medians and using (8.12), we get

M {Yk\Yi = m i )0) = M {Yk\Y1 =  m ij0, Y2 = m 2,o,--- ,Y k - i  = ^ - 1,0 )-

Hence, from Remark 8.1,

M[\og(pk) -  log(pi)|pi =  m i)0] =

M[\og(pk) -  l o g ( p i ) | p i  =  m i  0 , • • '  i P k - l  =

which gives

lo g ^ .o )  -  los(^ i,o ) =

\ o g [ M ( p k \ p i  =  m j|0, • • • , p k - 1 =  m*k - h 0 )} ~  log(m*)0).

i.e.

m k ,0 =  M ( P k \ P i  =  m*l t 0 , P 2 =  7712,0, • • • , P k - 1 =  m*k _ i j0)

fc-i

i=1

This is the unit sum constraint, which completes the proof of Lemma 8.1.

The main idea in Theorem 8.1 is tha t the fill-up category can be changed from the first 

category to any other category, and the same assumptions are still valid. We first give some 

relations and notations needed for the proof of the theorem.
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Let Y ^  =  Y*, and denote the mean vector and variance-covariance matrix of the multi­

variate normal distribution of Y^-q by fi^  and =  Efc_i. We supposed and

S(!) have already been assessed. Moreover, let Y \^  = log(pi) — log(l —pi),  with E\ = E (Y i fi) 

and V\ =  Var(Yijl).

To change the fill-up category from the first category to any other category j ,  for j  = 

2,3,■ • • , k, let

Yij. log(pi) -  log (pj)

Y j - U log(pj_i) -  log ( P j )

Y j + i , j log(Pj+i) -  log fe)

Y k j logfrfc) -  log(pj)>-.

with

Y j j  =log{pj) - lo g ( l  - p j ) ,

tt(j) ~  E{Y_(j)), ^(j) V ar(Y ^),

E j ^ E i Y j j ) ,  Vj =  Var(Y)j),

and

pitj = E (Y id ), crfj = Var(YiJ ) , i , j  = l , 2 ,--- ,k , i ^ j .

It can easily be shown that, for j  = 2, • • • , fc,

— (j) ~  1); (8.13)

where Fj is the identity m atrix of degree k — 1 with the j th  column replaced by a column of 

-1. From the normality assumption of Y(i), and in view of (8.13), we have

Y {j) ~  MVN(£o r  S w))
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with

filfl = FiU<J-iV

EU) = Fi S (i-1) F'r

Approximate normality of each Y jj ,  for j  = 2,3, • • • ,k , is thus induced from the normality 

assumption of in a manner exactly similar to that for Y \t Hence, for each j  =  1,2, • • • , k, 

we can also assume that the k random variables Yij,  for i = 1,2, ,k , are multivariate

normally distributed. Moreover, using the normality assumption of Y^i, we assume that 

the k +  1 random variables Yi}i and Yij,  for i = 1,2, •• • , k, are also multivariate normally 

distributed for each j  =  1,2, ■ • • ,k.

T h e o re m  8.1. For any j  =  2,3, • • • ,k , under the unit sum constraint of p, and the multi­

variate normality ofYf(j)>

m j = M  (pj) = M(pj\pi = =  m j)0.

P ro o f

Let

=  M[l°g(pi) -  \og(pj)], i =  1,2, •••,& , i ^ j ,

then

= F (y i j )

=E{Yij \Y j d = E j )

=M[\og{pi) -  log{pj)\pj =  M(pj)].

Hence, exponentiating both sides of the above relation, we get

M\pi\pj =  M{pj)} =  M (pj)  exp(mi>(j-)). (8.14)

As in Lemma 8.1, we put

k
M (Pj) +  Y  M\pi\pj = M(pj)\ =  1. (8.15)

#3
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Solving (8.14) and (8.15) for M (p j ), we get

M(pj )  = ------~k—  ----------- •

1 +  S exp(m i>(i))

On the other hand, for j  ^  1, since

P r{pj < mlo\pi = =  0.5,

then

P r{ fe /P i)  <  (^ j.o M i.o )!^  =  ™i,o} =  °-5>

and

Pr{log(pi/pj-) < l°g(m i,o/mj,o) l^i,i =  # i}  =  °-5-

So, we can write

log(ml,0/m j,0) =  M (Y 1J \Y1,1 =  E{) 

= E (Y l d \Y1,1 =  E 1) = E(Y ld ) =  m 1|0).

Moreover, for j  ^  i ^  1, since 

m i>U)

=E(Yid \Yhl = E u Y j j  = E(Yj d \Yltl = E l )) 

=M[\og(pilpj )\p1 =  m i)0,Pi =  m j|0],

we have that

and

Pr{log(pi/pj) < m ii{j)\pi = m*h0,pj = m j>0} =  0.5,

Pr{pi < m l o exp(mi>(7-))|pi =  m \ t0} =  0.5.

So,

which gives

m !,o =  m j,o exp(m,i(i)),

(8.16)

(8.17)

(8.18)

Substituting (8.17) and (8.18) into (8.16) shows th a t M(jpj) is as stated in Theorem 8.1.
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8.4.1 Eliciting a mean vector

To elicit a mean vector jj^ = (miQ m20 . . .  mfej0), we put

m i,0 =  E(T i) =  M (Ti)

=  M (log(pi) -  log(l -  pi))

=  log(mi,o )-  lo g ( l-m lj0).

For i =  2,3, • • • , k, put

mi,o = E(Yi) =  E[Yi\Yi = E ^ ) ]

= M(Yi\Y1 = m lt0)

= M[ log (pi) -  log(pi) \p\ = m j>0] 

= log (K o ) - log(m i,o)-

8.4.2 Eliciting a variance-covariance m atrix

For i — 1,2, • • • , k — 2, and j  = i +  1, • • • , k — 1, let

m 3,1 E(Yj\pi = m *1>0 + r)$,P2 = ml,!  +  *72. * • • ,P» =  m i,i-1 +  )•

Then

/ m um j i  = log 
J’ \ m ?h i /

For 2 =  1 , 2 , - -  ,k  —2, define rji by letting r\i = Y i ~  m ^ - i  when pi =  m * ^  +  77*.

rriĵ i =  E(Yj\Yi = rai)0.+ r)i>Y 2 =  m 2,i 4- 772, — = ^ - 1  + 77*),

and

log f  — ^1,0 +  71. ^ _  log --’V l  > for 2 =  1,
\ l - { m * 1Q + l?i) i I 1 — 7T2i 0 /

Vi =

l0g " ')  ~  l0g ( ^ f )  ’ for i =  2,3, • • • , k ~ 2

Analogous to m*^ — m * ^  +  77*, define

(8.19)

(8 .20)

(8 .21)

(8 .22)

(8.23) 

Then

(8.24)

mi,i = m , i - 1 + 7a, for i = 1,2, • • • , k -  2,
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so Yi =  m iti when pi =  m ^ .

For 2 =  1,2, • • • , k -  2, and j  =  2 +  1, • • ■ ,k  — l, analogous to 0Y =  mjh -  define

so that

/ ' ’’ft? t-1 +  0? * \  I m
6j,i -  log "  \  "  - lo g

V m ?.i /  V " ‘ 1,1

To elicit a (singular) variance-covariance matrix of rank k — 1, let

Vi =  Var(Yi) =
U i - h

1.349
(8.26)

where U\ and L\ are the upper and lower quartile of Yi, respectively. We have that

Ui = log(C/*/l -  [/*),

L>1 =  log(Zq/l — L\).

For 2 =  1,2, • • • , k — 2, and j  =  2 +  1, • • • , k — 1, let

Vjti = Var(Y)|Yi =  m i|0, Y2 =  m 2>0, • • • , Y =  rriifi),

so that

with

VjJ - 1 =
Uj — Lj

1.349
, for j  =  2,3, • - , k -  1,

U * \  (  L*a
^J=l0g - f  , L3 = 'mi‘i .o /  \ m i.o /

Having defined the above quantities, we are ready to state and prove the following two

lemmas.

(8.27)

L em m a 8.2. Under the assumptions of Lemma 8.1, for  2 =  2, • • • , k — 1,

1.

where

{Pi\pi =  m i|0,p2 =  ™2,o> • ’ • >Pi- 1 =  m i - i,o) ~  Lognormal(n*,V*),

Pi = m ito +  log (m i0) =  log(m*0),
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and

VC =  Viti- i  =
'Ui -  Li 

1.349

i —1
2.

i f  and only if

Pr ^p i  > 1 -  m j ,o f <
j =i

Uf I 1.349
< exp 

L I | zi_

i—1
log (

3=1

where za is the a  quantile of the standard normal distribution.

P roof

From the normality of F fc together with property (v) of the singular normal distribution in 

(Rao, 2002, p 522), we have

(Yi\Yi =  mifl, • • • ,Yi- 1  = ?7ii_i,o) ~  N(mi)0, Rv-i).

Then for known fixed m | 0,

(Yi +  log(m ij0)|Fi =  m i|0, • • • ,Yi- 1  =  m i-i,o) ~  N ^ o  +  log(m i>0), V^i-i).

The one-to-one transformations in (8.2) and (8.4) then give

(—1m i,o\Pi =  m i,o>' ' '  >Pi-1 =  ™*-i,o)pi

=  (p*bi =  m i,o> • • • >Pi-1 =  mi-i,o) ~  Lognormal (ra^o +  log(m i>0), F ^ - i) .

Using equation (8.22), the first statement of the lemma is proved.

To prove the second statement, we use standard normal distribution theory and the first 

statement of this lemma to state that

p r , log(Pi)^ ft- >

if and only if

log ( i  -  J2lj=\ ™j|0) -  lA

V W  '

log ( l  -  E}=i rnlo) -

< a,

Z i_ c
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or, equivalently, if and only if

Z l - a
log -  n*

This proves the second statement.

L em m a 8.3. Under the assumptions of Lemma 8.1,

k

j= l J=i+1

P ro o f

Using equation (8a.2.11) of (Rao, 2002, p 522), for i =  1,2, • • • , fc — 2, we can state that

M[log(p&) -  log(pi)|pi =  m ifl, - , P i  =  m y  =

Af[log(pfc) -  log(pi)|pi =  • • • , P i  =  m l i}p i + 1 =  mj+1>i, • • • ,Pfc_i =

which, utilizing equations (8.9) and (8.10), gives 

l°g(™fc,i) -  l o g ^ ^ )  =

\og[M(pk\pi =  m y ,  ,Pi = m li,P i+ 1  =  K+i,i> • • • ,Pfc-i =  rn%_hi)] -  log(7n*jl),

E[Yk \Yi =  m i,!, • • • , Yi = mi,i] =  E[Yk \Yi = m i,i, • • • , Y = m u ,

Y + 1 — E ( Y { + 1 | Y  — 7771,1, • • • , Yi  — 7 7 7 i,i) , • • • , Y —1 — E ( Y k —l  I Y i  — 7 7 7 l , l , ■ ■ ’ j Y  ^ i , i ) ]  •

Then, from definition (8.24) and (8.25)

M (Y k\Yi = 7771,1, • • • , Yi =  772i,i) =  M(Yfc|Yi =  7771,1, • * * , Y  =  777f,i,

Y + l  — ) Y —1 —

Hence

i.e.

m k,i = M (pk \pi = 777^ 1 , • • • ,pi = mli,pi+i = m*i+hi, • • • ,p k- 1  =
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Since the condition in the RHS of the above equation relates to all ps except pk, applying the 

unit sum constraint gives the conditional median in the form of the following complement:

i k—1
m

j =1 j=i+1

which ends the proof of Lemma 8.3.

Now, we modify the method of Kadane et al  (1980) to show that the quantities in 

(8.24)-(8.27) are sufficient to elicit a positive-definite variance-covariance m atrix Vk-i for 

Y*.-i =  (Yi, • • • , Yfc_i). Then, based on the condition of Y^i=iPi — an^ assuming tha t it 

is the only constraint on sums of these probabilities, we add a kth  row and column to get E& 

as a singular variance-covariance m atrix for all the elements of Y fc. Removing the first row 

and column of Efc will lead to the desired positive-definite variance-covariance m atrix Efc_i 

of Y*.

For i = 1,2, • • • , k — 1, let

and

Vi =  Var(y^),

with Vi as defined in (8.26). Suppose th a t Vi-\  has been estimated as a positive-definite 

matrix. We aim now to elicit Vi and investigate its positive-definiteness.

Vi can be partitioned as

Vi =
Vi—l Vi—iWj

y/iVi-i o?

(8.28)

where

and

V - m i  =  Cov(yi_1,y i ),

of =  Var(y<).
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It is well-known from multivariate normal distribution theory that

E ( Y ^ Y i _ l ) -  m i) =  lY . i-1  -  E ^ Y i - ^ ' V r - i V i - m

=  [ Z i - i  -  £ ( & - ! ) ] ' & •  (8 -2 9 )

Moreover, for j  < i — 1, taking the conditional expectation of both sides of (8.29), given 

that

Vj =  (m i)0 +  r/i, m 2)i +  772, • • • , rr i j j - i  +

gives

E  [ E W Y ^ Y j  =  y,.] -  E(Yi) = E { [ Y -  E i Y ^ Y j  = y .} ’ a . (8.30)

i.e.

E(Yi \Yj = y ^ - E ( Y i )_

= ( 3/1 -  E (Y 1) ,y 2 -  E (Y 2), E(Yj),  .

-  S « + i ) ,  ■ ■ ■ , B W - ilZ j)  -  B (V i-i)) 2Sj. (8-31)

Prom (8.24) and (8.31) we get

m i , j  -  m i ,o =  (t?1 > 7712,1 -  7712,0 +  7?2, • • ' , 7 7 l j , j - l  -  771j,0 +  TJj,

771j+1,j 771j-)_i,o, j TTli—i j  771j_l ,o )  IL i•

This holds for j  — 1,2, • • • , i — 1, so we have a system of i — 1 equations of the form

(8.32)

where

Ti =

771i,l 777-2,0

777-2,2 777/2,0

777/2,2—1 777-2,0
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and

Qi—l —

V l  7712,1 -  m 2)0 7713,1 ~  7773,0 ’ * * 7 7 7 i_ i , l  -  7 7 7 j_ i,0

771 7772,1 -  7772,0 +  V 2  7773 ,2 ~  7773 ,0 • ■ • 7 7 l i _ l ,2 -  777*_l,0

771 7772,1 -  7772,0 +  7?2 7773 ,2 -  7773 ,0 +  773 • • • 777; _ i ,3 -  771 j _  1,0

771 7772,1 -  7772,0 +  V2  7773 ,2 -  7773j0 +  7?3 • • • 77r7 * _ l ,* _ 2  ~  777^-1,0 +  V i - l

Since rriij — m ^ j - \  = 8i j ,  j  = 1,2, • • • ,7 — 1, multiplying both sides of (8.32) from the 

left by the matrix

1 0 0 . . .  0

- 1 1 0 . . .  0

M _ i  = 0 - 1 1 0 0

0 ° 
;

- 1  1

gives

$ i ,  i 771 $ 2,1 • • ' $ i —1,1

$ i ,2 0 772 • • • $ i —1,2

0

$ i , i —1 0 0  T 7i_i

U a.

Provided that

Vj 7̂  0, j  = 1,2, z — 1, 

the upper diagonal matrix M i- iQ i- i  is non-singular and hence

Ua =

-1 - 1 r  -1

77 1 $ 2 , 1 • • • $ i —1 , 1 $ z ,l

0 772 • • • $ i —1 , 2 $ i , 2

0

0 0 5? 1

1 $ i , i —1

• Since

V a r ^ l X ^ )  =  V ar(^ ) -  uJVi-m*, 
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we can now use the assessed conditional variance given by V^_i in (8.27) to estimate 

the unconditional variance of as follows:

o l  =  Viti-1 +  y^Vi-iUi.

Using the Schurr complement, the m atrix Vi is positive-definite if and only if

of -  IkiYi-iUi >  0,

which is guaranteed from (8.27) since V^_i >  0.

Choosing the arbitrary values rjj ^  0, j  =  1,2, • • • , i — 1, guarantees the existence of a 

unique solution for u{. It can be seen from the relation 

m lv  + rit
log log

m 1,0

i -  K i0+)?n j u - mi.o J ’ for 3
log

(  m j , j - 1  +  V j  \  (  m- lo g
m

for — 2,3,*** , i - l ,
1,1

that rjj = 0 if and only if r]j =  0, j  = 1,2, • • • , z — 1.

• So far, the proposed method estimates Vi as a positive-definite matrix, assuming that 

V i-1 is positive-definite. Since V\ > 0, the method yields a positive-definite matrix 

Vk- \ , by mathematical induction.

E stim ating  th e  last row and colum n o f E&

Let E*; be partitioned as follows

Vk- 1 Vk-lUk 

u'kv k- 1 ^

(8.33)

where

Vfc-iUfc =  C o v ^ .^ U fc ) ,

and

4  = Var (Yk).
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Note that, according to the condition tha t elements of p  must sum to one, the condi­

tional variance of Yk, given any specific value for Y_k_ i, has a fixed value of zero. Hence, 

using the standard theory of the multivariate normal distribution, we estimate ak as

= u'kVk- i u k.

• To estimate uk we write, as in (8.29),

£ ( n |Z * - i )  -  E(Yk) =  [y*_, -  E ( Y k^ ) ] 'u k. (8.34)

Exploiting the condition tha t Y^t=i Pi = we can obtain k — 1 estimates of E (Yk\Y_k_i) 

from k — 1 different sets of conditioning values for Y_k_ 1. More preciously, let

m k>o =  E[Yk \Yi =  m i )0, Y2 = m 2,o, • • • , Yk- i  = m k- 1 >0],

m fc,i =  E \Y k \Yi -  m i , i ,  Y2  =  rn2)0, ■ ■ • , Yfc- i  =  ^U fc-i.o ],

m k)i = E[Yk \Yi =  7 7 7 1 ,1 , Y2 =  7 7 7 2 ,2 , • • • , T i - 1  =  7 7 7 ; _ i , ; _ i , Yi =  7 7 7 *,*—! ,

Yi+1 = 777i+i,i, • • • , Yfc_2 = = "7fc-l,fc-l],

for i =  2,3, • • • , k — 2,

Wlfc.jfe-l = £?[Yfc|Yi = 7771,1,̂ 2 = 7̂ 2,2, • • • , Yfc-2 = f̂c-2,fc-2, f̂c-1 = ^fc-l,fc-l],

where m k- i ik- \  is an arbitrary value, which will be chosen such tha t

l,fc—1 7̂  ^fc—1,0*

We require 777.fc—i,fc_i 7^ ^ fc -1,0 ln order to solve the resulting system of equations, as 

will be shown later.

This gives the system of k — 1 equations,

Tfc =  Qk- \ u k, (8.35)
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where

Tk =

1 m k ,0

2 rnk,Q

'W'k̂ k—1 'm,k,Q

Q k —1 —

m 0 0 0  • • • 0

m m 2,l m 3,2 ' ' ’ m ' k - 2 , k - 3 m k - l , k - l

m ™ 2,2 m 3,2 ■ ■ • m ' k - 2 , k - 3 m ' k - l , k - l

m m 2,2 m 3,3

m  m 2,2 m 3,3

m k —2,k—3 m k - l , k - l  

m ' k - 2 , k - 2  m ' k - l , k - l

and

m[ j  =  r r i i j  -  r r n to, i = 2, 3, • • • , k -  1, j  =  i -  1, i.

We multiply both sides of (8.35) from the left by the m atrix M k~ i, which has a different 

structure from (i < k), taking the form

M k - 1  —

1 0 0 0

0 - 1 1 0 0

0 0 -1 0

1

0 0 0 - 1

The system of equations can then be written as

n^k, i rrikfi m

. m k,3 — m k,2 0 T]2 0

'nr1/k,k—1 mkjk—2 0 0 Vk- 2

^ k ,0 TYlk,k—l - m ~ m 2,2 ••• 
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where

™>iti = rrii,i ~  m , o, i =  2 ,3, • • • , k  — 2 ,

V k - i  — m k - i,o -

Provided tha t

rij t^O, j  = l , 2 , k  — 1,

the lower triangular matrix M k - iQ k - i  is non-singular and hence

U.k =

r - l p  -|

m m k ,  i  m k ,o

0 T)2 0 m k f i  ~  m k , 2

0 0 V k - 2 m k , k —i  m k , k —2

- m — m 2 , 2 - m k - 2 , k - 2 r ] k - i m k ,o  m k , k —l

P ositive-defin iten ess o f th e  variance-covariance m atrix

As mentioned before, the inverse of the additive logistic transformation is applied to the k 

dimension random vector p, transforming it into the k — 1 dimension random vector Y_* = 

(y^ Ys , • • • , Pfc)* We are interested in the hyperparameter T,k-i as this is the variance- 

covariance m atrix of Y_*. Although the whole m atrix is clearly a singular matrix, we will 

show that the submatrix £&_i is sure to be a positive-definite matrix, provided th a t no subset 

of categories has a known fixed sum of probabilities.

Consider the following partition of the singular multivariate normally distributed Y_k:

1” Fi log(pi) -  log(l -  Pi)

y2 logfe) ~ log(pi)
y3

=
log(p3) -  log(pi)

Yh- i log(pfc_i) -  log(pi)
Yk log (Pk)  -  log(pi)

.* Ly'**

"n
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Recall that, by definition,

y*  _ _

Let Sfc be conformally partitioned as

Sfc =

Y2 '
y3

Yk- i

"n"

y  * *

"Yk '

V! a' i b
a V*\ c
b 1

b"bi
where

V* is a (k — 2) x (A; — 2) square matrix, 

a and c are (/c -  2) x 1 vectors,

V\ ,cr| and b are scalars.

The method we used to estimate Vk-\ =

V* is also positive-definite.

The matrix Efc_i is then partitioned as

Y\ a'
a v*

~v*

d

guarantees its positive-definiteness, hence

For Efc_i to be positive-definite, we must show that

4  > e n v y ' s .

In fact, using the inverse of a partitioned matrix, and for d =  V\ — we may write

b id Vi.
a

- l
\ a' A

*
I

c

d ~ l - d - ' a ' i V * ) - 1 

' ( - Y ’(V" *) 1’a'rf-f ’(T> *) -  r- { y * ) ~ l ad

=  £, (l/ *)“1c +  i  {62 -  26[fi'(K*)-1c] +  [s'(V*)-1a][a'(V*)-1£|}

=  c '(K *)-1c + i  [ 6 - a '( F * ) _1s ]2 -

So, Efc_i is positive-definite if and only if

b - a ' i V * ) - ^ ^  0. 
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The method used to estimate E& automatically guarantees the fulfilment of such a condition. 

In fact, using the following partition of uk,

.Uk

u\_
U2
Us

U k - 1

.VlI.
U<1

gives

— Vk—1 Uk

Vi a'
a V *

“ 1.
U 2

V\ u\  +  a' u2 

a u\ +  V* u2

Condition (8.37) thus holds if and only if

[Vi -  Ul ±  0.

But V\ — d ( y * ) ~ l a > 0 from the positive-definiteness of Vk- i, and hence i is positive- 

definite if and only if u\ ^  0.

It can be seen from (8.36) that

u\

This condition is sure to be fulfilled since

UT'k, 1 772 fc, 0
11

mkfi = log
1 E j J  m j ,o _  1 

m *i,o

and

m k, i =  log m;

from which

fUkyl 7̂  Ulkfil

unless

™1,1 =  ™i,o>
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which can never occur since

ThVO.

So, the proposed method for eliciting the m atrix E& ensures tha t Efc_i is positive-definite, 

even though is itself singular.

Once n k and Efc have been estimated, equations (8.6)-(8.8) give the hyperparameters 

and Efc_i of the logistic normal prior distribution of p  based on the normalizing transforma­

tions given by Y_*.

8.5 Feedback using m arginal quartiles of the logistic norm al 

prior

After eliciting the mean vector p k_ 1 and the variance-covariance matrix E ^ -i of Y*, the 

software calculates marginal medians and quartiles of the probability of each category and 

displays their values as feedback to the expert. Since the initially assessed quartiles were all 

conditional, it is useful to inform the expert of the marginal quartiles and give her the option 

of changing them if she wants.

To add this feedback option to the software, we had to develop a reliable technique for 

estimating marginal quartiles from the elicited hyperparameters and Efc_i. Moreover, 

we must correspondingly modify the elicited hyperparameters once the marginal quartiles 

have been changed by the expert during the feedback stage.

A simple direct method for estimating the marginal moments, or quartiles, of the logis­

tic normal distribution in closed forms does not seem to exist in the literature. Aitchison 

(1986) suggested using Hermitian numerical integration methods to obtain marginal mo­

ments. However, he argued tha t the main practical interest is in the ratio of components, 

not in the component themselves. This is not the case here, as we are mainly interested in 

marginal probabilities, not in their ratios. Another approach, based on the Gibbs sampling 

technique, has been used by Forster and Skene (1994) to accurately approximate the posterior

240



marginal densities and other summaries for a broad class of prior distributions including the 

Dirichlet and logistic normal distributions. However, the method approximates the marginal 

densities of the posterior distribution rather than  the prior distribution.

Theorem 8.1 tha t the marginal unconditional medians ofp j, rrij, are equal to their conditional 

medians, m |)0,.for j  = 1,2, • • • , k.

Moreover, the same assumptions make it possible to estimate marginal lower and upper 

quartiles for each pj, for j  = 1,2, ■ • • , k. In the following lemma we formally state and prove 

the above results. Then, we propose a method of revising the estimates of Affc_ 1 and E ^-i to 

reflect any change made by the expert to the marginal quartiles.

L em m a 8.4. For any j  = 1,2, • • • , k, under the assumptions of Theorem 8.1,

with known pi j ,  a f j ,  the expected value of the lognormal distribution of (Pi/pj) is given by

Under the normality assumption of Y* and the unit sum constraint, it has been proved in

and Vj is guaranteed to be strictly greater than zero.

P ro o f

Since



On the other hand, by the assumption of approximate normality for Yj j ,  we have

los ( i Z ^ : )  ~ N (£a > ri) ,

SO

10S^ ~ pT )

and

1
Pj J  V ^

Mj = E [  =  exp - E j  +  -V j  ) . (8.39)

We take Mj  as in (8.38), and Theorem 8.1 gives

^ = Iog( i ^ % ) -  (8-40)

Equation (8.39) can be solved for Vj to give the first statement of Lemma 8.4.

Substituting m ^0 for M (p j ) in equation (8.16) and putting =  fiij,  gives

Ej = -  log ^ ^ e x p ( /x i(j ) j  . (8.41)

This guarantees tha t Vj > 0 in (8.39), since by comparing the RHSs of (8.38) and (8.41), we 

can see clearly that

Mj  > exp (—E j ) .

This ends the proof of Lemma 8.4.

The two unconditional quartiles of pj  can be obtained from

n  („ \ -  exP[<My« ) l
Ql[Pl) l  +  expfQ, f t , , ) ]

and

n  (ri i _  exp[Q3(y ij)] 
Qz{Pl )  l +  exp[Q3« j ) ] ’

with

= +  0.25),

Q3 (Xjj) = Ej  + y/Vj <S!-\0.7t>), 
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where $  is the cdf of the standard normal distribution.

The unconditional quartiles Qiijpj) and Qz(pj) are presented to the expert as feedback 

with the unconditional median M(pj),  for j  = 1 ,2 ,-•• ,k.  The expert has the option of 

changing any of the unconditional medians and/or quartiles. The changes are reflected in 

estimates of the hyperparameters p<k _ 1 and Efc_i, using the following approach.

• Let m'(pj ) denote the values of M (p j ) after re-assessment (j  = 1,2, • • • , k). We revise 

H,  i to

Pj,i = E*(YjA) =
log{m*{pj)) -  log(l -  m*(pj)) for j  =  1,

log(m*(pj)) -  log(ra*(pi)) for j  =  2, • • • , k,

with a new normalized set of medians m*(pj), where

^ j  = 1,2, ••• ,fc,

i= 1

• Suppose one or more of the marginal unconditional quartiles Qi{pj) and/or Qz(Pj) are

re-assessed as Q[(pj) and/or Q'3 (pj), respectively, for j  —  1, • • • , k. Then we change the

variance-covariance m atrix to

=  Var*(y(1)) =  D l  E(1) D l ,  (8.42)

where D  is a diagonal matrix with diagonal elements

° i ldi = - s - ,  i = 2,3, •• • ,k,
ah

and cr?i is defined by

°f*i =  Var* (log(pi) -  log(pi))

=  Var*(log(^)) +  Var*(log(pi)) -  2Cov*(log(pj), log(pi)). (8.43)

The modified variances and covariances, Var* and Cov*, respectively, are determined as 

follows.
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As Y j j is assumed to have an approximate normal distribution, let

V- = Var log Pj
1 - P j

log Q 'z iP j )

1 -  Q'zivj)
log Q  i  ( p j )

1 -  Q'liPj)
1.349

so,

Y,J ~  N ( E J tv ; ) .

Using a simple numerical integration technique on the normal pdf of Yj j ,  we can get the 

expectations, for j  =  1,2, • • • , k, in the RHS of the following equation,

Var* (log (pj)) = E<\og -  E  < log
,1 +  exp (Yj d )_,1 +  exp (Y^-).

To attain  a strictly positive value of crf\ as in (8.43), we modify Cov(log(pi), log(pi)) by 

putting

Cov*(log(p»),log(pi)) =  Wi Cov (log (p*), log (pi)) i = 2,3, • • • , k.

where

W i =
1 Var* (log {pi)) Var* (log (pi))

Var (log (p^) Var (log (pi)) 

In (8.42) we use the diagonal matrix,

i =  2,3, • • • , k.

D =

so as to change the variances of Y _ , while preserving correlations and also preserving the 

positive-definiteness for E ^ .

Another feedback window is available on request for the expert, should she need to see 

the influence of changing one or more of the marginal quartile values. If this option is taken 

and further re-assessment made, then the method given in Lemma 8.4 is applied again on the 

modified m atrix E ^ ,  to give a new set of marginal quartiles. These can be changed again 

by the expert if she does not find it a satisfactory representation of her opinion.

We should mention tha t the new set of marginal quartiles does not necessarily have

the same values as the modified quartiles. The unit sum condition of p, with the normality

assumption of each Yj j ,  for j  =  1,2, • • • , k, always forces the marginal interquartile range for a
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single probability to partly depend on the other probabilities, as shown in Lemma 8.4. Hence, 

for mathematical coherence, the resulting set of marginal quartiles will not correspond exactly 

to the expert’s assessments. The proposed approach tha t uses Lemma 8.4 and continuous 

feedback enables the expert to adjust the quartiles until she is happy with the feedback values.

8.6 Exam ple: Transport preferences

In designing transport systems for the future, one ingredient is the relative importance of fac­

tors a person may consider in selecting the mode of transport for different journeys. Estimates 

of these preferences help in planning rail services, roads and other transport infrastructure. 

Such estimates are also of interest from the environmental point of view, because of the 

impact of transport emissions.

For a preparatory environmental study, estimates about factors affecting transport pref­

erences in 2020 were needed. In this example, a transport expert quantified his opinion about 

the factors affecting the choice of transport for a hundred mile journey across UK in tha t year. 

Primary interests of the expert (Dr. James Warren, The Open University) include modelling 

energy and emissions to gain a better understanding of transport systems and the potential 

effects of transportation policy and technology on the environment. He specified five quan­

tities as the main factors a passenger would consider in choosing the means of transport for 

such a journey. These factors are: cost, journey time, environmental impact, comfort, and 

convenience. Interest focuses on the relative frequency with which each of these quantities is 

the most im portant factor: For what proportion of people would cost be the most im portant 

factor in choosing the mode of transport for the journey? For what proportion would it be 

journey time? And so on. The problem can thus be described as a multinomial model with 

five categories, one for each factor. Our method and PEGS-Logistic software were used by 

the expert to quantify his opinion about a logistic normal prior for the param eters of this 

multinomial model.

After initializing the software and defining the model, the expert assessed his medians of
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the proportion of people for whom C ost/ T im e/ Ecolm pact/ Comfort/ Convenience would 

be the most im portant factor. These medians assessments were 0.61, 0.25, 0.04, 0.06, 0.10, 

respectively, and they are the blue bars in Figure 8.4. These values do not sum to 1 and the 

software suggests values (yellow bars) tha t did. Rather than  accepting these suggestions, the 

expert revised his initial median assessments to be 0.49, 0.28, 0.04, 0.06, 0.11, respectively. As 

their sum is nearly equal to one, the medians suggested next were very close to his assessments

and the expert accepted them  as representatives of his opinions.

; l E r r'"r7~z:zzizzzzr'jz : nz “  —
Now; you have finished with this frame. Accept or modify suggestions to  sum  to onel

  ........
i  Fite Edtt Tools Nefe

Eliciting M edians of Probabilities fo r Each Category

0.95

0.90

0.85

0.80

0 .7 5
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0.60

0.55

■« °-50 
I  0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05 
0 .0 0 !

C o s t  T im e  E c o lm p a c t  C o m fo rt  C o n v e n ie n c e
C a te g o r ie s

I <  8 a c k  [| S u g .y s f K .n a  |  :: H e #  |  j , H e l p ? '( 4 ) , |

Figure 8.4: Software suggestions for initial medians

The expert then gave his assessed upper and lower quartile values for the probability of 

the first category; these were 0.62 and 0.43 respectively. Then conditioning on his assessed 

medians for previous categories, he assessed his conditional quartile values. The four con­

ditional lower quartiles were 0.18, 0.03, 0.03, 0.10, respectively, while the four conditional 

upper quartiles were 0.36, 0.10, 0.08, 0.15, respectively. See Figure 8.5, in which the expert 

has given his two quartiles of the fourth category conditional on the probabilities of the first 

three categories. The quartiles of the last category follow automatically. Although the expert 

is not a statistician, he had no problems in assessing quartiles after a brief discussion about
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the method of bisection.

Now, you have finished with this category. You m ay press 'Next* to  proceed

Eliciting a u a rtn e s  of th e  probabilities of C

P ro p o r tio n

W

E c o lm p a c t

t  <  S a c k  ;

Figure 8.5: Assessing conditional quartiles

Next, the expert gave conditional median assessments of 0.41, 0.16, 0.12, 0.33 for the 

remaining four categories, conditional on the probability of the first category being 0.25. The 

number of conditions was then increased in stages. Conditional on 0.25 and 0.20 being the 

probabilities for the first and second categories, respectively, the expert revised his probability 

median assessments for the last three categories to 0.13, 0.18 and 0.25, respectively. See 

Figure 8.6. Finally, he gave the conditional medians of 0.19, 0.30 for the last two categories 

given th a t the probabilities of the first three categories were 0.25, 0.20 and 0.07, respectively.
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Figure 8.6: Revised conditional medians

It is worth mentioning tha t the suggestions given by the software played a crucial role in 

helping the expert choose medians th a t satisfy the unit sum constraint. During the elicitation 

process, obviously the sums of expert’s assessments never equalled one exactly. W hen sug­

gestions were offered by the software, he normally revised one assessment and then accepted 

the second round of offered suggestions. After making his conditional median assessments, 

the expert was then shown the unconditional medians and unconditional quartiles th a t were 

implied by all his assessments. See Figure 8.7. During this feedback stage he was invited 

to accept or revise these quantities. The unconditional medians tha t were offered were ac­

cepted by the expert as an adequate representation of his opinion. However, he decided to 

use the change quartiles button to revise the unconditional quartiles and then reduced the 

interquartile range of the last category.
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Figure 8.7: Software suggestions for marginal medians and quartiles

The elicitation process took about 20 minutes to complete. The expert commented tha t 

although the elicitation problem was quite tricky, the software gave a helpful form of visual­

ization. He also mentioned that he had found it hard to make his median assessments sum 

to one, so tha t the software’s suggestions had been very welcome. He also advised th a t it 

would be helpful if the different categories were ordered according to their importance, i.e. in 

a descending order according to their median probability values. He thought th a t this order 

would make it easier for him to think about conditional assessments.

The software output the following elicited hyperparameters of the logistic normal prior 

as in Tables 8.1 and 8.2.

Table 8.1: The elicited mean vector of a logistic normal prior

y 2 = log(p2/pi) Y3 = log(p3 /pi) Y4 = log(p4 /pi) Y5 = log(p5/p i )

-0.5058 -2.4517 -2.0639 -1.5043
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Table 8.2: The elicited variance-covariance m atrix of a logistic normal prior

^ 2 = l0 g ( g ) ^3 =  l0g (g ) n  =  log(EJ) Ys = log (g )

^ 2  == lo g (g ) 0.3414 0.1511 0.1598 -0.3035

t 3 == 10g (g ) 0.1511 0.9087 0.3677 -0.5551

y 4 =

JOII 0.1598 0.3677 1.0906 -1.9076

y 5 == los(g-) -0.3035 -0.5551 -1.9076 3.468

This output gives the mean vector and variance-covariance m atrix of a multivariate normal 

distribution of degree 4 for Y2 , 1 3 , Y4 , Y5 . However, the marginal moments of each pi are not 

given as output. Instead, marginal medians and quartiles are presented to the expert during 

the feedback stage as discussed before, see Figure 8.7. The multivariate normal distribution 

of F2 , F3 , Yj, Y§ may be used as a prior distribution in a Bayesian analysis. Details of the 

additive logistic transformations are also needed:

 , for i = 1 ,

1 +  ^ e x p  (Yj)
3 = 2

exp(Y)
 ■■■.-----, for i =  2,3, • • • ,5.

l + ]Texp(Y-)
j =2

Of course, the extra variable Y\ is omitted as it is a redundant variable due to the unit sum 

constraint on p. The software has an option to implement this prior distribution in a Win- 

BUGS file. After the sample data are obtained, the software produces a file for a WinBUGS 

model tha t contains sample data, a multinomial likelihood and a complete specification of 

the logistic normal prior distribution that the expert assessed.

P i  =  <

8.7 C oncluding com m ents

In Chapters 6  and 7, we introduced elicitation methods for Dirichlet, generalized Dirich- 

let and Gaussian copula as prior distributions for the param eter vector p of the multi­

nomial model. Hence the logistic normal distribution is our fourth suggested prior dis-
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tribution for this model. Among these priors, the logistic normal prior gives the most 

general correlation structure. The PEGS-Multinomial software, that is freely available at 

http://statistics.open.ac.uk/elicitation, offers the option of eliciting any of these four prior 

distributions.

As noted earlier, it is tricky to elicit assessments th a t satisfy all the necessary requirements 

for multinomial models. For example, if there are only two categories, the lower probability 

quartile of one category and the upper quartile of the other must add up to one. As the 

number of categories increases the requirements tha t must be satisfied increases. In our 

proposed elicitation method, we chose assessment tasks and a structure tha t led to a coherent 

set of assessments, without the expert having to be conscious of the requirements.
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Chapter 9

Eliciting multinom ial m odels w ith  

covariates
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9.1 Introduction

W ith multinomial models, the membership probabilities of different categories may depend 

on one or more continuous or categorical explanatory variables (covariates) th a t influence 

these probabilities. The simpler well-known example in this context is the logistic regression, 

where the probability of being in one of only two categories is related to a set of explanatory 

variables through the logit link function.

Suppose there are k categories, let pi ,P2 , - "  ,Pk denote the membership probabilities 

and let = ( X i , X 2 , • • • , X m) be a vector of m  explanatory variables. Relating X_ to each 

probability pi using separate logit link functions is not the best choice. The inverse link 

functions gives

exp (ai + X 'p . )
P i { X )=  T y ' o V  z' =  1’2 (9>11 +  exp(ai +  X P i )

in which case, it will not be easy to investigate the conditions under which the constraint 

J2i=iPi{20 =  1 is fulfilled. Some other link functions are available in the literature [e.g. 

Aitchison (1986)]. However, the additive multinomial logistic link function is the most con­

venient, as it automatically accounts for the unit sum constraint. It links the classification 

probabilities to linear predictors in the form,

k ’ 2==1,
1 +  Y L  exP(a i  +  X'Pj )

3 =  2

exp (a* +  X ' f i J
k

1 + J 2  exp ( « j + x ' p . )
3= 2

Expressing the model in the form of (9.2) helps to generalize results obtained in the previous 

chapter to the current case.

For the Bayesian analysis of the multinomial logit model, a multivariate normal prior may 

be assumed [e.g O ’Hagan and Forster (2004)] for the param eter vector

Pi(X)  =  1 (9.2)

% — 2, • • • , k.
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where the vectors of coefficients, (ai,p.) ' ,  are category specific, for i =  2, • • • , k, i.e. each 

category has its own vector of regression coefficients. We select the first category as the fill-up 

category, hence, its regression coefficients, (a q ,/^ ) ', are not included in the prior distribution 

for identifiability.

In this chapter we propose an elicitation method for eliciting a mean vector and a 

positive-definite variance-covariance m atrix of the normal prior distribution of /3*. Our 

proposed method is based on the results obtained in the previous chapter for the logis­

tic normal prior distribution of the multinomial model. The proposed method has been 

implemented in the PEGS-Multinomial with Covariates software that is freely available at 

http://statistics.open.ac.uk/elicitation.

In Section 9.2, we define the underlying model, namely, the base-line multinomial logit 

model, in terms of the additive logistic transformation. The required assumptions, notation 

and theoretical framework are discussed in Section 9.3. Elicitation methods and assessment 

tasks required for eliciting a mean vector and a positive-definite variance covariance m atrix 

for the regression coefficients are proposed in Sections 9.4 and 9.5. Final concluding comments 

of this chapter are given in Section 9.6.

9.2 The base-line m ultinom ial logit m odel

The model tha t uses the link function in (9.2) is known as the multinomial logistic (logit) 

model, since it has multinomial responses with a number of k >  2 categories. The model in 

(9.2) is usually given in the more general form

exp(oti +X'/3.)
V i { X )  = - ------------ = = ^ - ,  i =  l ,2 , . . . , f c ,  (9.3)

exp(oy +  X'f i . )
j = 1

which is called the base-line multinomial logit model. See, for example, Agresti (2002) or 

Powers and Xie (2000). In the rest of this chapter, for ease of notation, each classification 

probability Pi(A), as defined in (9.2), will be just denoted by pi , for i = 1,2,*-* , k.
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To attain  the unit sum constraint in the base-line model, an identifiability constraint must 

be imposed by equating the coefficients of the “base-line” category to zeros. The selection of 

the base-line category is arbitrary. If we select the first category as the base-line category, 

then, under the identifiability constraint (ctq, f t  )' =  0, it can easily be shown that the model 

in (9.3) is equivalent to that in (9.2). Thus, the model has exactly (k — l)(m  +  1) free 

parameters.

From (9.2), the linear predictor, Yj = otj + 2C/3 -, can be written in terms of the logistic 

transformations in classification probabilities as

Yj = Oij +  X!fi .  =  log f a )  -  log(pi), for j  = 2,3, • • • , k, (9.4)

where the regression coefficients for the jfth category are

We define an extra variable, Yi, as

Yi = log(pi) -  log(l -  pi).  (9.5)

This extra variable is required to be used as a conditioning value in the elicitation process, 

as shown in the previous chapter. We do not assume Yi to be a linear predictor, since the 

trivial parameters, aq and (3 , will not appear in the elicited prior distribution. We adopt 

the conventions oq =  0, =  0, for identifiability of the base-line model.

9.3 N otation  and theoretical framework

We assume that the prior opinion about the linear predictors Y2 , • • • , Tfc, can be adequately 

represented by a multivariate normal distribution of degree k — 1. Then from equations 

(9.4), (9.5) and Section 8.2.1, Yi has an approximate normal distribution. In addition, the 

classification probabilities, pi ,P2 , ‘ ” lPk, have a logistic normal distribution as defined in 

Section 8.2. Following O’Hagan and Forster (2004), we assume a multivariate normal prior 

distribution for the regression coefficients.
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For tractability in the elicitation process, the expert is asked to give her assessments 

for the classification probabilities, p\, ■ ■ • ,p^, and consequently for Y2 , • • • , Yfc, for only one 

covariate at a time. All other covariates are assumed to be at their reference values/levels. By 

doing this for each covariate in turn, the expert can concentrate on revising her assessments 

as a result of the change in just one explanatory covariate.

The relationship between each Yj and each continuous covariate X r is not necessarily 

linear. A piecewise-linear relationship as discussed in Chapters 3 and 4 might be a reasonable 

choice here th a t can model many types of relationships. However, in dealing with k categories 

and m  explanatory covariates, a piecewise-linear relationship will seldom be practical as it 

imposes a large number of dividing points (knots) at which the expert must give assessments. 

This would lead to a lengthy elicitation process. So, to simplify the elicitation process, we 

assume that relationships are linear. Specifically, we assume a linear relationship between 

each continuous covariate X r , r = 1,2,•• • ,m ,  and each Yj, j  = 2, • • • , k, of the form

Yj = aj  + X rpr,j, r  =  1, • • • ,m,  j  = 2 , - - - , k ,  (9.6)

given that all other covariates are fixed at their reference values/levels. That is, equation 

(9.6) holds when X{ =  a^o, for z =  1,2, • • • , m, i ^  r, where 2 ^ 0  is the reference value/level 

of X{. If, all covariates are at their reference values/levels, i.e. X{ = x ^ 0 , for i = 1,2, • • • , m, 

then

Yj = aj> j  =  2, •••,&• (9-7)

To achieve this, for r  =  1,2, • • • , m, if the covariate X r is a factor (categorical variable), with 

a reference level x Vjq and any number S(r) of levels, x rji , x r^ , • • • , av,<5(r)> then X r is split into 

<5(r) new factors, X rj  defined as

Xr,i — <
1 if Xi-rf*   Xŷ 'l

0 otherwise,

(9.8)

for i = 1,2, • • • , 5(r).
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If X r is a continuous covariate with a reference value xt>q, then we define a new variable 

X*  as

X* = X r — x rfi , for r  =  1,2, • • • , m. (9.9)

W ith the new covariates defined by (9.8) and (9.9), the value of each covariate is equal to 

zero at its reference value.

Hence, if m  consists of m \  factors and m 2 continuous covariates, we get a new set of, say, 

m* explanatory variables, where

mi
m* =  +  m 2.

j = 1

To simplify the notation, with no loss of generality, we keep the notation X i ,  W2, • • •, X m, 

for the set of covariates, while keeping in mind that m  actually denotes m* and that each 

X r is of the form of (9.8) for a factor or (9.9) for a continuous covariate. In this sense, the 

models in (9.6) and (9.7) are equivalent to (9.4).

It is convenient to rearrange the regression coefficients into a matrix, say (3, of the form

( . \a\

AN

\
OC2

\ & )

( \
Oik

\ N i

(9.10)

Then we define the new set of vectors a , j3^y for r = 1,2, • • • ,m , as the rows of /?, of the

form

QL = (an, CX-2 > J O'ky,

—(r) ^Pr, l )  f i r ,2j > f i r , k  ̂ ’

and the same set with the first zero elements removed, as

(9.11)

(9.12)

a 1 = (Oi 2 > 3 3 Oik (9.13)

—(r) f̂ i r ,2i  f i r ,3i  3 f i r , k^ (9.14)

Since each column of the (3 matrix in (9.10) contains regression coefficients th a t correspond

to one category, it is more convenient to work with the rows, which each correspond to one

covariate. In this case, elements of a single row correspond to classification probabilities, and
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hence these elements must be inter-related in a way tha t reflects the unit sum constraint 

of the probabilities. Therefore, we assume that the elements of a  are correlated, and that 

the elements of each / 3 ^  are also correlated, hence statistically dependent, a priori, for all 

r = 1,2, ••• ,ra. While elements from different rows of /?, tha t corresponds to different 

covariates, are assumed to be independent a priori, so as to simplify the elicitation process 

and obtain a block-diagonal variance-covariance matrix.

If we let d 1 = (ft1' ft1' . . .  ft1' V, then the multivariate normal prior distribution
-  V£ (l)’ £(2)’ ’ £(m) .

to be elicited is thus of the form,

( a

\ ? J

MVN
f1t—a.

V V

(9.15)

9.4 E liciting th e m ean vector

To elicit the mean vectors pa and p^,  in (9.15), we proceed as follows

• The expert is asked to assume that all covariates are at their reference values/levels, i.e. 

X r = 0, r = 1,2, • • • , m.  We call this situation as the reference point. She then assesses 

a median value, say m^o g, for the probability p\ of the first category. As discussed 

in the previous chapter, since the choice of the first category is arbitrary, it is chosen 

by the expert as the most common category. Then the expert assesses median values 

mJ 0>o» i  =  2, • * • > k, for all the remaining categories.

• As proved in Theorem 8.1 in the previous chapter, these unconditional median assess­

ments are equal to the conditional medians of (pj\pi = ^ iioo ) f°r J ~  2,3, ••• ,/c. 

For convenience, we denote both conditional and unconditional medians by m*^0j0 ) 

j  =  2, • • • , k. Lemma 8.1 in the previous chapter states th a t median assessments must 

sum to one, so they are normalized by the PEGS-Multinomial with Covariates software 

to fulfill this condition.
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• For each covariate in turn, the expert is asked to assume a specific value of the current 

covariate, say X r =  x r , while all other covariates are assumed to be at their reference 

values/levels. Under these assumptions the expert starts by assessing a median value 

for pi,  say m \ Qr. Then she assesses a new set of median values, say ra*0i7o f°r 3 =

2,3,--- ,k,  for all the remaining categories. Again, these assessments are normalized 

to satisfy the unit sum constraint. This process is repeated for each covariate, i.e. for 

r  =  1,2, • • • , ra.

• Figure 9.1 shows the assessed probability medians when only one of the covariates, age, 

has changed from its reference value to a new value (40 years). To help the expert during 

this stage, the software gives the previously assessed medians when all covariates were 

at their reference values/levels. This is presented by the upper right graph of Figure 9.1. 

The reference value/level of each continuous covariate/factor is also listed in the upper 

left table as in Figure 9.1.

Now, you have  finished with th is  fram e . You m ay click 'N ext11

File Ectt Tools Help

Probability medians a t th e  r eference  point

Eliciting M edians of Probabilities fo r Each Category w hen the  covariate (age;

Categories

I Hem?, 18; il

H«ie' ~ |

<9 i

Figure 9.1: Assessing probability medians at age =  40 years
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Now, let the conditional median of Yj, given that all covariates are at their reference 

levels, be denoted by m ^o ?  for j  — 1,2, • • • ,k.  Also, let the conditional median of Yj, given 

that X r =  x r and all other covariates are at their reference levels, be denoted by rrijto>r, for 

j  = 1,2, • • • , k, and r = 1,2, • • • , m.

As the transformations in (9.4) and (9.5) are monotonic increasing, medians and con­

ditional medians are transformed. Hence we can write, for r  =  0,1,2, ••• , m, and j  =

2 ,3,• • • , k,

mi,o,r =  log(rai)0)T.) -  log(l -  m*1Ar), (9.16)

mj,o,r =  log(m*0,r ) -  log(m ^0)r). (9.17)

It is worth mentioning here that the validity of (9.17) is a result of defining ra j^ r  as the

conditional median of (pj\pi = r a |)0r), which implies tha t m^o.r is a conditional median of

(Yj\Yi = m i)o,r)--That is why we need the redundant variable, Yi, to be defined in (9.5).

The computed assessments from (9.16) and (9.17), together with the linearity assumptions 

in (9.6) and (9.7), enable us to determine fij = E{a.j), for j  = 2, • • • , k, as

p.j = E(Yj \Xi  = 0,Vz =  1,2, • • ■ ,m )  = (9.18)

We must determine /rr j- =  E((3rj )  for r — 1,2, • • • , ra, j  =  2, • • • , k. If X r is a factor, then 

from (9.6) and (9.7), and utilizing the assessments in (9.16) and (9.17), we put

lirJ = E (Y j \Xr = 1 ,X i  = 0, Vi ^  r) -  E{Yj\Xi  = 0 ,Vi =  1,2, • • • ,ra)

=  rrij^r -  rrijfifi. (9.19)

If X r is a continuous covariate, then /3rj  is the slope of the linear relation in (9.6), so

firj = [E(Yj\Xr = x r ,X i  =  0,Vi 7  ̂ r) — E(Yj\X{ = 0,Vi =  1,2, • ■ • ,m ) ) / x r

= [mj>0)r -  m j toto]/xr , (9.20)

for r  =  1 , 2 , • • • , ra, and j  — 2 , • • • , k.

Finally, we put

ifa =  ^ 2 , M3, •• • , Mfc) 5 (9-21)
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and

Up ~  (m i,2 j  • • • >  Ml,fc> M2,2, M2,fc, Mm,2,  ' • * ,  Mm.fc) ' ( 9 - 2 2 )

9.5 E liciting the variance m atrix

To elicit a positive-definite m atrix for the multivariate normal prior distribution of the re­

gression coefficients in (9.15), we proceed as follows.

9.5.1 Eliciting the variance-covariance sub-m atrices

We denote £ Q =  Var ( a 1) by So? and put

S r ,a =  V a r e l a 1) (9.23)

and

S ^ V a r ^ ,  ^  . . . .  (9.24)

In order to develop a method for eliciting positive-definite matrices So and £ r |a (r =

1, • • • , ra), we proceed as follows.

From (9.7) we put

So =  V ar(F1|Xi- =  0,Vz =  l , 2 , - . -  ,m)  = V0, (9.25)

where X1 =  ( y 2 i y 3) . . . ,  y fc) .

For continuous covariates, if we assume that X r = x r and X{ = 0, for i =  1,2, • • • ,m , i ^ r ,  

we have from (9.6) that

VarQ^lJW =  x r , a 1 = j x j  =  x 2r Var(/?Jr) |a 1 = p j  =  Vr . (9.26)

Hence, for r  =  1,2, • • ■ , ra

■Er |a =  x - 2 Vr . (9.27)

For factors, (9.27) is reduced to

Er |* =  Vr . (9.28)

Each matrix Vr (r =  0,1, • • • , ra) can be elicited as a positive-definite m atrix in the way

used to obtain the variance m atrix of the logistic normal prior in Chapter 8.
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R em ark 9.1

The main difference between this chapter and Chapter 8 is th a t here the process of assessing 

the conditional medians and quartiles must be repeated m  +  1 times. In the initial step, the 

expert is asked to assume that X{ =  0, Vi =  1,2, • • • ,m.  Then, in each successive step number 

r, for r  =  1,2, • • • , ra, the expert is asked to assume that the r th  covariate has changed from 

0 to x r , i.e. X r — x r , while all other covariates are at their reference values, i.e. =  0, 

for i — 1,2, • • • ,m,  i ^  r. During these remaining ra steps, another key assumption is made. 

The expert is also conditioning o n a 1 =  /^ .

Under these main assumptions at step r, r  =  0,1, • • • , m, the assessment tasks can be 

detailed as follows.

9.5.2 A ssessing conditional quartiles

• Under the assumptions listed in Remark 9.1, the expert is asked to assess a lower quartile 

L\  r and an upper quartile U{ r for p \ . She is then asked to assume that pi = m \  Q r 

and gives a lower quartile L\  and an upper quartile U2r for p2.

• For each remaining pj, j  = 3, • • • , k — 1, she assesses the two quartiles L j r and UjT 

given that pi = m j>0>r, p 2 = m*2Ar, ..., p j - i  = m ]_10 r .

• Using the interactive PEGS-Multinomial with Covariates software, and due to the unit 

sum constraint, the lower (upper) quartile L ^ r {U^r) of p^ is automatically shown to 

the expert once she assesses the upper (lower) quartile r (T^_l r ) of pk-i-

• W ith the aid of a lognormal curve produced by the software, the expert is advised to 

make sure tha t her assessed interquartile range gives an almost zero probability of pj  

exceeding 1 — Yj[Zi ^ or more details on this, see Section 8.3.2 in the previous 

chapter.

262



9.5.3 A ssessing conditional m edians

• Under the assumptions listed in Remark 9.1, for r  =  0,1, • • • , m, the expert is asked to 

assume th a t the median of p\ has been changed from m \  Q r to

Given this information, the expert is asked to change her previous medians 0)T- of 

each pj. Her new assessment, Trij l r , may be written as

l i , r  = m l o.r- +  6 j , i >r, for j  =  2, • • • , k. (9.29)m

• In each successive step i, for i =  2,3, • • • , k  — 2, the expert is asked to suppose tha t the 

median values of pi, p2, ..., p% are m \ l r  = m ^0)T. + ^ r , m*22r = • • • , =

m i i - i  r  +  ^iri  respectively. These are shown as red bars in Figure 9.2.

Given this information, she is asked to revise the medians tha t she assessed at the 

most recent previous step nr*+l i_ l r , m?+2i_ 1)7., ’ ' '  sh°wn by black lines in

Figure 9.2. Her new assessments are denoted mj+1 ̂  =  77î +1 +^*+1 >ijT., m*+2 i)T, =

m i + 2 , i - i , r  +  0i+2,t,r» ' ' 1 > m k,i ,r  = m k , i - i,r +  0jfc,i,r» respectively, which are shown as

the blue bars in the main graph of Figure 9.2. In other words, for i =  1,2, • • • , k — 2, 

and j  = i +  1, i +  2, • • • , k, we can write

m h,r  = +  0j,i,r is the median of (pj |pi =  m ijl>r, • • • ,Pi = mf>i>r). (9.30)

• For mathematical coherence, as proved in Lemma 8.3, Section 8.4.2 in the previous

chapter, we have to make sure that

i k

y !  m j,j,r +  m j,hr =  2 =  1, 2, — 2.
j= l j=i+l

The software suggests new normalized conditional medians satisfying the above con­

straint.

• As mentioned in Remark 9.1, the expert assesses her conditional medians assuming that

only one of the covariates, age, has changed from its reference value to 40 years, and

assuming at the same time tha t her previously assessed medians at the reference point
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are correct. Probability medians at the reference point are presented to the expert in 

the upper right graph of Figure 9.2. The expert is asked to assume these medians are 

the true values while assessing her conditional medians on the main graph of Figure 9.2.

j ig  y g  ^  j ]  »  j .g  fr te x  - Marotoft Out... I ,  >  V>Vfctt,»*TcX • [C:V.. |  P  7 fctobt Reacter

Figure 9.2: Assessing conditional medians a t age =  40 years

Assessment tasks in Sections 9.5.2 and 9.5.3 will be repeated m  +  1 times, for r = 

0,1, • • • ,m . Then, as detailed in the previous chapter, the normalizing one-to-one functions 

in (9.4) and (9.5) are used to transform the assessed conditional quartiles of p into condi­

tional quartiles of Y_ and, hence, into conditional expectations, variances and covariances of 

the multivariate normal elements.

The method of Kadane et al. (1980) is modified, as in the previous chapter, to estimate 

a positive-definite variance-covariance matrix Vr for Y } \ X r, from the assessed conditional 

medians and quartiles. So, because of the unit sum constraint, each positive-definite m atrix 

Vr is of order (k  — 1).

Under the assumptions leading to (9.15), and in view of (9.23) and (9.24), the diagonal

blocks of the block-diagonal m atrix S^|a are S r |a , where each Er |a is given by (9.27), for
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r =  1,2, ••• ,ra. Hence, E^|a is a positive-definite matrix. The unconditional variance- 

covariance m atrix E^ will be obtained from E ^  using the covariance m atrix Eq,^. The 

latter is elicited as follows.

9.5.4 Eliciting the covariance m atrix Eaig

The covariance m atrix of a 1 and ft1 is the m atrix Eq,^ of order (k — 1) x m{k  — 1). To elicit 

this matrix, it is convenient to conformally partition Ea)/g as

=  ( E a ^ , EQj/32, ••• ,  E (9.31)

where, for r  =  1,2, • • • , m,

S a A ^ C o v f e 1, ^ ) .  (9.32)

We denote the rows of each S a,/3r by <Z-a,(3r,t’ f°r  ̂— 2, • • • , &, where

^ it =  Cov(at , ^ r)). (9.33)

For any specific value satisfying ^  fit, for t = 2, • • • , k, it can be seen from (9.15),

(9.32), (9.33) and the theory of multivariate normal distribution that

&LU. =  “ < =  “ t) =  fi«. +—(r)1 £&•

From this

-  (H
_Var(af)_

(9.34)

Vai(at)
(ifft-la ,-H a.)- (9-35)

-  Vt

Since Var(o;t) is the (i — l) th  element of the main diagonal of So as in (9.25), then, from

(9.32) and (9.33), Ea a can be elicited using (k —  1) assessments of fin . ,  for t  = 2, • • • ,  k.
} Pr\Ott

Under the normality assumptions, these conditional means of the regression coefficients can

be computed from the conditional median assessments of the classification probabilities. This

can be detailed as follows. For each covariate X r (r =  1,2, • • • , m)  in turn, the expert is asked

to assume that each single at {t =  2, • • • , k) in tu rn  has changed from fit to af,  i.e. she is

asked to assume that the true value of (pj\X{ = 0, Vz =  1,2, • • • , m)  has changed from

to a new specific value, rrijQ Q t . This is shown by the change from the black lines to the red
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bars in the upper right graph of Figure 9.3. Given this information, the expert then assesses 

her median of (Pj\Xr — x r , X{ =  0,* =  1,2, • • • , m , i  ^  r), which we denote by ^ 0 r|at’ ôr 

j  = 2, • • • , k. These are assessed as the blue bars in the main graph of Figure 9.3.
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igt 1 30.fi

f ® k r  I code

1 60.8

......."-"Mg
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Figure 9.3: Assessing conditional medians given changes at the reference point

The choice of the specific values a£ is arbitrary, provided tha t a£ ^  fit. However, we 

select each of them to be the upper quartile of the normally distributed variable at, namely,

a^ =  fit +  0.674>/Vhr(at), for t  = 2, • • • , k. (9.36)

This leads, from (9.4), (9.5) and (9.7), to sets of conditioning probabilities, rrij0 0 t , th a t are 

given by

exp(aj)
m

1 +  E z t i  exp(ajj) 

where a\  =  0, af =  a% and c& = fij, for j  ^  t.

for j  = 1, • • • , k, (9.37)

Since, as in (9.34), we condition on changing at, for t  =  2, • • • , k, one at a time, we have 

to compute the resulting conditioning probabilities from this change as in (9.37). If we had 

chosen to first change the conditioning probabilities, the desired change for at  would not have 

been guaranteed.
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As in (9.17), the corresponding median assessments for Yj can be computed, for j  = 

2, • • • , k, r — 0,1, • • • , m, and t  = 2, • • • , k, as

™ j,0,r|at =  i o g K V l a t )  _  lo S (m lA r |a t )- (9 -3 8 )

Hence, we denote E((3rj\cxt = a£) by iirj \ at and compute it as follows.

If X r is a factor, then as in (9.19), we put

A*r,j\at ^j,Q,r\at ^U,0,0|af (9.39)

If X r is a continuous covariate, then as in (9.20), we put

— m j>°>r\at ~  m J»o.Qlat (Q An\fir j\at ^  , (9.4U)

for r = 1,2, • • • , m, j  =  2, • • • ,k,  and t  =  2, • • • , k.

Putting

—/3r|ott l̂ r̂,2\at  ̂ Mr,3|at» > f^r,k\at^ ’

all the components of g[!a as in (9.35), and hence of Y,a^ r as in (9.32), are elicited. Then 

Ea>/? as in (9.31) is fully determined.

After obtaining the covariance m atrix Ea>/g, and utilizing the elicited m atrix E ^ q,, we get 

E/j from the conditional variance

^/3|a — S/3 — E^)jgEQ1E a)/3, (9.42)

which gives

S/9 =  S/3|a +  E J ^ E ^ E q,^. (9.43)

Since E ^  and E a are positive-definite, so is E/j. Also, from (9.43) and using the Schurr 

complement, the full variance-covariance m atrix of the multivariate normal prior distribution 

in (9.15) is positive-definite. It is of order (k — l)(m  +  1) and does not contain variances

or covariances of a\ ,  nor the elements of /? . This is equivalent to the usual identifiability

assumption of the base-line multinomial logit models, where the regression coefficients of the 

base-line category are set equal to zeros.
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9.6 C oncluding com m ents

A novel method has been introduced for eliciting a multivariate normal prior distribution 

for the regression coefficients in a multinomial logit model with explanatory covariates. The 

method is an extension of our proposed method in Chapter 8 for eliciting a logistic normal 

prior for classification probabilities in a multinomial model. Specifically, under a base-line 

multinomial logit model containing k categories and m  explanatory covariates, assessment 

tasks of a standard multinomial model are repeated m  4-1 times. The expert assesses con­

ditional medians and quartiles for the multinomial probabilities at specific values of each 

explanatory covariate. This determines a mean vector and a positive-definite variance- 

covariance m atrix of a multivariate normal prior distribution for (k — l)(m  +  1) regression 

Coefficients.
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Chapter 10

Concluding com m ents
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This chapter summarizes the main results and conclusions of the thesis. We give a brief 

review of the elicitation methods proposed throughout this thesis, commenting on the main 

assumptions, strength and weakness points of each proposed method. In addition, the inter­

relationships between related methods are mentioned and clarified. The proposed methods 

divide naturally in two groups: methods of quantifying expert opinion for GLMs and methods 

of prior elicitation for multinomial models. The proposed methods in each group are briefly 

discussed in order. Some extensions for further future research are given.

The method proposed by Garthwaite and Al-Awadhi (2006) and its extension in Garth- 

waite and Al-Awadhi (2011) can be considered a general tool for eliciting a multivariate 

normal prior for the regression coefficients in any GLM. In their method, opinion about the 

relationship between each continuous predictor variable and the response variable is modeled 

by a piecewise-linear function. This gives a flexible model tha t can represent a wide variety of 

opinion. Expert opinion about each categorical predictor variable (factor) is elicited through 

a bar-chart. Each slope of the piecewise-linear relationships and each level of the factors has 

a corresponding regression coefficient. The expert assesses conditional medians and quar­

tiles of the response variable at different selected design points. In this sense, the method 

applies the idea of conditional means prior proposed by Bedrick et al. (1996). Conditional 

assessments are transformed, under the normality assumption of regression coefficients, to 

estimate a mean vector and a variance-covariance m atrix for the multivariate normal prior 

distribution. Conditional quartiles are assessed in a structural way tha t ensures th a t the 

resulting matrix is positive-definite.

The method proposed by Garthwaite and Al-Awadhi (2011) has been implemented in 

interactive graphical user-friendly software, in which the expert draws piecewise-linear curves 

and bar-charts by clicking on interactive graphs on a computer screen to give her assessments. 

The software computes and offers suggestions to the expert to help reduce the burden of 

making assessments. A prototype of this software was w ritten in Java by Jenkinson (2007) 

and has been modified and extended in the current thesis to be more flexible and to include
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more options. A detailed description of the method and the current modifications to the 

software has been given in Chapter 3. Previously the software could only handle logistic 

regression but now it handles a wide range of GLMs. As noted earlier, an im portant feedback 

option has been added to the software. As each covariate is assessed separately, this feedback 

option is very useful for helping the expert see the joint impact of all explanatory covariates 

tha t her assessments imply.

A simplifying assumption in the method of Garthwaite and Al-Awadhi (2011), tha t has 

been relaxed in this thesis, is tha t regression coefficients had been assumed to be indepen­

dent, a priori, if attached to different explanatory variables. This yielded a block-diagonal 

variance-covariance m atrix and reduced the number of required assessments for its elicita­

tion. However, this independence assumption can be unrealistic in many practical situations. 

We proposed three elicitation methods for a multivariate normal prior distribution th a t do 

not impose this simplifying assumption. The proposed methods elicit full variance-covariance 

matrices, but additional assessments are needed in order to estimate the off-diagonal elements.

As noted earlier, the three proposed methods differ in their flexibility and in the number 

of additional assessments that they require. The first method is a direct extension to the 

method of Garthwaite and Al-Awadhi (2011). It is the most flexible method among the three 

and permits different correlations between regression coefficients attached to the same pair of 

covariates. Consequently, it requires a large number of conditional assessments, but it should 

prove useful when there are only a few pairs of variables that, a priori, have highly correlated 

regression coefficients.

The second proposed method uses only one assessment to model the correlation between 

all regression coefficients attached to any specific pair of explanatory covariates. This assump­

tion, of fixed correlations for all elements belonging to the same pair of vectors of coefficients, 

is useful as it reduces the assessment tasks to just one task. The expert is asked to use a 

slider to determine the correlation between two vectors of regression coefficients. This can 

be attractive as an easy and quick method for eliciting correlations if only two vectors of
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regression coefficients are thought to be correlated. Moreover, for the case where more than 

two vectors have correlated regression coefficients, we extended the method and showed it 

will yield a full variance-covariance m atrix tha t is positive-definite.

The third method we proposed is suitable for GLMs that contain a large number of 

correlated vectors. It uses a few assessments that directly reflect the pattern  of correlations 

between all pairs of vectors. In a dialogue box, the expert assesses the relative magnitudes 

and signs of the average correlations between each pair of vectors. Hence, for n vectors of 

coefficients, n(n  — l) /2  assessments are needed. These relative magnitudes should reflect the 

strength of the average correlation of each pair relative to other pairs. It is a comparatively 

easy task for the expert as these assessments need not be coherent correlation coefficients; they 

are scaled later to attain  statistical coherence. The method avoids incremented conditioning 

and assesses all covariances simultaneously.

After assessing the relative magnitudes, using the PEGS-GLM (Correlated Coefficients), 

the third method can be used alone or together with one of the other two proposed meth­

ods, to obtain correlations. The default option, tha t implements this method alone, is to 

use one slider to determine correlation coefficients based on simultaneous interactive graphs 

tha t show the changes of different variables according to their assessed relative magnitudes. 

The other two alternate options need an assessment of the correlation of only one pair of 

vectors, then all other correlation coefficients are computed from this assessment using the 

relative magnitudes. The correlation assessment for one of the highly correlated pairs may 

be obtained using one of the other two proposed methods. The first of them  needs more as­

sessments, while the second method assumes a fixed correlation structure for the elements of 

the highly correlated pair of vectors. Figure 10.1 shows the different options available to the 

expert for choosing which method to use when she is assessing correlations between regression 

coefficients in GLMs. These are the different options offered by our PEGS-GLM (Correlated 

Coefficients) software tha t is freely available at h ttp ://statistics.open.ac.uk/elicitation.
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Figure 10.1: Options for assessing correlations between regression coefficients

To complete the prior structure of GLMs with normal and gamma response variables, we 

proposed two methods of eliciting prior distributions for the extra parameters in these models. 

One of these methods elicits a conjugate chi-squared prior distribution for the random error 

variance in normal linear models. The expert is asked to revise her assessments conditional 

on various sets of hypothetical future samples. A number of sets of hypothetical da ta  are used 

in order to obtain several estimates of the hyperparameter tha t is most difficult to  assess, 

namely, the degrees of freedom parameter of the chi-squared distribution. Reconciliation 

of these estimates, using the geometric mean, yields an overall estimate of the number of 

degrees of freedom. The second hyperparameter of the chi-squared prior distribution is also 

determined from the same assessments. The use of interactive graphical software greatly
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facilitates the tasks tha t the expert must perform.

For a gamma response variable, the additional param eter th a t must be assessed is the 

scale parameter. We assumed that prior opinion about this positive-valued parameter can be 

reasonably quantified as a lognormal distribution. To determine the hyperparameters of the 

lognormal prior distribution, the expert is asked to give a point estimate and an interquartile 

range for the lower quartile of the gamma response variable. We proved tha t the lower 

quartile is a monotonic increasing function of the scale parameter. The expert’s assessments 

are thus transformed to quartiles of the lognormal distribution, and hence to the mean and 

variance of the lognormal distribution. An example of the questions tha t can be asked in 

order to obtain the expert’s assessments has been given. As noted earlier, no other reasonable 

elicitation methods for the scale parameters of gamma GLMs seems to be available in the 

literature.

Eliciting flexible prior distributions for the classification probabilities in multinomial mod­

els has been another im portant interest of this thesis. In this context, we started by proposing 

two elicitation methods for the natural conjugate Dirichlet prior. The first method is based 

on marginal quartile assessments of the classification probabilities. These assessments were 

used to elicit separate marginal beta distributions of the Dirichlet prior distribution. A nor­

mal approximation and least-squares techniques have been used to obtain beta parameters 

from the quartile assessments. From three reconciliations of beta distributions into a Dirich­

let prior distribution, the expert is asked to select the reconciliation th a t best describes her 

opinions, based on graphical feedback. The second method elicits conditional quartile assess­

ments for the classification probabilities. These conditional assessments are used to determine 

conditional beta distributions tha t are averaged to obtain a Dirichlet prior distribution.

The same marginal and conditional quartile assessments for classification probabilities 

have been used to elicit two other flexible prior distributions for multinomial models. Condi­

tional quartile assessments were used to elicit conditional beta distributions of a generalized 

Dirichlet prior distribution. As noted earlier, this distribution is more flexible than the
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standard Dirichlet distribution for quantifying expert opinion. It has the same number of 

hyperparameters as the total number of parameters in the conditional beta distributions that 

determine it. Hence no reconciliation is needed. The generalized Dirichlet distribution has a 

more general dependence structure than the standard Dirichlet. For example, its correlation 

structure allows positive correlations between classification probabilities.

Marginal assessments were used to elicit marginal beta distributions for multinomial prob­

abilities. Then, instead of assuming a Dirichlet prior, the beta marginals were used in a 

Gaussian copula function to model the joint prior distribution of multinomial probabilities. 

This required further conditional quartile assessments to describe the correlation structure 

between these probabilities. The monotonicity of the Gaussian copula transformation allowed 

conditional quartiles of the multinomial probabilities to be transformed into normal quartiles. 

The latter were used to obtain product-moment correlations for normal variates. This power­

ful technique of transforming quartiles avoids the difficulties encountered when transforming 

product-moment correlations. Structural assessment of the conditional quartiles has been 

used to ensure that the elicited variance-covariance m atrix is positive-definite.

The conditional quartile assessments tha t were used to elicit correlations for a Gaussian 

copula prior were also used in a new method for eliciting a logistic normal prior distribution for 

multinomial probabilities. Quantifying expert opinion as a logistic normal prior raised some 

interesting points that do not seem to have arisen in elicitation contexts before. We made 

use of the natural approximation of the lognormal sum by another lognormally distributed 

random variable. In addition, our proposed method has extensively used the notion of singular 

multivariate normal distribution; available literature shows tha t conditional properties of 

the singular normal distribution is nearly identical to their corresponding properties in the 

standard normal distribution. These results were used to prove th a t the medians, not only the 

means, of multinomial probabilities must sum to one, assuming they follow a logistic normal 

distribution. This was critical in building the elicitation method as it enables assistance to 

be given to the expert tha t leads to statistically coherent assessments.
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The four proposed prior distributions are interrelated regarding the assessments that they 

use. Each type of assessments can be used to elicit more than one prior distribution. The 

Prior Elicitation Graphical Software package for Multinomial models, PEGS-Multinomial, 

th a t is freely available at http://statistics.open.ac.uk/elicitation, arranges the assessment 

tasks tha t are required for the four proposed prior distributions. Software is also available 

tha t elicits each of the prior distributions separately. The flowchart in Figure 10.2 shows the 

options for prior distributions tha t are available in PEGS-Multinomial and the corresponding 

assessments tha t they require. For example, it shows tha t a Gaussian copula prior is elicited 

using two types of assessments, and that a standard Dirichlet prior is elicited using either 

marginal or conditional assessments, as discussed before. Since conditional beta assessments 

can be used to elicit both the standard and generalized Dirichlet distributions, the software 

gives the option of eliciting both of them using the same conditional quartiles.
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Figure 10.2: A flowchart of the prior elicitation software for multinomial models

All the proposed prior elicitation methods for multinomial models and their implementing 

software have been used in examples by real experts. In all examples, the experts suggested 

the problem according to their fields of expertise. They understood the multinomial formula­

tion and were keen to participate in the elicitation process. After a brief discussion about the 

ideas of the bisection method and conditional assessments they had no problem in assessing 

quartiles and conditional quartiles. All the experts expressed the view that visualization of 

the problem had helped them a lot in quantifying their opinions. They also made use of the 

coherent suggestions given by the software and used the feedback options to revise some of 

their assessments. Thus the software proved im portant in providing visualization, coherent 

suggestions and feedback. It also helped the experts review and revise their assessments, and
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reduced the time taken by the elicitation processes.

Future research in assessment methods for GLMs may include eliciting prior distribu­

tions for the overdispersion parameters in binomial and Poisson GLMs. In these important 

GLMs, it is common that the data  show a greater variability than the theoretical variability 

assumed by the model. However, no elicitation method have been proposed in the literature 

for quantifying opinion about overdispersion parameters. A reasonable approach might be 

to assume a generalized binomial distribution or a generalized Poisson distribution for the 

response variable, instead of the standard binomial or Poisson distributions. These general­

ized distributions have extra parameters tha t allow for overdispersion. Methods of assessing 

suitable prior distributions for these extra parameters need to be developed.

Another extension to the proposed method for GLMs elicitation concerns the proportional 

hazard model. This model, also known as the Cox regression model, is often used to model 

survival data in medical research. See, for example, Collett (1994). Due to its wide practical 

importance, a huge bulk of research has been devoted to investigating both theoretical and 

applied aspects of Bayesian analysis of a proportional hazard model. See, Ibrahim and Chen 

(1998) and Zuashkiani et al. (2008), among others. Quantifying opinion about these models 

has also attracted some attention. See, for example, Chaloner et al. (1993) and Henschel 

et al. (2009). Adaptation is needed for the current GLM elicitation methods to handle a 

proportional hazard model.

The method of eliciting logistic normal prior distributions for multinomial models has 

already been extended further in Chapter 9. The extended method treats the case of multi­

nomial models in which classification probabilities are influenced by explanatory covariates. 

Specifically, we proposed a method tha t quantifies opinion about the param eters of a base­

line multinomial logit model as a multivariate normal prior distribution. The m ethod uses 

conditional median and quartile assessments for the classification probabilities at different 

combinations of the explanatory variables. These assessments have been obtained in a struc­

tured way that yields the mean vector and positive-definite variance-covariance m atrix of
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the prior multivariate normal distribution. Another desirable extension would be to elicit a 

logistic normal prior distribution for the cell probabilities of contingency tables. The logistic 

normal distribution is considered a reasonable prior for contingency tables, see for example 

Goutis (1993). Hence, our proposed elicitation method for a logistic normal prior promises 

to be useful in further contexts.

Other models for which elicitation methods still need to be developed include time series 

analysis, extreme values analysis and modelling the spread of infectious diseases. These 

models sometimes investigate cases for which data  are scarce, the events are rare, or situations 

are new and uncontrollable. Expert opinion is highly im portant in such situations, so the 

need for appropriate elicitation methods is clear.
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